Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
D
DataDrivenToolbox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bgroup
DataDrivenToolbox
Repository graph
Repository graph
You can move around the graph by using the arrow keys.
master
Select Git revision
Branches
1
master
default
protected
1 result
Begin with the selected commit
Created with Raphaël 2.2.0
7
Sep
28
May
24
Feb
5
Dec
1
25
Nov
19
22
May
19
15
11
6
30
Apr
28
27
24
Replace DataDrivenMethods_Tutorial_DWCarter_V5.pptx
master
master
Replace DataDrivenMethods_Tutorial_DWCarter_V5.pdf
Replace epod.m
Replace epod.m
Replace pwrsd.m
Replace pwrsd.m
Replace pwrsd.m
Replace pwrsd.m
Fixed issue with built in svd function not taking single precision.
Replace pod.m
Replace fillpod.m
Replace pod.m
Replace sparserecloc.m
Replace sparserecloc.m
Replace sparserecloc.m
Identifies locations for sparse reconstruction using a given spatial basis and returns the mapping matrix C.
Sparse reconstruction code given a mapping matrix C and probe signal y, offers up to three separate methods.
Replace pod.m using built in svds function
Field up-sampled reconstruction via Extended Proper Orthogonal Decomposition MatLAB function, Updated 22 May: fixed function description
Field up-sampled reconstruction via Extended Proper Orthogonal Decomposition MatLAB function, Updated 19 May: Corrected cross-correlation filter
PDF Presentation for understanding and implementing Data Driven Methods
Presentation for understanding and implementing Data Driven Methods
Field up-sampled reconstruction via Extended Proper Orthogonal Decomposition MatLAB function
Vector Replacement from Iterative Proper Orthogonal Decomposition MatLAB function, Updated 6 May: Adjusted default to not set filled vectors to zero
Vector Replacement from Iterative Proper Orthogonal Decomposition MatLAB function
High Order Dynamic Mode Decomposition MatLAB function: Updated 30 April: Adjusted default high order dimension
High Order Dynamic Mode Decomposition MatLAB function: Updated 30 April: Changed default high order dimension to maximum allowable
Dynamic Mode Decomposition MatLAB function: Updated 30 April: Added adjustments for data that reaches 100% energy at a finite number of modes, e.g. numerical data or an exact solution to a linear field
High Order Dynamic Mode Decomposition MatLAB function
Proper Orthogonal Decomposition MatLAB function: Updated 30 April: Deals with non-finite inputs
Dynamic Mode Decomposition MatLAB function: Updated 28 April: Added DMD amplitude cutoff input, adjusted input parsing
Dynamic Mode Decomposition MatLAB function: Updated 28 April: Added threshold for DMD amplitudes, improved input parsing
Dynamic Mode Decomposition MatLAB file: Updated 27 April
Dynamic Mode Decomposition MatLAB function: Updated to properly deal with retaining all POD modes
Example code for running Data Driven functions in MatLAB
Example fields for testing functions, see Run_Example.m MatLAB script
White -> Yellow -> Purple -> Black Colormap MatLAB function
Interpolate Colormap MatLAB function
Red -> White -> Blue Colormap MatLAB function
Plot Spatial Modes MatLAB function
Loading