Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
W
woRkflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rushby
woRkflow
Commits
3f8ff2ba
Commit
3f8ff2ba
authored
4 years ago
by
Tom Rushby
Browse files
Options
Downloads
Patches
Plain Diff
Tweaking plot and add by local auth.
parent
68b7344b
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
howTo/openGeogAPI/local_auth_ghg_plots.R
+98
-13
98 additions, 13 deletions
howTo/openGeogAPI/local_auth_ghg_plots.R
with
98 additions
and
13 deletions
howTo/openGeogAPI/local_auth_ghg_plots.R
+
98
−
13
View file @
3f8ff2ba
...
@@ -23,7 +23,7 @@ detailed_pal <- c(industry_pal, domestic_pal, transport_pal, lulucf_pal)
...
@@ -23,7 +23,7 @@ detailed_pal <- c(industry_pal, domestic_pal, transport_pal, lulucf_pal)
totals_pal
<-
c
(
brewer.pal
(
n
=
9
,
name
=
"Greys"
)[
8
],
totals_pal
<-
c
(
brewer.pal
(
n
=
9
,
name
=
"Greys"
)[
8
],
brewer.pal
(
n
=
9
,
name
=
"Blues"
)[
8
],
brewer.pal
(
n
=
9
,
name
=
"Blues"
)[
8
],
brewer.pal
(
n
=
9
,
name
=
"Oranges"
)[
8
],
brewer.pal
(
n
=
9
,
name
=
"Oranges"
)[
8
],
brewer.pal
(
n
=
9
,
name
=
"Greens"
)[
8
])
brewer.pal
(
n
=
9
,
name
=
"Greens"
)[
7
:
8
])
# List local authority areas to load
# List local authority areas to load
# These used to filter emissions data
# These used to filter emissions data
...
@@ -91,18 +91,110 @@ per_capita_totals <- data.frame(per_capita_dt[c(1:5,30)], lapply(per_capita_dt[c
...
@@ -91,18 +91,110 @@ per_capita_totals <- data.frame(per_capita_dt[c(1:5,30)], lapply(per_capita_dt[c
per_capita_detail
<-
data.frame
(
per_capita_dt
[
c
(
1
:
5
,
30
)],
lapply
(
per_capita_dt
[
c
(
6
:
10
,
12
:
14
,
16
:
20
,
22
:
27
,
29
,
32
,
33
)],
per_cap_fun
)
)
per_capita_detail
<-
data.frame
(
per_capita_dt
[
c
(
1
:
5
,
30
)],
lapply
(
per_capita_dt
[
c
(
6
:
10
,
12
:
14
,
16
:
20
,
22
:
27
,
29
,
32
,
33
)],
per_cap_fun
)
)
# Note that for hampshire LAs there are no emissions in categories Q or S
# Note that for hampshire LAs there are no emissions in categories Q or S
# Reshape data
# Calculate emissions and removals for LULUCF separately
per_capita_lulucf
<-
pc_detail_plot
%>%
filter
(
grepl
(
"LULUCF"
,
variable
))
%>%
group_by
(
Name
,
Year
)
%>%
summarise
(
LULUCF.emissions
=
sum
(
value
[
value
>
0
]),
LULUCF.removals
=
sum
(
value
[
value
<
0
]))
pc_totals_plot
<-
data.frame
(
per_capita_totals
[
c
(
1
:
5
,
7
:
10
)])
per_capita_totals
<-
left_join
(
per_capita_totals
,
per_capita_lulucf
,
by
=
c
(
"Name"
,
"Year"
))
# Create plot tables ----
pc_totals_plot
<-
data.frame
(
per_capita_totals
[
c
(
1
:
5
,
7
:
9
,
14
,
15
)])
pc_totals_plot
<-
melt
(
pc_totals_plot
,
id.vars
=
c
(
"CTRY18NM.RGN18NM"
,
"Second.Tier.Authority"
,
"Name"
,
"Code"
,
"Year"
))
pc_totals_plot
<-
melt
(
pc_totals_plot
,
id.vars
=
c
(
"CTRY18NM.RGN18NM"
,
"Second.Tier.Authority"
,
"Name"
,
"Code"
,
"Year"
))
pc_detail
s
_plot
<-
data.frame
(
per_capita_
totals
[
c
(
1
:
5
,
7
:
10
)])
pc_detail_plot
<-
data.frame
(
per_capita_
detail
[
c
(
1
:
5
,
7
:
25
)])
pc_detail
s
_plot
<-
melt
(
pc_
totals
_plot
,
id.vars
=
c
(
"CTRY18NM.RGN18NM"
,
"Second.Tier.Authority"
,
"Name"
,
"Code"
,
"Year"
))
pc_detail_plot
<-
melt
(
pc_
detail
_plot
,
id.vars
=
c
(
"CTRY18NM.RGN18NM"
,
"Second.Tier.Authority"
,
"Name"
,
"Code"
,
"Year"
))
pc_general_plot
<-
data.frame
(
per_capita_totals
[
c
(
3
,
5
,
11
:
13
)])
# Construct plots ----
## Subset data - Southampton by default
auth_area
<-
"New Forest"
ghg_subset
<-
function
(
dt
,
auth_area
=
"Southampton"
){
dt
<-
dt
%>%
filter
(
dt
$
Name
%in%
auth_area
)
# add filter for categories with input$
}
# Construct plots ----
plotCaption
=
paste0
(
"Emissions data: Department for Business, Energy & Industrial Strategy"
,
"\nUK local authority and regional carbon dioxide emissions national statistics: 2005 to 2018"
,
"\nVisualisation: t.w.rushby@soton.ac.uk | energy.soton.ac.uk"
)
plotTitle
=
paste0
(
"Greenhouse gas emissions by source: "
,
auth_area
)
plot_data1
<-
ghg_subset
(
pc_detail_plot
,
auth_area
=
auth_area
)
plot_data2
<-
ghg_subset
(
pc_totals_plot
,
auth_area
=
auth_area
)
ggplot
()
+
geom_col
(
data
=
plot_data1
,
aes
(
x
=
Year
,
y
=
value
,
fill
=
variable
),
position
=
"stack"
)
+
geom_col
(
data
=
plot_data2
,
aes
(
x
=
Year
,
y
=
value
,
colour
=
variable
),
fill
=
"none"
,
position
=
"stack"
)
+
geom_hline
(
yintercept
=
0
,
lwd
=
0.4
,
colour
=
"black"
,
linetype
=
"dashed"
)
+
coord_cartesian
(
ylim
=
c
(
-1
,
15
))
+
scale_y_continuous
(
labels
=
abs
)
+
scale_x_continuous
(
breaks
=
2005
:
2018
)
+
scale_color_manual
(
values
=
totals_pal
,
guide
=
FALSE
)
+
scale_fill_manual
(
values
=
detailed_pal
)
+
labs
(
x
=
"Year"
,
y
=
"Emissions per capita, tCO2"
,
fill
=
"Source"
,
title
=
plotTitle
,
caption
=
plotCaption
)
+
theme
(
legend.position
=
"right"
)
+
theme_classic
()
plotly
::
ggplotly
(
plot
)
# By local authority
plot_year
<-
2005
plot_data1
<-
pc_detail_plot
%>%
filter
(
Year
==
plot_year
)
plot_data2
<-
pc_totals_plot
%>%
filter
(
Year
==
plot_year
)
plotTitle
=
paste0
(
"Greenhouse gas emissions by sector for Hampshire local authorities: "
,
plot_year
)
ggplot
()
+
geom_col
(
data
=
plot_data1
,
aes
(
x
=
Name
,
y
=
value
,
fill
=
variable
),
position
=
"stack"
)
+
geom_col
(
data
=
plot_data2
,
aes
(
x
=
Name
,
y
=
value
,
colour
=
variable
),
fill
=
"none"
,
position
=
"stack"
)
+
geom_hline
(
yintercept
=
0
,
lwd
=
0.4
,
colour
=
"black"
,
linetype
=
"dashed"
)
+
coord_cartesian
(
xlim
=
c
(
-1
,
8
))
+
#scale_y_continuous(labels=abs) +
#scale_x_continuous(breaks = 2005:2018) +
scale_color_manual
(
values
=
totals_pal
,
guide
=
FALSE
)
+
scale_fill_manual
(
values
=
detailed_pal
)
+
coord_flip
()
+
labs
(
x
=
"Local authority"
,
y
=
"Emissions per capita, tCO2"
,
fill
=
"Source"
,
title
=
plotTitle
,
caption
=
plotCaption
)
+
theme
(
legend.position
=
"none"
)
+
theme_classic
()
ggplot
()
+
geom_col
(
data
=
plot_data1
,
aes
(
x
=
Name
,
y
=
value
,
fill
=
variable
),
position
=
"stack"
)
+
geom_col
(
data
=
plot_data2
,
aes
(
x
=
Name
,
y
=
value
,
colour
=
variable
),
fill
=
"none"
,
position
=
"stack"
)
+
geom_hline
(
yintercept
=
0
,
lwd
=
0.4
,
colour
=
"black"
,
linetype
=
"dashed"
)
+
coord_cartesian
(
xlim
=
c
(
-1
,
8
))
+
#scale_y_continuous(labels=abs) +
#scale_x_continuous(breaks = 2005:2018) +
scale_color_manual
(
values
=
totals_pal
,
guide
=
FALSE
)
+
scale_fill_manual
(
values
=
detailed_pal
)
+
coord_flip
()
+
labs
(
x
=
"Local authority"
,
y
=
"Emissions per capita, tCO2"
,
fill
=
"Source"
,
title
=
plotTitle
,
caption
=
plotCaption
)
+
theme
(
legend.position
=
"none"
)
+
theme_classic
()
...
@@ -148,14 +240,7 @@ dt3 <- dt %>%
...
@@ -148,14 +240,7 @@ dt3 <- dt %>%
ghg_emissions
<-
filter_detail
(
lvl_detail
=
"high"
)
ghg_emissions
<-
filter_detail
(
lvl_detail
=
"high"
)
rm
(
dt
)
rm
(
dt
)
## Subset data - Southampton by default
ghg_subset
<-
function
(
auth_area
=
"Southampton"
){
ghg_emissions_sub
<-
ghg_emissions
%>%
filter
(
ghg_emissions
$
Name
%in%
auth_area
)
# add filter for categories with input$
}
ghg_emissions_sub
<-
ghg_subset
()
# Plots
# Plots
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment