Skip to content
Snippets Groups Projects
Commit cb12b344 authored by kf2n21's avatar kf2n21
Browse files

Upload New File

parent 48004966
No related branches found
No related tags found
No related merge requests found
# coding=utf-8
import numpy as np
import pandas as pd
import sklearn.metrics
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
"""Reading training data"""
train_data = pd.read_csv("TrainingData.txt", header=None)
y = train_data[24].tolist()
train_data = train_data.drop(24, axis=1)
x = train_data.values.tolist()
# Storing full training data before splitting
x = np.array(x)
y = np.array(y)
x_train_full = x
y_train_full = y
"""Reading testing data to predict"""
test_data = pd.read_csv("TestingData.txt", header=None)
x_classify = test_data.values.tolist()
# Splitting training data for testing algorithm
training1_data, validation_data, target_labels, validation_target_labels = train_test_split(
x,
y,
test_size=0.2,
random_state=0
)
"""1. k nearest neighbours classifier"""
KNN_clf = KNeighborsClassifier()
KNN_clf.fit(training1_data, target_labels)
KNN_results = KNN_clf.predict(validation_data)
print("-" * 70)
print("K Nearest Neighbours Classifier")
print(sklearn.metrics.classification_report(KNN_results, validation_target_labels))
"""2. support vector classifier"""
SVC_clf = SVC()
SVC_clf.fit(training1_data, target_labels)
SVC_results = SVC_clf.predict(validation_data)
print("-" * 70)
print("Support Vector Classifier")
print(sklearn.metrics.classification_report(SVC_results, validation_target_labels))
"""3. Linear Discriminant Analysis"""
lda_clf = LinearDiscriminantAnalysis()
lda_clf.fit(training1_data, target_labels)
lda_results = lda_clf.predict(validation_data)
print("-" * 70)
print("Linear Discriminant Analysis")
print(sklearn.metrics.classification_report(lda_results, validation_target_labels))
# %%
testDF = pd.read_csv("TestingData.txt", header=None)
testing_data = testDF.values.tolist()
# %%
pre = SVC_clf.predict(testing_data)
pre = pd.DataFrame(pre)
testing_data = pd.DataFrame(testing_data)
all_result = pd.concat([testing_data, pre], axis=1)
# print(all_result)
# %%
all_result.to_csv("TestingResults.txt", header=0, index=0)
if __name__ == "__main__":
pass
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment