Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
F
flash-flood
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
twd1g21
flash-flood
Commits
ac9054db
Commit
ac9054db
authored
2 weeks ago
by
Joe Pater
Browse files
Options
Downloads
Patches
Plain Diff
Generate all plots
parent
cc7de134
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
flood.py
+99
-35
99 additions, 35 deletions
flood.py
with
99 additions
and
35 deletions
flood.py
+
99
−
35
View file @
ac9054db
...
...
@@ -9,7 +9,7 @@ Plot a sympy expression f(x_sym) with respect to variable x_sym.
x_sym in range lim = [low, high].
N is the number of sample points.
"""
def
plot_expr
(
f
,
x_sym
,
lim
,
N
):
def
plot_expr
(
ax
,
f
,
x_sym
,
lim
,
N
):
F
=
lambdify
(
x_sym
,
f
)
x
=
[]
y
=
[]
...
...
@@ -17,8 +17,7 @@ def plot_expr(f, x_sym, lim, N):
xi
=
i
*
(
lim
[
1
]
-
lim
[
0
])
/
(
N
-
1
)
+
lim
[
0
]
x
.
append
(
xi
)
y
.
append
(
F
(
xi
))
plt
.
plot
(
x
,
y
)
plt
.
show
()
ax
.
plot
(
x
,
y
)
"""
...
...
@@ -205,6 +204,10 @@ def solve_characteristics(Q, c_sym, c_init, x_sym, delta_x, L, delta_t, T):
# Get expression for char. velocity
vc
=
diff
(
Q
,
c_sym
)
#vc_diff = diff(vc, c_sym)
#plot_expr(vc_diff, c_sym, [0, 1000], 1000)
#exit(0)
# Derivative of vc(c_init(x)) wrt x
vc_diff
=
diff
(
vc
,
c_sym
).
subs
(
c_sym
,
c_init
)
*
diff
(
c_init
,
x_sym
)
...
...
@@ -212,6 +215,8 @@ def solve_characteristics(Q, c_sym, c_init, x_sym, delta_x, L, delta_t, T):
x0_shock_arr
=
get_all_argmin
(
vc_diff
,
x_sym
,
(
0
,
L
))
shocks
=
[]
print
(
"
Solving shocks...
"
,
end
=
""
,
flush
=
True
)
# Solve each shock
for
x0_shock
in
x0_shock_arr
:
vc_shock
=
vc
.
subs
(
c_sym
,
c_init
.
subs
(
x_sym
,
x0_shock
).
evalf
()).
evalf
()
...
...
@@ -221,15 +226,20 @@ def solve_characteristics(Q, c_sym, c_init, x_sym, delta_x, L, delta_t, T):
shock_sln
=
solve_shock
(
Q
,
c_sym
,
c_init
,
x_sym
,
t_shock
,
x_shock
,
x0_shock
,
delta_x
,
L
,
delta_t
,
T
)
shocks
.
append
({
"
t
"
:
t_shock
,
"
x
"
:
x_shock
,
"
x0
"
:
x0_shock
,
"
sln
"
:
shock_sln
})
print
(
"
done
"
)
print
(
f
"
Shock starts at (
{
shocks
[
0
][
'
x
'
]
}
,
{
shocks
[
0
][
'
t
'
]
}
)
"
)
c_of_x0
=
lambdify
(
x_sym
,
c_init
)
vc_of_c
=
lambdify
(
c_sym
,
vc
)
chars
=
[]
print
(
"
Generating characteristics... [
"
,
end
=
""
,
flush
=
True
)
# Generate characteristics starting from uniform x-ordinates
ch_spacing
=
4
ch_spacing
=
int
(
L
/
25
)
for
j
in
range
(
int
(
L
/
ch_spacing
)):
# For each characteristic
x0
=
x
=
ch_spacing
*
j
...
...
@@ -267,59 +277,72 @@ def solve_characteristics(Q, c_sym, c_init, x_sym, delta_x, L, delta_t, T):
# Store
chars
.
append
({
"
x
"
:
x_ch
,
"
t
"
:
t_ch
})
if
(
int
(
20
*
len
(
chars
)
/
int
(
L
/
ch_spacing
))
>
int
(
20
*
(
len
(
chars
)
-
1
)
/
int
(
L
/
ch_spacing
))):
print
(
"
=
"
,
end
=
""
,
flush
=
True
)
print
(
"
] done
"
)
return
chars
,
shocks
def
plot_shocks
(
shocks
,
delta_t
,
T
,
ax
):
print
(
"
Plotting shocks...
"
,
end
=
""
,
flush
=
True
)
# Plot the shock solutions
for
s
in
shocks
:
t_arr
=
[
i
*
delta_t
+
s
[
"
t
"
]
for
i
in
range
(
int
((
T
-
s
[
"
t
"
])
/
delta_t
))]
y
=
[
s
[
"
sln
"
](
t
)[
0
]
for
t
in
t_arr
]
ax
.
plot
(
y
,
t_arr
,
color
=
"
blue
"
)
if
s
[
"
t
"
]
<
T
:
t_arr
=
[
i
*
delta_t
+
s
[
"
t
"
]
for
i
in
range
(
int
((
T
-
s
[
"
t
"
])
/
delta_t
))]
y
=
s
[
"
sln
"
](
np
.
array
(
t_arr
))[
0
,:]
#[s["sln"](t)[0] for t in t_arr]
ax
.
plot
(
y
,
t_arr
,
color
=
"
blue
"
)
print
(
"
done
"
)
def
plot_chars
(
chars
,
ax
):
print
(
"
Plotting characteristics...
"
,
end
=
""
,
flush
=
True
)
for
ch
in
chars
:
ax
.
plot
(
ch
[
"
x
"
],
ch
[
"
t
"
],
color
=
"
red
"
)
print
(
"
done
"
)
def
main
():
def
gen_fig
(
prefix
,
g_val
,
alpha_val
,
f_val
,
w_expr
,
y_sym
,
a_sym
,
a_val
,
delta_x
,
L
,
delta_t
,
T
,
A_init
,
x_sym
):
g
,
alpha
,
f
=
symbols
(
"
g,alpha,f
"
)
# Width of channel wrt vertical coordinate (y)
y
=
Symbol
(
"
y
"
,
positive
=
True
,
real
=
True
)
y
=
y_sym
#
Symbol("y", positive=True, real=True)
a
=
Symbol
(
"
a
"
,
positive
=
True
,
real
=
True
)
w
=
a
#sqrt(y/a)
w
=
w_expr
#a #sqrt(y/a)
plt
.
figure
()
ax
=
plt
.
gca
()
plot_expr
(
ax
,
A_init
,
x_sym
,
[
0
,
L
],
int
(
L
/
delta_x
))
plt
.
xlabel
(
"
Position (m)
"
)
plt
.
ylabel
(
"
Initial Area (m^2)
"
)
plt
.
savefig
(
prefix
+
"
-init.pdf
"
,
bbox_inches
=
"
tight
"
)
A_sym
=
Symbol
(
"
A
"
,
positive
=
True
,
real
=
True
)
l_of_A
=
derive_wetted_perim
(
w
,
y
,
A_sym
)
#print(l_of_A)
u
=
simplify
(
sqrt
(
A_sym
*
g
*
sin
(
alpha
)
/
(
f
*
l_of_A
)))
#print("u(A) = ")
#pprint(u)
Q
=
(
A_sym
*
u
).
subs
([(
"
g
"
,
9.81
),
(
"
alpha
"
,
0.001
),
(
"
f
"
,
0.05
),
(
a
,
500
)])
delta_x
=
0.5
L
=
300
Q
=
(
A_sym
*
u
).
subs
([(
"
g
"
,
g_val
),
(
"
alpha
"
,
alpha_val
),
(
"
f
"
,
f_val
),
(
a
,
a_val
)])
delta_t
=
0.5
T
=
200
x_sym
=
Symbol
(
"
x
"
,
real
=
True
)
A_init
=
1
+
10000
/
(
10
+
(
x_sym
-
100
)
**
2
)
chars
,
shocks
=
solve_characteristics
(
Q
,
A_sym
,
A_init
,
x_sym
,
delta_x
,
L
,
delta_t
,
T
)
ax0
=
plt
.
subplot
(
2
,
1
,
1
)
plt
.
figure
()
ax0
=
plt
.
gca
()
plot_chars
(
chars
,
ax0
)
plot_shocks
(
shocks
,
delta_t
,
T
,
ax0
)
ax0
.
axis
([
0
,
L
,
0
,
T
])
ax1
=
plt
.
subplot
(
2
,
1
,
2
)
plt
.
xlabel
(
"
Position (m)
"
)
plt
.
ylabel
(
"
Time (s)
"
)
plt
.
savefig
(
prefix
+
"
-shock.pdf
"
,
bbox_inches
=
"
tight
"
)
plt
.
figure
()
ax1
=
plt
.
gca
()
#plot_expr(diff(Q, A_sym), A_sym, [0,30], 1000)
#return
...
...
@@ -327,27 +350,68 @@ def main():
x
=
[
i
*
delta_x
for
i
in
range
(
int
(
L
/
delta_x
))]
A_inflow
=
float
(
A_init
.
evalf
(
subs
=
{
x_sym
:
0
}))
A_init_lamb
=
lambdify
(
x_sym
,
A_init
)
A_init_data
=
[
A_init_lamb
(
xi
)
for
xi
in
x
]
A_inflow
=
1
t
=
[
i
*
delta_t
for
i
in
range
(
int
(
T
/
delta_t
))]
c_sln
=
godunov_solve
(
Q_lamb
,
A_init_data
,
A_inflow
,
delta_x
,
t
)
n_xticks
=
21
n_tticks
=
11
print
(
"
Solving Godunov...
"
,
end
=
""
,
flush
=
True
)
c_sln
=
godunov_solve
(
Q_lamb
,
A_init_data
,
A_inflow
,
delta_x
,
t
)
print
(
"
done
"
)
n_xticks
=
6
n_tticks
=
6
x_ticks
=
[
int
(
i
*
L
/
delta_x
/
(
n_xticks
-
1
))
for
i
in
range
(
n_xticks
)]
x_tick_labels
=
[
delta_x
*
i
for
i
in
x_ticks
]
t_ticks
=
[
int
(
i
*
T
/
delta_t
/
(
n_tticks
-
1
))
for
i
in
range
(
n_tticks
)]
t_tick_labels
=
[
delta_t
*
i
for
i
in
t_ticks
]
print
(
"
Plotting Godunov...
"
,
end
=
""
,
flush
=
True
)
plt
.
colorbar
(
plt
.
pcolor
(
c_sln
))
ax1
.
imshow
(
c_sln
,
origin
=
"
lower
"
,
aspect
=
"
auto
"
)
ax1
.
set_xticks
(
x_ticks
,
x_tick_labels
)
ax1
.
set_yticks
(
t_ticks
,
t_tick_labels
)
plt
.
xlabel
(
"
Position (m)
"
)
plt
.
ylabel
(
"
Time (s)
"
)
plt
.
savefig
(
prefix
+
"
-godunov.pdf
"
,
bbox_inches
=
"
tight
"
)
print
(
"
done
"
)
plt
.
show
()
def
main
():
y_sym
=
Symbol
(
"
y
"
,
positive
=
True
,
real
=
True
)
x_sym
=
Symbol
(
"
x
"
,
positive
=
True
,
real
=
True
)
a_sym
=
Symbol
(
"
a
"
,
positive
=
True
,
real
=
True
)
gen_A_init
=
lambda
A0
,
A1
,
s_slope
,
s_grad
:
(
A0
+
A1
)
/
2
-
(
A0
-
A1
)
/
2
*
tanh
((
x_sym
-
s_slope
)
*
s_grad
)
plot_defaults
=
{
"
g_val
"
:
9.81
,
"
alpha_val
"
:
0.01
,
"
f_val
"
:
0.05
,
"
w_expr
"
:
a_sym
,
"
y_sym
"
:
y_sym
,
"
a_sym
"
:
a_sym
,
"
a_val
"
:
50
,
"
delta_x
"
:
1
,
"
L
"
:
300
,
"
delta_t
"
:
1
,
"
T
"
:
200
,
"
A_init
"
:
gen_A_init
(
20
,
1
,
100
,
1
/
50
),
"
x_sym
"
:
x_sym
}
plots
=
[
#plot_defaults | { "prefix": "fig/baseline" },
#plot_defaults | { "prefix": "alpha-0.02", "alpha_val": 0.02 },
#plot_defaults | { "prefix": "f-0.1", "f_val": 0.1 },
#plot_defaults | { "prefix": "dx_0.25,dt_0.25", "delta_x": 0.25, "delta_t": 0.25 },
#plot_defaults | { "prefix": "fig/a-5", "a_val": 5 },
#plot_defaults | { "prefix": "fig/a-3", "a_val": 3, "L": 700, "T": 400 },
#plot_defaults | { "prefix": "fig/a-10", "a_val": 10 },
#plot_defaults | { "prefix": "fig/a-1", "a_val": 1 },
#plot_defaults | { "prefix": "fig/slope-0.1", "A_init": gen_A_init(20,1,100,0.1) },
#plot_defaults | { "prefix": "fig/A-pulse", "A_init": 1 + 19*1000/(1*1000+(x_sym-100)**2) },
plot_defaults
|
{
"
prefix
"
:
"
fig/A-pulse-short
"
,
"
A_init
"
:
1
+
19
*
10
/
(
1
*
10
+
(
x_sym
-
100
)
**
2
)
}
]
plt
.
rcParams
.
update
({
'
font.size
'
:
22
})
for
p
in
plots
:
gen_fig
(
**
p
)
main
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment