diff --git a/Windows/mlp_model.py b/Windows/mlp_model.py index 9401ceaf7ee10043735517151c3fe736895d905d..0cc5645457e69932afbe44e475f4636332bc7c3b 100644 --- a/Windows/mlp_model.py +++ b/Windows/mlp_model.py @@ -9,7 +9,7 @@ import joblib class MLPClassifier: - def __init__(self, num_inputs=2, num_outputs=4, num_hiddens=10, lr=0.01, num_epochs=400, batch_size=2010, + def __init__(self, num_inputs=2, num_outputs=2, num_hiddens=10, lr=0.001, num_epochs=300, batch_size=2010, data_dir='Data/Data'): self.num_inputs = num_inputs self.num_outputs = num_outputs @@ -36,7 +36,7 @@ class MLPClassifier: return H @ self.w2 + self.b2 def load_data(self): - classes = ['HandClosed', 'HandOpen', 'WristExtension', 'WristFlexation'] + classes = ['HandClosed', 'HandOpen'] data = [] labels = [] for label, class_name in enumerate(classes): @@ -51,6 +51,7 @@ class MLPClassifier: data = torch.tensor(np.vstack(data), dtype=torch.float32) labels = torch.tensor(labels, dtype=torch.long) + print(labels) return data, labels def load_data_loaders(self): @@ -119,18 +120,30 @@ class MLPClassifier: if __name__ == '__main__': mlp_classifier = MLPClassifier() + #mlp_classifier.run() file_path='trained_mlp.pkl' if not os.path.exists(file_path): mlp_classifier.run() - test_data = torch.tensor([[97,58], [25,34], [42,7],[298,9],[10,39]], dtype=torch.float32) + ''' + np.random.seed(42) + num_random_points = 1000 + random_data = np.random.uniform(low=0, high=100, size=(num_random_points, 2)) + test_data = torch.tensor(random_data, dtype=torch.float32) + + predictions = mlp_classifier.predict(test_data) + print("Predictions:", predictions.numpy()) + ''' + + + + test_data = torch.tensor([[32,5], [20,5],[30,6],[29,23],[24,6]], dtype=torch.float32) - # 进行预测 predictions = mlp_classifier.predict(test_data) - # 输出预测结果 print("Predictions:", predictions.numpy()) +