PyTorch implementation and pretrained models for DINOv2. For details, see the paper: **DINOv2: Learning Robust Visual Features without Supervision**.
PyTorch implementation and pretrained models for DINOv2. For details, see the paper: **[DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)**.
DINOv2 models produce high-performance visual features that can be directly employed with classifiers as simple as linear layers on a variety of computer vision tasks; these visual features are robust and perform well across domains without any requirement for fine-tuning. The models were pretrained on a dataset of 142 M images without using any labels or annotations.
Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install the PyTorch and torchvision dependencies (these are the only required dependencies). Installing both PyTorch and torchvision with CUDA support is strongly recommended.