Skip to content
Snippets Groups Projects
Commit c8a24805 authored by MJB's avatar MJB
Browse files

added template and updated simulator

parent f56d62ef
No related branches found
No related tags found
No related merge requests found
# Telegraf configuration
# Telegraf is entirely plugin driven. All metrics are gathered from the
# declared inputs, and sent to the declared outputs.
# Plugins must be declared in here to be active.
# To deactivate a plugin, comment out the name and any variables.
# Use 'telegraf -config telegraf.conf -test' to see what metrics a config
# file would generate.
# Global tags can be specified here in key="value" format.
[global_tags]
# location of the data centre
location={{LOCATION}}
# media service template id
sfc={{SFC_ID}}
# media service instance
sfc_i={{SFC_ID_INSTANCE}}
# service function type
sf={{SF_ID}}
# service function instance id
sf_i={{SF_ID_INSTANCE}}
# ipendpoint id aka surrogate instance
ipendpoint={{IP_ENDPOINT_ID}}
# Configuration for telegraf agent
[agent]
## Default data collection interval for all inputs
interval = "10s"
## Rounds collection interval to 'interval'
## ie, if interval="10s" then always collect on :00, :10, :20, etc.
round_interval = true
## Telegraf will cache metric_buffer_limit metrics for each output, and will
## flush this buffer on a successful write.
metric_buffer_limit = 1000
## Flush the buffer whenever full, regardless of flush_interval.
flush_buffer_when_full = true
## Collection jitter is used to jitter the collection by a random amount.
## Each plugin will sleep for a random time within jitter before collecting.
## This can be used to avoid many plugins querying things like sysfs at the
## same time, which can have a measurable effect on the system.
collection_jitter = "0s"
## Default flushing interval for all outputs. You shouldn't set this below
## interval. Maximum flush_interval will be flush_interval + flush_jitter
flush_interval = "10s"
## Jitter the flush interval by a random amount. This is primarily to avoid
## large write spikes for users running a large number of telegraf instances.
## ie, a jitter of 5s and interval 10s means flushes will happen every 10-15s
flush_jitter = "0s"
## Logging configuration:
## Run telegraf in debug mode
debug = false
## Run telegraf in quiet mode
quiet = false
## Specify the log file name. The empty string means to log to stdout.
logfile = "G:/Telegraf/telegraf.log"
## Override default hostname, if empty use os.Hostname()
hostname = ""
###############################################################################
# OUTPUTS #
###############################################################################
# Configuration for influxdb server to send metrics to
[[outputs.influxdb]]
# The full HTTP or UDP endpoint URL for your InfluxDB instance.
# Multiple urls can be specified but it is assumed that they are part of the same
# cluster, this means that only ONE of the urls will be written to each interval.
# urls = ["udp://127.0.0.1:8089"] # UDP endpoint example
urls = ["{{INFLUXDB_URL}}"] # required
# The target database for metrics (telegraf will create it if not exists)
database = "CLMCMetrics" # required
# Precision of writes, valid values are "ns", "us" (or "µs"), "ms", "s", "m", "h".
# note: using second precision greatly helps InfluxDB compression
precision = "s"
## Write timeout (for the InfluxDB client), formatted as a string.
## If not provided, will default to 5s. 0s means no timeout (not recommended).
timeout = "5s"
# username = "telegraf"
# password = "metricsmetricsmetricsmetrics"
# Set the user agent for HTTP POSTs (can be useful for log differentiation)
# user_agent = "telegraf"
# Set UDP payload size, defaults to InfluxDB UDP Client default (512 bytes)
# udp_payload = 512
[[outputs.file]]
## Files to write to, "stdout" is a specially handled file.
files = ["stdout", "/tmp/metrics.out"]
## Data format to output.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
data_format = "influx"
###############################################################################
# INPUTS #
###############################################################################
# # Influx HTTP write listener
[[inputs.http_listener]]
## Address and port to host HTTP listener on
service_address = ":8186"
## timeouts
read_timeout = "10s"
write_timeout = "10s"
## HTTPS
#tls_cert= "/etc/telegraf/cert.pem"
#tls_key = "/etc/telegraf/key.pem"
## MTLS
#tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
\ No newline at end of file
......@@ -18,7 +18,7 @@ def generate_network_report(recieved_bytes, sent_bytes, time):
result += ' ' + str(_getNSTime(time))
# Measurement
print(result)
#print(result)
return result
......@@ -43,7 +43,7 @@ def generate_vm_config(state, cpu, mem, storage, time):
# Reports cpu usage, scaling on requests
def generate_cpu_report(cpu_usage, cpu_active_time, cpu_idle_time, time):
result = 'vm_host_cpu_usage'
result = 'cpu_usage'
# Tag
result += ' '
# field
......@@ -74,6 +74,21 @@ def generate_mpegdash_report(resource, requests, avg_response_time, peak_respons
print(result)
return result
#ipendpoint_route,ipendpoint_id,cont_nav=FQDN HTTP_REQUESTS_FQDN_M, NETWORK_FQDN_LATENCY timestamp
def generate_ipendpoint_route(resource, requests, latency, time):
# Measurement
result = 'ipendpoint_route'
# Tags
result += ',cont_nav=\"' + str(resource) + "\" "
# Fields
# result += 'cont_rep=' + str(quality) + ','
result += 'http_requests_fqdn_m=' + str(requests) + ','
result += 'network_fqdn_latency=' + str(latency)
# Timestamp
result += ' ' + str(_getNSTime(time))
#print(result)
return result
# Influx needs strings to be quoted, this provides a utility interface to do this
def quote_wrap(str):
......@@ -84,7 +99,7 @@ def quote_wrap(str):
def _getNSTime(time):
# Convert to nano-seconds
timestamp = int(1000000000*time)
print("timestamp", timestamp)
#print("timestamp", timestamp)
return timestamp
# DEPRICATED
......
......@@ -7,11 +7,14 @@ import random
# Simulation parameters
TICK_TIME = 1
DEFAULT_REQUEST_RATE_INCREMENT = 5
SIMULATION_TIME_SEC = 180
DEFAULT_REQUEST_RATE_INC = 1
DEFAULT_REQUEST_RATE_INC_PERIOD = 10
SIMULATION_TIME_SEC = 60*60
# CLMC parameters
INFLUX_DB_URL = 'http://192.168.50.10:8086'
AGENT_URL1 = 'http://192.168.50.11:8186'
AGENT_URL2 = 'http://192.168.50.12:8186'
# Simulator for services
class sim:
......@@ -28,54 +31,47 @@ class sim:
start_time = time.time()-SIMULATION_TIME_SEC
sim_time = start_time
ip_endpoints = [{'agent_url': 'http://192.168.50.11:8186', 'location': 'DC1', 'cpu': 16,
'mem': '8GB', 'storage': '1TB', 'request_queue': 0, 'request_arrival_rate': 0},
{'agent_url': 'http://192.168.50.12:8186', 'location': 'DC2', 'cpu': 2,
'mem': '8GB', 'storage': '1TB', 'request_queue': 0, 'request_arrival_rate': 0}
# segment_size : the length of video requested at a time
# bit_rate: MPEG-2 High 1080p 25fps = 80Mbps
ip_endpoints = [{'agent_url': AGENT_URL1, 'location': 'DC1', 'cpu': 16,
'mem': '8GB', 'storage': '1TB', 'request_queue': 0, 'request_arrival_rate': 0,
'segment_size': 2, 'video_bit_rate': 80, 'packet_size': 1500},
{'agent_url': AGENT_URL2, 'location': 'DC2', 'cpu': 4,
'mem': '8GB', 'storage': '1TB', 'request_queue': 0, 'request_arrival_rate': 0,
'segment_size': 2, 'video_bit_rate': 80, 'packet_size': 1500}
]
# Simulate configuration of the ipendpoints
# endpoint state->mu, sigma, secs normal distribution
config_delay_dist = {"placed": [5, 0.68], "booted": [10, 0.68],"connected": [10, 0.68]}
config_delay_dist = {"placing": [10, 0.68], "booting": [10, 0.68],"connecting": [10, 0.68]}
# Place the endpoints
max_delay = 0
# Place endpoints
max_delay = 0
for ip_endpoint in ip_endpoints:
delay_time = random.normalvariate(config_delay_dist['placed'][0], config_delay_dist['placed'][0]*config_delay_dist['placed'][1])
# print('sim_time: ', sim_time)
# print('delay_time: ', delay_time)
# timestamp = sim_time+delay_time
# print('timestamp: ', timestamp)
# ns_time = int(timestamp*1000000)
# print('ns_time: ', ns_time)
self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_vm_config('placed', ip_endpoint['cpu'], ip_endpoint['mem'], ip_endpoint['storage'], sim_time+delay_time))
delay_time = self._changeVMState(sim_time, ip_endpoint, config_delay_dist['placing'][0], config_delay_dist['placing'][0]*config_delay_dist['placing'][1], 'placing', 'placed')
if delay_time > max_delay:
max_delay = delay_time
sim_time +=max_delay
# Boot endpoints
max_delay = 0
# Boot the endpoints
for ip_endpoint in ip_endpoints:
delay_time = random.normalvariate(config_delay_dist['booted'][0], config_delay_dist['booted'][0]*config_delay_dist['booted'][1])
self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_vm_config('booted', ip_endpoint['cpu'], ip_endpoint['mem'], ip_endpoint['storage'], sim_time+delay_time))
delay_time = self._changeVMState(sim_time, ip_endpoint, config_delay_dist['booting'][0], config_delay_dist['booting'][0]*config_delay_dist['booting'][1], 'booting', 'booted')
if delay_time > max_delay:
max_delay = delay_time
sim_time +=max_delay
# Connect endpoints
max_delay = 0
# Connect the endpoints
for ip_endpoint in ip_endpoints:
delay_time = random.normalvariate(config_delay_dist['connected'][0], config_delay_dist['connected'][0]*config_delay_dist['connected'][1])
self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_vm_config('connected', ip_endpoint['cpu'], ip_endpoint['mem'], ip_endpoint['storage'], sim_time+delay_time))
delay_time = self._changeVMState(sim_time, ip_endpoint, config_delay_dist['connecting'][0], config_delay_dist['connecting'][0]*config_delay_dist['connecting'][1], 'connecting', 'connected')
if delay_time > max_delay:
max_delay = delay_time
sim_time +=max_delay
request_arrival_rate_inc = DEFAULT_REQUEST_RATE_INCREMENT
request_arrival_rate_inc = DEFAULT_REQUEST_RATE_INC
request_queue = 0
inc_period_count = 0
for i in range(simulation_length_seconds):
for ip_endpoint in ip_endpoints:
request_processing_time = 0
......@@ -90,17 +86,24 @@ class sim:
peak_response_time = 0
# linear inc to arrival rate
ip_endpoint['request_arrival_rate'] += request_arrival_rate_inc
if inc_period_count >= DEFAULT_REQUEST_RATE_INC_PERIOD:
ip_endpoint['request_arrival_rate'] += request_arrival_rate_inc
inc_period_count = 0
else:
inc_period_count += 1
# add new requests to the queue
ip_endpoint['request_queue'] += ip_endpoint['request_arrival_rate']
# time to process one request (mS) in the current second
request_processing_time = int(random.normalvariate(50, 50*0.95))
# time to process one second of video (mS) in the current second
request_processing_time = int(random.normalvariate(10, 10*0.68))
if request_processing_time <= 10:
request_processing_time = 10
# time depends on the length of the segments in seconds
request_processing_time *= ip_endpoint['segment_size']
# amount of cpu time (mS) per tick
cpu_time_available = ip_endpoint['cpu']*TICK_TIME*1000
max_requests_processed = cpu_time_available/request_processing_time
max_requests_processed = int(cpu_time_available/request_processing_time)
# calc how many requests processed
if ip_endpoint['request_queue'] <= max_requests_processed:
# processed all of the requests
......@@ -108,16 +111,17 @@ class sim:
else:
# processed the maxmum number of requests
requests_processed = max_requests_processed
# calculate cpu usage
cpu_active_time = int(requests_processed*request_processing_time)
cpu_idle_time = int(cpu_time_available-cpu_active_time)
cpu_usage = cpu_active_time/cpu_time_available
self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_cpu_report(cpu_usage, cpu_active_time, cpu_idle_time, sim_time))
# calc network usage metrics with no constraints.
bytes_sent = 1024*requests_processed
bytes_rec = 32*requests_processed
self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_network_report(bytes_rec, bytes_sent, sim_time))
# calc network usage metrics
bytes_rx = 2048*requests_processed
bytes_tx = int(ip_endpoint['video_bit_rate']/8*1000000*requests_processed*ip_endpoint['segment_size'])
self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_network_report(bytes_rx, bytes_tx, sim_time))
# time to process all of the requests in the queue
peak_response_time = ip_endpoint['request_queue']*request_processing_time/ip_endpoint['cpu']
......@@ -125,6 +129,16 @@ class sim:
avg_response_time = (peak_response_time+request_processing_time)/2
self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_mpegdash_report('https://Netflix.com/scream', ip_endpoint['request_arrival_rate'], avg_response_time, peak_response_time, sim_time))
# need to calculate this but sent at 5mS for now
network_request_delay = 0.005
# calculate network response delays (2km link, 100Mbps)
network_response_delay = self._calcNetworkDelay(2000, 100, ip_endpoint['packet_size'], ip_endpoint['video_bit_rate'], ip_endpoint['segment_size'])
e2e_delay = network_request_delay + (avg_response_time/1000) + network_response_delay
self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_ipendpoint_route('https://Netflix.com/scream', ip_endpoint['request_arrival_rate'], e2e_delay, sim_time))
# remove requests processed off the queue
ip_endpoint['request_queue'] -= int(requests_processed)
......@@ -132,6 +146,38 @@ class sim:
end_time = sim_time
print("Simulation Finished. Start time {0}. End time {1}. Total time {2}".format(start_time,end_time,end_time-start_time))
# distance metres
# bandwidth Mbps
# package size bytes
# tx_video_bit_rate bp/sec
# segment size sec
def _calcNetworkDelay(self, distance, bandwidth, packet_size, tx_video_bit_rate, segment_size):
response_delay = 0
# propogation delay = distance/speed () (e.g 2000 metres * 2*10^8 for optical fibre)
propogation_delay = distance/(2*100000000)
# packetisation delay = ip packet size (bits)/tx rate (e.g. 100Mbp with 0% packet loss)
packetisation_delay = (packet_size*8)/(bandwidth*1000000)
# print('packetisation_delay:', packetisation_delay)
# total number of packets to be sent
packets = (tx_video_bit_rate*1000000)/(packet_size*8)
# print('packets:', packets)
response_delay = packets*(propogation_delay+packetisation_delay)
# print('response_delay:', response_delay)
return response_delay
def _changeVMState(self, sim_time, ip_endpoint, mu, sigma, transition_state, next_state):
delay_time = 0
self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_vm_config(transition_state, ip_endpoint['cpu'], ip_endpoint['mem'], ip_endpoint['storage'], sim_time))
delay_time = random.normalvariate(mu, sigma)
self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_vm_config(next_state, ip_endpoint['cpu'], ip_endpoint['mem'], ip_endpoint['storage'], sim_time+delay_time))
return delay_time
def _createDB(self):
self._sendInfluxQuery(self.influx_url, 'CREATE DATABASE ' + self.influx_db)
......@@ -152,7 +198,6 @@ class sim:
req = urllib.request.Request(url + '/write?db=' + self.influx_db, data, header)
urllib.request.urlopen(req)
simulator = sim(INFLUX_DB_URL)
simulator.run(SIMULATION_TIME_SEC)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment