From c8a2480535c39d26062bd42f5dcf368382cd3670 Mon Sep 17 00:00:00 2001 From: MJB <mjb@it-innovation.soton.ac.uk> Date: Mon, 22 Jan 2018 21:10:25 +0000 Subject: [PATCH] added template and updated simulator --- .../influx/telegraf_ipendpoint_template.conf | 122 ++++++++++++++++++ src/mediaServiceSim/LineProtocolGenerator.py | 21 ++- src/mediaServiceSim/simulator_v2.py | 121 +++++++++++------ 3 files changed, 223 insertions(+), 41 deletions(-) create mode 100644 scripts/influx/telegraf_ipendpoint_template.conf diff --git a/scripts/influx/telegraf_ipendpoint_template.conf b/scripts/influx/telegraf_ipendpoint_template.conf new file mode 100644 index 0000000..0fe2cc5 --- /dev/null +++ b/scripts/influx/telegraf_ipendpoint_template.conf @@ -0,0 +1,122 @@ +# Telegraf configuration + +# Telegraf is entirely plugin driven. All metrics are gathered from the +# declared inputs, and sent to the declared outputs. + +# Plugins must be declared in here to be active. +# To deactivate a plugin, comment out the name and any variables. + +# Use 'telegraf -config telegraf.conf -test' to see what metrics a config +# file would generate. + +# Global tags can be specified here in key="value" format. +[global_tags] + # location of the data centre + location={{LOCATION}} + # media service template id + sfc={{SFC_ID}} + # media service instance + sfc_i={{SFC_ID_INSTANCE}} + # service function type + sf={{SF_ID}} + # service function instance id + sf_i={{SF_ID_INSTANCE}} + # ipendpoint id aka surrogate instance + ipendpoint={{IP_ENDPOINT_ID}} + +# Configuration for telegraf agent +[agent] + ## Default data collection interval for all inputs + interval = "10s" + ## Rounds collection interval to 'interval' + ## ie, if interval="10s" then always collect on :00, :10, :20, etc. + round_interval = true + + ## Telegraf will cache metric_buffer_limit metrics for each output, and will + ## flush this buffer on a successful write. + metric_buffer_limit = 1000 + ## Flush the buffer whenever full, regardless of flush_interval. + flush_buffer_when_full = true + + ## Collection jitter is used to jitter the collection by a random amount. + ## Each plugin will sleep for a random time within jitter before collecting. + ## This can be used to avoid many plugins querying things like sysfs at the + ## same time, which can have a measurable effect on the system. + collection_jitter = "0s" + + ## Default flushing interval for all outputs. You shouldn't set this below + ## interval. Maximum flush_interval will be flush_interval + flush_jitter + flush_interval = "10s" + ## Jitter the flush interval by a random amount. This is primarily to avoid + ## large write spikes for users running a large number of telegraf instances. + ## ie, a jitter of 5s and interval 10s means flushes will happen every 10-15s + flush_jitter = "0s" + + ## Logging configuration: + ## Run telegraf in debug mode + debug = false + ## Run telegraf in quiet mode + quiet = false + ## Specify the log file name. The empty string means to log to stdout. + logfile = "G:/Telegraf/telegraf.log" + + ## Override default hostname, if empty use os.Hostname() + hostname = "" + + +############################################################################### +# OUTPUTS # +############################################################################### + +# Configuration for influxdb server to send metrics to +[[outputs.influxdb]] + # The full HTTP or UDP endpoint URL for your InfluxDB instance. + # Multiple urls can be specified but it is assumed that they are part of the same + # cluster, this means that only ONE of the urls will be written to each interval. + # urls = ["udp://127.0.0.1:8089"] # UDP endpoint example + urls = ["{{INFLUXDB_URL}}"] # required + # The target database for metrics (telegraf will create it if not exists) + database = "CLMCMetrics" # required + # Precision of writes, valid values are "ns", "us" (or "µs"), "ms", "s", "m", "h". + # note: using second precision greatly helps InfluxDB compression + precision = "s" + + ## Write timeout (for the InfluxDB client), formatted as a string. + ## If not provided, will default to 5s. 0s means no timeout (not recommended). + timeout = "5s" + # username = "telegraf" + # password = "metricsmetricsmetricsmetrics" + # Set the user agent for HTTP POSTs (can be useful for log differentiation) + # user_agent = "telegraf" + # Set UDP payload size, defaults to InfluxDB UDP Client default (512 bytes) + # udp_payload = 512 +[[outputs.file]] + ## Files to write to, "stdout" is a specially handled file. + files = ["stdout", "/tmp/metrics.out"] + + ## Data format to output. + ## Each data format has its own unique set of configuration options, read + ## more about them here: + ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md + data_format = "influx" + + +############################################################################### +# INPUTS # +############################################################################### +# # Influx HTTP write listener +[[inputs.http_listener]] + ## Address and port to host HTTP listener on + service_address = ":8186" + + ## timeouts + read_timeout = "10s" + write_timeout = "10s" + + ## HTTPS + #tls_cert= "/etc/telegraf/cert.pem" + #tls_key = "/etc/telegraf/key.pem" + + ## MTLS + #tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"] + \ No newline at end of file diff --git a/src/mediaServiceSim/LineProtocolGenerator.py b/src/mediaServiceSim/LineProtocolGenerator.py index a8ccb92..3d4b077 100644 --- a/src/mediaServiceSim/LineProtocolGenerator.py +++ b/src/mediaServiceSim/LineProtocolGenerator.py @@ -18,7 +18,7 @@ def generate_network_report(recieved_bytes, sent_bytes, time): result += ' ' + str(_getNSTime(time)) # Measurement - print(result) + #print(result) return result @@ -43,7 +43,7 @@ def generate_vm_config(state, cpu, mem, storage, time): # Reports cpu usage, scaling on requests def generate_cpu_report(cpu_usage, cpu_active_time, cpu_idle_time, time): - result = 'vm_host_cpu_usage' + result = 'cpu_usage' # Tag result += ' ' # field @@ -74,6 +74,21 @@ def generate_mpegdash_report(resource, requests, avg_response_time, peak_respons print(result) return result +#ipendpoint_route,ipendpoint_id,cont_nav=FQDN HTTP_REQUESTS_FQDN_M, NETWORK_FQDN_LATENCY timestamp +def generate_ipendpoint_route(resource, requests, latency, time): + # Measurement + result = 'ipendpoint_route' + # Tags + result += ',cont_nav=\"' + str(resource) + "\" " + # Fields + + # result += 'cont_rep=' + str(quality) + ',' + result += 'http_requests_fqdn_m=' + str(requests) + ',' + result += 'network_fqdn_latency=' + str(latency) + # Timestamp + result += ' ' + str(_getNSTime(time)) + #print(result) + return result # Influx needs strings to be quoted, this provides a utility interface to do this def quote_wrap(str): @@ -84,7 +99,7 @@ def quote_wrap(str): def _getNSTime(time): # Convert to nano-seconds timestamp = int(1000000000*time) - print("timestamp", timestamp) + #print("timestamp", timestamp) return timestamp # DEPRICATED diff --git a/src/mediaServiceSim/simulator_v2.py b/src/mediaServiceSim/simulator_v2.py index 8cf7a9e..ac8b0c5 100644 --- a/src/mediaServiceSim/simulator_v2.py +++ b/src/mediaServiceSim/simulator_v2.py @@ -7,11 +7,14 @@ import random # Simulation parameters TICK_TIME = 1 -DEFAULT_REQUEST_RATE_INCREMENT = 5 -SIMULATION_TIME_SEC = 180 +DEFAULT_REQUEST_RATE_INC = 1 +DEFAULT_REQUEST_RATE_INC_PERIOD = 10 +SIMULATION_TIME_SEC = 60*60 # CLMC parameters INFLUX_DB_URL = 'http://192.168.50.10:8086' +AGENT_URL1 = 'http://192.168.50.11:8186' +AGENT_URL2 = 'http://192.168.50.12:8186' # Simulator for services class sim: @@ -28,54 +31,47 @@ class sim: start_time = time.time()-SIMULATION_TIME_SEC sim_time = start_time - ip_endpoints = [{'agent_url': 'http://192.168.50.11:8186', 'location': 'DC1', 'cpu': 16, - 'mem': '8GB', 'storage': '1TB', 'request_queue': 0, 'request_arrival_rate': 0}, - {'agent_url': 'http://192.168.50.12:8186', 'location': 'DC2', 'cpu': 2, - 'mem': '8GB', 'storage': '1TB', 'request_queue': 0, 'request_arrival_rate': 0} + # segment_size : the length of video requested at a time + # bit_rate: MPEG-2 High 1080p 25fps = 80Mbps + ip_endpoints = [{'agent_url': AGENT_URL1, 'location': 'DC1', 'cpu': 16, + 'mem': '8GB', 'storage': '1TB', 'request_queue': 0, 'request_arrival_rate': 0, + 'segment_size': 2, 'video_bit_rate': 80, 'packet_size': 1500}, + {'agent_url': AGENT_URL2, 'location': 'DC2', 'cpu': 4, + 'mem': '8GB', 'storage': '1TB', 'request_queue': 0, 'request_arrival_rate': 0, + 'segment_size': 2, 'video_bit_rate': 80, 'packet_size': 1500} ] # Simulate configuration of the ipendpoints # endpoint state->mu, sigma, secs normal distribution - config_delay_dist = {"placed": [5, 0.68], "booted": [10, 0.68],"connected": [10, 0.68]} + config_delay_dist = {"placing": [10, 0.68], "booting": [10, 0.68],"connecting": [10, 0.68]} - # Place the endpoints - max_delay = 0 + # Place endpoints + max_delay = 0 for ip_endpoint in ip_endpoints: - delay_time = random.normalvariate(config_delay_dist['placed'][0], config_delay_dist['placed'][0]*config_delay_dist['placed'][1]) - - # print('sim_time: ', sim_time) - # print('delay_time: ', delay_time) - # timestamp = sim_time+delay_time - # print('timestamp: ', timestamp) - # ns_time = int(timestamp*1000000) - # print('ns_time: ', ns_time) - - self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_vm_config('placed', ip_endpoint['cpu'], ip_endpoint['mem'], ip_endpoint['storage'], sim_time+delay_time)) + delay_time = self._changeVMState(sim_time, ip_endpoint, config_delay_dist['placing'][0], config_delay_dist['placing'][0]*config_delay_dist['placing'][1], 'placing', 'placed') if delay_time > max_delay: max_delay = delay_time - sim_time +=max_delay + + # Boot endpoints max_delay = 0 - # Boot the endpoints for ip_endpoint in ip_endpoints: - delay_time = random.normalvariate(config_delay_dist['booted'][0], config_delay_dist['booted'][0]*config_delay_dist['booted'][1]) - self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_vm_config('booted', ip_endpoint['cpu'], ip_endpoint['mem'], ip_endpoint['storage'], sim_time+delay_time)) + delay_time = self._changeVMState(sim_time, ip_endpoint, config_delay_dist['booting'][0], config_delay_dist['booting'][0]*config_delay_dist['booting'][1], 'booting', 'booted') if delay_time > max_delay: max_delay = delay_time - sim_time +=max_delay + + # Connect endpoints max_delay = 0 - # Connect the endpoints for ip_endpoint in ip_endpoints: - delay_time = random.normalvariate(config_delay_dist['connected'][0], config_delay_dist['connected'][0]*config_delay_dist['connected'][1]) - self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_vm_config('connected', ip_endpoint['cpu'], ip_endpoint['mem'], ip_endpoint['storage'], sim_time+delay_time)) + delay_time = self._changeVMState(sim_time, ip_endpoint, config_delay_dist['connecting'][0], config_delay_dist['connecting'][0]*config_delay_dist['connecting'][1], 'connecting', 'connected') if delay_time > max_delay: max_delay = delay_time - sim_time +=max_delay - request_arrival_rate_inc = DEFAULT_REQUEST_RATE_INCREMENT + request_arrival_rate_inc = DEFAULT_REQUEST_RATE_INC request_queue = 0 + inc_period_count = 0 for i in range(simulation_length_seconds): for ip_endpoint in ip_endpoints: request_processing_time = 0 @@ -90,17 +86,24 @@ class sim: peak_response_time = 0 # linear inc to arrival rate - ip_endpoint['request_arrival_rate'] += request_arrival_rate_inc + if inc_period_count >= DEFAULT_REQUEST_RATE_INC_PERIOD: + ip_endpoint['request_arrival_rate'] += request_arrival_rate_inc + inc_period_count = 0 + else: + inc_period_count += 1 # add new requests to the queue ip_endpoint['request_queue'] += ip_endpoint['request_arrival_rate'] - # time to process one request (mS) in the current second - request_processing_time = int(random.normalvariate(50, 50*0.95)) + # time to process one second of video (mS) in the current second + request_processing_time = int(random.normalvariate(10, 10*0.68)) if request_processing_time <= 10: request_processing_time = 10 + # time depends on the length of the segments in seconds + request_processing_time *= ip_endpoint['segment_size'] + # amount of cpu time (mS) per tick cpu_time_available = ip_endpoint['cpu']*TICK_TIME*1000 - max_requests_processed = cpu_time_available/request_processing_time + max_requests_processed = int(cpu_time_available/request_processing_time) # calc how many requests processed if ip_endpoint['request_queue'] <= max_requests_processed: # processed all of the requests @@ -108,16 +111,17 @@ class sim: else: # processed the maxmum number of requests requests_processed = max_requests_processed + # calculate cpu usage cpu_active_time = int(requests_processed*request_processing_time) cpu_idle_time = int(cpu_time_available-cpu_active_time) cpu_usage = cpu_active_time/cpu_time_available self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_cpu_report(cpu_usage, cpu_active_time, cpu_idle_time, sim_time)) - # calc network usage metrics with no constraints. - bytes_sent = 1024*requests_processed - bytes_rec = 32*requests_processed - self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_network_report(bytes_rec, bytes_sent, sim_time)) + # calc network usage metrics + bytes_rx = 2048*requests_processed + bytes_tx = int(ip_endpoint['video_bit_rate']/8*1000000*requests_processed*ip_endpoint['segment_size']) + self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_network_report(bytes_rx, bytes_tx, sim_time)) # time to process all of the requests in the queue peak_response_time = ip_endpoint['request_queue']*request_processing_time/ip_endpoint['cpu'] @@ -125,6 +129,16 @@ class sim: avg_response_time = (peak_response_time+request_processing_time)/2 self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_mpegdash_report('https://Netflix.com/scream', ip_endpoint['request_arrival_rate'], avg_response_time, peak_response_time, sim_time)) + # need to calculate this but sent at 5mS for now + network_request_delay = 0.005 + + # calculate network response delays (2km link, 100Mbps) + network_response_delay = self._calcNetworkDelay(2000, 100, ip_endpoint['packet_size'], ip_endpoint['video_bit_rate'], ip_endpoint['segment_size']) + + e2e_delay = network_request_delay + (avg_response_time/1000) + network_response_delay + + self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_ipendpoint_route('https://Netflix.com/scream', ip_endpoint['request_arrival_rate'], e2e_delay, sim_time)) + # remove requests processed off the queue ip_endpoint['request_queue'] -= int(requests_processed) @@ -132,6 +146,38 @@ class sim: end_time = sim_time print("Simulation Finished. Start time {0}. End time {1}. Total time {2}".format(start_time,end_time,end_time-start_time)) + # distance metres + # bandwidth Mbps + # package size bytes + # tx_video_bit_rate bp/sec + # segment size sec + def _calcNetworkDelay(self, distance, bandwidth, packet_size, tx_video_bit_rate, segment_size): + response_delay = 0 + + # propogation delay = distance/speed () (e.g 2000 metres * 2*10^8 for optical fibre) + propogation_delay = distance/(2*100000000) + # packetisation delay = ip packet size (bits)/tx rate (e.g. 100Mbp with 0% packet loss) + packetisation_delay = (packet_size*8)/(bandwidth*1000000) + # print('packetisation_delay:', packetisation_delay) + # total number of packets to be sent + packets = (tx_video_bit_rate*1000000)/(packet_size*8) + # print('packets:', packets) + response_delay = packets*(propogation_delay+packetisation_delay) + # print('response_delay:', response_delay) + + return response_delay + + def _changeVMState(self, sim_time, ip_endpoint, mu, sigma, transition_state, next_state): + delay_time = 0 + + self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_vm_config(transition_state, ip_endpoint['cpu'], ip_endpoint['mem'], ip_endpoint['storage'], sim_time)) + + delay_time = random.normalvariate(mu, sigma) + + self._sendInfluxData(ip_endpoint['agent_url'], lp.generate_vm_config(next_state, ip_endpoint['cpu'], ip_endpoint['mem'], ip_endpoint['storage'], sim_time+delay_time)) + + return delay_time + def _createDB(self): self._sendInfluxQuery(self.influx_url, 'CREATE DATABASE ' + self.influx_db) @@ -152,7 +198,6 @@ class sim: req = urllib.request.Request(url + '/write?db=' + self.influx_db, data, header) urllib.request.urlopen(req) - simulator = sim(INFLUX_DB_URL) simulator.run(SIMULATION_TIME_SEC) -- GitLab