Skip to content
Snippets Groups Projects
Commit 6446b759 authored by Chauhan Chauhan's avatar Chauhan Chauhan
Browse files

Delete 3217-classification-lr-example2.py

parent 136a8399
Branches
No related tags found
No related merge requests found
from sklearn import datasets, neighbors, linear_model
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, f1_score
import matplotlib.pyplot as plt
X_digits, y_digits = datasets.load_digits(return_X_y=True)
X_digits = X_digits / X_digits.max()
n_samples = len(X_digits)
ratio = 0.9
print (n_samples)
#train data
X_train = X_digits[: int(ratio * n_samples)]
y_train = y_digits[: int(ratio * n_samples)]
print (X_train.shape)
#test data
X_test = X_digits[int(ratio * n_samples) :]
y_test = y_digits[int(ratio * n_samples) :]
print (X_test.shape)
logistic = linear_model.LogisticRegression(max_iter=1000)
print(
"LogisticRegression score: %f"
% logistic.fit(X_train, y_train).score(X_test, y_test))
#Get results on actual test labels and predicted labels
predictions = logistic.predict(X_test)
#print (predictions)
#print (y_test)
#get f1 score
print (f1_score(y_test, predictions, average='macro'))
#get confusion matrix
cm = confusion_matrix(y_test, predictions, labels=logistic.classes_)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=logistic.classes_)
disp.plot()
plt.show()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment