Skip to content
Snippets Groups Projects
Commit 7de3a464 authored by Tom Rushby's avatar Tom Rushby
Browse files

Finish Hampshire average and tidying up.

parent 67c942c8
No related branches found
No related tags found
No related merge requests found
......@@ -42,11 +42,7 @@ download.file(url_to_get, tempf, method = "curl")
dt <- readxl::read_xlsx(tempf, sheet = "Full dataset",skip = 1)
x_min <- min(dt$Year)
x_max <- max(dt$Year)
# Functions ----
# Functions (REDUNDANT) ----
lvl_detail <- "high"
......@@ -79,19 +75,26 @@ filter_detail <- function(lvl_detail = lvl_detail){
# Process data ----
# Filter local authorities and correct population
per_capita_dt <- dt %>%
filter(Name %in% las_to_load) %>%
rename(Population = `Population ('000s, mid-year estimate)`) %>%
mutate(Population = Population*1000)
# Add Hampshire totals (sum of all las in las_to_load) to calculate averages across las
total_hampshire_dt <- dt %>%
filter(Name %in% las_to_load) %>%
rename(Population = `Population ('000s, mid-year estimate)`) %>%
mutate(Population = Population*1000) %>%
group_by(Year) %>%
summarise_if(is.numeric, sum, na.rm = TRUE) %>%
mutate(Name = "Hampshire")
mutate(Name = " Hampshire (Average)",
`CTRY18NM/RGN18NM` = "South East",
`Second Tier Authority` = "Hampshire",
Code = "E00000000") %>%
select(`CTRY18NM/RGN18NM`,`Second Tier Authority`,Name,Code,Year,everything())
per_capita_dt <- rbind(per_capita_dt,total_hampshire_dt)
per_cap_fun <- function(x) x*1000/per_capita_dt$Population
per_capita_totals <- data.frame(per_capita_dt[c(1:5,30)], lapply(per_capita_dt[c(11,15,21,28,29,32,33)], per_cap_fun) )
......@@ -119,8 +122,10 @@ pc_totals_plot <- data.frame(per_capita_totals[c(1:5,7:9,14,15)])
pc_totals_plot <- melt(pc_totals_plot, id.vars = c("CTRY18NM.RGN18NM","Second.Tier.Authority","Name","Code","Year"))
## Subset data - Southampton by default
auth_area <- "New Forest"
## Subset data - Hampshire by default
las_to_load <- c(las_to_load, " Hampshire (Average)") # add Hampshire average to list to loop over
auth_area <- " Hampshire (Average)" # Use to set auth_area manually (outside of loop)
ghg_subset <- function(dt, auth_area = "Southampton"){
dt <- dt %>%
......@@ -171,9 +176,6 @@ i <- i+1
print(plotNames)
plotly::ggplotly(plot)
# By local authority
years_to_plot <- c(2005,2018)
......@@ -204,7 +206,7 @@ for(plot_year in years_to_plot) {
theme(legend.position = "none") +
theme_classic()
ggsave(paste0(here::here(),"/howTo/openGeogAPI/plots/",plotName,".png"), dpi = 150, width = 12, height = 6, units = "in")
ggsave(paste0(here::here(),"/howTo/openGeogAPI/plots/",plotName,"_hants.png"), dpi = 150, width = 12, height = 6, units = "in")
}
......@@ -227,51 +229,3 @@ ggplot() +
theme_classic()
dt2 <- dt %>%
filter(Name %in% las_to_load) %>%
rename(Population = `Population ('000s, mid-year estimate)`) %>%
mutate(
Population = Population*1000,
`Industry per capita` = `Industry and Commercial Total`*1000/Population,
`Domestic per capita` = `Domestic Total`*1000/Population,
`Transport per capita` = `Transport Total`*1000/Population,
`LULUCF per capita` = `LULUCF Net Emissions`*1000/Population,
`Total per capita chk` = `Industry per capita` + `Domestic per capita` +
`Transport per capita` + `LULUCF per capita`,
`Total per capita` = `Grand Total`*1000/Population
)
dt3 <- dt %>%
filter(Name %in% las_to_load) %>%
rename(Population = `Population ('000s, mid-year estimate)`) %>%
mutate(
Population = Population*1000,
`Industry (elec) per capita` = `A. Industry and Commercial Electricity`*1000/Population,
`Industry (gas) per capita` = `B. Industry and Commercial Gas`*1000/Population,
`Industry (lge) per capita` = `C. Large Industrial Installations`*1000/Population,
`Industry (other fuels) per capita` = `D. Industrial and Commercial Other Fuels`*1000/Population,
`Domestic (elec) per capita` = `F. Domestic Electricity`*1000/Population,
`Domestic (gas) per capita` = `G. Domestic Gas`*1000/Population,
`Domestic (other fuels) per capita` = `H. Domestic 'Other Fuels'`*1000/Population,
`Transport (A roads) per capita` = `I. Road Transport (A roads)`*1000/Population,
`Transport (Motorways) per capita` = `J. Road Transport (Motorways)`*1000/Population,
`Transport (Minor roads) per capita` = `K. Road Transport (Minor roads)`*1000/Population,
`Transport (Diesel rail) per capita` = `L. Diesel Railways`*1000/Population,
`Transport (other) per capita` = `M. Transport Other`*1000/Population
)
# ghg_emissions <- filter_detail(lvl_detail = "low")
ghg_emissions <- filter_detail(lvl_detail = "high")
rm(dt)
# Plots
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment