diff --git a/README.md b/README.md index fb2ede334b1415eebc10fe5e8498c5f27304f88f..5852b044e6d36125cf5d94b93bfbe8ddad556f5c 100644 --- a/README.md +++ b/README.md @@ -10,15 +10,14 @@ Marc Szafraniec, Vasil Khalidov, Patrick Labatut, Armand Joulin, -Piotr Bojanowski +Piotr Bojanowski [[`Paper`](https://arxiv.org/abs/2304.07193)] [[`Blog`](https://ai.facebook.com/blog/dino-v2-computer-vision-self-supervised-learning/)] [[`Demo`](https://dinov2.metademolab.com)] [[`BibTeX`](#citing-dinov2)] -PyTorch implementation and pretrained models for DINOv2. For details, see the paper: **DINOv2: Learning Robust Visual Features without Supervision**. +PyTorch implementation and pretrained models for DINOv2. For details, see the paper: **[DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)**. DINOv2 models produce high-performance visual features that can be directly employed with classifiers as simple as linear layers on a variety of computer vision tasks; these visual features are robust and perform well across domains without any requirement for fine-tuning. The models were pretrained on a dataset of 142 M images without using any labels or annotations. - https://user-images.githubusercontent.com/60359573/230078733-5faffa19-e6ce-4c55-9200-62dd76f8236a.mp4 <div align="center"> @@ -27,7 +26,7 @@ https://user-images.githubusercontent.com/60359573/230078733-5faffa19-e6ce-4c55- ## Pretrained models -<table> +<table style="margin: auto"> <tr> <th>model</th> <th># of<br />params</th> @@ -65,7 +64,6 @@ https://user-images.githubusercontent.com/60359573/230078733-5faffa19-e6ce-4c55- </tr> </table> - ### Pretrained models via PyTorch Hub Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install the PyTorch and torchvision dependencies (these are the only required dependencies). Installing both PyTorch and torchvision with CUDA support is strongly recommended. @@ -188,7 +186,7 @@ python dinov2/run/eval/linear.py \ We release the weights from evaluating the different models: -<table> +<table style="margin: auto"> <tr> <th>model</th> <th>ImageNet<br />top-1</th>