Skip to content
Snippets Groups Projects
Commit 868dd35b authored by Ben Anderson's avatar Ben Anderson
Browse files

added new proportions power analysis; re-ran docs

parent ac04c11c
No related branches found
No related tags found
No related merge requests found
# Generated by roxygen2: do not edit by hand
export(estimateEffectSizes)
export(estimateMeanEffectSizes)
export(estimateProportionEffectSizes)
import(data.table)
import(pwr)
import(reshape2)
#--- Sample power related functions ---#
#' Estimate detectable effect sizes using statistical power analysis
#' Estimate detectable mean effect sizes using statistical power analysis
#'
#' \code{estimateEffectSizes} calculates required sample sizes for a given set of p values and samples.
#' \code{estimateMeanEffectSizes} calculates required sample sizes for a given set of p values and samples. Assumes a 1-sided test.
#'
#' Returns a data.table of effect sizes for a given sample size. Calculates these for p = 0.01, 0.05, 0.1 & 0.2. Pick out the ones you want.
#'
......@@ -15,9 +15,10 @@
#' @export
#' @import data.table
#' @import reshape2
#' @import pwr
#' @family Power functions
estimateEffectSizes <- function(mean,sd,samples,power){
estimateMeanEffectSizes <- function(mean,sd,samples,power){
# obtain effect sizes using supplied mean & sd
sigs <- c(0.01,0.05,0.1,0.2) # force these, can always remove later
nSigs <- length(sigs)
......@@ -29,12 +30,13 @@ estimateEffectSizes <- function(mean,sd,samples,power){
# loop over significance values
for (p in 1:nSigs){
for (s in 1:nSamps){ # loop over the sample sizes
result <- power.t.test( # pwr.t.test?
result <- power.t.test(
n = samples[s],
delta = NULL,
delta = NULL, # what we want to calculate
sd = sd,
sig.level = sigs[p],
power = power,
type = c("two.sample"),
alternative = c("one.sided")
)
resultsArray[s,p] <- result$delta/mean # report effect size against sample size
......@@ -57,11 +59,11 @@ estimateEffectSizes <- function(mean,sd,samples,power){
return(longDT) # returned the tidied & long form dt
}
#' Estimate proportion margins of error using statistical power analysis
#' Estimate detectable proportion differences for given sample sizes using statistical power analysis
#'
#' \code{estimateProportions} calculates required sample sizes for a given set of p values and samples.
#' \code{estimateProportionEffectSizes} calculates required sample sizes for a given set of p values and samples.
#'
#' Returns a data.table of effect sizes for a given sample size. Calculates these for p = 0.01, 0.05, 0.1 & 0.2. Pick out the ones you want.
#' Returns a data.table of effect sizes (%) for a given sample size. Calculates these for p = 0.01, 0.05, 0.1 & 0.2. Pick out the ones you want.
#'
#' @param mean the estimated mean value to use
#' @param sd the estimated stadnard deviation to use
......@@ -75,7 +77,7 @@ estimateEffectSizes <- function(mean,sd,samples,power){
#' @import pwr
#' @family Power functions
estimateEffectSizes <- function(mean,sd,samples,power){
estimateProportionEffectSizes <- function(samples,power){
# obtain effect sizes using supplied mean & sd
sigs <- c(0.01,0.05,0.1,0.2) # force these, can always remove later
nSigs <- length(sigs)
......@@ -88,15 +90,13 @@ estimateEffectSizes <- function(mean,sd,samples,power){
for (p in 1:nSigs){
for (s in 1:nSamps){ # loop over the sample sizes
# pwr.t.test?
result <- power.t.test(
result <- pwr::pwr.2p.test(
n = samples[s],
delta = NULL,
sd = sd,
h = NULL,
sig.level = sigs[p],
power = power,
alternative = c("one.sided")
power = power
)
resultsArray[s,p] <- result$delta/mean # report effect size against sample size
resultsArray[s,p] <- result$h # report effect size against sample size
}
}
dt <- data.table::as.data.table(resultsArray) # convert to dt for tidying
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/power.R
\name{estimateEffectSizes}
\alias{estimateEffectSizes}
\title{Estimate detectable effect sizes using statistical power analysis}
\name{estimateMeanEffectSizes}
\alias{estimateMeanEffectSizes}
\title{Estimate detectable mean effect sizes using statistical power analysis}
\usage{
estimateEffectSizes(mean, sd, samples, power)
estimateEffectSizes(mean, sd, samples, power)
estimateMeanEffectSizes(mean, sd, samples, power)
}
\arguments{
\item{mean}{the estimated mean value to use}
......@@ -15,29 +13,18 @@ estimateEffectSizes(mean, sd, samples, power)
\item{samples}{a list of sample sizes to iterate over}
\item{power}{power value to use}
\item{mean}{the estimated mean value to use}
\item{sd}{the estimated stadnard deviation to use}
\item{samples}{a list of sample sizes to iterate over}
\item{power}{power value to use}
}
\description{
\code{estimateEffectSizes} calculates required sample sizes for a given set of p values and samples.
\code{estimateProportions} calculates required sample sizes for a given set of p values and samples.
\code{estimateMeanEffectSizes} calculates required sample sizes for a given set of p values and samples. Assumes a 1-sided test.
}
\details{
Returns a data.table of effect sizes for a given sample size. Calculates these for p = 0.01, 0.05, 0.1 & 0.2. Pick out the ones you want.
Returns a data.table of effect sizes for a given sample size. Calculates these for p = 0.01, 0.05, 0.1 & 0.2. Pick out the ones you want.
}
\seealso{
Other Power functions: \code{\link{estimateProportionEffectSizes}}
}
\author{
Ben Anderson, \email{b.anderson@soton.ac.uk}
Ben Anderson, \email{b.anderson@soton.ac.uk}
}
\concept{Power functions}
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/power.R
\name{estimateProportionEffectSizes}
\alias{estimateProportionEffectSizes}
\title{Estimate detectable proportion differences for given sample sizes using statistical power analysis}
\usage{
estimateProportionEffectSizes(samples, power)
}
\arguments{
\item{samples}{a list of sample sizes to iterate over}
\item{power}{power value to use}
\item{mean}{the estimated mean value to use}
\item{sd}{the estimated stadnard deviation to use}
}
\description{
\code{estimateProportionEffectSizes} calculates required sample sizes for a given set of p values and samples.
}
\details{
Returns a data.table of effect sizes (%) for a given sample size. Calculates these for p = 0.01, 0.05, 0.1 & 0.2. Pick out the ones you want.
}
\seealso{
Other Power functions: \code{\link{estimateMeanEffectSizes}}
}
\author{
Ben Anderson, \email{b.anderson@soton.ac.uk}
}
\concept{Power functions}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment