diff --git a/integration/RP2040IMUEMG.py b/integration/RP2040IMUEMG.py new file mode 100644 index 0000000000000000000000000000000000000000..6c9835ab22a54db0bace9c6ad44a81538f86fd19 --- /dev/null +++ b/integration/RP2040IMUEMG.py @@ -0,0 +1,154 @@ +from vpython import * +import numpy as np +from time import * +import math +import serial + +column_limit = 10 # Adjusted to account for two EMG values plus the others + +arduino = serial.Serial('COM8', 115200) +sleep(1) + +# Conversions +toRad = 2 * np.pi / 360 +toDeg = 1 / toRad + +scene.range = 5 +scene.forward = vector(-1, -1, -1) +scene.width = 600 +scene.height = 600 + +Xarrow = arrow(axis=vector(1, 0, 0), length=2, shaftwidth=.1, color=color.red) +Yarrow = arrow(axis=vector(0, 1, 0), length=2, shaftwidth=.1, color=color.green) +Zarrow = arrow(axis=vector(0, 0, 1), length=4, shaftwidth=.1, color=color.blue) + +frontArrow = arrow(axis=vector(1, 0, 0), length=4, shaftwidth=.1, color=color.purple) +upArrow = arrow(axis=vector(0, 1, 0), length=1, shaftwidth=.1, color=color.magenta) +sideArrow = arrow(axis=vector(0, 0, 1), length=2, shaftwidth=.1, color=color.orange) + +bBoard = box(length=3, width=4, height=.2, color=color.white, opacity=0.8, pos=vector(0, 0, 0)) +bno = box(color=color.blue, length=1, width=.75, height=0.1, pos=vector(-0.5, 0.1 + 0.05, 0)) +nano = box(length=1.75, width=.6, height=.1, pos=vector(-2, .1 + .05, 0), color=color.green) + +myObj = compound([bBoard, bno, nano]) +count = 0 + +averageroll = 0 +averageyaw = 0 +averagepitch = 0 +averageemg1 = 0 +averageemg2 = 0 + +# Motor positions +M1 = 90 +M2 = 90 +M3 = 45 +M4 = 90 +M5 = 90 +M6 = 10 +iterations = 10 # EMG measurements to get average + +while True: # Replace with True to run forever + try: + while arduino.inWaiting() == 0: + pass + + dataPacket = arduino.readline() + dataPacket = dataPacket.decode() + cleandata = dataPacket.replace("\r\n", "") + row = cleandata.strip().split(',') + + if len(row) == column_limit: + splitPacket = cleandata.split(',') + + emg1 = float(splitPacket[0]) # First EMG sensor data + emg2 = float(splitPacket[1]) # Second EMG sensor data + print(f"emg1: {emg1}, emg2: {emg2}") + + q0 = float(splitPacket[2]) # qw + q1 = float(splitPacket[3]) # qx + q2 = float(splitPacket[4]) # qy + q3 = float(splitPacket[5]) # qz + + # Calibration Statuses + aC = float(splitPacket[6]) # Accelerometer + gC = float(splitPacket[7]) # Gyroscope + mC = float(splitPacket[8]) # Magnetometer + sC = float(splitPacket[9]) # Whole System + + roll = atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) + pitch = -asin(2 * (q0 * q2 - q3 * q1)) + yaw = -atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) + + k = vector(cos(yaw) * cos(pitch), sin(pitch), sin(yaw) * cos(pitch)) # x vector + y = vector(0, 1, 0) # y vector: pointing down + s = cross(k, y) # this is pointing to the side + v = cross(s, k) # the up vector + vrot = v * cos(roll) + cross(k, v) * sin(roll) + + frontArrow.axis = k + sideArrow.axis = cross(k, vrot) + upArrow.axis = vrot + myObj.axis = k + myObj.up = vrot + sideArrow.length = 2 + frontArrow.length = 4 + upArrow.length = 1 + + averageroll += roll * toDeg + averageyaw += yaw * toDeg + averagepitch += pitch * toDeg + averageemg1 += emg1 + averageemg2 += emg2 + + if count == iterations: + count = 0 + averageroll = averageroll / iterations + averageyaw = averageyaw / iterations + averagepitch = averagepitch / iterations + averageemg1 = averageemg1 / iterations + averageemg2 = averageemg2 / iterations + + averageroll = round(averageroll) + averageyaw = round(averageyaw) + averagepitch = round(averagepitch) + + if 0 < averageyaw < 180: + M1 = averageyaw + if 0 < averageroll < 180: + M5 = averageroll + + if averagepitch < (-20): + M2 = 50 + M3 = 0 + M4 = 135 + elif (-20) <= averagepitch <= 0: + M2 = averagepitch * 2 + 90 + M3 = 0 + M4 = (averagepitch * (-2.25)) + 90 + elif 0 < averagepitch <= 90: + M2 = 90 + M3 = averagepitch + M4 = 90 - averagepitch + elif averagepitch > 90: + M2 = 90 + M3 = 90 + M4 = 0 + + if averageemg1 > 7.1 or averageemg2 > 7.1: + M6 = 75 + else: + M6 = 10 + + data_to_send = [M1, M2, M3, M4, M5, M6] + + averageyaw = 0 + averageroll = 0 + averagepitch = 0 + averageemg1 = 0 + averageemg2 = 0 + else: + count += 1 + except Exception as e: + print(f"Error: {e}") + pass diff --git a/integration/Window2.py b/integration/Window2.py index 084839745f9fa5b4812136d3585d41257ebf1440..c32f166f8344db94a8131e6d0baa9c97391cd056 100644 --- a/integration/Window2.py +++ b/integration/Window2.py @@ -9,6 +9,9 @@ import serial.tools.list_ports from time import sleep import math import time +import socket +import os +from PIL import Image, ImageTk class Window: def __init__(self, root): @@ -56,8 +59,8 @@ class Window: - self.emg_data_1 = [-1] * 41 - self.emg_data_2 = [-1] * 41 + self.emg_data_1 = [-1.0] * 41 + self.emg_data_2 = [-1.0] * 41 #self.initial_IMU() #self._initialise_EMG_graph() @@ -71,9 +74,9 @@ class Window: def initial_IMU(self): # Serial Port Setup - if'COM7' in self.ports:#port maybe different on different laptop + if'COM8' in self.ports:#port maybe different on different laptop - self.label2 = tk.Label(self.frame2, text="Port: COM7 ") + self.label2 = tk.Label(self.frame2, text="Port: COM8 ") self.label2.place(relx=0.35, rely=0.8, anchor='center') self.label1 = tk.Label(self.frame2, text="click the Connect button to see the animation", @@ -185,9 +188,9 @@ class Window: def _initialise_EMG_graph(self): - if 'COM7' in self.ports:#port maybe different on different laptop + if 'COM8' in self.ports:#port maybe different on different laptop - self.label2 = tk.Label(self.frame3, text="Port: COM7 ") + self.label2 = tk.Label(self.frame3, text="Port: COM8 ") self.label2.place(relx=0.23, rely=0.8, anchor='center') self.label1 = tk.Label(self.frame3, text="click the Connect button to see the animation", @@ -263,6 +266,10 @@ class Window: self.gesture_label = tk.Label(self.frame3, text=f"Gesture is :") self.gesture_label.config(font=("Arial", 12)) self.gesture_label.place(relx=0.1, rely=0.6, anchor='w') + self.gesture_predict = tk.Label(self.frame3, text="") + self.gesture_predict.config(font=("Arial", 12)) + self.gesture_predict.place(relx=0.2, rely=0.7, anchor='w') + self.a, self.b = self.load_Function() @@ -270,17 +277,17 @@ class Window: def start_data_transmission(self): # Set the transmitting flag to True and start the update loop - if 'COM7' in self.ports: + if 'COM8' in self.ports: if self.arduino==None: - self.arduino = serial.Serial('COM7', 115200) + self.arduino = serial.Serial('COM8', 115200) self.transmitting = True self.update_display() def start_EMG_data_transmission(self): # Set the transmitting flag to True and start the update loop - if 'COM7' in self.ports: + if 'COM8' in self.ports: if self.arduino==None: - self.arduino = serial.Serial('COM7', 115200) + self.arduino = serial.Serial('COM8', 115200) self.EMG_transmitting = True self.EMG_Display() @@ -326,14 +333,41 @@ class Window: row = cleandata.strip().split(',') - if len(row) == 6: + if len(row) == 10: splitPacket = cleandata.split(',') - emg1 = float(splitPacket[0]) # emg sensor data - emg2 = float(splitPacket[1]) q0 = float(splitPacket[2]) # qw q1 = float(splitPacket[3]) # qx q2 = float(splitPacket[4]) # qy q3 = float(splitPacket[5]) # qz + emg1 = float(splitPacket[0]) # First EMG sensor data + emg2 = float(splitPacket[1]) # Second EMG sensor data + print(f"emg1: {emg1}, emg2: {emg2}") + data = [emg1, emg2] + predictions = self.predict(data, self.a, self.b) + ges_predictions = None + if predictions is not None: + if predictions == -1: + ges_predictions = "Hand Open" + if predictions == 1: + ges_predictions = "Hand Close" + if predictions == 0: + ges_predictions = "Unknown" + self.gesture_predict.config(text=f"{ges_predictions}") + + + self.outer_EMG_Number.config(text=f"{emg1}") + self.inner_EMG_Number.config(text=f"{emg2}") + self.emg_data_1.append(emg1) + self.emg_data_1.pop(0) + self.emg_data_2.append(emg2) + self.emg_data_2.pop(0) + + # Update the line data to shift the line from right to left + self.line1.set_data(range(len(self.emg_data_1)), self.emg_data_1) + self.line2.set_data(range(len(self.emg_data_2)), self.emg_data_2) + + # Redraw the canvas + self.canvas1.draw() # Redraw the canvas # Calculate Angles roll = math.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) @@ -437,46 +471,333 @@ class Window: print(f"An error occurred: {e}") # Call update_display() again after 50 milliseconds - self.update_display_id =self.root.after(50, self.update_display) + self.update_display_id =self.root.after(1, self.update_display) def EMG_Display(self): data_collection_duration = 3 if self.EMG_transmitting: try: - #while ((self.arduino_EMG.inWaiting() > 0) and - # (self.EMG_transmitting == True)): - # data = self.arduino_EMG.readline() - emg_data = self.collect_emg_data() - if emg_data is not None: - print(f"EMG 1: {emg_data[0]} , EMG 2: {emg_data[1]}") + while self.arduino.inWaiting() > 0: + dataPacket = self.arduino.readline() + dataPacket = dataPacket.decode() + cleandata = dataPacket.replace("\r\n", "") + row = cleandata.strip().split(',') + + if len(row) == 10: + splitPacket = cleandata.split(',') + + + + except Exception as e: + print(f"An error occurred: {e}") + + # Call update_display() again after 50 milliseconds + self.EMG_display_id = self.root.after(1, self.EMG_Display) + + def _decode(self, serial_data): + serial_string = serial_data.decode(errors="ignore") + adc_string_1 = "" + adc_string_2 = "" + self.adc_values = [0, 0] + if '\n' in serial_string: + # remove new line character + serial_string = serial_string.replace("\n", "") + if serial_string != '': + # Convert number to binary, placing 0s in empty spots + serial_string = format(int(serial_string, 10), "024b") + # Separate the input number from the data + for i0 in range(0, 12): + adc_string_1 += serial_string[i0] + for i0 in range(12, 24): + adc_string_2 += serial_string[i0] + self.adc_values[0] = int(adc_string_1, base=2) + self.adc_values[1] = int(adc_string_2, base=2) + return self.adc_values + def load_Function(self,filename='trained.txt'): + try: + with open(filename, 'r') as file: + lines = file.readlines() + if len(lines) < 2: + raise ValueError("File content is insufficient to read the vertical line parameters.") + + a = float(lines[0].strip()) + b = float(lines[1].strip()) + print(f"a is {a}, b is {b}") + + return a,b + + except FileNotFoundError: + raise FileNotFoundError(f"The file {filename} does not exist.") + except ValueError as e: + raise ValueError(f"Error reading the file: {e}") + + def predict(self, point,a,b): + """判断点是否在垂直线的左侧或右侧""" + x, y = point + # 计算点的y值与垂直线的y值比较 + line_y = a * x + b + if y < line_y: + return -1 # 点在垂直线的左侧 + elif y > line_y: + return 1 # 点在垂直线的右侧 + else: + return 0 # 点在垂直线上(可选) +class WelcomeWindow: + def __init__(self, root): + self.root = root + self.root.title("Welcome") + self.width = 1000 + self.height = 600 + screen_width = self.root.winfo_screenwidth() + screen_height = self.root.winfo_screenheight() + x = (screen_width // 2) - (self.width // 2) + y = (screen_height // 2) - (self.height // 2) + self.root.geometry(f"{self.width}x{self.height}+{x}+{y}") + + # Configure the grid to be expandable + self.root.columnconfigure(0, weight=1) + self.root.columnconfigure(1, weight=1) + self.root.rowconfigure(0, weight=1) + self.root.rowconfigure(1, weight=1) + + try: + self.bg_image = Image.open("backGrond.jpg") + print("Image loaded successfully") + self.bg_image = self.bg_image.resize((self.width, self.height), Image.Resampling.LANCZOS) + self.bg_photo = ImageTk.PhotoImage(self.bg_image) + + self.bg_label = tk.Label(self.root, image=self.bg_photo) + self.bg_label.place(x=0, y=0, relwidth=1, relheight=1) + except Exception as e: + print(f"Error loading image: {e}") + + #self.frame1 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=self.height) + #self.frame1.grid(row=0, column=0, columnspan=2, rowspan=2, sticky="nsew") + #self.button1 = tk.Button(self.frame1, text="Start", command=self.startButton) + #self.button1.place(relx=0.5, rely=0.8, anchor='center') + self.button1 = tk.Button(self.root, text="Start", command=self.startButton,width=18, + height=2, font=("Helvetica", 15)) + self.button1.place(relx=0.8, rely=0.8, anchor='center') # Position the button relative to the root window + + def startButton(self): + self.root.destroy() # Close the welcome window + new_root = tk.Tk() + app = trainingInterface(new_root) + new_root.mainloop() + +class trainingInterface: + def __init__(self, root): + self.root = root + self.root.title("preparation Interface") + self.width = 1000 + self.height = 600 + self.width = 1000 + self.height = 600 + screen_width = self.root.winfo_screenwidth() + screen_height = self.root.winfo_screenheight() + x = (screen_width // 2) - (self.width // 2) + y = (screen_height // 2) - (self.height // 2) + self.root.geometry(f"{self.width}x{self.height}+{x}+{y}") + self.ports = [port.device for port in serial.tools.list_ports.comports()] + + # Configure the grid to be expandable + self.root.columnconfigure(0, weight=1) + self.root.columnconfigure(1, weight=1) + self.root.rowconfigure(0, weight=1) + self.root.rowconfigure(1, weight=1) + + + # Create a frame + self.frame1 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=(self.height *2/ 3)) + self.frame1.grid(row=0, column=0, padx=10, pady=10, sticky="nsew") + + + self.frame2 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=self.height *1/ 3) + self.frame2.grid(row=1, column=0, padx=10, pady=10, sticky="nsew") + + self.initialEMGTraining() + if 'COM8' in self.ports: + + self.emg_data_1 = [-1.0] * 41 + self.emg_data_2 = [-1.0] * 41 + self.savingData=[] + self.openHandButton=tk.Button(self.frame2,text="Hand Open",command=self.EMG_connect_HandOpen,width=15, height=2,font=("Helvetica", 12)) + self.openHandButton.place(relx=0.3, rely=0.3, anchor='center') + self.handCloseButton=tk.Button(self.frame2,text="Hand Close",command=self.handCloseButton,width=15, height=2,font=("Helvetica", 12)) + self.handCloseButton.place(relx=0.7, rely=0.3, anchor='center') + self.gameStartButton = tk.Button(self.frame2, text="Start", command=self.startButton, width=15, + height=2,font=("Helvetica", 12)) + self.gameStartButton.place(relx=0.5, rely=0.5, anchor='center') + if 'COM8' not in self.ports: + self.label=tk.Label(self.frame2, text="No EMG device found, Please check the hardware connection",font=("Helvetica", 15)) + self.label.place(relx=0.5, rely=0.3, anchor='center') + self.gameStartButton = tk.Button(self.frame2, text="Start", command=self.startButton, width=15, + height=2, font=("Helvetica", 12)) + self.gameStartButton.place(relx=0.5, rely=0.5, anchor='center') + + def startButton(self): + self.root.destroy() # Close the welcome window + new_root = tk.Tk() + app = Window(new_root) + new_root.mainloop() + + def EMG_connect_HandOpen(self): + self.arduino_EMG = serial.Serial('COM8', 9600, timeout=1) + gesture = "handOpen" + self.start_countdown(11) + self.displayAndsaveDate() + + + def handCloseButton(self): + self.arduino_EMG = serial.Serial('COM8', 9600, timeout=1) + gesture = "handOpen" + self.start_countdown_close(11) + self.displayAndsaveDate() + + + def EMG_disconnect(self): + if self.arduino_EMG is not None: + self.arduino_EMG.close() + self.arduino_EMG = None + + def start_countdown(self, count): + if count > 0: + self.startSave=True + if count<11: + self.openHandButton.config(text=str(count)) + self.frame2.after(1000, self.start_countdown, count - 1) + else: + self.openHandButton.config(text="Hand Open") + self.startSave = False + self.savedDataOpen = [] + for i in self.savingData: + self.savedDataOpen.append(i) + print(f"open: {self.savedDataOpen}") + self.savingData.clear() + self.EMG_disconnect() + + def start_countdown_close(self, count): + if count > 0: + self.startSave=True + if count<11: + self.handCloseButton.config(text=str(count)) + self.frame2.after(1000, self.start_countdown_close, count - 1) + else: + self.handCloseButton.config(text="Hand Close") + self.startSave = False + self.savedDataClose=[] + for i in self.savingData: + self.savedDataClose.append(i) + self.savingData.clear() + print(f"close:{self.savedDataClose}") + self.EMG_disconnect() + self.trainData() + + def displayAndsaveDate(self): + if self.startSave: + try: + while ((self.arduino_EMG.inWaiting() > 0) ): + dataPacket = self.arduino_EMG.readline() + dataPacket = dataPacket.decode() + cleandata = dataPacket.replace("\r\n", "") + row = cleandata.strip().split(',') + + if len(row) == 10: + splitPacket = cleandata.split(',') + emg1 = float(splitPacket[0]) # First EMG sensor data + emg2 = float(splitPacket[1]) # Second EMG sensor data + print(f"emg1: {emg1}, emg2: {emg2}") + + + self.emg_data_1.append(emg1) + self.emg_data_1.pop(0) + self.emg_data_2.append(emg2) + self.emg_data_2.pop(0) + if self.startSave==True: + self.savingData.append([emg1,emg2]) + print(len(self.savingData)) - # Append the new data to the lists - if self.EMG_transmitting: - self.outer_EMG_Number.config(text=f"{emg_data[0]}") - self.inner_EMG_Number.config(text=f"{emg_data[1]}") - self.emg_data_1.append(emg_data[0]) - self.emg_data_1.pop(0) - self.emg_data_2.append(emg_data[1]) - self.emg_data_2.pop(0) # Update the line data to shift the line from right to left - self.line1.set_data(range(len(self.emg_data_1)), self.emg_data_1) - self.line2.set_data(range(len(self.emg_data_2)), self.emg_data_2) + self.line1.set_data(range(len(self.emg_data_1)), self.emg_data_1) + self.line2.set_data(range(len(self.emg_data_2)), self.emg_data_2) # Redraw the canvas - self.canvas1.draw() # Redraw the canvas + self.canvas1.draw() # Redraw the canvas - except Exception as e: - print(f"An error occurred: {e}") + except Exception as e: + print(f"An error occurred: {e}") + self.EMG_display_id = self.root.after(1, self.displayAndsaveDate) - # Call update_display() again after 50 milliseconds - self.EMG_display_id=self.root.after(50, self.EMG_Display) + + + + def initialEMGTraining(self): + self.EMG_transmitting = False + fig = Figure(figsize=(self.frame1.winfo_width() / 100, self.frame1.winfo_height() / 100)) + self.ax1 = fig.add_subplot(111) + + self.ax1.set_title("Electromyography Envelope", fontsize=14, pad=0) + self.ax1.set_xlim(0, 5) + self.ax1.set_ylim(0, 5) + self.ax1.set_xlabel("Sample (20 samples per second)", fontsize=8, labelpad=-2) + self.ax1.set_ylabel("Magnitude", labelpad=0) + self.ax1.set_xticks(np.arange(0, 41, 8)) + self.ax1.set_yticks(np.arange(0, 1001, 200)) + + for x_tick in self.ax1.get_xticks(): + self.ax1.axvline(x_tick, color='gray', linestyle='--', linewidth=0.5) + for y_tick in self.ax1.get_yticks(): + self.ax1.axhline(y_tick, color='gray', linestyle='--', linewidth=0.5) + + self.line1, = self.ax1.plot([], [], color='red', label='Outer Wrist Muscle (Extensor Carpi Ulnaris)') + self.line2, = self.ax1.plot([], [], color='blue', label='Inner Wrist Muscle (Flexor Carpi Radialis)') + self.ax1.legend(fontsize=9, loc='upper right') + + # Embed the plot in the tkinter frame + self.canvas1 = FigureCanvasTkAgg(fig, master=self.frame1) + self.canvas1.draw() + self.canvas1.get_tk_widget().pack(fill=tk.BOTH, expand=True) + + # Bind the resizing event to the figure update + self.frame1.bind("<Configure>", self.on_frame_resize) + + def on_frame_resize(self, event): + width = self.frame1.winfo_width() + height = self.frame1.winfo_height() + self.canvas1.get_tk_widget().config(width=width, height=height) + self.canvas1.draw() + + ''' + Train Data + ''' + + def trainData(self): + # 删除文件 'trained.txt',如果存在 + if os.path.exists('trained.txt'): + os.remove('trained.txt') + + if (self.savedDataClose != []) and (self.savedDataOpen != []): + vertical_line = Algorithm(self.savedDataClose, self.savedDataOpen) + print(f"垂直线方程: y = {vertical_line.a}x + {vertical_line.b}") + + # 创建新的 'trained.txt' 文件并写入内容 + with open('trained.txt', 'w') as file: + file.write(f"{vertical_line.a}\n") + file.write(f"{vertical_line.b}\n") + + test_points = [[2, 5], [3, 3], [4, 1]] + for point in test_points: + position = vertical_line.predict(point) + print(f"点 {point} 在垂直线的 {'左侧' if position == -1 else '右侧' if position == 1 else '上面/下面'}") + + return vertical_line def _decode(self, serial_data): serial_string = serial_data.decode(errors="ignore") @@ -501,7 +822,312 @@ class Window: return self.adc_values + +class Algorithm: + def __init__(self, list1, list2): + self.a, self.b = self.calculate_line_equation(list1, list2) + + def calculate_average(self, lst): + """计算列表中点的平均坐标""" + n = len(lst) + if n == 0: + return (0, 0) + sum_x = sum(point[0] for point in lst) + sum_y = sum(point[1] for point in lst) + return (sum_x / n, sum_y / n) + + def calculate_line_equation(self, list1, list2): + """计算垂直线方程 y = ax + b""" + avg1 = self.calculate_average(list1) + avg2 = self.calculate_average(list2) + + x1, y1 = avg1 + x2, y2 = avg2 + + # 计算斜率 + if x1 == x2: + raise ValueError("垂直线的斜率是未定义的,因为两个点在同一垂直线上。") + + slope = (y2 - y1) / (x2 - x1) + + # 垂直线的斜率是原斜率的负倒数 + perpendicular_slope = -1 / slope + + # 使用点斜式方程 y - y1 = m(x - x1) 转换为 y = ax + b 的形式 + a = perpendicular_slope + b = y1 - a * x1 + + return a, b + + def predict(self, point): + """判断点是否在垂直线的左侧或右侧""" + x, y = point + # 计算点的y值与垂直线的y值比较 + line_y = self.a * x + self.b + if y < line_y: + return -1 # 点在垂直线的左侧 + elif y > line_y: + return 1 # 点在垂直线的右侧 + else: + return 0 # 点在垂直线上(可选) + +class gameScreen: + def __init__(self, root): + self.root = root + self.root.title("game Interface") + self.width = 1000 + self.height = 600 + self.width = 1000 + self.height = 600 + screen_width = self.root.winfo_screenwidth() + screen_height = self.root.winfo_screenheight() + x = (screen_width // 2) - (self.width // 2) + y = (screen_height // 2) - (self.height // 2) + self.root.geometry(f"{self.width}x{self.height}+{x}+{y}") + self.ports = [port.device for port in serial.tools.list_ports.comports()] + + # Configure the grid to be expandable + self.root.columnconfigure(0, weight=1) + self.root.columnconfigure(1, weight=1) + self.root.rowconfigure(0, weight=1) + self.root.rowconfigure(1, weight=1) + + # Create a frame + self.frame1 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=(self.height * 1 / 2)) + self.frame1.grid(row=0, column=0, padx=10, pady=10, sticky="nsew") + + self.frame2 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=self.height * 1 / 2) + self.frame2.grid(row=1, column=0, padx=10, pady=10, sticky="nsew") + + if 'COM5' in self.ports : + self.arduino_EMG = serial.Serial('COM5', 9600, timeout=1) + self.outer_EMG_label = tk.Label(self.frame2, text=f"EMG for Extensor Carpi Ulnaris is :") + self.outer_EMG_label.config(font=("Arial", 12)) + self.outer_EMG_label.place(relx=0.1, rely=0.2, anchor='w') + self.outer_EMG_Number = tk.Label(self.frame2, text="", fg="red") + self.outer_EMG_Number.config(font=("Arial", 12)) + self.outer_EMG_Number.place(relx=0.2, rely=0.3, anchor='w') + self.inner_EMG_label = tk.Label(self.frame2, text=f"EMG for Flexor Carpi Radialis is :") + self.inner_EMG_label.config(font=("Arial", 12)) + self.inner_EMG_label.place(relx=0.1, rely=0.4, anchor='w') + self.inner_EMG_Number = tk.Label(self.frame2, text="", fg="blue") + self.inner_EMG_Number.config(font=("Arial", 12)) + self.inner_EMG_Number.place(relx=0.2, rely=0.5, anchor='w') + self.gesture_label = tk.Label(self.frame2, text=f"Gesture is :") + self.gesture_label.config(font=("Arial", 12)) + self.gesture_label.place(relx=0.1, rely=0.6, anchor='w') + self.gesture_predict = tk.Label(self.frame2, text="") + self.gesture_predict.config(font=("Arial", 12)) + self.gesture_predict.place(relx=0.2, rely=0.7, anchor='w') + self.a, self.b = self.load_Function() + self.emg_thread = threading.Thread(target=self.EMG_Display) + self.emg_thread.start() + + + #self.EMG_Display() + if 'COM6' in self.ports: + self.column_limit = 9 + self.last_averageRoll = 0 + self.last_averageyaw = 0 + self.last_averagePitch = 0 + + self.averageroll = 0 + self.averageyaw = 0 + self.averagepitch = 0 + self.last_print_time = time() + self.arduino = serial.Serial('COM6', 115200) + self.roll_label = tk.Label(self.frame1, text="roll is : ") + self.roll_label.config(font=("Arial", 12)) + self.roll_label.place(relx=0.2, rely=0.3, anchor='w') + self.pitch_label = tk.Label(self.frame1, text="pitch is : ") + self.pitch_label.config(font=("Arial", 12)) + self.pitch_label.place(relx=0.2, rely=0.4, anchor='w') + self.yaw_label = tk.Label(self.frame1, text="yaw is : ") + self.yaw_label.config(font=("Arial", 12)) + self.yaw_label.place(relx=0.2, rely=0.5, anchor='w') + self.imu_thread = threading.Thread(target=self.IMU_Display) + self.imu_thread.start() + #self.IMU_Display() + + + def _decode(self, serial_data): + serial_string = serial_data.decode(errors="ignore") + adc_string_1 = "" + adc_string_2 = "" + self.adc_values = [0, 0] + if '\n' in serial_string: + # remove new line character + serial_string = serial_string.replace("\n", "") + if serial_string != '': + # Convert number to binary, placing 0s in empty spots + serial_string = format(int(serial_string, 10), "024b") + + # Separate the input number from the data + for i0 in range(0, 12): + adc_string_1 += serial_string[i0] + for i0 in range(12, 24): + adc_string_2 += serial_string[i0] + + self.adc_values[0] = int(adc_string_1, base=2) + self.adc_values[1] = int(adc_string_2, base=2) + + return self.adc_values + + def EMG_Display(self): + try: + while (self.arduino_EMG.inWaiting() > 0): + data = self.arduino_EMG.readline() + emg_data = self._decode(data) + if emg_data is not None: + print(f"EMG 1: {emg_data[0]} , EMG 2: {emg_data[1]}") + self.outer_EMG_Number.config(text=f"{emg_data[0]}") + self.inner_EMG_Number.config(text=f"{emg_data[1]}") + data = [emg_data[0], emg_data[1]] + predictions = self.predict(data, self.a, self.b) + ges_predictions = None + if predictions is not None: + if predictions == -1: + ges_predictions = "Hand Open" + if predictions == 1: + ges_predictions = "Hand Close" + if predictions == 0: + ges_predictions = "Unknown" + self.gesture_predict.config(text=f"{ges_predictions}") + self.send_command_to_unity(f"Hand :{ges_predictions}") + + + except Exception as e: + print(f"An error occurred: {e}") + + # Call update_display() again after 50 milliseconds + self.EMG_display_id = self.root.after(1, self.EMG_Display) + + def IMU_Display(self): + while True: + try: + while self.arduino.inWaiting() == 0: + pass + + dataPacket = self.arduino.readline().decode() + cleandata = dataPacket.replace("\r\n", "") + row = cleandata.strip().split(',') + + if len(row) == self.column_limit: + splitPacket = cleandata.split(',') + + emg = float(splitPacket[0]) # emg sensor data + q0 = float(splitPacket[1]) # qw + q1 = float(splitPacket[2]) # qx + q2 = float(splitPacket[3]) # qy + q3 = float(splitPacket[4]) # qz + + # Callibration Statuses + aC = float(splitPacket[5]) # Accelerometer + gC = float(splitPacket[6]) # Gyroscope + mC = float(splitPacket[7]) # Magnetometer + sC = float(splitPacket[8]) # Whole System + + # calculate angle + roll = math.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) + pitch = -math.asin(2 * (q0 * q2 - q3 * q1)) + yaw = -math.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) + + self.roll_label.config(text="roll is : " + str(roll)) + self.pitch_label.config(text="pitch is : " + str(pitch)) + self.yaw_label.config(text="yaw is : " + str(yaw)) + + current_time = time() + + if current_time - self.last_print_time >= 0.01: + + print(f"roll is: {roll}") + print(f"last roll is: {self.last_averageRoll}") + differ_roll = self.last_averageRoll - roll + print(f"differ roll is: {differ_roll}") + CalculatedAngle = differ_roll * 3000 / 2.5 + print(f"CalculatedAngle is: {CalculatedAngle}") + if (differ_roll) > 0: + self.send_command_to_unity(f"Command : down {CalculatedAngle}") + if (differ_roll) < 0: + self.send_command_to_unity(f"Command : up {-CalculatedAngle}") + + if (yaw < 0): + yaw = -yaw + + print(f"yaw is: {yaw}") + print(f"last yaw is: {self.last_averageyaw}") + differ_yaw = self.last_averageyaw - yaw + print(f"differ yaw is: {differ_yaw}") + yawAngle = differ_yaw * 90 / 2 + print(f"yawAngle is: {yawAngle}") + if (differ_yaw) < 0: + self.send_command_to_unity(f"Command : back {-yawAngle}") + if (differ_yaw) > 0: + self.send_command_to_unity(f"Command : roll {yawAngle}") + + self.last_print_time = current_time + self.last_averageRoll = roll + self.last_averageyaw = yaw + self.last_averagePitch = pitch + + except Exception as e: + print("Error:", str(e)) + + + def load_Function(self,filename='trained.txt'): + try: + with open(filename, 'r') as file: + lines = file.readlines() + if len(lines) < 2: + raise ValueError("File content is insufficient to read the vertical line parameters.") + + a = float(lines[0].strip()) + b = float(lines[1].strip()) + print(f"a is {a}, b is {b}") + + return a,b + + except FileNotFoundError: + raise FileNotFoundError(f"The file {filename} does not exist.") + except ValueError as e: + raise ValueError(f"Error reading the file: {e}") + + def predict(self, point, a, b): + """判断点是否在垂直线的左侧或右侧""" + x, y = point + # 计算点的y值与垂直线的y值比较 + line_y = a * x + b + if y < line_y: + return -1 # 点在垂直线的左侧 + elif y > line_y: + return 1 # 点在垂直线的右侧 + else: + return 0 # 点在垂直线上(可选) + + def send_command_to_unity(self,command): + host = '127.0.0.1' # Unity服务器的IP地址 + port = 65432 # Unity服务器监听的端口 + + with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: + s.connect((host, port)) + s.sendall(command.encode()) + response = s.recv(1024) + print('Received', repr(response)) + + + + + +if __name__ == "__main__": + root1 = tk.Tk() + appWelcome = WelcomeWindow(root1) + root1.mainloop() + + +''' if __name__ == "__main__": root = tk.Tk() app = Window(root) - root.mainloop() \ No newline at end of file + root.mainloop() + +'''