Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
C
Comp3200
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
eca1g19
Comp3200
Merge requests
!1
Draft: Testing
Code
Review changes
Check out branch
Download
Patches
Plain diff
Closed
Draft: Testing
testing
into
main
Overview
0
Commits
1
Changes
1
Closed
eca1g19
requested to merge
testing
into
main
1 year ago
Overview
0
Commits
1
Changes
1
Expand
0
0
Merge request reports
Compare
main
main (base)
and
latest version
latest version
03f341b7
1 commit,
1 year ago
1 file
+
199
−
0
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
HuggingFaceBert.py
0 → 100644
+
199
−
0
Options
import
torch
import
datasets
import
utils
import
evaluate
from
transformers
import
BertTokenizerFast
,
BertGenerationConfig
from
transformers
import
EncoderDecoderModel
from
transformers
import
Seq2SeqTrainingArguments
from
transformers
import
Seq2SeqTrainer
from
nltk.tokenize
import
sent_tokenize
import
numpy
as
np
if
(
torch
.
cuda
.
is_available
()
!=
True
):
print
(
"
RUNNING ON CPU
"
)
else
:
print
(
"
RUNNING ON GPU
"
)
rogue_score
=
evaluate
.
load
(
"
rouge
"
)
FINETUNE_ON_CUSTOM_DATASET
=
False
NEW_MODEL
=
False
generation_config
=
BertGenerationConfig
(
max_length
=
142
,
min_length
=
56
,
no_repeat_ngram_size
=
3
,
early_stopping
=
True
,
length_penalty
=
2.0
,
num_beams
=
4
)
#Loads model
if
(
NEW_MODEL
):
model_checkpoint
=
'
bert-base-uncased
'
model
=
EncoderDecoderModel
.
from_encoder_decoder_pretrained
(
model_checkpoint
,
model_checkpoint
)
else
:
model_checkpoint
=
r
'
C:\Users\uwu\PycharmProjects\COMP3200\bert-base-uncased-cnn-dailymail
'
model
=
EncoderDecoderModel
.
from_pretrained
(
model_checkpoint
)
tokenizer
=
BertTokenizerFast
.
from_pretrained
(
'
bert-base-uncased
'
)
tokenizer
.
bos_token
=
tokenizer
.
cls_token
tokenizer
.
eos_token
=
tokenizer
.
sep_token
#Set tokens
model
.
config
.
decoder_start_token_id
=
tokenizer
.
bos_token_id
model
.
config
.
eos_token_id
=
tokenizer
.
eos_token_id
model
.
config
.
pad_token_id
=
tokenizer
.
pad_token_id
#Beam search parameters
model
.
config
.
vocab_size
=
model
.
config
.
decoder
.
vocab_size
model
.
config
.
max_length
=
142
model
.
config
.
min_length
=
56
model
.
config
.
no_repeat_ngram_size
=
3
model
.
config
.
early_stopping
=
True
model
.
config
.
length_penalty
=
2.0
model
.
config
.
num_beams
=
4
if
(
FINETUNE_ON_CUSTOM_DATASET
):
train_data
=
utils
.
load_custom_dataset
()
validation_data
=
utils
.
load_custom_dataset
()
else
:
train_data
=
datasets
.
load_dataset
(
"
cnn_dailymail
"
,
"
3.0.0
"
,
split
=
"
train
"
)
validation_data
=
datasets
.
load_dataset
(
"
cnn_dailymail
"
,
"
3.0.0
"
,
split
=
"
validation[:10%]
"
)
#Args
max_input_length
=
512
max_target_length
=
30
batch_size
=
8
num_train_epochs
=
8
model_name
=
model_checkpoint
.
split
(
"
/
"
)[
-
1
]
#logging_steps = len(train_data) // batch_size
print
(
"
Training Data Length:
"
,
len
(
train_data
))
print
(
"
Eval Data Length:
"
,
len
(
validation_data
))
if
(
FINETUNE_ON_CUSTOM_DATASET
):
args
=
Seq2SeqTrainingArguments
(
output_dir
=
f
"
{
model_name
}
-finetuned-custom-dataset
"
,
evaluation_strategy
=
"
epoch
"
,
learning_rate
=
5.6e-5
,
per_device_train_batch_size
=
batch_size
,
per_device_eval_batch_size
=
batch_size
,
weight_decay
=
0.01
,
save_total_limit
=
3
,
num_train_epochs
=
num_train_epochs
,
predict_with_generate
=
True
,
push_to_hub
=
True
,
)
else
:
args
=
Seq2SeqTrainingArguments
(
output_dir
=
f
"
{
model_name
}
"
,
evaluation_strategy
=
"
steps
"
,
learning_rate
=
5.6e-5
,
per_device_train_batch_size
=
batch_size
,
per_device_eval_batch_size
=
batch_size
,
weight_decay
=
0.01
,
save_total_limit
=
3
,
num_train_epochs
=
num_train_epochs
,
predict_with_generate
=
True
,
push_to_hub
=
True
,
)
def
preprocess_data
(
batch
):
#tokenize the inputs
inputs
=
tokenizer
(
batch
[
"
text
"
],
max_length
=
max_input_length
,
truncation
=
True
,
padding
=
"
max_length
"
)
targets
=
tokenizer
(
batch
[
"
ingredients
"
],
max_length
=
max_target_length
,
truncation
=
True
,
padding
=
"
max_length
"
)
batch
[
"
input_ids
"
]
=
inputs
.
input_ids
batch
[
"
attention_mask
"
]
=
inputs
.
attention_mask
batch
[
"
decoder_input_ids
"
]
=
targets
.
input_ids
batch
[
"
decoder_attention_mask
"
]
=
targets
.
attention_mask
batch
[
"
labels
"
]
=
targets
.
input_ids
.
copy
()
batch
[
"
labels
"
]
=
[[
-
100
if
token
==
tokenizer
.
pad_token_id
else
token
for
token
in
labels
]
for
labels
in
batch
[
"
labels
"
]]
return
batch
def
preprocess_data_cnn_dailymail
(
batch
):
#tokenize the input
inputs
=
tokenizer
(
batch
[
"
article
"
],
max_length
=
max_input_length
,
truncation
=
True
,
padding
=
"
max_length
"
)
targets
=
tokenizer
(
batch
[
"
highlights
"
],
max_length
=
max_target_length
,
truncation
=
True
,
padding
=
"
max_length
"
)
batch
[
"
input_ids
"
]
=
inputs
.
input_ids
batch
[
"
attention_mask
"
]
=
inputs
.
attention_mask
batch
[
"
decoder_input_ids
"
]
=
targets
.
input_ids
batch
[
"
decoder_attention_mask
"
]
=
targets
.
attention_mask
batch
[
"
labels
"
]
=
targets
.
input_ids
.
copy
()
#batch["labels"] = [[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]]
return
batch
def
compute_metrics
(
eval_pred
):
print
(
"
Eval_pred Label IDs:
"
,
eval_pred
.
label_ids
)
print
(
"
Preds_ids:
"
,
eval_pred
.
predictions
)
predictions
,
labels
=
eval_pred
print
(
"
Predictions:
"
,
predictions
)
#Decode summaries into text
decoded_preds
=
tokenizer
.
batch_decode
(
predictions
,
skip_special_tokens
=
True
)
#Ignore pad token
labels
=
np
.
where
(
labels
!=
100
,
labels
,
tokenizer
.
pad_token_id
)
decoded_labels
=
tokenizer
.
batch_decode
(
labels
,
skip_special_tokens
=
True
)
#ROGUE requires newline after each sentence
decoded_preds
=
[
"
\n
"
.
join
(
sent_tokenize
(
pred
.
strip
()))
for
pred
in
decoded_preds
]
decoded_labels
=
[
"
\n
"
.
join
(
sent_tokenize
(
label
.
strip
()))
for
label
in
decoded_labels
]
print
(
"
Preds:
"
,
decoded_preds
)
print
(
"
Labels:
"
,
decoded_labels
)
result
=
rogue_score
.
compute
(
predictions
=
decoded_preds
,
references
=
decoded_labels
,
use_stemmer
=
True
)
# Extract the median scores
try
:
result
=
{
key
:
value
.
mid
.
fmeasure
*
100
for
key
,
value
in
result
.
items
()}
except
AttributeError
:
result
=
{
key
:
value
*
100
for
key
,
value
in
result
.
items
()}
print
(
"
Result:
"
,
result
)
return
{
k
:
round
(
v
,
4
)
for
k
,
v
in
result
.
items
()}
if
(
FINETUNE_ON_CUSTOM_DATASET
):
#Preprocess data and change formatting
train_data
=
train_data
.
map
(
preprocess_data
,
batched
=
True
,
batch_size
=
batch_size
,
remove_columns
=
[
"
text
"
,
"
ingredients
"
]
#maybe keep these and test
)
validation_data
=
validation_data
.
map
(
preprocess_data
,
batched
=
True
,
batch_size
=
batch_size
,
remove_columns
=
[
"
text
"
,
"
ingredients
"
]
# maybe keep these and test
)
else
:
train_data
=
train_data
.
map
(
preprocess_data_cnn_dailymail
,
batched
=
True
,
batch_size
=
batch_size
,
remove_columns
=
[
'
article
'
,
'
highlights
'
,
'
id
'
]
#maybe keep these and test
)
validation_data
=
validation_data
.
map
(
preprocess_data_cnn_dailymail
,
batched
=
True
,
batch_size
=
batch_size
,
remove_columns
=
[
'
article
'
,
'
highlights
'
,
'
id
'
]
# maybe keep these and test
)
train_data
.
set_format
(
type
=
"
torch
"
)
#May need to specify column names
validation_data
.
set_format
(
type
=
"
torch
"
)
trainer
=
Seq2SeqTrainer
(
model
=
model
,
args
=
args
,
compute_metrics
=
compute_metrics
,
train_dataset
=
train_data
,
eval_dataset
=
validation_data
,
)
trainer
.
train
()
\ No newline at end of file
Loading