Skip to content
Snippets Groups Projects
Commit a0add965 authored by Achilles Kappis's avatar Achilles Kappis
Browse files

Remove firstOrderDMA.m to change the name of the function

parent 5be7b309
No related branches found
No related tags found
1 merge request!10Update 3D rotations function interface
%% Calculate 1st order Directional Microphone Array output
% --------------------------------------------------
% Author: Achilles Kappis
% e-mail: axilleaz@protonmail.com
%
% Date: 30/10/2024 (DD/MM/YYYY)
%
% Copyright: MIT
% --------------------------------------------------
% Functionality: Calculate the output of a first order Differential
% Microphone Array.
% --------------------------------------------------
% Input
%
% input [numeric]: The input to the array. 3D array/matrix with dimensions
% IxMxF, where I is the number of measurments (or length
% of signals), M represents the number of microphones and
% must be even and F is the number of frequencies of
% interest. Each pair microphone is treated as a first
% order DMA.
%
% freq [numeric]: The frequencies of interest. A vector with number of
% elements matching the third dimension of the "input"
% parameter.
%
% pos [numeric]: The position vectors of the DMA elements. This must be a
% 3xM matrix whose rows will represent the Cartesian
% coordinates and the columns the DMA elements.
%
% pPattern [string/char/numeric] (Optional): The sought out beam-pattern.
% It can be either a string (or
% character cell) from one of
% the following (not case
% sensitive):
% - Omni, Omnidirectional,
% Monopole
% - Dipole, Figure-of-Eight
% - Cardioid
% - Hypercardioid
% - Supercardioid
% It can also be a numeric value
% representing the angle for
% which the response is
% specified (input parameter
% "beta") in degrees.
% [Default: Dipole]
%
% beta [numeric] (Optional): The (normalised to unity) response at the
% angle specified with teh parameter "pPattern".
% If "pPattern" is given as string/char the
% appropriate value is automatically set, and
% this argument is ignored. [Default: 0]
%
% --------------------------------------------------
% Output
%
% h [numeric]: This 2xF filter is the filter that results in the
% beam-pattern of interest and F is the number of frequencies.
%
% output [numeric]: The output of the array. It has the same dimensions as
% the "input" parameter except for the second dimension
% which is equal to M/2.
%
% --------------------------------------------------
% Notes
%
% --------------------------------------------------
function [h, output] = firstOrderDma(input, freq, d, pPattern, beta)
% ====================================================
% Check for number of arguments
% ====================================================
narginchk(3, 5);
nargoutchk(0, 2);
% ====================================================
% Validate input arguments
% ====================================================
validateattributes(input, {'numeric'}, {'3d', 'nonnan', 'finite', 'nonempty'}, mfilename, 'Input', 1);
if mod(size(input, 2), 2) ~= 0
error("Second dimension of 'input' parameter must have even length.")
end
validateattributes(freq, {'numeric'}, {'real', 'nonnan', 'finite', 'nonempty', 'vector', 'numel', size(input, 3)}, mfilename, 'Frequencies', 2);
validateattributes(d, {'numeric'}, {'scalar', 'real', 'nonnan', 'finite', 'nonempty'}, mfilename, 'Inter-element distance', 3);
% Check beta
if nargin > 4
validateattributes(beta, {'numeric'}, {'scalar', 'real', 'finite', 'nonempty', 'nonnan', '<=', 1, '>=', 0}, mfilename, "Beta", 5)
else
beta = 0;
end
% Check alpha (angle of null)
if nargin > 3
if isstring(pPattern) || ischar(pPattern)
validateattributes(pPattern, {'char', 'string'}, {'scalartext', 'nonempty'}, mfilename, 'Polar pattern', 4);
elseif isnumeric(pPattern)
validateattributes(pPattern, {'numeric'}, {'scalar', 'real', 'nonnan', 'finite', 'nonempty'}, mfilename, 'Angle of null', 4);
end
else
pPattern = "dipole";
end
% ====================================================
% "Condition" arguments
% ====================================================
% Make sure frequencies is a row vector
if ~isrow(freq)
freq = freq.';
end
% ====================================================
% Calculate parameters
% ====================================================
% Calculate the correct "null" angles based on given polar pattern
if ~isnumeric(pPattern)
switch convertStringsToChars(lower(pPattern))
case {'omni', 'omnidirectional', 'monopole'}
pPattern = pi;
beta = 1;
case {'dipole', 'figure-of-eight'}
pPattern = pi/2;
beta = 0;
case 'cardioid'
pPattern = pi;
beta = 0;
case 'hypercardioid'
pPattern = (2 * pi/3);
beta = 0;
case 'supercardioid'
pPattern = (3 * pi/4);
beta = 0;
otherwise
error("Unsupported polar pattern");
end
else
pPattern = deg2rad(pPattern);
end
% Calculate filter(s)
for freqIdx = length(freq):-1:1
arrManMat = [arrMan(0, d, freq(freqIdx), 343), arrMan(pPattern, d, freq(freqIdx), 343)];
h(:, freqIdx) = (arrManMat')\[1; beta];
end
% ====================================================
% Calculate array output
% ====================================================
if nargout > 1
% Go through the frequencies
for freqIdx = length(freq):-1:1
for pairIdx = size(input, 1)/2:-1:1
% Multiply the array filter with the input
output(:, pairIdx, freqIdx) = h(:, freqIdx)' * input(:, pairIdx * 2 - 1:pairIdx * 2, freqIdx);
end
end
end
end
%% Utility functions
% Calculate the array manifold
function arrMan = arrMan(phi, d, freq, c)
k = -2j * pi * freq * cos(phi)/c;
arrMan = [exp(k * (-d/2)); exp(k * (d/2))];
end
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment