Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
W
woRkflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rushby
woRkflow
Commits
7de3a464
Commit
7de3a464
authored
4 years ago
by
Tom Rushby
Browse files
Options
Downloads
Patches
Plain Diff
Finish Hampshire average and tidying up.
parent
67c942c8
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
howTo/openGeogAPI/local_auth_ghg_plots.R
+16
-62
16 additions, 62 deletions
howTo/openGeogAPI/local_auth_ghg_plots.R
with
16 additions
and
62 deletions
howTo/openGeogAPI/local_auth_ghg_plots.R
+
16
−
62
View file @
7de3a464
...
...
@@ -42,11 +42,7 @@ download.file(url_to_get, tempf, method = "curl")
dt
<-
readxl
::
read_xlsx
(
tempf
,
sheet
=
"Full dataset"
,
skip
=
1
)
x_min
<-
min
(
dt
$
Year
)
x_max
<-
max
(
dt
$
Year
)
# Functions ----
# Functions (REDUNDANT) ----
lvl_detail
<-
"high"
...
...
@@ -79,19 +75,26 @@ filter_detail <- function(lvl_detail = lvl_detail){
# Process data ----
# Filter local authorities and correct population
per_capita_dt
<-
dt
%>%
filter
(
Name
%in%
las_to_load
)
%>%
rename
(
Population
=
`Population ('000s, mid-year estimate)`
)
%>%
mutate
(
Population
=
Population
*
1000
)
# Add Hampshire totals (sum of all las in las_to_load) to calculate averages across las
total_hampshire_dt
<-
dt
%>%
filter
(
Name
%in%
las_to_load
)
%>%
rename
(
Population
=
`Population ('000s, mid-year estimate)`
)
%>%
mutate
(
Population
=
Population
*
1000
)
%>%
group_by
(
Year
)
%>%
summarise_if
(
is.numeric
,
sum
,
na.rm
=
TRUE
)
%>%
mutate
(
Name
=
"Hampshire"
)
mutate
(
Name
=
" Hampshire (Average)"
,
`CTRY18NM/RGN18NM`
=
"South East"
,
`Second Tier Authority`
=
"Hampshire"
,
Code
=
"E00000000"
)
%>%
select
(
`CTRY18NM/RGN18NM`
,
`Second Tier Authority`
,
Name
,
Code
,
Year
,
everything
())
per_capita_dt
<-
rbind
(
per_capita_dt
,
total_hampshire_dt
)
per_cap_fun
<-
function
(
x
)
x
*
1000
/
per_capita_dt
$
Population
per_capita_totals
<-
data.frame
(
per_capita_dt
[
c
(
1
:
5
,
30
)],
lapply
(
per_capita_dt
[
c
(
11
,
15
,
21
,
28
,
29
,
32
,
33
)],
per_cap_fun
)
)
...
...
@@ -119,8 +122,10 @@ pc_totals_plot <- data.frame(per_capita_totals[c(1:5,7:9,14,15)])
pc_totals_plot
<-
melt
(
pc_totals_plot
,
id.vars
=
c
(
"CTRY18NM.RGN18NM"
,
"Second.Tier.Authority"
,
"Name"
,
"Code"
,
"Year"
))
## Subset data - Southampton by default
auth_area
<-
"New Forest"
## Subset data - Hampshire by default
las_to_load
<-
c
(
las_to_load
,
" Hampshire (Average)"
)
# add Hampshire average to list to loop over
auth_area
<-
" Hampshire (Average)"
# Use to set auth_area manually (outside of loop)
ghg_subset
<-
function
(
dt
,
auth_area
=
"Southampton"
){
dt
<-
dt
%>%
...
...
@@ -171,9 +176,6 @@ i <- i+1
print
(
plotNames
)
plotly
::
ggplotly
(
plot
)
# By local authority
years_to_plot
<-
c
(
2005
,
2018
)
...
...
@@ -204,7 +206,7 @@ for(plot_year in years_to_plot) {
theme
(
legend.position
=
"none"
)
+
theme_classic
()
ggsave
(
paste0
(
here
::
here
(),
"/howTo/openGeogAPI/plots/"
,
plotName
,
".png"
),
dpi
=
150
,
width
=
12
,
height
=
6
,
units
=
"in"
)
ggsave
(
paste0
(
here
::
here
(),
"/howTo/openGeogAPI/plots/"
,
plotName
,
"
_hants
.png"
),
dpi
=
150
,
width
=
12
,
height
=
6
,
units
=
"in"
)
}
...
...
@@ -227,51 +229,3 @@ ggplot() +
theme_classic
()
dt2
<-
dt
%>%
filter
(
Name
%in%
las_to_load
)
%>%
rename
(
Population
=
`Population ('000s, mid-year estimate)`
)
%>%
mutate
(
Population
=
Population
*
1000
,
`Industry per capita`
=
`Industry and Commercial Total`
*
1000
/
Population
,
`Domestic per capita`
=
`Domestic Total`
*
1000
/
Population
,
`Transport per capita`
=
`Transport Total`
*
1000
/
Population
,
`LULUCF per capita`
=
`LULUCF Net Emissions`
*
1000
/
Population
,
`Total per capita chk`
=
`Industry per capita`
+
`Domestic per capita`
+
`Transport per capita`
+
`LULUCF per capita`
,
`Total per capita`
=
`Grand Total`
*
1000
/
Population
)
dt3
<-
dt
%>%
filter
(
Name
%in%
las_to_load
)
%>%
rename
(
Population
=
`Population ('000s, mid-year estimate)`
)
%>%
mutate
(
Population
=
Population
*
1000
,
`Industry (elec) per capita`
=
`A. Industry and Commercial Electricity`
*
1000
/
Population
,
`Industry (gas) per capita`
=
`B. Industry and Commercial Gas`
*
1000
/
Population
,
`Industry (lge) per capita`
=
`C. Large Industrial Installations`
*
1000
/
Population
,
`Industry (other fuels) per capita`
=
`D. Industrial and Commercial Other Fuels`
*
1000
/
Population
,
`Domestic (elec) per capita`
=
`F. Domestic Electricity`
*
1000
/
Population
,
`Domestic (gas) per capita`
=
`G. Domestic Gas`
*
1000
/
Population
,
`Domestic (other fuels) per capita`
=
`H. Domestic 'Other Fuels'`
*
1000
/
Population
,
`Transport (A roads) per capita`
=
`I. Road Transport (A roads)`
*
1000
/
Population
,
`Transport (Motorways) per capita`
=
`J. Road Transport (Motorways)`
*
1000
/
Population
,
`Transport (Minor roads) per capita`
=
`K. Road Transport (Minor roads)`
*
1000
/
Population
,
`Transport (Diesel rail) per capita`
=
`L. Diesel Railways`
*
1000
/
Population
,
`Transport (other) per capita`
=
`M. Transport Other`
*
1000
/
Population
)
# ghg_emissions <- filter_detail(lvl_detail = "low")
ghg_emissions
<-
filter_detail
(
lvl_detail
=
"high"
)
rm
(
dt
)
# Plots
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment