Skip to content
Snippets Groups Projects
Commit 579c1750 authored by eaf1g17's avatar eaf1g17
Browse files

Upload constant doublet code

parent 8238acbd
Branches
No related tags found
No related merge requests found
import numpy as np
import matplotlib.pyplot as plt
def constant_doublet(clockwise_coordinates, alpha, num_panels):
# This program finds the pressure distribution on an arbitrary aerofoil
# by representing the surface as a finite number of doublet panels with
# constant strength (Dirichlet B.C.)
# Original FORTRAN program by Steven Yon, 1989; Low Speed Aerodynamics, 2nd edition, p. 565
# Ported to Python/Numpy by Euan French, 2020.
m = num_panels
n = m + 1
al = alpha / 57.2958
# Read in the panel end points
ept = clockwise_coordinates # ept[:, 0] -> x coords, ept[:, 1] -> y coords
# Convert the panelling to clockwise
ep = np.flip(ept, 0)
# Establish coordinates of panel end points
pt1 = ep[:-1, :]
pt2 = np.roll(ep, -1, axis=0)[:-1, :]
# Find panel angles
dz = pt2[:, 1] - pt1[:, 1]
dx = pt2[:, 0] - pt1[:, 0]
th = np.arctan2(dz, dx)
# Establish collocation points
co = ((pt2 - pt1) / 2) + pt1
co = co # Needed for broadcasting
# Establish influence coefficients
# Convert collocation coordinates to local panel coordinates
x2t = pt2[:, 0] - pt1[:, 0] # Note, these are equal to dz and dx at lines 20, 21
z2t = pt2[:, 1] - pt1[:, 1]
xt = co[:, 0:1] - pt1[:, 0:1].T
zt = co[:, 1:2] - pt1[:, 1:2].T
x2 = x2t * np.cos(th) + z2t * np.sin(th)
z2 = np.zeros_like(x2)
x = xt * np.cos(th) + zt * np.sin(th)
z = -xt * np.sin(th) + zt * np.cos(th)
# Save panel lengths
dl = x2
# Find R and theta components
r1 = np.sqrt(x ** 2 + z ** 2)
r2 = np.sqrt((x - x2) ** 2 + z ** 2)
th1 = np.arctan2(z, x)
th2 = np.arctan2(z, x - x2)
# Compute influence coeffs. A(I, J)
a = -0.15916 * (th2 - th1)
np.fill_diagonal(a, 0.5)
# Add wake influence
xw = co[:, 0] - pt2[m - 1, 0] # Have to do m-1 instead of m because of the indexing offset in Python
zw = co[:, 1] - pt2[m - 1, 1]
dthw = -np.arctan(zw / xw)
a = np.concatenate((a, np.zeros(n - 1).reshape(-1, 1)), axis=1)
a[:, n - 1] = -0.15916 * dthw
# Build rhs vector
b = co[:, 0] * np.cos(al) + co[:, 1] * np.sin(al)
b = np.append(b, 0)
# Add an explicit Kutta condition
a = np.concatenate((a, np.zeros(n).reshape(1, -1)), axis=0)
a[n - 1, 0] = -1
a[n - 1, m - 1] = 1
a[n - 1, n - 1] = -1
# Solve for solution vector of doublet strengths
g = np.linalg.solve(a, b)
# Convert doublet strengths into tangential velocities
r = (dl[:m-2] + np.roll(dl, -1)[:m-2]) / 2
vel = (np.roll(g, -1)[:m-2] - g[:m-2]) / r
cp = 1 - vel ** 2
return cp, co
if __name__ == "__main__":
vdvaerofoil = np.loadtxt('vdv15')
num_panels = vdvaerofoil.shape[0] - 1
cp, co = constant_doublet(vdvaerofoil, 5, num_panels)
plt.plot(co[:num_panels-2, 0], cp)
plt.plot(co[:, 0], co[:, 1], marker=".", linestyle='None')
plt.plot(vdvaerofoil[:, 0], vdvaerofoil[:, 1])
plt.xlim(-0.1, 1.1)
plt.ylim(1, -1.8)
plt.show()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment