Skip to content
Snippets Groups Projects
Commit 301c0016 authored by Ben Anderson's avatar Ben Anderson
Browse files

added equation, updated proportions, re-ran to word & html

parent c4e914d2
No related branches found
No related tags found
No related merge requests found
Showing
with 139 additions and 7671 deletions
No preview for this file type
---
title: "Equation tests"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
Variance:
$\sigma^{2} = \frac{\sum\limits_{i=1}^{n} \left(x_{i} - \bar{x}\right)^{2}} {n-1}$
Standard deviation:
$\sigma = \sqrt{\frac{\sum\limits_{i=1}^{n} \left(x_{i} - \bar{x}\right)^{2}} {n-1}}$
Margins of error (proportions)
$$me = +/- z * \sqrt{\frac{p(1-p)} {n-1}}$$
\ No newline at end of file
paper/figs/statPowerEsts80means_All.png

302 KiB | W: | H:

paper/figs/statPowerEsts80means_All.png

241 KiB | W: | H:

paper/figs/statPowerEsts80means_All.png
paper/figs/statPowerEsts80means_All.png
paper/figs/statPowerEsts80means_All.png
paper/figs/statPowerEsts80means_All.png
  • 2-up
  • Swipe
  • Onion skin
paper/figs/statPowerEsts80means_p0.01.png

238 KiB | W: | H:

paper/figs/statPowerEsts80means_p0.01.png

196 KiB | W: | H:

paper/figs/statPowerEsts80means_p0.01.png
paper/figs/statPowerEsts80means_p0.01.png
paper/figs/statPowerEsts80means_p0.01.png
paper/figs/statPowerEsts80means_p0.01.png
  • 2-up
  • Swipe
  • Onion skin
...@@ -9,6 +9,10 @@ author: '`r paste0(params$author)` (Contact: b.anderson@soton.ac.uk, `@dataknut` ...@@ -9,6 +9,10 @@ author: '`r paste0(params$author)` (Contact: b.anderson@soton.ac.uk, `@dataknut`
date: 'Last run at: `r Sys.time()`' date: 'Last run at: `r Sys.time()`'
always_allow_html: yes always_allow_html: yes
output: output:
bookdown::word_document2:
fig_caption: yes
toc: yes
toc_depth: 2
bookdown::html_document2: bookdown::html_document2:
code_folding: hide code_folding: hide
fig_caption: yes fig_caption: yes
...@@ -17,10 +21,6 @@ output: ...@@ -17,10 +21,6 @@ output:
toc: yes toc: yes
toc_depth: 2 toc_depth: 2
toc_float: yes toc_float: yes
bookdown::word_document2:
fig_caption: yes
toc: yes
toc_depth: 2
bookdown::pdf_document2: bookdown::pdf_document2:
fig_caption: yes fig_caption: yes
keep_tex: yes keep_tex: yes
...@@ -50,6 +50,7 @@ rmdLibs <- c("data.table", # data munching ...@@ -50,6 +50,7 @@ rmdLibs <- c("data.table", # data munching
"broom", # tidy test results "broom", # tidy test results
"dkUtils", # utilities from devtools::install_github("dataknut/dkUtils") "dkUtils", # utilities from devtools::install_github("dataknut/dkUtils")
"forcats", # category manipulation "forcats", # category manipulation
"pwr", # power stuff
"knitr" # for kable "knitr" # for kable
) )
# load them # load them
...@@ -72,7 +73,7 @@ labelProfilePlot <- function(plot){ ...@@ -72,7 +73,7 @@ labelProfilePlot <- function(plot){
myParams <- list() myParams <- list()
myParams$repoLoc <- dkUtils::findParentDirectory("weGotThePower") myParams$repoLoc <- dkUtils::findParentDirectory("weGotThePower")
myParams$dPath <- "~/Dropbox/Work/data/nzGREENGrid/dataExtracts/" myParams$dPath <- "~/Dropbox/Work/Otago_CfS_Ben/data/nzGREENGrid/dataExtracts/"
#myParams$dPath <- "~/Data/NZ_GREENGrid/safe/gridSpy/1min/dataExtracts/" #myParams$dPath <- "~/Data/NZ_GREENGrid/safe/gridSpy/1min/dataExtracts/"
# created from https://dx.doi.org/10.5255/UKDA-SN-853334 # created from https://dx.doi.org/10.5255/UKDA-SN-853334
# using https://github.com/CfSOtago/GREENGridData/blob/master/examples/code/extractCleanGridSpy1minCircuit.R # using https://github.com/CfSOtago/GREENGridData/blob/master/examples/code/extractCleanGridSpy1minCircuit.R
...@@ -350,7 +351,7 @@ knitr::kable(dt, caption = "Samples required if p1 = 40% and p2 = 25%", digits = ...@@ -350,7 +351,7 @@ knitr::kable(dt, caption = "Samples required if p1 = 40% and p2 = 25%", digits =
We can repeat this for other values of p1 and p2. For example, suppose both were much smaller (e.g. 10% and 15%)... Clearly we need _much_ larger samples. We can repeat this for other values of p1 and p2. For example, suppose both were much smaller (e.g. 10% and 15%)... Clearly we need _much_ larger samples.
```{r propTable1} ```{r propTable2}
dt <- getPropN(p1 =0.1, p2 =0.15) dt <- getPropN(p1 =0.1, p2 =0.15)
knitr::kable(dt, caption = "Samples required if p1 = 10% and p2 = 15%", digits = 2) knitr::kable(dt, caption = "Samples required if p1 = 10% and p2 = 15%", digits = 2)
``` ```
...@@ -360,6 +361,8 @@ The above used an arcsine transform. ...@@ -360,6 +361,8 @@ The above used an arcsine transform.
As a double check, using eqn to assess margin of error... As a double check, using eqn to assess margin of error...
$$me = +/- z * \sqrt{\frac{p(1-p)} {n-1}}$$
If: If:
* p = 0.4 (40%) * p = 0.4 (40%)
...@@ -383,8 +386,6 @@ emr <- round(em,3) ...@@ -383,8 +386,6 @@ emr <- round(em,3)
This may be far too wide an error margin for our purposes so we may instead have recruited 500 per sample. Now the margin of error is +/- `r emr` (`r 100*emr`%) so we can now quote the Heat Pump uptake for owner-occupiers as 40% (+/- `r 100*emr`% [or `r 40 - 100*emr` - `r 40 + 100*emr`] with p = 0.05). This may be far too wide an error margin for our purposes so we may instead have recruited 500 per sample. Now the margin of error is +/- `r emr` (`r 100*emr`%) so we can now quote the Heat Pump uptake for owner-occupiers as 40% (+/- `r 100*emr`% [or `r 40 - 100*emr` - `r 40 + 100*emr`] with p = 0.05).
In much the same way as we did for means, we can calculate error margins
# Testing for differences: effect sizes, confidence intervals and p values # Testing for differences: effect sizes, confidence intervals and p values
## Getting it 'wrong' ## Getting it 'wrong'
...@@ -597,7 +598,8 @@ R packages used: ...@@ -597,7 +598,8 @@ R packages used:
* dplyr - for select and contains [@dplyr] * dplyr - for select and contains [@dplyr]
* progress - for progress bars [@progress] * progress - for progress bars [@progress]
* knitr - to create this document & neat tables [@knitr] * knitr - to create this document & neat tables [@knitr]
* GREENGrid - for local NZ GREEN Grid project utilities * pwr - non-base power analysis [@pwr]
* dkUtils - for local dataknut utilities :-) `devtools::install_github("dataknut/dkUtils")`
Session info: Session info:
......
File added
...@@ -239,7 +239,7 @@ div.tocify { ...@@ -239,7 +239,7 @@ div.tocify {
<h1 class="title toc-ignore">Statistical Power, Statistical Significance, Study Design and Decision Making: A Worked Example</h1> <h1 class="title toc-ignore">Statistical Power, Statistical Significance, Study Design and Decision Making: A Worked Example</h1>
<h3 class="subtitle"><em>Sizing Demand Response Trials in New Zealand</em></h3> <h3 class="subtitle"><em>Sizing Demand Response Trials in New Zealand</em></h3>
<h4 class="author"><em>Ben Anderson and Tom Rushby (Contact: <a href="mailto:b.anderson@soton.ac.uk">b.anderson@soton.ac.uk</a>, <code>@dataknut</code>)</em></h4> <h4 class="author"><em>Ben Anderson and Tom Rushby (Contact: <a href="mailto:b.anderson@soton.ac.uk">b.anderson@soton.ac.uk</a>, <code>@dataknut</code>)</em></h4>
<h4 class="date"><em>Last run at: 2018-11-09 17:04:01</em></h4> <h4 class="date"><em>Last run at: 2018-11-13 09:57:46</em></h4>
</div> </div>
...@@ -514,183 +514,93 @@ Figure 4.2: Power analysis results (power = 0.8) ...@@ -514,183 +514,93 @@ Figure 4.2: Power analysis results (power = 0.8)
</div> </div>
<div id="proportions" class="section level2"> <div id="proportions" class="section level2">
<h2><span class="header-section-number">4.2</span> Proportions</h2> <h2><span class="header-section-number">4.2</span> Proportions</h2>
<p>Does not require a sample.</p> <p>Does not require a sample. As a relatively simple example, suppose we were interested in the adoption of heat pumps in two equal sized samples. Suppose we thought in one sample (say, home owners) we thought it might be 40% and in rental properties it would be 25% (ref BRANZ 2015). What sample size would we need to conclude a significant difference with power = 0.8 and at various p values?</p>
<p>Figure <a href="#fig:propSampleSizeFig80">4.3</a> shows the initial p = 0.05 plot. This shows the difference that would be required</p> <p><code>pwr::pwr.tp.test()</code> (ref pwr) can give us the answer…</p>
<pre><code>## Scale for &#39;y&#39; is already present. Adding another scale for &#39;y&#39;, which
## will replace the existing scale.</code></pre>
<div class="figure"><span id="fig:propSampleSizeFig80"></span>
<img src="weGotThePowerDraftPaper_files/figure-html/propSampleSizeFig80-1.png" alt="Power analysis results for proportions (p = 0.05, power = 0.8)" width="672" />
<p class="caption">
Figure 4.3: Power analysis results for proportions (p = 0.05, power = 0.8)
</p>
</div>
<pre><code>## Saving 7 x 5 in image</code></pre>
<p>Figure <a href="#fig:propSampleSizeFig80all">4.4</a> shows the plot for all results.</p>
<pre><code>## Scale for &#39;y&#39; is already present. Adding another scale for &#39;y&#39;, which
## will replace the existing scale.</code></pre>
<div class="figure"><span id="fig:propSampleSizeFig80all"></span>
<img src="weGotThePowerDraftPaper_files/figure-html/propSampleSizeFig80all-1.png" alt="Power analysis results (power = 0.8)" width="672" />
<p class="caption">
Figure 4.4: Power analysis results (power = 0.8)
</p>
</div>
<pre><code>## Saving 7 x 5 in image</code></pre>
<p>Full table of results:</p>
<pre><code>## Using &#39;effectSize&#39; as value column. Use &#39;value.var&#39; to override</code></pre>
<table> <table>
<caption><span id="tab:propPowerTable">Table 4.3: </span>Power analysis for proportions results table (partial)</caption> <caption><span id="tab:propTable1">Table 4.3: </span>Samples required if p1 = 40% and p2 = 25%</caption>
<thead> <thead>
<tr class="header"> <tr class="header">
<th align="right">sampleN</th> <th align="right">n</th>
<th align="right">p = 0.01</th> <th align="right">sig.level</th>
<th align="right">p = 0.05</th> <th align="right">power</th>
<th align="right">p = 0.1</th> <th align="left">props</th>
<th align="right">p = 0.2</th>
</tr> </tr>
</thead> </thead>
<tbody> <tbody>
<tr class="odd"> <tr class="odd">
<td align="right">50</td> <td align="right">224.94</td>
<td align="right">68.35</td> <td align="right">0.01</td>
<td align="right">56.03</td> <td align="right">0.8</td>
<td align="right">49.73</td> <td align="left">p1 = 0.4 p2 = 0.25</td>
<td align="right">42.44</td>
</tr>
<tr class="even">
<td align="right">100</td>
<td align="right">48.33</td>
<td align="right">39.62</td>
<td align="right">35.16</td>
<td align="right">30.01</td>
</tr>
<tr class="odd">
<td align="right">150</td>
<td align="right">39.46</td>
<td align="right">32.35</td>
<td align="right">28.71</td>
<td align="right">24.51</td>
</tr>
<tr class="even">
<td align="right">200</td>
<td align="right">34.17</td>
<td align="right">28.01</td>
<td align="right">24.86</td>
<td align="right">21.22</td>
</tr>
<tr class="odd">
<td align="right">250</td>
<td align="right">30.57</td>
<td align="right">25.06</td>
<td align="right">22.24</td>
<td align="right">18.98</td>
</tr> </tr>
<tr class="even"> <tr class="even">
<td align="right">300</td> <td align="right">151.17</td>
<td align="right">27.90</td> <td align="right">0.05</td>
<td align="right">22.88</td> <td align="right">0.8</td>
<td align="right">20.30</td> <td align="left">p1 = 0.4 p2 = 0.25</td>
<td align="right">17.33</td>
</tr> </tr>
<tr class="odd"> <tr class="odd">
<td align="right">350</td> <td align="right">119.07</td>
<td align="right">25.83</td> <td align="right">0.10</td>
<td align="right">21.18</td> <td align="right">0.8</td>
<td align="right">18.80</td> <td align="left">p1 = 0.4 p2 = 0.25</td>
<td align="right">16.04</td>
</tr> </tr>
<tr class="even"> <tr class="even">
<td align="right">400</td> <td align="right">86.73</td>
<td align="right">24.16</td> <td align="right">0.20</td>
<td align="right">19.81</td> <td align="right">0.8</td>
<td align="right">17.58</td> <td align="left">p1 = 0.4 p2 = 0.25</td>
<td align="right">15.01</td>
</tr> </tr>
<tr class="odd"> </tbody>
<td align="right">450</td> </table>
<td align="right">22.78</td> <p>We can repeat this for other values of p1 and p2. For example, suppose both were much smaller (e.g. 10% and 15%)… Clearly we need <em>much</em> larger samples.</p>
<td align="right">18.68</td> <table>
<td align="right">16.58</td> <caption><span id="tab:propTable2">Table 4.4: </span>Samples required if p1 = 10% and p2 = 15%</caption>
<td align="right">14.15</td> <thead>
</tr> <tr class="header">
<tr class="even"> <th align="right">n</th>
<td align="right">500</td> <th align="right">sig.level</th>
<td align="right">21.61</td> <th align="right">power</th>
<td align="right">17.72</td> <th align="left">props</th>
<td align="right">15.72</td>
<td align="right">13.42</td>
</tr>
<tr class="odd">
<td align="right">550</td>
<td align="right">20.61</td>
<td align="right">16.89</td>
<td align="right">15.00</td>
<td align="right">12.80</td>
</tr>
<tr class="even">
<td align="right">600</td>
<td align="right">19.73</td>
<td align="right">16.17</td>
<td align="right">14.36</td>
<td align="right">12.25</td>
</tr>
<tr class="odd">
<td align="right">650</td>
<td align="right">18.96</td>
<td align="right">15.54</td>
<td align="right">13.79</td>
<td align="right">11.77</td>
</tr>
<tr class="even">
<td align="right">700</td>
<td align="right">18.27</td>
<td align="right">14.97</td>
<td align="right">13.29</td>
<td align="right">11.34</td>
</tr>
<tr class="odd">
<td align="right">750</td>
<td align="right">17.65</td>
<td align="right">14.47</td>
<td align="right">12.84</td>
<td align="right">10.96</td>
</tr>
<tr class="even">
<td align="right">800</td>
<td align="right">17.09</td>
<td align="right">14.01</td>
<td align="right">12.43</td>
<td align="right">10.61</td>
</tr> </tr>
</thead>
<tbody>
<tr class="odd"> <tr class="odd">
<td align="right">850</td> <td align="right">1012.35</td>
<td align="right">16.57</td> <td align="right">0.01</td>
<td align="right">13.59</td> <td align="right">0.8</td>
<td align="right">12.06</td> <td align="left">p1 = 0.1 p2 = 0.15</td>
<td align="right">10.29</td>
</tr> </tr>
<tr class="even"> <tr class="even">
<td align="right">900</td> <td align="right">680.35</td>
<td align="right">16.11</td> <td align="right">0.05</td>
<td align="right">13.21</td> <td align="right">0.8</td>
<td align="right">11.72</td> <td align="left">p1 = 0.1 p2 = 0.15</td>
<td align="right">10.00</td>
</tr> </tr>
<tr class="odd"> <tr class="odd">
<td align="right">950</td> <td align="right">535.89</td>
<td align="right">15.68</td> <td align="right">0.10</td>
<td align="right">12.86</td> <td align="right">0.8</td>
<td align="right">11.41</td> <td align="left">p1 = 0.1 p2 = 0.15</td>
<td align="right">9.73</td>
</tr> </tr>
<tr class="even"> <tr class="even">
<td align="right">1000</td> <td align="right">390.31</td>
<td align="right">15.28</td> <td align="right">0.20</td>
<td align="right">12.53</td> <td align="right">0.8</td>
<td align="right">11.12</td> <td align="left">p1 = 0.1 p2 = 0.15</td>
<td align="right">9.49</td>
</tr> </tr>
</tbody> </tbody>
</table> </table>
<p>The above used an arcsine transform.</p>
<p>As a double check, using eqn to assess margin of error…</p>
<p><span class="math display">\[me = +/- z * \sqrt{\frac{p(1-p)} {n-1}}\]</span></p>
<p>If:</p>
<ul>
<li>p = 0.4 (40%)</li>
<li>n = 151</li>
</ul>
<p>then the margin of error = +/- 0.078 (7.8%). So we could quote the Heat Pump uptake for owner-occupiers as 40% (+/- 7.8% [or 32.2 - 47.8] with p = 0.05).</p>
<p>This may be far too wide an error margin for our purposes so we may instead have recruited 500 per sample. Now the margin of error is +/- 0.043 (4.3%) so we can now quote the Heat Pump uptake for owner-occupiers as 40% (+/- 4.3% [or 35.7 - 44.3] with p = 0.05).</p>
</div> </div>
</div> </div>
<div id="testing-for-differences-effect-sizes-confidence-intervals-and-p-values" class="section level1"> <div id="testing-for-differences-effect-sizes-confidence-intervals-and-p-values" class="section level1">
...@@ -816,27 +726,27 @@ Figure 4.4: Power analysis results (power = 0.8) ...@@ -816,27 +726,27 @@ Figure 4.4: Power analysis results (power = 0.8)
<tbody> <tbody>
<tr class="odd"> <tr class="odd">
<td align="left">Control</td> <td align="left">Control</td>
<td align="right">175.77480</td> <td align="right">169.60064</td>
<td align="right">331.8449</td> <td align="right">328.56355</td>
<td align="right">1148</td> <td align="right">1140</td>
</tr> </tr>
<tr class="even"> <tr class="even">
<td align="left">Intervention 1</td> <td align="left">Intervention 1</td>
<td align="right">36.21610</td> <td align="right">34.50149</td>
<td align="right">83.0941</td> <td align="right">82.94015</td>
<td align="right">904</td> <td align="right">907</td>
</tr> </tr>
<tr class="odd"> <tr class="odd">
<td align="left">Intervention 2</td> <td align="left">Intervention 2</td>
<td align="right">67.89879</td> <td align="right">59.84020</td>
<td align="right">121.1046</td> <td align="right">112.74650</td>
<td align="right">1018</td> <td align="right">1008</td>
</tr> </tr>
<tr class="even"> <tr class="even">
<td align="left">Intervention 3</td> <td align="left">Intervention 3</td>
<td align="right">70.97243</td> <td align="right">73.24102</td>
<td align="right">147.6943</td> <td align="right">148.25869</td>
<td align="right">1130</td> <td align="right">1145</td>
</tr> </tr>
</tbody> </tbody>
</table> </table>
...@@ -862,20 +772,20 @@ Figure 5.1: Mean W demand per group for large sample (Error bars = 95% confidenc ...@@ -862,20 +772,20 @@ Figure 5.1: Mean W demand per group for large sample (Error bars = 95% confidenc
</thead> </thead>
<tbody> <tbody>
<tr class="odd"> <tr class="odd">
<td align="right">175.7748</td> <td align="right">169.6006</td>
<td align="right">67.89879</td> <td align="right">59.8402</td>
<td align="right">-107.876</td> <td align="right">-109.7604</td>
<td align="right">-10.27012</td> <td align="right">-10.59573</td>
<td align="right">0</td> <td align="right">0</td>
<td align="right">-128.4801</td> <td align="right">-130.0807</td>
<td align="right">-87.27195</td> <td align="right">-89.44015</td>
</tr> </tr>
</tbody> </tbody>
</table> </table>
<p>In this case:</p> <p>In this case:</p>
<ul> <ul>
<li>effect size = 107.8760107W or 61.37% representing a still <em>reasonable bang for buck</em> for whatever caused the difference;</li> <li>effect size = 109.7604326W or 64.72% representing a still <em>reasonable bang for buck</em> for whatever caused the difference;</li>
<li>95% confidence interval for the test = -128.48 to -87.27 representing <em>much less</em> uncertainty/variation;</li> <li>95% confidence interval for the test = -130.08 to -89.44 representing <em>much less</em> uncertainty/variation;</li>
<li>p value of 0 representing a <em>very low</em> risk of a false positive result as it passes all conventional thresholds.</li> <li>p value of 0 representing a <em>very low</em> risk of a false positive result as it passes all conventional thresholds.</li>
</ul> </ul>
</div> </div>
...@@ -897,7 +807,7 @@ Figure 5.1: Mean W demand per group for large sample (Error bars = 95% confidenc ...@@ -897,7 +807,7 @@ Figure 5.1: Mean W demand per group for large sample (Error bars = 95% confidenc
</div> </div>
<div id="runtime" class="section level1"> <div id="runtime" class="section level1">
<h1><span class="header-section-number">8</span> Runtime</h1> <h1><span class="header-section-number">8</span> Runtime</h1>
<p>Analysis completed in 73.55 seconds ( 1.23 minutes) using <a href="https://cran.r-project.org/package=knitr">knitr</a> in <a href="http://www.rstudio.com">RStudio</a> with R version 3.5.1 (2018-07-02) running on x86_64-apple-darwin15.6.0.</p> <p>Analysis completed in 51.37 seconds ( 0.86 minutes) using <a href="https://cran.r-project.org/package=knitr">knitr</a> in <a href="http://www.rstudio.com">RStudio</a> with R version 3.5.1 (2018-07-02) running on x86_64-apple-darwin15.6.0.</p>
</div> </div>
<div id="r-environment" class="section level1"> <div id="r-environment" class="section level1">
<h1><span class="header-section-number">9</span> R environment</h1> <h1><span class="header-section-number">9</span> R environment</h1>
...@@ -911,7 +821,8 @@ Figure 5.1: Mean W demand per group for large sample (Error bars = 95% confidenc ...@@ -911,7 +821,8 @@ Figure 5.1: Mean W demand per group for large sample (Error bars = 95% confidenc
<li>dplyr - for select and contains <span class="citation">(Wickham and Francois 2016)</span></li> <li>dplyr - for select and contains <span class="citation">(Wickham and Francois 2016)</span></li>
<li>progress - for progress bars <span class="citation">(Csárdi and FitzJohn 2016)</span></li> <li>progress - for progress bars <span class="citation">(Csárdi and FitzJohn 2016)</span></li>
<li>knitr - to create this document &amp; neat tables <span class="citation">(Xie 2016)</span></li> <li>knitr - to create this document &amp; neat tables <span class="citation">(Xie 2016)</span></li>
<li>GREENGrid - for local NZ GREEN Grid project utilities</li> <li>pwr - non-base power analysis <span class="citation">(Champely 2018)</span></li>
<li>dkUtils - for local dataknut utilities :-) <code>devtools::install_github(&quot;dataknut/dkUtils&quot;)</code></li>
</ul> </ul>
<p>Session info:</p> <p>Session info:</p>
<pre><code>## R version 3.5.1 (2018-07-02) <pre><code>## R version 3.5.1 (2018-07-02)
...@@ -929,27 +840,28 @@ Figure 5.1: Mean W demand per group for large sample (Error bars = 95% confidenc ...@@ -929,27 +840,28 @@ Figure 5.1: Mean W demand per group for large sample (Error bars = 95% confidenc
## [1] stats graphics grDevices utils datasets methods base ## [1] stats graphics grDevices utils datasets methods base
## ##
## other attached packages: ## other attached packages:
## [1] knitr_1.20 forcats_0.3.0 broom_0.5.0 ## [1] knitr_1.20 pwr_1.2-2 forcats_0.3.0
## [4] lubridate_1.7.4 readr_1.1.1 ggplot2_3.0.0 ## [4] broom_0.5.0 lubridate_1.7.4 readr_1.1.1
## [7] dplyr_0.7.6 data.table_1.11.4 dkUtils_0.0.0.9000 ## [7] ggplot2_3.1.0 dplyr_0.7.7 data.table_1.11.8
## [10] dkUtils_0.0.0.9000
## ##
## loaded via a namespace (and not attached): ## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.18 highr_0.7 pillar_1.3.0 ## [1] Rcpp_0.12.19 highr_0.7 pillar_1.3.0
## [4] compiler_3.5.1 plyr_1.8.4 bindr_0.1.1 ## [4] compiler_3.5.1 plyr_1.8.4 bindr_0.1.1
## [7] tools_3.5.1 digest_0.6.15 lattice_0.20-35 ## [7] tools_3.5.1 digest_0.6.18 lattice_0.20-35
## [10] nlme_3.1-137 evaluate_0.11 tibble_1.4.2 ## [10] nlme_3.1-137 evaluate_0.12 tibble_1.4.2
## [13] gtable_0.2.0 pkgconfig_2.0.1 rlang_0.3.0.1 ## [13] gtable_0.2.0 pkgconfig_2.0.2 rlang_0.3.0.1
## [16] cli_1.0.0 yaml_2.2.0 xfun_0.3 ## [16] cli_1.0.1 yaml_2.2.0 xfun_0.4
## [19] bindrcpp_0.2.2 pwr_1.2-2 withr_2.1.2 ## [19] bindrcpp_0.2.2 withr_2.1.2 stringr_1.3.1
## [22] stringr_1.3.1 hms_0.4.2 rprojroot_1.3-2 ## [22] hms_0.4.2 rprojroot_1.3-2 grid_3.5.1
## [25] grid_3.5.1 tidyselect_0.2.5 glue_1.3.0 ## [25] tidyselect_0.2.5 glue_1.3.0 R6_2.3.0
## [28] R6_2.2.2 fansi_0.2.3 rmarkdown_1.10 ## [28] fansi_0.4.0 rmarkdown_1.10 bookdown_0.7
## [31] bookdown_0.7 reshape2_1.4.3 weGotThePower_0.1 ## [31] reshape2_1.4.3 weGotThePower_0.1 tidyr_0.8.1
## [34] tidyr_0.8.2 purrr_0.2.5 magrittr_1.5 ## [34] purrr_0.2.5 magrittr_1.5 backports_1.1.2
## [37] backports_1.1.2 scales_0.5.0 htmltools_0.3.6 ## [37] scales_1.0.0 htmltools_0.3.6 assertthat_0.2.0
## [40] assertthat_0.2.0 colorspace_1.3-2 labeling_0.3 ## [40] colorspace_1.3-2 labeling_0.3 utf8_1.1.4
## [43] utf8_1.1.4 stringi_1.2.4 lazyeval_0.2.1 ## [43] stringi_1.2.4 lazyeval_0.2.1 munsell_0.5.0
## [46] munsell_0.5.0 crayon_1.3.4</code></pre> ## [46] crayon_1.3.4</code></pre>
</div> </div>
<div id="references" class="section level1 unnumbered"> <div id="references" class="section level1 unnumbered">
<h1>References</h1> <h1>References</h1>
...@@ -957,6 +869,9 @@ Figure 5.1: Mean W demand per group for large sample (Error bars = 95% confidenc ...@@ -957,6 +869,9 @@ Figure 5.1: Mean W demand per group for large sample (Error bars = 95% confidenc
<div id="ref-anderson_new_2018"> <div id="ref-anderson_new_2018">
<p>Anderson, Ben, David Eyers, Rebecca Ford, Diana Giraldo Ocampo, Rana Peniamina, Janet Stephenson, Kiti Suomalainen, Lara Wilcocks, and Michael Jack. 2018. “New Zealand GREEN Grid Household Electricity Demand Study 2014-2018,” September. doi:<a href="https://doi.org/10.5255/UKDA-SN-853334">10.5255/UKDA-SN-853334</a>.</p> <p>Anderson, Ben, David Eyers, Rebecca Ford, Diana Giraldo Ocampo, Rana Peniamina, Janet Stephenson, Kiti Suomalainen, Lara Wilcocks, and Michael Jack. 2018. “New Zealand GREEN Grid Household Electricity Demand Study 2014-2018,” September. doi:<a href="https://doi.org/10.5255/UKDA-SN-853334">10.5255/UKDA-SN-853334</a>.</p>
</div> </div>
<div id="ref-pwr">
<p>Champely, Stephane. 2018. <em>Pwr: Basic Functions for Power Analysis</em>. <a href="https://CRAN.R-project.org/package=pwr" class="uri">https://CRAN.R-project.org/package=pwr</a>.</p>
</div>
<div id="ref-progress"> <div id="ref-progress">
<p>Csárdi, Gábor, and Rich FitzJohn. 2016. <em>Progress: Terminal Progress Bars</em>. <a href="https://CRAN.R-project.org/package=progress" class="uri">https://CRAN.R-project.org/package=progress</a>.</p> <p>Csárdi, Gábor, and Rich FitzJohn. 2016. <em>Progress: Terminal Progress Bars</em>. <a href="https://CRAN.R-project.org/package=progress" class="uri">https://CRAN.R-project.org/package=progress</a>.</p>
</div> </div>
......
This diff is collapsed.
Source diff could not be displayed: it is too large. Options to address this: view the blob.
File deleted
File deleted
File deleted
File deleted
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment