Skip to content
Snippets Groups Projects
Commit bc136168 authored by Clare's avatar Clare
Browse files

Initial commit for function create_LDprofile

parent 60830213
No related branches found
No related tags found
No related merge requests found
...@@ -15,6 +15,7 @@ export(Zbeta_Zscore) ...@@ -15,6 +15,7 @@ export(Zbeta_Zscore)
export(Zbeta_expected) export(Zbeta_expected)
export(Zbeta_log_rsq_over_expected) export(Zbeta_log_rsq_over_expected)
export(Zbeta_rsq_over_expected) export(Zbeta_rsq_over_expected)
export(create_LDprofile)
importFrom(stats,cor) importFrom(stats,cor)
importFrom(stats,na.omit) importFrom(stats,na.omit)
importFrom(stats,pbeta) importFrom(stats,pbeta)
#' Creates an LD profile
#'
#' An LD (linkage disequilibrium) profile is a look-up table that tell you the expected correlation between SNPs given the genetic distance between them.
#'
#' In the output, bins represent lower bounds. The first bin contains pairs where the genetic distance is greater than or equal to 0 and less than \code{bin_size}. The final bin contains pairs where the genetic distance is greater than or equal to \code{max_dist}-\code{bin_size} and less than \code{max_dist}.
#' If the \code{max_dist} is not an increment of \code{bin_size}, it will be adjusted to the next highest increment.The maximum bin will be the bin that \code{max_dist} falls into. For example, if the \code{max_dist} is given as 4.5 and the \code{bin_size} is 1, the final bin will be 4.\cr
#' By default, Beta parameters are not calculated. To calcualte Beta parameters, needed for the \code{\link{Zalpha_BetaCDF}} and \code{\link{Zbeta_BetaCDF}} statistics, \code{beta_params} should be set to TRUE and the package \code{fitdistrplus} must be installed.
#'
#' @param dist A numeric vector containing genetic distances.
#' @param x A matrix of SNP values. Columns represent chromosomes; rows are SNP locations. Hence, the number of rows should equal the length of the \code{dist} vector. SNPs should all be biallelic.
#' @param bin_size The size of each bin, in the same units as \code{dist}.
#' @param max_dist Optional. The maximum genetic distance to be considered. If this is not supplied, it will default to the maximum distance in the \code{dist} vector.
#' @param beta_params Optional. Beta parameters are calculated if this is set to TRUE. Default is FALSE.
#'
#' @return A data frame containing an LD profile that can be used by other statistics in this package.
#' @references Jacobs, G.S., T.J. Sluckin, and T. Kivisild, \emph{Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps.} Genetics, 2016. \strong{203}(4): p. 1807
#' @examples
#' ## load the snps example dataset
#' data(snps)
#' ## Create an LD profile using this data
#' create_LDprofile(snps$distances,as.matrix(snps[,3:12]),0.001)
#'
#' @export
#' @seealso \code{\link{Zalpha_expected}} \code{\link{Zalpha_rsq_over_expected}} \code{\link{Zalpha_log_rsq_over_expected}} \code{\link{Zalpha_Zscore}} \code{\link{Zalpha_BetaCDF}} \code{\link{Zbeta_expected}} \code{\link{Zbeta_rsq_over_expected}} \code{\link{Zbeta_log_rsq_over_expected}} \code{\link{Zbeta_Zscore}} \code{\link{Zbeta_BetaCDF}} \code{\link{Zalpha_all}}
#'
create_LDprofile<-function(dist,x,bin_size,max_dist=NULL,beta_params=FALSE){
#Checks
#Check dist is vector
if (is.numeric(dist) ==FALSE || is.vector(dist)==FALSE){
stop("dist must be a numeric vector")
}
#Check x is a matrix
if (is.matrix(x)==FALSE){
stop("x must be a matrix")
}
#Check x has rows equal to the length of dist
if (length(dist) != nrow(x)){
stop("The number of rows in x must equal the number of SNP genetic distances given in dist")
}
#Check SNPs are all biallelic
if (sum(apply(x,1,function(x){length(na.omit(unique(x)))}) != 2)>0){
stop("SNPs must all be biallelic")
}
#Change matrix x to numeric if it isn't already
if (is.numeric(x)==FALSE){
x<-matrix(as.numeric(factor(x)),nrow=dim(x)[1])
}
#Check bin_size is a number
if (is.numeric(bin_size) ==FALSE || bin_size <= 0){
stop("bin_size must be a number greater than 0")
}
#Check max_dist is a number or NULL
if (is.null(max_dist)==FALSE){
if (is.numeric(max_dist) ==FALSE || max_dist <= 0){
stop("max_dist must be a number greater than 0")
}
} else {
#Set max_dist to the maximum distance in the data if it was not supplied
max_dist<-dist[length(dist)]-dist[1]
}
#Adjusts the Max_dist value so it is equal to an increment of bin_size if it isn't already
if(!isTRUE(all.equal(max_dist,assign_bins(bin_size,max_dist)))){
max_dist<-assign_bins(bin_size,max_dist)+bin_size
}
#Check beta_params is logical
if (is.logical(beta_params)==FALSE){
stop("beta_params must be TRUE or FALSE")
}
#If beta_params is TRUE, check for fitdistrplus package
if (beta_params==TRUE){
if (requireNamespace("fitdistrplus", quietly = TRUE)==FALSE) {
stop("Package \"fitdistrplus\" needed for Beta parameters to be calculated. Please install it.")
}
}
#Find the differences in genetic distances between pairs of SNPs
diffs<-lower_triangle(outer(dist,dist,"-"))
#Find the rsquared value between pairs of SNPs
rsq<-lower_triangle(cor(t(x))^2)
#Filter for just those less than the max genetic distance
rsq<-rsq[diffs<max_dist]
diffs<-diffs[diffs<max_dist]
#Assign diffs to bins
bins<-assign_bins(bin_size,diffs)
#Create LDprofile data frame
LDprofile<-data.frame(bin=seq(0,max_dist-bin_size,bin_size),rsq=NA,sd=NA,Beta_a=NA,Beta_b=NA,n=NA)
print.default("test")
#Loop for each bin (i)
for (i in 1:nrow(LDprofile)){
LDprofile$n[i]<-sum(bins==LDprofile$bin[i])
#If there is at least one pair whose egentic distance falls within the bin, calculate stats
if (LDprofile$n[i]>0){
#Get the rsquared values for all pairs in this bin
temprsq<-rsq[bins==LDprofile$bin[i]]
#Calculate the mean
LDprofile$rsq[i]<-mean(temprsq)
#Calculate the standard deviation
LDprofile$sd[i]<-sd(temprsq)
#Calculate Beta distribution parameters if required
#Do not calculate for bins containing less than two pairs or the standatd deviation is zero
if (beta_params==TRUE & LDprofile$n[i]>1 & LDprofile$sd[i]>0){
if (sum(temprsq==1 | temprsq==0)>0){
#If there are any 0s or 1s adjust the data
temprsq<-(temprsq*(length(temprsq)-1)+0.5)/length(temprsq)
}
#Try to fit the data to a Beta distribution
betafit<-try(fitdistrplus::fitdist(temprsq,"beta"))
if (class(betafit) != "try-error"){
LDprofile$Beta_a[i]<-betafit$estimate[1]
LDprofile$Beta_b[i]<-betafit$estimate[2]
} else {
#If failed to fit, try again using estimated beta parameters to initialise
print.default("errored")
startBetaParams<-est_Beta_Params(LDprofile$rsq[i], LDprofile$sd[i]^2)
betafit<-try(fitdistrplus::fitdist(temprsq,"beta",start=list(shape1=startBetaParams$alpha, shape2=startBetaParams$beta)))
if (class(betafit) != "try-error"){
LDprofile$Beta_a[i]<-betafit$estimate[1]
LDprofile$Beta_b[i]<-betafit$estimate[2]
} else {
#If Beta parameters cannot be fitted, return NA
LDprofile$Beta_a[i]<-NA
LDprofile$Beta_b[i]<-NA
}
}
}
}
}
return(LDprofile)
}
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/create_LDprofile.R
\name{create_LDprofile}
\alias{create_LDprofile}
\title{Creates an LD profile}
\usage{
create_LDprofile(dist, x, bin_size, max_dist = NULL, beta_params = FALSE)
}
\arguments{
\item{dist}{A numeric vector containing genetic distances.}
\item{x}{A matrix of SNP values. Columns represent chromosomes; rows are SNP locations. Hence, the number of rows should equal the length of the \code{dist} vector. SNPs should all be biallelic.}
\item{bin_size}{The size of each bin, in the same units as \code{dist}.}
\item{max_dist}{Optional. The maximum genetic distance to be considered. If this is not supplied, it will default to the maximum distance in the \code{dist} vector.}
\item{beta_params}{Optional. Beta parameters are calculated if this is set to TRUE. Default is FALSE.}
}
\value{
A data frame containing an LD profile that can be used by other statistics in this package.
}
\description{
An LD (linkage disequilibrium) profile is a look-up table that tell you the expected correlation between SNPs given the genetic distance between them.
}
\details{
In the output, bins represent lower bounds. The first bin contains pairs where the genetic distance is greater than or equal to 0 and less than \code{bin_size}. The final bin contains pairs where the genetic distance is greater than or equal to \code{max_dist}-\code{bin_size} and less than \code{max_dist}.
If the \code{max_dist} is not an increment of \code{bin_size}, it will be adjusted to the next highest increment.The maximum bin will be the bin that \code{max_dist} falls into. For example, if the \code{max_dist} is given as 4.5 and the \code{bin_size} is 1, the final bin will be 4.\cr
By default, Beta parameters are not calculated. To calcualte Beta parameters, needed for the \code{\link{Zalpha_BetaCDF}} and \code{\link{Zbeta_BetaCDF}} statistics, \code{beta_params} should be set to TRUE and the package \code{fitdistrplus} must be installed.
}
\examples{
## load the snps example dataset
data(snps)
## Create an LD profile using this data
create_LDprofile(snps$distances,as.matrix(snps[,3:12]),0.001)
}
\references{
Jacobs, G.S., T.J. Sluckin, and T. Kivisild, \emph{Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps.} Genetics, 2016. \strong{203}(4): p. 1807
}
\seealso{
\code{\link{Zalpha_expected}} \code{\link{Zalpha_rsq_over_expected}} \code{\link{Zalpha_log_rsq_over_expected}} \code{\link{Zalpha_Zscore}} \code{\link{Zalpha_BetaCDF}} \code{\link{Zbeta_expected}} \code{\link{Zbeta_rsq_over_expected}} \code{\link{Zbeta_log_rsq_over_expected}} \code{\link{Zbeta_Zscore}} \code{\link{Zbeta_BetaCDF}} \code{\link{Zalpha_all}}
}
df<-data.frame(
SNP=c("SNP1","SNP2","SNP3","SNP4","SNP5","SNP6","SNP7","SNP8","SNP9","SNP10","SNP11","SNP12","SNP13","SNP14","SNP15"),
POS=c(100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500),
C1=c(1,1,2,1,2,1,1,2,1,2,1,2,1,1,1),
C2=c(2,2,1,2,1,2,1,2,2,2,1,2,1,1,2),
C3=c(2,1,2,2,2,1,1,2,2,1,2,2,1,1,2),
C4=c(1,1,2,1,2,2,1,1,1,1,1,2,2,2,2),
C5=c(1,1,2,1,2,1,2,1,1,1,1,1,2,1,1),
dist=c(0,0.00101,0.00123,0.00207,0.00218,0.00223,0.00235,0.00251,0.00272,0.00289,0.00304,0.00316,0.00335,0.00345,0.00374)
)
dist = df$dist
x = as.matrix(df[,3:7])
bin_size = 0.001
max_dist = 0.005
beta_params = TRUE
## test that everything is calculated correctly given all parameters
test_that("create_LDprofile calculates the LD profile correctly", {
expect_equal(create_LDprofile(dist = df$dist, x = as.matrix(df[,3:7]), bin_size = 0.001, max_dist = 0.005, beta_params = TRUE),
data.frame(
bin=c(0,0.001,0.002,0.003,0.004),
rsq=c(0.285622427983539,0.280913978494624,0.263888888888889,0.319444444444444,NA),
sd=c(0.270862044573862,0.201905775929377,0.321786617161322,0.142318760638328,NA),
Beta_a=c(0.619957744381906,1.125028692019340,0.635410044952769,3.941019442363900,NA),
Beta_b=c(1.062459890834270,2.446706389704430,1.149319432462400,8.454825333760550,NA),
n=c(54,31,15,5,0)
))
})
## Test the function with a different max_dist
test_that("create_LDprofile calculates the LD profile correctly with a different max_dist", {
expect_equal(create_LDprofile(dist = df$dist, x = as.matrix(df[,3:7]), bin_size = 0.001, max_dist = 0.003, beta_params = TRUE),
data.frame(
bin=c(0,0.001,0.002),
rsq=c(0.285622427983539,0.280913978494624,0.263888888888889),
sd=c(0.270862044573862,0.201905775929377,0.321786617161322),
Beta_a=c(0.619957744381906,1.125028692019340,0.635410044952769),
Beta_b=c(1.062459890834270,2.446706389704430,1.149319432462400),
n=c(54,31,15)
))
})
## Test the function with no max_dist given
test_that("create_LDprofile calculates the LD profile correctly with no max_dist supplied", {
expect_equal(create_LDprofile(dist = df$dist, x = as.matrix(df[,3:7]), bin_size = 0.001, beta_params = TRUE),
data.frame(
bin=c(0,0.001,0.002,0.003),
rsq=c(0.285622427983539,0.280913978494624,0.263888888888889,0.319444444444444),
sd=c(0.270862044573862,0.201905775929377,0.321786617161322,0.142318760638328),
Beta_a=c(0.619957744381906,1.125028692019340,0.635410044952769,3.941019442363900),
Beta_b=c(1.062459890834270,2.446706389704430,1.149319432462400,8.454825333760550),
n=c(54,31,15,5)
))
})
## Test the function with a different bin_size
test_that("create_LDprofile calculates the LD profile correctly with a different bin size", {
expect_equal(create_LDprofile(dist = df$dist, x = as.matrix(df[,3:7]), bin_size = 0.0005, beta_params = TRUE),
data.frame(
bin=c(0,0.0005,0.001,0.0015,0.002,0.0025,0.003,0.0035),
rsq=c(0.238505747126437,0.340277777777778,0.283459595959596,0.274691358024691,0.215277777777778,0.361111111111111,0.288194444444444,0.444444444444445),
sd=c(0.211600341827602,0.322468326753589,0.220527561550113,0.158590157477369,0.293808275018141,0.387895557,0.14316339,NA),
Beta_a=c(0.916070145958307,0.637072700079744,1.046576044485340,1.909812912830260,0.775059123115346,1.088198634018290,3.789877096116000,NA),
Beta_b=c(2.326350552394540,0.872215477086822,2.166981335251990,5.166454170350760,1.748740564135290,1.488374161884570,9.367197007381050,NA),
n=c(29,25,22,9,10,5,4,1)
))
})
## Test the function with beta_params not specified
test_that("create_LDprofile calculates the LD profile correctly with beta_params not specified", {
expect_equal(create_LDprofile(dist = df$dist, x = as.matrix(df[,3:7]), bin_size = 0.001, max_dist = 0.005),
data.frame(
bin=c(0,0.001,0.002,0.003,0.004),
rsq=c(0.285622427983539,0.280913978494624,0.263888888888889,0.319444444444444,NA),
sd=c(0.270862044573862,0.201905775929377,0.321786617161322,0.142318760638328,NA),
Beta_a=c(NA,NA,NA,NA,NA),
Beta_b=c(NA,NA,NA,NA,NA),
n=c(54,31,15,5,0)
))
})
## Test the function with a character matrix as x
df1<-df
df1[df1==1]<-"A"
df1[df1==2]<-"B"
test_that("create_LDprofile calculates the LD profile correctly with character matrix", {
expect_equal(create_LDprofile(dist = df1$dist, x = as.matrix(df1[,3:7]), bin_size = 0.001, max_dist = 0.005, beta_params = TRUE),
data.frame(
bin=c(0,0.001,0.002,0.003,0.004),
rsq=c(0.285622427983539,0.280913978494624,0.263888888888889,0.319444444444444,NA),
sd=c(0.270862044573862,0.201905775929377,0.321786617161322,0.142318760638328,NA),
Beta_a=c(0.619957744381906,1.125028692019340,0.635410044952769,3.941019442363900,NA),
Beta_b=c(1.062459890834270,2.446706389704430,1.149319432462400,8.454825333760550,NA),
n=c(54,31,15,5,0)
))
})
## Test all the checks
## Test the function with dists non-numeric
test_that("create_LDprofile fails when dist is non-numeric", {
expect_error(create_LDprofile(dist = paste0(df$dist,"dist"), x = as.matrix(df[,3:7]), bin_size = 0.001, max_dist = 0.005, beta_params = TRUE),
"dist must be a numeric vector")
})
## Test the function with dists not a matrix
test_that("create_LDprofile fails when dist is not a matrix", {
expect_error(create_LDprofile(dist = df, x = as.matrix(df[,3:7]), bin_size = 0.001, max_dist = 0.005, beta_params = TRUE),
"dist must be a numeric vector")
})
## Test the function with x not a matrix
test_that("create_LDprofile fails when x is not a matrix", {
expect_error(create_LDprofile(dist = df$dist, x = df[,3:7], bin_size = 0.001, max_dist = 0.005, beta_params = TRUE),
"x must be a matrix")
})
## Test the function with x not having the correct amount of rows
test_that("create_LDprofile fails when the number of rows in x is not equal to the length of pos", {
expect_error(create_LDprofile(dist = df$dist, x = t(as.matrix(df[,3:7])), bin_size = 0.001, max_dist = 0.005, beta_params = TRUE),
"The number of rows in x must equal the number of SNP genetic distances given in dist")
})
## Test the function with a SNP having only one allele
test_that("create_LDprofile fails when a SNP has only one allele", {
df1<-df
df1[1,3:7]<-1
expect_error(create_LDprofile(dist = df1$dist, x = as.matrix(df1[,3:7]), bin_size = 0.001, max_dist = 0.005, beta_params = TRUE),
"SNPs must all be biallelic")
})
## Test the function with a SNP having more than two alleles
test_that("create_LDprofile fails when a SNP has more than two alleles", {
df1<-df
df1[1,7]<-3
expect_error(create_LDprofile(dist = df1$dist, x = as.matrix(df1[,3:7]), bin_size = 0.001, max_dist = 0.005, beta_params = TRUE),
"SNPs must all be biallelic")
})
## Test the function with bin_size as non-numeric
test_that("create_LDprofile fails when bin_size is non-numeric", {
expect_error(create_LDprofile(dist = df$dist, x = as.matrix(df[,3:7]), bin_size = "0.001cM", max_dist = 0.005, beta_params = TRUE),
"bin_size must be a number greater than 0")
})
## Test the function with bin_size as negative
test_that("create_LDprofile fails when bin_size is negative", {
expect_error(create_LDprofile(dist = df$dist, x = as.matrix(df[,3:7]), bin_size = -1, max_dist = 0.005, beta_params = TRUE),
"bin_size must be a number greater than 0")
})
## Test the function with max_dist as non-numeric
test_that("create_LDprofile fails when max_dist is non-numeric", {
expect_error(create_LDprofile(dist = df$dist, x = as.matrix(df[,3:7]), bin_size = 0.001, max_dist = "0.005cM", beta_params = TRUE),
"max_dist must be a number greater than 0")
})
## Test the function with max_dist as negative
test_that("create_LDprofile fails when max_dist is negative", {
expect_error(create_LDprofile(dist = df$dist, x = as.matrix(df[,3:7]), bin_size = 0.001, max_dist = -1, beta_params = TRUE),
"max_dist must be a number greater than 0")
})
## Test the function with beta_params not logical
test_that("create_LDprofile fails when beta_params is not logical", {
expect_error(create_LDprofile(dist = df$dist, x = as.matrix(df[,3:7]), bin_size = 0.001, max_dist = 0.005, beta_params = 1),
"beta_params must be TRUE or FALSE")
})
## Test the function with missing values
## Test the function with fitdistrplus package not loaded and beta_params = TRUE
## Test the function when beta estimation doesn't work the first try
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment