Select Git revision
spatialecSettings.R
-
Ben Anderson authoredBen Anderson authored
main.rs 39.99 KiB
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
// Welcome to the triangle example!
//
// This is the only example that is entirely detailed. All the other examples avoid code
// duplication by using helper functions.
//
// This example assumes that you are already more or less familiar with graphics programming
// and that you want to learn Vulkan. This means that for example it won't go into details about
// what a vertex or a shader is.
use bytemuck::{Pod, Zeroable};
use cgmath::{
AbsDiffEq, Basis3, Deg, EuclideanSpace, Euler, Matrix3, Matrix4, Point3, Quaternion, Rad,
SquareMatrix, Transform, Vector3,
};
use obj::{LoadConfig, ObjData};
use rodio::{source::Source, Decoder, OutputStream};
use std::io::Cursor;
use std::{sync::Arc, time::Instant};
use vulkano::command_buffer::allocator::StandardCommandBufferAllocator;
use vulkano::format::Format;
use vulkano::image::AttachmentImage;
use vulkano::memory::allocator::StandardMemoryAllocator;
use vulkano::pipeline::graphics::depth_stencil::DepthStencilState;
use vulkano::pipeline::graphics::rasterization::CullMode;
use vulkano::pipeline::graphics::rasterization::FrontFace::Clockwise;
use vulkano::swapchain::{PresentMode, SwapchainPresentInfo};
use vulkano::VulkanLibrary;
use winit::event::{DeviceEvent, DeviceId, ElementState, MouseButton, VirtualKeyCode};
use egui_winit_vulkano::Gui;
use vulkano::pipeline::StateMode::Fixed;
use vulkano::{
buffer::{BufferUsage, CpuAccessibleBuffer, TypedBufferAccess},
command_buffer::{
AutoCommandBufferBuilder, CommandBufferUsage, RenderPassBeginInfo, SubpassContents,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
},
image::{view::ImageView, ImageAccess, ImageUsage, SwapchainImage},
impl_vertex,
instance::{Instance, InstanceCreateInfo},
pipeline::{
graphics::{
input_assembly::InputAssemblyState,
rasterization::RasterizationState,
vertex_input::BuffersDefinition,
viewport::{Viewport, ViewportState},
},
GraphicsPipeline, Pipeline,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
swapchain::{
acquire_next_image, AcquireError, Swapchain, SwapchainCreateInfo, SwapchainCreationError,
},
sync::{self, FlushError, GpuFuture},
};
use vulkano_win::VkSurfaceBuild;
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::{Window, WindowBuilder},
};
use crate::gui::*;
mod gui;
fn main() {
// The first step of any Vulkan program is to create an instance.
//
// When we create an instance, we have to pass a list of extensions that we want to enable.
//
// All the window-drawing functionalities are part of non-core extensions that we need
// to enable manually. To do so, we ask the `vulkano_win` crate for the list of extensions
// required to draw to a window.
let library = VulkanLibrary::new().unwrap();
let required_extensions = vulkano_win::required_extensions(&library);
// Now creating the instance.
let instance = Instance::new(
library,
InstanceCreateInfo {
enabled_extensions: required_extensions,
// Enable enumerating devices that use non-conformant vulkan implementations. (ex. MoltenVK)
enumerate_portability: true,
..Default::default()
},
)
.unwrap();
// The objective of this example is to draw a triangle on a window. To do so, we first need to
// create the window.
//
// This is done by creating a `WindowBuilder` from the `winit` crate, then calling the
// `build_vk_surface` method provided by the `VkSurfaceBuild` trait from `vulkano_win`. If you
// ever get an error about `build_vk_surface` being undefined in one of your projects, this
// probably means that you forgot to import this trait.
//
// This returns a `vulkano::swapchain::Surface` object that contains both a cross-platform winit
// window and a cross-platform Vulkan surface that represents the surface of the window.
let event_loop = EventLoop::new();
let surface = WindowBuilder::new()
.with_title("horizontally spinning bunny")
.build_vk_surface(&event_loop, instance.clone())
.unwrap();
// Choose device extensions that we're going to use.
// In order to present images to a surface, we need a `Swapchain`, which is provided by the
// `khr_swapchain` extension.
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
// We then choose which physical device to use. First, we enumerate all the available physical
// devices, then apply filters to narrow them down to those that can support our needs.
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| {
// Some devices may not support the extensions or features that your application, or
// report properties and limits that are not sufficient for your application. These
// should be filtered out here.
p.supported_extensions().contains(&device_extensions)
})
.filter_map(|p| {
// For each physical device, we try to find a suitable queue family that will execute
// our draw commands.
//
// Devices can provide multiple queues to run commands in parallel (for example a draw
// queue and a compute queue), similar to CPU threads. This is something you have to
// have to manage manually in Vulkan. Queues of the same type belong to the same
// queue family.
//
// Here, we look for a single queue family that is suitable for our purposes. In a
// real-life application, you may want to use a separate dedicated transfer queue to
// handle data transfers in parallel with graphics operations. You may also need a
// separate queue for compute operations, if your application uses those.
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
// We select a queue family that supports graphics operations. When drawing to
// a window surface, as we do in this example, we also need to check that queues
// in this queue family are capable of presenting images to the surface.
q.queue_flags.graphics && p.surface_support(i as u32, &surface).unwrap_or(false)
})
// The code here searches for the first queue family that is suitable. If none is
// found, `None` is returned to `filter_map`, which disqualifies this physical
// device.
.map(|i| (p, i as u32))
})
// All the physical devices that pass the filters above are suitable for the application.
// However, not every device is equal, some are preferred over others. Now, we assign
// each physical device a score, and pick the device with the
// lowest ("best") score.
//
// In this example, we simply select the best-scoring device to use in the application.
// In a real-life setting, you may want to use the best-scoring device only as a
// "default" or "recommended" device, and let the user choose the device themselves.
.min_by_key(|(p, _)| {
// We assign a lower score to device types that are likely to be faster/better.
match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
}
})
.expect("No suitable physical device found");
// Some little debug infos.
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
// Now initializing the device. This is probably the most important object of Vulkan.
//
// The iterator of created queues is returned by the function alongside the device.
let (device, mut queues) = Device::new(
// Which physical device to connect to.
physical_device,
DeviceCreateInfo {
// A list of optional features and extensions that our program needs to work correctly.
// Some parts of the Vulkan specs are optional and must be enabled manually at device
// creation. In this example the only thing we are going to need is the `khr_swapchain`
// extension that allows us to draw to a window.
enabled_extensions: device_extensions,
// The list of queues that we are going to use. Here we only use one queue, from the
// previously chosen queue family.
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.expect("Unable to initialize device");
// Since we can request multiple queues, the `queues` variable is in fact an iterator. We
// only use one queue in this example, so we just retrieve the first and only element of the
// iterator.
let queue = queues.next().expect("Unable to retrieve queues");
// Before we can draw on the surface, we have to create what is called a swapchain. Creating
// a swapchain allocates the color buffers that will contain the image that will ultimately
// be visible on the screen. These images are returned alongside the swapchain.
let (mut swapchain, images) = {
// Querying the capabilities of the surface. When we create the swapchain we can only
// pass values that are allowed by the capabilities.
let surface_capabilities = device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
// Choosing the internal format that the images will have.
let image_format = Some(
device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0,
);
let window = surface.object().unwrap().downcast_ref::<Window>().unwrap();
// Please take a look at the docs for the meaning of the parameters we didn't mention.
Swapchain::new(
device.clone(),
surface.clone(),
SwapchainCreateInfo {
min_image_count: 3
.max(surface_capabilities.min_image_count)
.min(surface_capabilities.max_image_count.unwrap_or(u32::MAX)),
image_format,
// The dimensions of the window, only used to initially setup the swapchain.
// NOTE:
// On some drivers the swapchain dimensions are specified by
// `surface_capabilities.current_extent` and the swapchain size must use these
// dimensions.
// These dimensions are always the same as the window dimensions.
//
// However, other drivers don't specify a value, i.e.
// `surface_capabilities.current_extent` is `None`. These drivers will allow
// anything, but the only sensible value is the window
// dimensions.
//
// Both of these cases need the swapchain to use the window dimensions, so we just
// use that.
image_extent: window.inner_size().into(),
image_usage: ImageUsage {
color_attachment: true,
..ImageUsage::empty()
},
// The alpha mode indicates how the alpha value of the final image will behave. For
// example, you can choose whether the window will be opaque or transparent.
composite_alpha: surface_capabilities
.supported_composite_alpha
.iter()
.next()
.unwrap(),
present_mode: PresentMode::FifoRelaxed,
..Default::default()
},
)
.unwrap()
};
const OBJ: &[u8] = include_bytes!("bunny.obj");
let buny = ObjData::load_buf_with_config(OBJ, LoadConfig::default()).unwrap();
let polys = &buny.objects[0].groups[0].polys;
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
// We now create a buffer that will store the shape of our triangle.
// We use #[repr(C)] here to force rustc to not do anything funky with our data, although for this
// particular example, it doesn't actually change the in-memory representation.
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, Zeroable, Pod)]
struct Vertex {
position: [f32; 3],
normal: [f32; 3],
}
impl_vertex!(Vertex, position, normal);
let vertices = polys
.iter()
.flat_map(|p| {
p.0.iter()
.map(|v| Vertex {
position: buny.position[v.0],
normal: v
.2
.and_then(|vt| Some(buny.normal[vt]))
.unwrap_or([0.0, 0.0, 0.0]),
})
.collect::<Vec<Vertex>>()
})
.collect::<Vec<Vertex>>();
let vertex_buffer = CpuAccessibleBuffer::from_iter(
&memory_allocator,
BufferUsage {
vertex_buffer: true,
..BufferUsage::empty()
},
false,
vertices,
)
.unwrap();
// The next step is to create the shaders.
//
// The raw shader creation API provided by the vulkano library is unsafe for various
// reasons, so The `shader!` macro provides a way to generate a Rust module from GLSL
// source - in the example below, the source is provided as a string input directly to
// the shader, but a path to a source file can be provided as well. Note that the user
// must specify the type of shader (e.g., "vertex," "fragment, etc.") using the `ty`
// option of the macro.
//
// The module generated by the `shader!` macro includes a `load` function which loads
// the shader using an input logical device. The module also includes type definitions
// for layout structures defined in the shader source, for example, uniforms and push
// constants.
//
// A more detailed overview of what the `shader!` macro generates can be found in the
// `vulkano-shaders` crate docs. You can view them at https://docs.rs/vulkano-shaders/
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: "
#version 450
layout(location = 0) in vec3 position;
layout(location = 1) in vec3 normal;
layout(location = 0) out vec3 v_normal;
layout(push_constant) uniform PushConstantData {
mat4 world;
mat4 view;
mat4 proj;
} pc;
void main() {
mat4 worldview = pc.view * pc.world;
v_normal = normalize(transpose(inverse(mat3(worldview))) * normal);
gl_Position = pc.proj * worldview * vec4(position*1000.0, 1.0);
}
",
types_meta: {
use bytemuck::{Pod, Zeroable};
#[derive(Clone, Copy, Zeroable, Pod, Debug)]
},
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
path: "src/frag.glsl"
}
}
let vs = vs::load(device.clone()).unwrap();
let fs = fs::load(device.clone()).unwrap();
/*let uniform_buffer =
CpuBufferPool::<vs::ty::PushConstantData>::uniform_buffer(memory_allocator);*/
// At this point, OpenGL initialization would be finished. However in Vulkan it is not. OpenGL
// implicitly does a lot of computation whenever you draw. In Vulkan, you have to do all this
// manually.
// The next step is to create a *render pass*, which is an object that describes where the
// output of the graphics pipeline will go. It describes the layout of the images
// where the colors, depth and/or stencil information will be written.
let render_pass = vulkano::ordered_passes_renderpass!(
device.clone(),
attachments: {
// `color` is a custom name we give to the first and only attachment.
color: {
// `load: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load: Clear,
// `store: Store` means that we ask the GPU to store the output of the draw
// in the actual image. We could also ask it to discard the result.
store: Store,
// `format: <ty>` indicates the type of the format of the image. This has to
// be one of the types of the `vulkano::format` module (or alternatively one
// of your structs that implements the `FormatDesc` trait). Here we use the
// same format as the swapchain.
format: swapchain.image_format(),
// `samples: 1` means that we ask the GPU to use one sample to determine the value
// of each pixel in the color attachment. We could use a larger value (multisampling)
// for antialiasing. An example of this can be found in msaa-renderpass.rs.
samples: 1,
},
depth: {
load: Clear,
store: DontCare,
format: Format::D16_UNORM,
samples: 1,
}
},
passes: [{
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {depth},
input: []
},{
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {depth},
input: []
}]
)
.unwrap();
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific.
let pipeline = GraphicsPipeline::start()
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
// We need to indicate the layout of the vertices.
.vertex_input_state(BuffersDefinition::new().vertex::<Vertex>())
// The content of the vertex buffer describes a list of triangles.
.input_assembly_state(InputAssemblyState::new())
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one.
.vertex_shader(vs.entry_point("main").unwrap(), ())
// Use a resizable viewport set to draw over the entire window
.viewport_state(ViewportState::viewport_dynamic_scissor_irrelevant())
// See `vertex_shader`.
.fragment_shader(fs.entry_point("main").unwrap(), ())
.depth_stencil_state(DepthStencilState::simple_depth_test())
.rasterization_state(RasterizationState {
front_face: Fixed(Clockwise),
cull_mode: Fixed(CullMode::Back),
..RasterizationState::default()
})
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(device.clone())
.unwrap();
// Dynamic viewports allow us to recreate just the viewport when the window is resized
// Otherwise we would have to recreate the whole pipeline.
let mut viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [0.0, 0.0],
depth_range: 0.0..1.0,
};
// The render pass we created above only describes the layout of our framebuffers. Before we
// can draw we also need to create the actual framebuffers.
//
// Since we need to draw to multiple images, we are going to create a different framebuffer for
// each image.
let mut framebuffers = window_size_dependent_setup(
&memory_allocator,
&images,
render_pass.clone(),
&mut viewport,
);
// Before we can start creating and recording command buffers, we need a way of allocating
// them. Vulkano provides a command buffer allocator, which manages raw Vulkan command pools
// underneath and provides a safe interface for them.
let command_buffer_allocator =
StandardCommandBufferAllocator::new(device.clone(), Default::default());
// Initialization is finally finished!
// In some situations, the swapchain will become invalid by itself. This includes for example
// when the window is resized (as the images of the swapchain will no longer match the
// window's) or, on Android, when the application went to the background and goes back to the
// foreground.
//
// In this situation, acquiring a swapchain image or presenting it will return an error.
// Rendering to an image of that swapchain will not produce any error, but may or may not work.
// To continue rendering, we need to recreate the swapchain by creating a new swapchain.
// Here, we remember that we need to do this for the next loop iteration.
let mut recreate_swapchain = false;
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
// they are in use by the GPU.
//
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
// that, we store the submission of the previous frame here.
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
/*
// Get a output stream handle to the default physical sound device
let (_stream, stream_handle) = OutputStream::try_default().unwrap();
// Load a sound from a file, using a path relative to Cargo.toml
let freebird = Cursor::new(include_bytes!("freebird.mp3"));
// Decode that sound file into a source
let source = Decoder::new(freebird).unwrap().repeat_infinite();
// Play the sound directly on the device
stream_handle.play_raw(source.convert_samples()).unwrap();
*/
let rotation_start = Instant::now();
//let descriptor_set_allocator = StandardDescriptorSetAllocator::new(device.clone());
// Create an egui GUI
let mut gui = Gui::new_with_subpass(
&event_loop,
surface.clone(),
None,
queue.clone(),
Subpass::from(render_pass.clone(), 1).unwrap(),
);
let mut gstate = GState::default();
let mut campos = Point3 {
x: 0f32,
y: 0f32,
z: 3f32,
};
let mut camforward = Euler::new(Deg(0f32), Deg(0f32), Deg(0f32));
let mut looking = false;
struct Keys {
w: bool,
s: bool,
a: bool,
d: bool,
}
let mut keys = Keys {
w: false,
s: false,
a: false,
d: false,
};
event_loop.run(move |event, _, control_flow| {
if let Event::WindowEvent { event: we, .. } = &event {
if !gui.update(we) {
match &we {
WindowEvent::CloseRequested => {
*control_flow = ControlFlow::Exit;
}
WindowEvent::Resized(_) => {
recreate_swapchain = true;
}
WindowEvent::ScaleFactorChanged { .. } => {
recreate_swapchain = true;
}
WindowEvent::DroppedFile(file) => {
todo!()
}
WindowEvent::MouseInput {
device_id: d,
state: s,
button: b,
..
} => {
println!("MOUSE {:?}, {:?}, {:?}", d, s, b);
if b == &MouseButton::Right {
looking = s == &ElementState::Pressed;
}
}
WindowEvent::KeyboardInput { input, .. } => match input.virtual_keycode {
Some(VirtualKeyCode::W) => {
keys.w = input.state == ElementState::Pressed;
}
Some(VirtualKeyCode::S) => {
keys.s = input.state == ElementState::Pressed;
}
Some(VirtualKeyCode::A) => {
keys.a = input.state == ElementState::Pressed;
}
Some(VirtualKeyCode::D) => {
keys.d = input.state == ElementState::Pressed;
}
_ => {}
},
_ => {}
}
}
}
match event {
Event::DeviceEvent {
event: DeviceEvent::MouseMotion { delta },
..
} => {
if looking {
camforward.x -= Deg(delta.1 as f32) * gstate.cursor_sensitivity;
camforward.y += Deg(delta.0 as f32) * gstate.cursor_sensitivity;
}
//println!("AXISM {:?}", delta);
}
Event::RedrawEventsCleared => {
// Do not draw frame when screen dimensions are zero.
// On Windows, this can occur from minimizing the application.
let window = surface.object().unwrap().downcast_ref::<Window>().unwrap();
let dimensions = window.inner_size();
if dimensions.width == 0 || dimensions.height == 0 {
return;
}
// It is important to call this function from time to time, otherwise resources will keep
// accumulating and you will eventually reach an out of memory error.
// Calling this function polls various fences in order to determine what the GPU has
// already processed, and frees the resources that are no longer needed.
previous_frame_end.as_mut().unwrap().cleanup_finished();
// Whenever the window resizes we need to recreate everything dependent on the window size.
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
if recreate_swapchain {
// Use the new dimensions of the window.
let (new_swapchain, new_images) =
match swapchain.recreate(SwapchainCreateInfo {
image_extent: dimensions.into(),
..swapchain.create_info()
}) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::ImageExtentNotSupported { .. }) => return,
Err(e) => panic!("Failed to recreate swapchain: {e:?}"),
};
swapchain = new_swapchain;
// Because framebuffers contains an Arc on the old swapchain, we need to
// recreate framebuffers as well.
framebuffers = window_size_dependent_setup(
&memory_allocator,
&new_images,
render_pass.clone(),
&mut viewport,
);
recreate_swapchain = false;
}
//println!("{:?}", right);
let uniform_data = {
if looking {
if keys.w {
campos -= Matrix3::from_angle_y(camforward.y)
* Matrix3::from_angle_x(camforward.x)
* Vector3::unit_z()
* 0.02
* gstate.move_speed;
}
if keys.s {
campos += Matrix3::from_angle_y(camforward.y)
* Matrix3::from_angle_x(camforward.x)
* Vector3::unit_z()
* 0.02
* gstate.move_speed;
}
if keys.a {
campos += Matrix3::from_angle_y(camforward.y)
* Matrix3::from_angle_x(camforward.x)
* Vector3::unit_x()
* 0.02
* gstate.move_speed;
}
if keys.d {
campos -= Matrix3::from_angle_y(camforward.y)
* Matrix3::from_angle_x(camforward.x)
* Vector3::unit_x()
* 0.02
* gstate.move_speed;
}
} else {
keys.w = false;
keys.s = false;
keys.a = false;
keys.d = false;
}
// note: this teapot was meant for OpenGL where the origin is at the lower left
// instead the origin is at the upper left in Vulkan, so we reverse the Y axis
let aspect_ratio =
swapchain.image_extent()[0] as f32 / swapchain.image_extent()[1] as f32;
let proj = cgmath::perspective(
Rad(std::f32::consts::FRAC_PI_2),
aspect_ratio,
0.01,
100.0,
);
let scale = 0.01;
let view = Matrix4::from(camforward)
* Matrix4::from_angle_z(Deg(180f32))
* Matrix4::from_translation(Point3::origin() - campos)
* Matrix4::from_scale(scale);
//*Matrix4::from_angle_z(Deg(180f32));
let pc = vs::ty::PushConstantData {
world: Matrix4::identity().into(),
view: view.into(),
proj: proj.into(),
};
if looking {
/*println!(
"world: {:?} view: {:?} proj: {:?}",
pc.world, pc.view, pc.proj
);*/
println!("campos: {:?} camforward: {:?}", campos, camforward);
}
pc
};
//let layout = pipeline.layout().set_layouts().get(0).unwrap();
/*let set = PersistentDescriptorSet::new(
&memory_allocator,
layout.clone(),
[WriteDescriptorSet::buffer(0, uniform_buffer_subbuffer)],
)
.unwrap();*/
// Before we can draw on the output, we have to *acquire* an image from the swapchain. If
// no image is available (which happens if you submit draw commands too quickly), then the
// function will block.
// This operation returns the index of the image that we are allowed to draw upon.
//
// This function can block if no image is available. The parameter is an optional timeout
// after which the function call will return an error.
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("Failed to acquire next image: {:?}", e),
};
// acquire_next_image can be successful, but suboptimal. This means that the swapchain image
// will still work, but it may not display correctly. With some drivers this can be when
// the window resizes, but it may not cause the swapchain to become out of date.
if suboptimal {
recreate_swapchain = true;
}
gui_up(&mut gui, &mut gstate);
// In order to draw, we have to build a *command buffer*. The command buffer object holds
// the list of commands that are going to be executed.
//
// Building a command buffer is an expensive operation (usually a few hundred
// microseconds), but it is known to be a hot path in the driver and is expected to be
// optimized.
//
// Note that we have to pass a queue family when we create the command buffer. The command
// buffer will only be executable on that given queue family.
let mut builder = AutoCommandBufferBuilder::primary(
&command_buffer_allocator,
queue.queue_family_index(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
let cb = gui.draw_on_subpass_image(dimensions.into());
builder
// Before we can draw, we have to *enter a render pass*.
.begin_render_pass(
RenderPassBeginInfo {
// A list of values to clear the attachments with. This list contains
// one item for each attachment in the render pass. In this case,
// there is only one attachment, and we clear it with a blue color.
//
// Only attachments that have `LoadOp::Clear` are provided with clear
// values, any others should use `ClearValue::None` as the clear value.
clear_values: vec![
Some([0.12, 0.1, 0.1, 1.0].into()),
Some(1.0.into()),
],
..RenderPassBeginInfo::framebuffer(
framebuffers[image_index as usize].clone(),
)
},
// The contents of the first (and only) subpass. This can be either
// `Inline` or `SecondaryCommandBuffers`. The latter is a bit more advanced
// and is not covered here.
SubpassContents::Inline,
)
.unwrap()
// We are now inside the first subpass of the render pass. We add a draw command.
//
// The last two parameters contain the list of resources to pass to the shaders.
// Since we used an `EmptyPipeline` object, the objects have to be `()`.
.set_viewport(0, [viewport.clone()])
.bind_pipeline_graphics(pipeline.clone())
/*.bind_descriptor_sets(
PipelineBindPoint::Graphics,
pipeline.layout().clone(),
0,
set,
)*/
.bind_vertex_buffers(0, vertex_buffer.clone())
.push_constants(pipeline.layout().clone(), 0, uniform_data)
.draw(vertex_buffer.len() as u32, 1, 0, 0)
.unwrap()
// We leave the render pass. Note that if we had multiple
// subpasses we could have called `next_subpass` to jump to the next subpass.
.next_subpass(SubpassContents::SecondaryCommandBuffers)
.unwrap()
.execute_commands(cb)
.unwrap()
.end_render_pass()
.unwrap();
// Finish building the command buffer by calling `build`.
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
// The color output is now expected to contain our triangle. But in order to show it on
// the screen, we have to *present* the image by calling `present`.
//
// This function does not actually present the image immediately. Instead it submits a
// present command at the end of the queue. This means that it will only be presented once
// the GPU has finished executing the command buffer that draws the triangle.
.then_swapchain_present(
queue.clone(),
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("Failed to flush future: {:?}", e);
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
_ => (),
}
});
}
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
allocator: &StandardMemoryAllocator,
images: &[Arc<SwapchainImage>],
render_pass: Arc<RenderPass>,
viewport: &mut Viewport,
) -> Vec<Arc<Framebuffer>> {
let dimensions = images[0].dimensions().width_height();
viewport.dimensions = [dimensions[0] as f32, dimensions[1] as f32];
let depth_buffer = ImageView::new_default(
AttachmentImage::transient(allocator, dimensions, Format::D16_UNORM).unwrap(),
)
.unwrap();
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view, depth_buffer.clone()],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}