Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
Z
Zalpha
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Computational Genetics
Zalpha
Commits
961249fa
Commit
961249fa
authored
4 years ago
by
Clare
Browse files
Options
Downloads
Patches
Plain Diff
Added some extra tests
parent
e11788a7
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tests/testthat/test-create_LDprofile.R
+105
-76
105 additions, 76 deletions
tests/testthat/test-create_LDprofile.R
with
105 additions
and
76 deletions
tests/testthat/test-create_LDprofile.R
+
105
−
76
View file @
961249fa
...
...
@@ -14,14 +14,14 @@ df<-data.frame(
test_that
(
"create_LDprofile calculates the LD profile correctly"
,
{
expect_equal
(
create_LDprofile
(
dist
=
df
$
dist
,
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
,
0.003
,
0.004
),
rsq
=
c
(
0.285622427983539
,
0.280913978494624
,
0.263888888888889
,
0.319444444444444
,
NA
),
sd
=
c
(
0.270862044573862
,
0.201905775929377
,
0.321786617161322
,
0.142318760638328
,
NA
),
Beta_a
=
c
(
0.619957744381906
,
1.125028692019340
,
0.635410044952769
,
3.941019442363900
,
NA
),
Beta_b
=
c
(
1.062459890834270
,
2.446706389704430
,
1.149319432462400
,
8.454825333760550
,
NA
),
n
=
c
(
54
,
31
,
15
,
5
,
0
)
),
tolerance
=
0.0001
)
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
,
0.003
,
0.004
),
rsq
=
c
(
0.285622427983539
,
0.280913978494624
,
0.263888888888889
,
0.319444444444444
,
NA
),
sd
=
c
(
0.270862044573862
,
0.201905775929377
,
0.321786617161322
,
0.142318760638328
,
NA
),
Beta_a
=
c
(
0.619957744381906
,
1.125028692019340
,
0.635410044952769
,
3.941019442363900
,
NA
),
Beta_b
=
c
(
1.062459890834270
,
2.446706389704430
,
1.149319432462400
,
8.454825333760550
,
NA
),
n
=
c
(
54
,
31
,
15
,
5
,
0
)
),
tolerance
=
0.0001
)
})
## Test the function with a different max_dist
...
...
@@ -29,28 +29,28 @@ test_that("create_LDprofile calculates the LD profile correctly", {
test_that
(
"create_LDprofile calculates the LD profile correctly with a different max_dist"
,
{
expect_equal
(
create_LDprofile
(
dist
=
df
$
dist
,
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
0.003
,
beta_params
=
TRUE
),
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
),
rsq
=
c
(
0.285622427983539
,
0.280913978494624
,
0.263888888888889
),
sd
=
c
(
0.270862044573862
,
0.201905775929377
,
0.321786617161322
),
Beta_a
=
c
(
0.619957744381906
,
1.125028692019340
,
0.635410044952769
),
Beta_b
=
c
(
1.062459890834270
,
2.446706389704430
,
1.149319432462400
),
n
=
c
(
54
,
31
,
15
)
),
tolerance
=
0.0001
)
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
),
rsq
=
c
(
0.285622427983539
,
0.280913978494624
,
0.263888888888889
),
sd
=
c
(
0.270862044573862
,
0.201905775929377
,
0.321786617161322
),
Beta_a
=
c
(
0.619957744381906
,
1.125028692019340
,
0.635410044952769
),
Beta_b
=
c
(
1.062459890834270
,
2.446706389704430
,
1.149319432462400
),
n
=
c
(
54
,
31
,
15
)
),
tolerance
=
0.0001
)
})
## Test the function with no max_dist given
test_that
(
"create_LDprofile calculates the LD profile correctly with no max_dist supplied"
,
{
expect_equal
(
create_LDprofile
(
dist
=
df
$
dist
,
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
0.001
,
beta_params
=
TRUE
),
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
,
0.003
),
rsq
=
c
(
0.285622427983539
,
0.280913978494624
,
0.263888888888889
,
0.319444444444444
),
sd
=
c
(
0.270862044573862
,
0.201905775929377
,
0.321786617161322
,
0.142318760638328
),
Beta_a
=
c
(
0.619957744381906
,
1.125028692019340
,
0.635410044952769
,
3.941019442363900
),
Beta_b
=
c
(
1.062459890834270
,
2.446706389704430
,
1.149319432462400
,
8.454825333760550
),
n
=
c
(
54
,
31
,
15
,
5
)
),
tolerance
=
0.0001
)
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
,
0.003
),
rsq
=
c
(
0.285622427983539
,
0.280913978494624
,
0.263888888888889
,
0.319444444444444
),
sd
=
c
(
0.270862044573862
,
0.201905775929377
,
0.321786617161322
,
0.142318760638328
),
Beta_a
=
c
(
0.619957744381906
,
1.125028692019340
,
0.635410044952769
,
3.941019442363900
),
Beta_b
=
c
(
1.062459890834270
,
2.446706389704430
,
1.149319432462400
,
8.454825333760550
),
n
=
c
(
54
,
31
,
15
,
5
)
),
tolerance
=
0.0001
)
})
...
...
@@ -59,14 +59,14 @@ test_that("create_LDprofile calculates the LD profile correctly with no max_dist
test_that
(
"create_LDprofile calculates the LD profile correctly with a different bin size"
,
{
expect_equal
(
create_LDprofile
(
dist
=
df
$
dist
,
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
0.0005
,
beta_params
=
TRUE
),
data.frame
(
bin
=
c
(
0
,
0.0005
,
0.001
,
0.0015
,
0.002
,
0.0025
,
0.003
,
0.0035
),
rsq
=
c
(
0.238505747126437
,
0.340277777777778
,
0.283459595959596
,
0.274691358024691
,
0.215277777777778
,
0.361111111111111
,
0.288194444444444
,
0.444444444444445
),
sd
=
c
(
0.211600341827602
,
0.322468326753589
,
0.220527561550113
,
0.158590157477369
,
0.293808275018141
,
0.387895557
,
0.14316339
,
NA
),
Beta_a
=
c
(
0.916070145958307
,
0.637072700079744
,
1.046576044485340
,
1.909812912830260
,
0.775059123115346
,
1.088198634018290
,
3.789877096116000
,
NA
),
Beta_b
=
c
(
2.326350552394540
,
0.872215477086822
,
2.166981335251990
,
5.166454170350760
,
1.748740564135290
,
1.488374161884570
,
9.367197007381050
,
NA
),
n
=
c
(
29
,
25
,
22
,
9
,
10
,
5
,
4
,
1
)
),
tolerance
=
0.0001
)
data.frame
(
bin
=
c
(
0
,
0.0005
,
0.001
,
0.0015
,
0.002
,
0.0025
,
0.003
,
0.0035
),
rsq
=
c
(
0.238505747126437
,
0.340277777777778
,
0.283459595959596
,
0.274691358024691
,
0.215277777777778
,
0.361111111111111
,
0.288194444444444
,
0.444444444444445
),
sd
=
c
(
0.211600341827602
,
0.322468326753589
,
0.220527561550113
,
0.158590157477369
,
0.293808275018141
,
0.387895557
,
0.14316339
,
NA
),
Beta_a
=
c
(
0.916070145958307
,
0.637072700079744
,
1.046576044485340
,
1.909812912830260
,
0.775059123115346
,
1.088198634018290
,
3.789877096116000
,
NA
),
Beta_b
=
c
(
2.326350552394540
,
0.872215477086822
,
2.166981335251990
,
5.166454170350760
,
1.748740564135290
,
1.488374161884570
,
9.367197007381050
,
NA
),
n
=
c
(
29
,
25
,
22
,
9
,
10
,
5
,
4
,
1
)
),
tolerance
=
0.0001
)
})
## Test the function with beta_params not specified
...
...
@@ -74,14 +74,14 @@ test_that("create_LDprofile calculates the LD profile correctly with a different
test_that
(
"create_LDprofile calculates the LD profile correctly with beta_params not specified"
,
{
expect_equal
(
create_LDprofile
(
dist
=
df
$
dist
,
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
0.005
),
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
,
0.003
,
0.004
),
rsq
=
c
(
0.285622427983539
,
0.280913978494624
,
0.263888888888889
,
0.319444444444444
,
NA
),
sd
=
c
(
0.270862044573862
,
0.201905775929377
,
0.321786617161322
,
0.142318760638328
,
NA
),
Beta_a
=
c
(
NA
,
NA
,
NA
,
NA
,
NA
),
Beta_b
=
c
(
NA
,
NA
,
NA
,
NA
,
NA
),
n
=
c
(
54
,
31
,
15
,
5
,
0
)
),
tolerance
=
0.0001
)
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
,
0.003
,
0.004
),
rsq
=
c
(
0.285622427983539
,
0.280913978494624
,
0.263888888888889
,
0.319444444444444
,
NA
),
sd
=
c
(
0.270862044573862
,
0.201905775929377
,
0.321786617161322
,
0.142318760638328
,
NA
),
Beta_a
=
c
(
NA
,
NA
,
NA
,
NA
,
NA
),
Beta_b
=
c
(
NA
,
NA
,
NA
,
NA
,
NA
),
n
=
c
(
54
,
31
,
15
,
5
,
0
)
),
tolerance
=
0.0001
)
})
## Test the function with a character matrix as x
...
...
@@ -92,14 +92,14 @@ df1[df1==2]<-"B"
test_that
(
"create_LDprofile calculates the LD profile correctly with character matrix"
,
{
expect_equal
(
create_LDprofile
(
dist
=
df1
$
dist
,
x
=
as.matrix
(
df1
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
,
0.003
,
0.004
),
rsq
=
c
(
0.285622427983539
,
0.280913978494624
,
0.263888888888889
,
0.319444444444444
,
NA
),
sd
=
c
(
0.270862044573862
,
0.201905775929377
,
0.321786617161322
,
0.142318760638328
,
NA
),
Beta_a
=
c
(
0.619957744381906
,
1.125028692019340
,
0.635410044952769
,
3.941019442363900
,
NA
),
Beta_b
=
c
(
1.062459890834270
,
2.446706389704430
,
1.149319432462400
,
8.454825333760550
,
NA
),
n
=
c
(
54
,
31
,
15
,
5
,
0
)
),
tolerance
=
0.0001
)
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
,
0.003
,
0.004
),
rsq
=
c
(
0.285622427983539
,
0.280913978494624
,
0.263888888888889
,
0.319444444444444
,
NA
),
sd
=
c
(
0.270862044573862
,
0.201905775929377
,
0.321786617161322
,
0.142318760638328
,
NA
),
Beta_a
=
c
(
0.619957744381906
,
1.125028692019340
,
0.635410044952769
,
3.941019442363900
,
NA
),
Beta_b
=
c
(
1.062459890834270
,
2.446706389704430
,
1.149319432462400
,
8.454825333760550
,
NA
),
n
=
c
(
54
,
31
,
15
,
5
,
0
)
),
tolerance
=
0.0001
)
})
## Test all the checks
...
...
@@ -109,7 +109,7 @@ test_that("create_LDprofile calculates the LD profile correctly with character m
test_that
(
"create_LDprofile fails when dist is non-numeric"
,
{
expect_error
(
create_LDprofile
(
dist
=
paste0
(
df
$
dist
,
"dist"
),
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
"dist must be a numeric vector or list of numeric vectors"
)
"dist must be a numeric vector or list of numeric vectors"
)
})
## Test the function with dists not a vector
...
...
@@ -117,7 +117,7 @@ test_that("create_LDprofile fails when dist is non-numeric", {
test_that
(
"create_LDprofile fails when dist is not a vector"
,
{
expect_error
(
create_LDprofile
(
dist
=
as.matrix
(
df
$
dist
),
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
"dist must be a numeric vector or list of numeric vectors"
)
"dist must be a numeric vector or list of numeric vectors"
)
})
...
...
@@ -126,7 +126,7 @@ test_that("create_LDprofile fails when dist is not a vector", {
test_that
(
"create_LDprofile fails when x is not a matrix"
,
{
expect_error
(
create_LDprofile
(
dist
=
df
$
dist
,
x
=
df
$
C1
,
bin_size
=
0.001
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
"x must be a matrix or list of matrices"
)
"x must be a matrix or list of matrices"
)
})
## Test the function with x not having the correct amount of rows
...
...
@@ -134,7 +134,7 @@ test_that("create_LDprofile fails when x is not a matrix", {
test_that
(
"create_LDprofile fails when the number of rows in x is not equal to the length of pos"
,
{
expect_error
(
create_LDprofile
(
dist
=
df
$
dist
,
x
=
t
(
as.matrix
(
df
[,
3
:
7
])),
bin_size
=
0.001
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
"The number of rows in x must equal the number of SNP genetic distances given in the corresponding dist"
)
"The number of rows in x must equal the number of SNP genetic distances given in the corresponding dist"
)
})
## Test the function with a SNP having only one allele
...
...
@@ -144,7 +144,7 @@ test_that("create_LDprofile fails when a SNP has only one allele", {
df1
<-
df
df1
[
1
,
3
:
7
]
<
-1
expect_error
(
create_LDprofile
(
dist
=
df1
$
dist
,
x
=
as.matrix
(
df1
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
"SNPs must all be biallelic"
)
"SNPs must all be biallelic"
)
})
## Test the function with a SNP having more than two alleles
...
...
@@ -154,7 +154,7 @@ test_that("create_LDprofile fails when a SNP has more than two alleles", {
df1
<-
df
df1
[
1
,
7
]
<
-3
expect_error
(
create_LDprofile
(
dist
=
df1
$
dist
,
x
=
as.matrix
(
df1
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
"SNPs must all be biallelic"
)
"SNPs must all be biallelic"
)
})
## Test the function with dists and x have a different number of elements
...
...
@@ -162,7 +162,7 @@ test_that("create_LDprofile fails when a SNP has more than two alleles", {
test_that
(
"create_LDprofile fails when dist and x are different lengths"
,
{
expect_error
(
create_LDprofile
(
dist
=
list
(
df
$
dist
,
df
$
dist
),
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
"dist and x should contain the same number of elements"
)
"dist and x should contain the same number of elements"
)
})
...
...
@@ -171,7 +171,7 @@ test_that("create_LDprofile fails when dist and x are different lengths", {
test_that
(
"create_LDprofile fails when bin_size is non-numeric"
,
{
expect_error
(
create_LDprofile
(
dist
=
df
$
dist
,
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
"0.001cM"
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
"bin_size must be a number greater than 0"
)
"bin_size must be a number greater than 0"
)
})
## Test the function with bin_size as negative
...
...
@@ -179,7 +179,7 @@ test_that("create_LDprofile fails when bin_size is non-numeric", {
test_that
(
"create_LDprofile fails when bin_size is negative"
,
{
expect_error
(
create_LDprofile
(
dist
=
df
$
dist
,
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
-1
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
"bin_size must be a number greater than 0"
)
"bin_size must be a number greater than 0"
)
})
## Test the function with max_dist as non-numeric
...
...
@@ -187,7 +187,7 @@ test_that("create_LDprofile fails when bin_size is negative", {
test_that
(
"create_LDprofile fails when max_dist is non-numeric"
,
{
expect_error
(
create_LDprofile
(
dist
=
df
$
dist
,
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
"0.005cM"
,
beta_params
=
TRUE
),
"max_dist must be a number greater than 0"
)
"max_dist must be a number greater than 0"
)
})
## Test the function with max_dist as negative
...
...
@@ -195,7 +195,7 @@ test_that("create_LDprofile fails when max_dist is non-numeric", {
test_that
(
"create_LDprofile fails when max_dist is negative"
,
{
expect_error
(
create_LDprofile
(
dist
=
df
$
dist
,
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
-1
,
beta_params
=
TRUE
),
"max_dist must be a number greater than 0"
)
"max_dist must be a number greater than 0"
)
})
## Test the function with beta_params not logical
...
...
@@ -203,7 +203,7 @@ test_that("create_LDprofile fails when max_dist is negative", {
test_that
(
"create_LDprofile fails when beta_params is not logical"
,
{
expect_error
(
create_LDprofile
(
dist
=
df
$
dist
,
x
=
as.matrix
(
df
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
0.005
,
beta_params
=
1
),
"beta_params must be TRUE or FALSE"
)
"beta_params must be TRUE or FALSE"
)
})
## Test the function with missing value in x
...
...
@@ -212,14 +212,14 @@ df1$C1[15]<-NA
test_that
(
"create_LDprofile calculates the LD profile correctly with missing value in x"
,
{
expect_equal
(
create_LDprofile
(
dist
=
df1
$
dist
,
x
=
as.matrix
(
df1
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
,
0.003
,
0.004
),
rsq
=
c
(
0.302340534979424
,
0.298387096774194
,
0.256481481481481
,
0.297222222222222
,
NA
),
sd
=
c
(
0.285102946872176
,
0.231243979115867
,
0.324764476229430
,
0.125615767273278
,
NA
),
Beta_a
=
c
(
0.606846782972070
,
0.932888189465068
,
0.616307318328496
,
4.643089841249520
,
NA
),
Beta_b
=
c
(
0.942600409939103
,
1.692309859072240
,
1.139111486418360
,
11.012925076592600
,
NA
),
n
=
c
(
54
,
31
,
15
,
5
,
0
)
),
tolerance
=
0.0001
)
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
,
0.003
,
0.004
),
rsq
=
c
(
0.302340534979424
,
0.298387096774194
,
0.256481481481481
,
0.297222222222222
,
NA
),
sd
=
c
(
0.285102946872176
,
0.231243979115867
,
0.324764476229430
,
0.125615767273278
,
NA
),
Beta_a
=
c
(
0.606846782972070
,
0.932888189465068
,
0.616307318328496
,
4.643089841249520
,
NA
),
Beta_b
=
c
(
0.942600409939103
,
1.692309859072240
,
1.139111486418360
,
11.012925076592600
,
NA
),
n
=
c
(
54
,
31
,
15
,
5
,
0
)
),
tolerance
=
0.0001
)
})
## Test the function with missing value in dist
...
...
@@ -228,17 +228,46 @@ df1$dist[5]<-NA
test_that
(
"create_LDprofile calculates the LD profile correctly with missing value in dist"
,
{
expect_equal
(
create_LDprofile
(
dist
=
df1
$
dist
,
x
=
as.matrix
(
df1
[,
3
:
7
]),
bin_size
=
0.001
,
max_dist
=
0.005
,
beta_params
=
TRUE
),
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
,
0.003
,
0.004
),
rsq
=
c
(
0.279320987654321
,
0.270833333333333
,
0.255952380952381
,
0.319444444444444
,
NA
),
sd
=
c
(
0.268871132983145
,
0.155580832042849
,
0.332406755525893
,
0.142318760638328
,
NA
),
Beta_a
=
c
(
0.634602938184746
,
1.570771368863860
,
0.611627386753874
,
3.941019442363900
,
NA
),
Beta_b
=
c
(
1.133751642734910
,
4.401600723631340
,
1.116161049339830
,
8.454825333760550
,
NA
),
n
=
c
(
45
,
27
,
14
,
5
,
0
)
),
tolerance
=
0.0001
)
data.frame
(
bin
=
c
(
0
,
0.001
,
0.002
,
0.003
,
0.004
),
rsq
=
c
(
0.279320987654321
,
0.270833333333333
,
0.255952380952381
,
0.319444444444444
,
NA
),
sd
=
c
(
0.268871132983145
,
0.155580832042849
,
0.332406755525893
,
0.142318760638328
,
NA
),
Beta_a
=
c
(
0.634602938184746
,
1.570771368863860
,
0.611627386753874
,
3.941019442363900
,
NA
),
Beta_b
=
c
(
1.133751642734910
,
4.401600723631340
,
1.116161049339830
,
8.454825333760550
,
NA
),
n
=
c
(
45
,
27
,
14
,
5
,
0
)
),
tolerance
=
0.0001
)
})
## Test the function with fitdistrplus package not loaded and beta_params = TRUE
#Tested manually
## Test the function when beta estimation doesn't work the first try
x1
<-
matrix
(
c
(
1
,
1
,
1
,
2
,
1
,
2
,
1
,
1
,
1
,
2
,
1
,
2
,
2
,
2
,
2
,
1
,
1
,
1
,
2
,
1
,
2
,
2
,
2
,
2
,
1
,
1
,
2
,
1
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
1
,
1
,
2
,
1
,
1
,
2
,
1
,
2
,
2
,
2
,
1
,
2
,
1
,
2
,
1
,
1
,
2
,
1
,
2
,
2
,
1
,
2
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
1
,
2
,
1
,
2
,
1
,
2
,
2
,
1
,
1
,
2
,
1
,
2
,
2
,
1
,
2
,
1
,
1
,
1
,
2
,
1
,
1
,
2
,
2
,
1
,
1
,
2
,
1
,
2
,
2
,
2
,
1
,
1
,
1
,
2
,
1
,
1
,
2
,
1
,
1
,
1
,
2
,
2
,
1
,
2
,
2
,
1
,
1
,
1
,
2
,
1
,
1
,
1
,
1
,
1
,
2
,
2
,
2
,
2
,
1
,
2
,
1
,
2
,
2
,
2
,
1
,
2
,
2
,
2
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
,
2
,
1
,
2
,
1
,
2
,
1
,
1
,
1
,
1
,
2
,
1
,
1
,
1
,
2
,
1
,
1
,
2
,
2
,
1
,
1
,
1
,
2
,
2
,
1
,
2
,
1
,
2
,
1
,
1
,
2
,
2
,
1
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
2
,
2
,
2
,
1
,
2
,
2
,
1
,
2
,
1
,
2
,
2
,
1
,
2
,
1
,
1
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
1
,
2
,
1
,
1
,
1
,
2
,
2
,
2
,
1
,
1
,
1
,
2
,
1
,
2
),
byrow
=
TRUE
,
nrow
=
15
)
test_that
(
"create_LDprofile calculates the LD profile correctly when beta calculation fails on first attempt"
,
{
expect_equal
(
create_LDprofile
(
dist
=
rep
(
0
,
15
),
x
=
x1
,
bin_size
=
0.001
,
max_dist
=
0.001
,
beta_params
=
TRUE
),
data.frame
(
bin
=
c
(
0
),
rsq
=
c
(
0.0754751721676325
),
sd
=
c
(
0.0928525038706074
),
Beta_a
=
c
(
0.21155096488681
),
Beta_b
=
c
(
2.8704915799235
),
n
=
c
(
105
)
),
tolerance
=
0.0001
)
})
## Test the function when beta estimation doesn't work on the second try
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment