Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
C
COMP3217 code and result
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
yl1r22
COMP3217 code and result
Commits
ef089f14
Commit
ef089f14
authored
2 years ago
by
yl1r22
Browse files
Options
Downloads
Patches
Plain Diff
Delete AI_Part2.ipynb
parent
2c80dddb
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
AI_Part2.ipynb
+0
-233
0 additions, 233 deletions
AI_Part2.ipynb
with
0 additions
and
233 deletions
AI_Part2.ipynb
deleted
100644 → 0
+
0
−
233
View file @
2c80dddb
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "6064e0b1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 0 1 2 3 4 5 \\\n",
"0 70.399324 127673.0908 -49.572308 127648.0176 -169.578319 127723.2374 \n",
"\n",
" 6 7 8 9 ... 119 120 121 122 123 \\\n",
"0 65.689611 605.91099 -57.003571 626.78553 ... 0 0 0 0 0 \n",
"\n",
" 124 125 126 127 128 \n",
"0 0 0 0 0 0 \n",
"\n",
"[1 rows x 129 columns]\n"
]
}
],
"source": [
"#Import scikit-learn dataset library\n",
"#from sklearn import datasets\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.model_selection import cross_val_score\n",
"from sklearn import svm, metrics\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"import pandas as pd\n",
"import numpy as np\n",
"from joblib import dump\n",
"\n",
"\n",
"df = pd.read_csv('H:\\AI classification\\TrainingDataMulti.csv', header=None)\n",
"\n",
"print(df.head(1))\n",
"\n",
"df_feature = df.iloc[:, :128]\n",
"\n",
"df_label = df.iloc[:, 128]\n",
"\n",
"\n",
"\n",
"\n",
"#dftest = pd.read_csv('H:\\AI classification\\TestingDataBinary.csv')\n",
"\n",
"#X_test = dftest.iloc[:, :128]\n",
"\n",
"#y_test = dftest.iloc[:, 128]\n",
"\n",
"\n",
"#Load dataset\n",
"#cancer = datasets.load_breast_cancer()\n",
"\n",
"# print the names of the features\n",
"#print(\"Features: \", cancer.feature_names)\n",
"\n",
"# print the label type of cancer('malignant' 'benign')\n",
"#print(\"Labels: \", cancer.target_names)\n",
"\n",
"# print data(feature)shape\n",
"#print (cancer.data.shape)\n",
"\n",
"\n",
"# Split dataset into training set and test set\n",
"X_train, X_test, y_train, y_test = train_test_split(df_feature, df_label, test_size=0.2) # 80% training and 20% test\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c4bcd563",
"metadata": {},
"outputs": [],
"source": [
"#Create a svm Classifier\n",
"clf = svm.SVC(kernel='linear') # Linear Kernel\n",
"\n",
"#Train the model using the training sets\n",
"clf.fit(X_train, y_train)\n",
"\n",
"#Predict the response for test dataset\n",
"y_pred = clf.predict(X_test)\n",
"\n",
"print(\"Accuracy:\",metrics.accuracy_score(y_test, y_pred))\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "cdc65331",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.9558333333333333\n"
]
}
],
"source": [
"# Create a rfc \n",
"clf1 = RandomForestClassifier(n_estimators=200, max_features=78)\n",
"\n",
"clf1.fit(X_train, y_train)\n",
"\n",
"y_pred1 = clf1.predict(X_test)\n",
"\n",
"print(\"Accuracy:\",metrics.accuracy_score(y_test, y_pred1))\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ae7d5339",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scores [0.934375 0.91979167 0.940625 0.94583333 0.93958333]\n",
"Mean Scores 0.9360416666666668\n"
]
}
],
"source": [
"scores1 = cross_val_score(clf1, X_train, y_train, cv=5)\n",
"\n",
"print(\"Scores\", scores1)\n",
"print(\"Mean Scores\", np.mean(scores1))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "253d7c20",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"['H:/AI classification/RFC_part2.pkl']"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dump(clf1, 'H:/AI classification/RFC_part2.pkl')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "943bcea4",
"metadata": {},
"outputs": [],
"source": [
"# Load testing dataset\n",
"test_data=pd.read_csv('H:\\AI classification\\TestingDataMulti.csv', header=None)\n",
"# predict dataset\n",
"predictions = clf1.predict(test_data)\n",
"predictions_df = pd.DataFrame(predictions)\n",
"# write the result to dataset\n",
"result = pd.concat([test_data,predictions_df], axis=1)\n",
"#create a csv dcument\n",
"result.to_csv('H:/AI classification/test_pre2.csv', index = False, header = False)\n"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "8a8a1e04",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n",
" 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1\n",
" 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n"
]
}
],
"source": [
"print(predictions)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1521abed",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
%% Cell type:code id:6064e0b1 tags:
```
python
#Import scikit-learn dataset library
#from sklearn import datasets
from
sklearn.model_selection
import
train_test_split
from
sklearn.model_selection
import
cross_val_score
from
sklearn
import
svm
,
metrics
from
sklearn.ensemble
import
RandomForestClassifier
import
pandas
as
pd
import
numpy
as
np
from
joblib
import
dump
df
=
pd
.
read_csv
(
'
H:\AI classification\TrainingDataMulti.csv
'
,
header
=
None
)
print
(
df
.
head
(
1
))
df_feature
=
df
.
iloc
[:,
:
128
]
df_label
=
df
.
iloc
[:,
128
]
#dftest = pd.read_csv('H:\AI classification\TestingDataBinary.csv')
#X_test = dftest.iloc[:, :128]
#y_test = dftest.iloc[:, 128]
#Load dataset
#cancer = datasets.load_breast_cancer()
# print the names of the features
#print("Features: ", cancer.feature_names)
# print the label type of cancer('malignant' 'benign')
#print("Labels: ", cancer.target_names)
# print data(feature)shape
#print (cancer.data.shape)
# Split dataset into training set and test set
X_train
,
X_test
,
y_train
,
y_test
=
train_test_split
(
df_feature
,
df_label
,
test_size
=
0.2
)
# 80% training and 20% test
```
%% Output
0 1 2 3 4 5 \
0 70.399324 127673.0908 -49.572308 127648.0176 -169.578319 127723.2374
6 7 8 9 ... 119 120 121 122 123 \
0 65.689611 605.91099 -57.003571 626.78553 ... 0 0 0 0 0
124 125 126 127 128
0 0 0 0 0 0
[1 rows x 129 columns]
%% Cell type:code id:c4bcd563 tags:
```
python
#Create a svm Classifier
clf
=
svm
.
SVC
(
kernel
=
'
linear
'
)
# Linear Kernel
#Train the model using the training sets
clf
.
fit
(
X_train
,
y_train
)
#Predict the response for test dataset
y_pred
=
clf
.
predict
(
X_test
)
print
(
"
Accuracy:
"
,
metrics
.
accuracy_score
(
y_test
,
y_pred
))
```
%% Cell type:code id:cdc65331 tags:
```
python
# Create a rfc
clf1
=
RandomForestClassifier
(
n_estimators
=
200
,
max_features
=
78
)
clf1
.
fit
(
X_train
,
y_train
)
y_pred1
=
clf1
.
predict
(
X_test
)
print
(
"
Accuracy:
"
,
metrics
.
accuracy_score
(
y_test
,
y_pred1
))
```
%% Output
Accuracy: 0.9558333333333333
%% Cell type:code id:ae7d5339 tags:
```
python
scores1
=
cross_val_score
(
clf1
,
X_train
,
y_train
,
cv
=
5
)
print
(
"
Scores
"
,
scores1
)
print
(
"
Mean Scores
"
,
np
.
mean
(
scores1
))
```
%% Output
Scores [0.934375 0.91979167 0.940625 0.94583333 0.93958333]
Mean Scores 0.9360416666666668
%% Cell type:code id:253d7c20 tags:
```
python
dump
(
clf1
,
'
H:/AI classification/RFC_part2.pkl
'
)
```
%% Output
['H:/AI classification/RFC_part2.pkl']
%% Cell type:code id:943bcea4 tags:
```
python
# Load testing dataset
test_data
=
pd
.
read_csv
(
'
H:\AI classification\TestingDataMulti.csv
'
,
header
=
None
)
# predict dataset
predictions
=
clf1
.
predict
(
test_data
)
predictions_df
=
pd
.
DataFrame
(
predictions
)
# write the result to dataset
result
=
pd
.
concat
([
test_data
,
predictions_df
],
axis
=
1
)
#create a csv dcument
result
.
to_csv
(
'
H:/AI classification/test_pre2.csv
'
,
index
=
False
,
header
=
False
)
```
%% Cell type:code id:8a8a1e04 tags:
```
python
print
(
predictions
)
```
%% Output
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
%% Cell type:code id:1521abed tags:
```
python
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment