Loading cnn_dailymail dataset 3.0.0 with split type: train[:100%]
Loading cnn_dailymail dataset 3.0.0 with split type: train[:100%]
Found cached dataset cnn_dailymail (C:/Users/uwu/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0/1b3c71476f6d152c31c1730e83ccb08bcf23e348233f4fcc11e182248e6bf7de)
Found cached dataset cnn_dailymail (C:/Users/uwu/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0/1b3c71476f6d152c31c1730e83ccb08bcf23e348233f4fcc11e182248e6bf7de)
Loading cnn_dailymail dataset 3.0.0 with split type: validation[:10%]
Loading cnn_dailymail dataset 3.0.0 with split type: validation[:10%]
Found cached dataset cnn_dailymail (C:/Users/uwu/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0/1b3c71476f6d152c31c1730e83ccb08bcf23e348233f4fcc11e182248e6bf7de)
Found cached dataset cnn_dailymail (C:/Users/uwu/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0/1b3c71476f6d152c31c1730e83ccb08bcf23e348233f4fcc11e182248e6bf7de)
Loading cnn_dailymail dataset 3.0.0 with split type: test[:10%]
Loading cnn_dailymail dataset 3.0.0 with split type: test[:10%]
Found cached dataset cnn_dailymail (C:/Users/uwu/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0/1b3c71476f6d152c31c1730e83ccb08bcf23e348233f4fcc11e182248e6bf7de)
Found cached dataset cnn_dailymail (C:/Users/uwu/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0/1b3c71476f6d152c31c1730e83ccb08bcf23e348233f4fcc11e182248e6bf7de)
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight']
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight']
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight']
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Training BertBiLSTM
Training BertBiLSTM
Available GPUs: 1
Available GPUs: 1
C:\Users\uwu\miniconda3\envs\uni\lib\site-packages\lightning_fabric\connector.py:555: UserWarning: 16 is supported for historical reasons but its usage is discouraged. Please set your precision to 16-mixed instead!
C:\Users\uwu\miniconda3\envs\uni\lib\site-packages\lightning_fabric\connector.py:555: UserWarning: 16 is supported for historical reasons but its usage is discouraged. Please set your precision to 16-mixed instead!
rank_zero_warn(
rank_zero_warn(
Using 16bit Automatic Mixed Precision (AMP)
Using 16bit Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
HPU available: False, using: 0 HPUs
C:\Users\uwu\miniconda3\envs\uni\lib\site-packages\pytorch_lightning\trainer\connectors\logger_connector\logger_connector.py:67: UserWarning: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `pytorch_lightning` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default
C:\Users\uwu\miniconda3\envs\uni\lib\site-packages\pytorch_lightning\trainer\connectors\logger_connector\logger_connector.py:67: UserWarning: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `pytorch_lightning` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default
warning_cache.warn(
warning_cache.warn(
C:\Users\uwu\miniconda3\envs\uni\lib\site-packages\pytorch_lightning\callbacks\model_checkpoint.py:615: UserWarning: Checkpoint directory C:\Users\uwu\PycharmProjects\COMP3200\Models exists and is not empty.
C:\Users\uwu\miniconda3\envs\uni\lib\site-packages\pytorch_lightning\callbacks\model_checkpoint.py:615: UserWarning: Checkpoint directory C:\Users\uwu\PycharmProjects\COMP3200\Models exists and is not empty.
rank_zero_warn(f"Checkpoint directory {dirpath} exists and is not empty.")
rank_zero_warn(f"Checkpoint directory {dirpath} exists and is not empty.")
Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x0000020B93049EE0>
Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x0000020B93049EE0>
Traceback (most recent call last):
Traceback (most recent call last):
File "C:\Users\uwu\miniconda3\envs\uni\lib\site-packages\torch\utils\data\dataloader.py", line 1478, in __del__
File "C:\Users\uwu\miniconda3\envs\uni\lib\site-packages\torch\utils\data\dataloader.py", line 1478, in __del__
self._shutdown_workers()
self._shutdown_workers()
File "C:\Users\uwu\miniconda3\envs\uni\lib\site-packages\torch\utils\data\dataloader.py", line 1436, in _shutdown_workers
File "C:\Users\uwu\miniconda3\envs\uni\lib\site-packages\torch\utils\data\dataloader.py", line 1436, in _shutdown_workers
if self._persistent_workers or self._workers_status[worker_id]:
if self._persistent_workers or self._workers_status[worker_id]:
AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute '_workers_status'
AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute '_workers_status'
C:\Users\uwu\miniconda3\envs\uni\lib\site-packages\lightning_fabric\connector.py:555: UserWarning: 16 is supported for historical reasons but its usage is discouraged. Please set your precision to 16-mixed instead!
C:\Users\uwu\miniconda3\envs\uni\lib\site-packages\lightning_fabric\connector.py:555: UserWarning: 16 is supported for historical reasons but its usage is discouraged. Please set your precision to 16-mixed instead!
rank_zero_warn(
rank_zero_warn(
Training BertDoubleDense
Training BertDoubleDense
Available GPUs: 1
Available GPUs: 1
Using 16bit Automatic Mixed Precision (AMP)
Using 16bit Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
HPU available: False, using: 0 HPUs
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
| Name | Type | Params
| Name | Type | Params
----------------------------------------------
----------------------------------------------
0 | model | BertDoubleDense | 133 M
0 | model | BertDoubleDense | 133 M
1 | criterion | NLLLoss | 0
1 | criterion | NLLLoss | 0
----------------------------------------------
----------------------------------------------
24.1 M Trainable params
24.1 M Trainable params
109 M Non-trainable params
109 M Non-trainable params
133 M Total params
133 M Total params
534.177 Total estimated model params size (MB)
534.177 Total estimated model params size (MB)
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
Load a model from a checkpoint (debugging from here):
Load a model from a checkpoint (debugging from here):