Skip to content
Snippets Groups Projects
Commit 9b4ee4d9 authored by sps2n22's avatar sps2n22
Browse files

Upload New File

parent c0d3aa79
Branches
No related tags found
No related merge requests found
task1.py 0 → 100644
# Importing libraries
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
# Using pandas, reads a CSV file named "TrainingDataBinary.csv" and stores it in a dataframe named df.
df = pd.read_csv("TrainingDataBinary.csv")
# Data preprocessing: Separating features and target variable
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
# Data splitting and model training
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Feature scaling
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Support Vector Classifier (SVC) initialization and training
svc = SVC(kernel='rbf', C=10.0, gamma=0.1, random_state=42)
# Prediction on the scaled test data
svc.fit(X_train_scaled, y_train)
y_pred = svc.predict(X_test_scaled)
# Calculate and print accuracy
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
# Calculate and print prediction error
prediction_error = 1 - accuracy
print("Prediction Error:", prediction_error)
# Plotting the scatter plot
plt.scatter(X_test.iloc[:, 0], X_test.iloc[:, 1], c=y_pred, cmap='viridis')
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.title("Scatter Plot with Predicted Classes")
plt.show()
testingData = pd.read_csv("TestingDataBinary.csv")
predicted = svc.predict(testingData)
# Ensure the number of rows matches
resultData = pd.DataFrame(predicted, columns=['PredictedMarker'])
resultData = resultData[:testingData.shape[0]]
# Adding predicted markers to testing data
testingData['PredictedMarker'] = resultData["PredictedMarker"].tolist()
# Saving the predictions to a CSV file
testingData.to_csv("TestingResultsBinary.csv", index=False)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment