diff --git a/integration/RP2040IMUEMG.py b/integration/RP2040IMUEMG.py
new file mode 100644
index 0000000000000000000000000000000000000000..6c9835ab22a54db0bace9c6ad44a81538f86fd19
--- /dev/null
+++ b/integration/RP2040IMUEMG.py
@@ -0,0 +1,154 @@
+from vpython import *
+import numpy as np
+from time import *
+import math
+import serial
+
+column_limit = 10 # Adjusted to account for two EMG values plus the others
+
+arduino = serial.Serial('COM8', 115200)
+sleep(1)
+
+# Conversions
+toRad = 2 * np.pi / 360
+toDeg = 1 / toRad
+
+scene.range = 5
+scene.forward = vector(-1, -1, -1)
+scene.width = 600
+scene.height = 600
+
+Xarrow = arrow(axis=vector(1, 0, 0), length=2, shaftwidth=.1, color=color.red)
+Yarrow = arrow(axis=vector(0, 1, 0), length=2, shaftwidth=.1, color=color.green)
+Zarrow = arrow(axis=vector(0, 0, 1), length=4, shaftwidth=.1, color=color.blue)
+
+frontArrow = arrow(axis=vector(1, 0, 0), length=4, shaftwidth=.1, color=color.purple)
+upArrow = arrow(axis=vector(0, 1, 0), length=1, shaftwidth=.1, color=color.magenta)
+sideArrow = arrow(axis=vector(0, 0, 1), length=2, shaftwidth=.1, color=color.orange)
+
+bBoard = box(length=3, width=4, height=.2, color=color.white, opacity=0.8, pos=vector(0, 0, 0))
+bno = box(color=color.blue, length=1, width=.75, height=0.1, pos=vector(-0.5, 0.1 + 0.05, 0))
+nano = box(length=1.75, width=.6, height=.1, pos=vector(-2, .1 + .05, 0), color=color.green)
+
+myObj = compound([bBoard, bno, nano])
+count = 0
+
+averageroll = 0
+averageyaw = 0
+averagepitch = 0
+averageemg1 = 0
+averageemg2 = 0
+
+# Motor positions
+M1 = 90
+M2 = 90
+M3 = 45
+M4 = 90
+M5 = 90
+M6 = 10
+iterations = 10  # EMG measurements to get average
+
+while True:  # Replace with True to run forever
+    try:
+        while arduino.inWaiting() == 0:
+            pass
+
+        dataPacket = arduino.readline()
+        dataPacket = dataPacket.decode()
+        cleandata = dataPacket.replace("\r\n", "")
+        row = cleandata.strip().split(',')
+
+        if len(row) == column_limit:
+            splitPacket = cleandata.split(',')
+            
+            emg1 = float(splitPacket[0])  # First EMG sensor data
+            emg2 = float(splitPacket[1])  # Second EMG sensor data
+            print(f"emg1: {emg1}, emg2: {emg2}")
+            
+            q0 = float(splitPacket[2])  # qw
+            q1 = float(splitPacket[3])  # qx
+            q2 = float(splitPacket[4])  # qy
+            q3 = float(splitPacket[5])  # qz
+
+            # Calibration Statuses
+            aC = float(splitPacket[6])  # Accelerometer
+            gC = float(splitPacket[7])  # Gyroscope
+            mC = float(splitPacket[8])  # Magnetometer
+            sC = float(splitPacket[9])  # Whole System
+
+            roll = atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
+            pitch = -asin(2 * (q0 * q2 - q3 * q1))
+            yaw = -atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
+
+            k = vector(cos(yaw) * cos(pitch), sin(pitch), sin(yaw) * cos(pitch))  # x vector
+            y = vector(0, 1, 0)  # y vector: pointing down
+            s = cross(k, y)  # this is pointing to the side
+            v = cross(s, k)  # the up vector
+            vrot = v * cos(roll) + cross(k, v) * sin(roll)
+
+            frontArrow.axis = k
+            sideArrow.axis = cross(k, vrot)
+            upArrow.axis = vrot
+            myObj.axis = k
+            myObj.up = vrot
+            sideArrow.length = 2
+            frontArrow.length = 4
+            upArrow.length = 1
+
+            averageroll += roll * toDeg
+            averageyaw += yaw * toDeg
+            averagepitch += pitch * toDeg
+            averageemg1 += emg1
+            averageemg2 += emg2
+
+            if count == iterations:
+                count = 0
+                averageroll = averageroll / iterations
+                averageyaw = averageyaw / iterations
+                averagepitch = averagepitch / iterations
+                averageemg1 = averageemg1 / iterations
+                averageemg2 = averageemg2 / iterations
+
+                averageroll = round(averageroll)
+                averageyaw = round(averageyaw)
+                averagepitch = round(averagepitch)
+
+                if 0 < averageyaw < 180:
+                    M1 = averageyaw
+                if 0 < averageroll < 180:
+                    M5 = averageroll
+
+                if averagepitch < (-20):
+                    M2 = 50
+                    M3 = 0
+                    M4 = 135
+                elif (-20) <= averagepitch <= 0:
+                    M2 = averagepitch * 2 + 90
+                    M3 = 0
+                    M4 = (averagepitch * (-2.25)) + 90
+                elif 0 < averagepitch <= 90:
+                    M2 = 90
+                    M3 = averagepitch
+                    M4 = 90 - averagepitch
+                elif averagepitch > 90:
+                    M2 = 90
+                    M3 = 90
+                    M4 = 0
+
+                if averageemg1 > 7.1 or averageemg2 > 7.1:
+                    M6 = 75
+                else:
+                    M6 = 10
+
+                data_to_send = [M1, M2, M3, M4, M5, M6]
+                
+                averageyaw = 0
+                averageroll = 0
+                averagepitch = 0
+                averageemg1 = 0
+                averageemg2 = 0
+            else:
+                count += 1
+    except Exception as e:
+        print(f"Error: {e}")
+        pass
diff --git a/integration/Window2.py b/integration/Window2.py
index 084839745f9fa5b4812136d3585d41257ebf1440..c32f166f8344db94a8131e6d0baa9c97391cd056 100644
--- a/integration/Window2.py
+++ b/integration/Window2.py
@@ -9,6 +9,9 @@ import serial.tools.list_ports
 from time import sleep
 import math
 import time
+import socket
+import os
+from PIL import Image, ImageTk
 
 class Window:
     def __init__(self, root):
@@ -56,8 +59,8 @@ class Window:
 
 
 
-        self.emg_data_1 = [-1] * 41
-        self.emg_data_2 = [-1] * 41
+        self.emg_data_1 = [-1.0] * 41
+        self.emg_data_2 = [-1.0] * 41
 
         #self.initial_IMU()
         #self._initialise_EMG_graph()
@@ -71,9 +74,9 @@ class Window:
 
     def initial_IMU(self):
         # Serial Port Setup
-        if'COM7' in self.ports:#port maybe different on different laptop
+        if'COM8' in self.ports:#port maybe different on different laptop
 
-            self.label2 = tk.Label(self.frame2, text="Port: COM7 ")
+            self.label2 = tk.Label(self.frame2, text="Port: COM8 ")
             self.label2.place(relx=0.35, rely=0.8, anchor='center')
             self.label1 = tk.Label(self.frame2,
                                    text="click the Connect button to see the animation",
@@ -185,9 +188,9 @@ class Window:
 
 
     def _initialise_EMG_graph(self):
-        if 'COM7' in self.ports:#port maybe different on different laptop
+        if 'COM8' in self.ports:#port maybe different on different laptop
 
-            self.label2 = tk.Label(self.frame3, text="Port: COM7 ")
+            self.label2 = tk.Label(self.frame3, text="Port: COM8 ")
             self.label2.place(relx=0.23, rely=0.8, anchor='center')
             self.label1 = tk.Label(self.frame3,
                                    text="click the Connect button to see the animation",
@@ -263,6 +266,10 @@ class Window:
         self.gesture_label = tk.Label(self.frame3, text=f"Gesture is :")
         self.gesture_label.config(font=("Arial", 12))
         self.gesture_label.place(relx=0.1, rely=0.6, anchor='w')
+        self.gesture_predict = tk.Label(self.frame3, text="")
+        self.gesture_predict.config(font=("Arial", 12))
+        self.gesture_predict.place(relx=0.2, rely=0.7, anchor='w')
+        self.a, self.b = self.load_Function()
 
 
 
@@ -270,17 +277,17 @@ class Window:
 
     def start_data_transmission(self):
         # Set the transmitting flag to True and start the update loop
-        if 'COM7' in self.ports:
+        if 'COM8' in self.ports:
             if self.arduino==None:
-             self.arduino = serial.Serial('COM7', 115200)
+             self.arduino = serial.Serial('COM8', 115200)
         self.transmitting = True
         self.update_display()
 
     def start_EMG_data_transmission(self):
         # Set the transmitting flag to True and start the update loop
-        if 'COM7' in self.ports:
+        if 'COM8' in self.ports:
             if self.arduino==None:
-             self.arduino = serial.Serial('COM7', 115200)
+             self.arduino = serial.Serial('COM8', 115200)
         self.EMG_transmitting = True
         self.EMG_Display()
 
@@ -326,14 +333,41 @@ class Window:
                     row = cleandata.strip().split(',')
 
 
-                    if len(row) == 6:
+                    if len(row) == 10:
                         splitPacket = cleandata.split(',')
-                        emg1 = float(splitPacket[0])  # emg sensor data
-                        emg2 = float(splitPacket[1])
                         q0 = float(splitPacket[2])  # qw
                         q1 = float(splitPacket[3])  # qx
                         q2 = float(splitPacket[4])  # qy
                         q3 = float(splitPacket[5])  # qz
+                        emg1 = float(splitPacket[0])  # First EMG sensor data
+                        emg2 = float(splitPacket[1])  # Second EMG sensor data
+                        print(f"emg1: {emg1}, emg2: {emg2}")
+                        data = [emg1, emg2]
+                        predictions = self.predict(data, self.a, self.b)
+                        ges_predictions = None
+                        if predictions is not None:
+                            if predictions == -1:
+                                ges_predictions = "Hand Open"
+                            if predictions == 1:
+                                ges_predictions = "Hand Close"
+                            if predictions == 0:
+                                ges_predictions = "Unknown"
+                        self.gesture_predict.config(text=f"{ges_predictions}")
+
+
+                        self.outer_EMG_Number.config(text=f"{emg1}")
+                        self.inner_EMG_Number.config(text=f"{emg2}")
+                        self.emg_data_1.append(emg1)
+                        self.emg_data_1.pop(0)
+                        self.emg_data_2.append(emg2)
+                        self.emg_data_2.pop(0)
+
+                            # Update the line data to shift the line from right to left
+                        self.line1.set_data(range(len(self.emg_data_1)), self.emg_data_1)
+                        self.line2.set_data(range(len(self.emg_data_2)), self.emg_data_2)
+
+                            # Redraw the canvas
+                        self.canvas1.draw()  # Redraw the canvas
 
                         # Calculate Angles
                         roll = math.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
@@ -437,46 +471,333 @@ class Window:
                 print(f"An error occurred: {e}")
 
             # Call update_display() again after 50 milliseconds
-            self.update_display_id =self.root.after(50, self.update_display)
+            self.update_display_id =self.root.after(1, self.update_display)
 
     def EMG_Display(self):
         data_collection_duration = 3
         if self.EMG_transmitting:
             try:
-             #while ((self.arduino_EMG.inWaiting() > 0) and
-              #         (self.EMG_transmitting == True)):
-               # data = self.arduino_EMG.readline()
-                emg_data = self.collect_emg_data()
-                if emg_data is not None:
-                    print(f"EMG 1: {emg_data[0]} , EMG 2: {emg_data[1]}")
+                while self.arduino.inWaiting() > 0:
+                    dataPacket = self.arduino.readline()
+                    dataPacket = dataPacket.decode()
+                    cleandata = dataPacket.replace("\r\n", "")
+                    row = cleandata.strip().split(',')
+
+                    if len(row) == 10:
+                        splitPacket = cleandata.split(',')
+
+
+
+            except Exception as e:
+                print(f"An error occurred: {e}")
+
+            # Call update_display() again after 50 milliseconds
+            self.EMG_display_id = self.root.after(1, self.EMG_Display)
+
+    def _decode(self, serial_data):
+        serial_string = serial_data.decode(errors="ignore")
+        adc_string_1 = ""
+        adc_string_2 = ""
+        self.adc_values = [0, 0]
+        if '\n' in serial_string:
+            # remove new line character
+            serial_string = serial_string.replace("\n", "")
+            if serial_string != '':
+                # Convert number to binary, placing 0s in empty spots
+                serial_string = format(int(serial_string, 10), "024b")
 
+                # Separate the input number from the data
+                for i0 in range(0, 12):
+                    adc_string_1 += serial_string[i0]
+                for i0 in range(12, 24):
+                    adc_string_2 += serial_string[i0]
 
+                self.adc_values[0] = int(adc_string_1, base=2)
+                self.adc_values[1] = int(adc_string_2, base=2)
 
+                return self.adc_values
 
+    def load_Function(self,filename='trained.txt'):
+        try:
+            with open(filename, 'r') as file:
+                lines = file.readlines()
+                if len(lines) < 2:
+                    raise ValueError("File content is insufficient to read the vertical line parameters.")
+
+                a = float(lines[0].strip())
+                b = float(lines[1].strip())
+                print(f"a is {a}, b is {b}")
+
+                return a,b
+
+        except FileNotFoundError:
+            raise FileNotFoundError(f"The file {filename} does not exist.")
+        except ValueError as e:
+            raise ValueError(f"Error reading the file: {e}")
+
+    def predict(self, point,a,b):
+        """判断点是否在垂直线的左侧或右侧"""
+        x, y = point
+        # 计算点的y值与垂直线的y值比较
+        line_y = a * x + b
+        if y < line_y:
+            return -1  # 点在垂直线的左侧
+        elif y > line_y:
+            return 1  # 点在垂直线的右侧
+        else:
+            return 0  # 点在垂直线上(可选)
 
+class WelcomeWindow:
+    def __init__(self, root):
+        self.root = root
+        self.root.title("Welcome")
+        self.width = 1000
+        self.height = 600
+        screen_width = self.root.winfo_screenwidth()
+        screen_height = self.root.winfo_screenheight()
+        x = (screen_width // 2) - (self.width // 2)
+        y = (screen_height // 2) - (self.height // 2)
+        self.root.geometry(f"{self.width}x{self.height}+{x}+{y}")
+
+        # Configure the grid to be expandable
+        self.root.columnconfigure(0, weight=1)
+        self.root.columnconfigure(1, weight=1)
+        self.root.rowconfigure(0, weight=1)
+        self.root.rowconfigure(1, weight=1)
+
+        try:
+            self.bg_image = Image.open("backGrond.jpg")
+            print("Image loaded successfully")
+            self.bg_image = self.bg_image.resize((self.width, self.height), Image.Resampling.LANCZOS)
+            self.bg_photo = ImageTk.PhotoImage(self.bg_image)
+
+            self.bg_label = tk.Label(self.root, image=self.bg_photo)
+            self.bg_label.place(x=0, y=0, relwidth=1, relheight=1)
+        except Exception as e:
+            print(f"Error loading image: {e}")
+
+        #self.frame1 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=self.height)
+        #self.frame1.grid(row=0, column=0, columnspan=2, rowspan=2, sticky="nsew")
+        #self.button1 = tk.Button(self.frame1, text="Start", command=self.startButton)
+        #self.button1.place(relx=0.5, rely=0.8, anchor='center')
+        self.button1 = tk.Button(self.root, text="Start", command=self.startButton,width=18,
+                                             height=2, font=("Helvetica", 15))
+        self.button1.place(relx=0.8, rely=0.8, anchor='center')  # Position the button relative to the root window
+
+    def startButton(self):
+        self.root.destroy()  # Close the welcome window
+        new_root = tk.Tk()
+        app = trainingInterface(new_root)
+        new_root.mainloop()
+
+class trainingInterface:
+    def __init__(self, root):
+        self.root = root
+        self.root.title("preparation Interface")
+        self.width = 1000
+        self.height = 600
+        self.width = 1000
+        self.height = 600
+        screen_width = self.root.winfo_screenwidth()
+        screen_height = self.root.winfo_screenheight()
+        x = (screen_width // 2) - (self.width // 2)
+        y = (screen_height // 2) - (self.height // 2)
+        self.root.geometry(f"{self.width}x{self.height}+{x}+{y}")
+        self.ports = [port.device for port in serial.tools.list_ports.comports()]
+
+        # Configure the grid to be expandable
+        self.root.columnconfigure(0, weight=1)
+        self.root.columnconfigure(1, weight=1)
+        self.root.rowconfigure(0, weight=1)
+        self.root.rowconfigure(1, weight=1)
+
+
+        # Create a frame
+        self.frame1 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=(self.height *2/ 3))
+        self.frame1.grid(row=0, column=0, padx=10, pady=10, sticky="nsew")
+
+
+        self.frame2 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=self.height *1/ 3)
+        self.frame2.grid(row=1, column=0, padx=10, pady=10, sticky="nsew")
+
+        self.initialEMGTraining()
+        if 'COM8' in self.ports:
+
+            self.emg_data_1 = [-1.0] * 41
+            self.emg_data_2 = [-1.0] * 41
+            self.savingData=[]
+            self.openHandButton=tk.Button(self.frame2,text="Hand Open",command=self.EMG_connect_HandOpen,width=15, height=2,font=("Helvetica", 12))
+            self.openHandButton.place(relx=0.3, rely=0.3, anchor='center')
+            self.handCloseButton=tk.Button(self.frame2,text="Hand Close",command=self.handCloseButton,width=15, height=2,font=("Helvetica", 12))
+            self.handCloseButton.place(relx=0.7, rely=0.3, anchor='center')
+            self.gameStartButton = tk.Button(self.frame2, text="Start", command=self.startButton, width=15,
+                                         height=2,font=("Helvetica", 12))
+            self.gameStartButton.place(relx=0.5, rely=0.5, anchor='center')
+        if 'COM8' not in self.ports:
+            self.label=tk.Label(self.frame2, text="No EMG device found, Please check the hardware connection",font=("Helvetica", 15))
+            self.label.place(relx=0.5, rely=0.3, anchor='center')
+            self.gameStartButton = tk.Button(self.frame2, text="Start", command=self.startButton, width=15,
+                                             height=2, font=("Helvetica", 12))
+            self.gameStartButton.place(relx=0.5, rely=0.5, anchor='center')
+
+    def startButton(self):
+        self.root.destroy()  # Close the welcome window
+        new_root = tk.Tk()
+        app = Window(new_root)
+        new_root.mainloop()
+
+    def EMG_connect_HandOpen(self):
+        self.arduino_EMG = serial.Serial('COM8', 9600, timeout=1)
+        gesture = "handOpen"
+        self.start_countdown(11)
+        self.displayAndsaveDate()
+
+
+    def handCloseButton(self):
+        self.arduino_EMG = serial.Serial('COM8', 9600, timeout=1)
+        gesture = "handOpen"
+        self.start_countdown_close(11)
+        self.displayAndsaveDate()
+
+
+    def EMG_disconnect(self):
+        if self.arduino_EMG is not None:
+            self.arduino_EMG.close()
+            self.arduino_EMG = None
+
+    def start_countdown(self, count):
+        if count > 0:
+            self.startSave=True
+            if count<11:
+             self.openHandButton.config(text=str(count))
+            self.frame2.after(1000, self.start_countdown, count - 1)
+        else:
+            self.openHandButton.config(text="Hand Open")
+            self.startSave = False
+            self.savedDataOpen = []
+            for i in self.savingData:
+                self.savedDataOpen.append(i)
+            print(f"open: {self.savedDataOpen}")
+            self.savingData.clear()
+            self.EMG_disconnect()
+
+    def start_countdown_close(self, count):
+        if count > 0:
+            self.startSave=True
+            if count<11:
+             self.handCloseButton.config(text=str(count))
+            self.frame2.after(1000, self.start_countdown_close, count - 1)
+        else:
+            self.handCloseButton.config(text="Hand Close")
+            self.startSave = False
+            self.savedDataClose=[]
+            for i in self.savingData:
+             self.savedDataClose.append(i)
+            self.savingData.clear()
+            print(f"close:{self.savedDataClose}")
+            self.EMG_disconnect()
+            self.trainData()
+
+    def displayAndsaveDate(self):
+      if self.startSave:
+        try:
+            while ((self.arduino_EMG.inWaiting() > 0) ):
+                dataPacket = self.arduino_EMG.readline()
+                dataPacket = dataPacket.decode()
+                cleandata = dataPacket.replace("\r\n", "")
+                row = cleandata.strip().split(',')
+
+                if len(row) == 10:
+                    splitPacket = cleandata.split(',')
+                    emg1 = float(splitPacket[0])  # First EMG sensor data
+                    emg2 = float(splitPacket[1])  # Second EMG sensor data
+                    print(f"emg1: {emg1}, emg2: {emg2}")
+
+
+                    self.emg_data_1.append(emg1)
+                    self.emg_data_1.pop(0)
+                    self.emg_data_2.append(emg2)
+                    self.emg_data_2.pop(0)
+                    if self.startSave==True:
+                     self.savingData.append([emg1,emg2])
+                     print(len(self.savingData))
 
-                    # Append the new data to the lists
-                    if self.EMG_transmitting:
-                     self.outer_EMG_Number.config(text=f"{emg_data[0]}")
-                     self.inner_EMG_Number.config(text=f"{emg_data[1]}")
-                     self.emg_data_1.append(emg_data[0])
-                     self.emg_data_1.pop(0)
-                     self.emg_data_2.append(emg_data[1])
-                     self.emg_data_2.pop(0)
 
                     # Update the line data to shift the line from right to left
-                     self.line1.set_data(range(len(self.emg_data_1)), self.emg_data_1)
-                     self.line2.set_data(range(len(self.emg_data_2)), self.emg_data_2)
+                    self.line1.set_data(range(len(self.emg_data_1)), self.emg_data_1)
+                    self.line2.set_data(range(len(self.emg_data_2)), self.emg_data_2)
 
                     # Redraw the canvas
-                     self.canvas1.draw()  # Redraw the canvas
+                    self.canvas1.draw()  # Redraw the canvas
 
-            except Exception as e:
-                print(f"An error occurred: {e}")
+        except Exception as e:
+            print(f"An error occurred: {e}")
 
+        self.EMG_display_id = self.root.after(1, self.displayAndsaveDate)
 
-            # Call update_display() again after 50 milliseconds
-            self.EMG_display_id=self.root.after(50, self.EMG_Display)
+
+
+
+    def initialEMGTraining(self):
+        self.EMG_transmitting = False
+        fig = Figure(figsize=(self.frame1.winfo_width() / 100, self.frame1.winfo_height() / 100))
+        self.ax1 = fig.add_subplot(111)
+
+        self.ax1.set_title("Electromyography Envelope", fontsize=14, pad=0)
+        self.ax1.set_xlim(0, 5)
+        self.ax1.set_ylim(0, 5)
+        self.ax1.set_xlabel("Sample (20 samples per second)", fontsize=8, labelpad=-2)
+        self.ax1.set_ylabel("Magnitude", labelpad=0)
+        self.ax1.set_xticks(np.arange(0, 41, 8))
+        self.ax1.set_yticks(np.arange(0, 1001, 200))
+
+        for x_tick in self.ax1.get_xticks():
+            self.ax1.axvline(x_tick, color='gray', linestyle='--', linewidth=0.5)
+        for y_tick in self.ax1.get_yticks():
+            self.ax1.axhline(y_tick, color='gray', linestyle='--', linewidth=0.5)
+
+        self.line1, = self.ax1.plot([], [], color='red', label='Outer Wrist Muscle (Extensor Carpi Ulnaris)')
+        self.line2, = self.ax1.plot([], [], color='blue', label='Inner Wrist Muscle (Flexor Carpi Radialis)')
+        self.ax1.legend(fontsize=9, loc='upper right')
+
+        # Embed the plot in the tkinter frame
+        self.canvas1 = FigureCanvasTkAgg(fig, master=self.frame1)
+        self.canvas1.draw()
+        self.canvas1.get_tk_widget().pack(fill=tk.BOTH, expand=True)
+
+        # Bind the resizing event to the figure update
+        self.frame1.bind("<Configure>", self.on_frame_resize)
+
+    def on_frame_resize(self, event):
+        width = self.frame1.winfo_width()
+        height = self.frame1.winfo_height()
+        self.canvas1.get_tk_widget().config(width=width, height=height)
+        self.canvas1.draw()
+
+    '''
+    Train Data
+    '''
+
+    def trainData(self):
+        # 删除文件 'trained.txt',如果存在
+        if os.path.exists('trained.txt'):
+            os.remove('trained.txt')
+
+        if (self.savedDataClose != []) and (self.savedDataOpen != []):
+            vertical_line = Algorithm(self.savedDataClose, self.savedDataOpen)
+            print(f"垂直线方程: y = {vertical_line.a}x + {vertical_line.b}")
+
+            # 创建新的 'trained.txt' 文件并写入内容
+            with open('trained.txt', 'w') as file:
+                file.write(f"{vertical_line.a}\n")
+                file.write(f"{vertical_line.b}\n")
+
+            test_points = [[2, 5], [3, 3], [4, 1]]
+            for point in test_points:
+                position = vertical_line.predict(point)
+                print(f"点 {point} 在垂直线的 {'左侧' if position == -1 else '右侧' if position == 1 else '上面/下面'}")
+
+            return vertical_line
 
     def _decode(self, serial_data):
         serial_string = serial_data.decode(errors="ignore")
@@ -501,7 +822,312 @@ class Window:
 
                 return self.adc_values
 
+
+class Algorithm:
+    def __init__(self, list1, list2):
+        self.a, self.b = self.calculate_line_equation(list1, list2)
+
+    def calculate_average(self, lst):
+        """计算列表中点的平均坐标"""
+        n = len(lst)
+        if n == 0:
+            return (0, 0)
+        sum_x = sum(point[0] for point in lst)
+        sum_y = sum(point[1] for point in lst)
+        return (sum_x / n, sum_y / n)
+
+    def calculate_line_equation(self, list1, list2):
+        """计算垂直线方程 y = ax + b"""
+        avg1 = self.calculate_average(list1)
+        avg2 = self.calculate_average(list2)
+
+        x1, y1 = avg1
+        x2, y2 = avg2
+
+        # 计算斜率
+        if x1 == x2:
+            raise ValueError("垂直线的斜率是未定义的,因为两个点在同一垂直线上。")
+
+        slope = (y2 - y1) / (x2 - x1)
+
+        # 垂直线的斜率是原斜率的负倒数
+        perpendicular_slope = -1 / slope
+
+        # 使用点斜式方程 y - y1 = m(x - x1) 转换为 y = ax + b 的形式
+        a = perpendicular_slope
+        b = y1 - a * x1
+
+        return a, b
+
+    def predict(self, point):
+        """判断点是否在垂直线的左侧或右侧"""
+        x, y = point
+        # 计算点的y值与垂直线的y值比较
+        line_y = self.a * x + self.b
+        if y < line_y:
+            return -1  # 点在垂直线的左侧
+        elif y > line_y:
+            return 1  # 点在垂直线的右侧
+        else:
+            return 0  # 点在垂直线上(可选)
+
+class gameScreen:
+    def __init__(self, root):
+        self.root = root
+        self.root.title("game Interface")
+        self.width = 1000
+        self.height = 600
+        self.width = 1000
+        self.height = 600
+        screen_width = self.root.winfo_screenwidth()
+        screen_height = self.root.winfo_screenheight()
+        x = (screen_width // 2) - (self.width // 2)
+        y = (screen_height // 2) - (self.height // 2)
+        self.root.geometry(f"{self.width}x{self.height}+{x}+{y}")
+        self.ports = [port.device for port in serial.tools.list_ports.comports()]
+
+        # Configure the grid to be expandable
+        self.root.columnconfigure(0, weight=1)
+        self.root.columnconfigure(1, weight=1)
+        self.root.rowconfigure(0, weight=1)
+        self.root.rowconfigure(1, weight=1)
+
+        # Create a frame
+        self.frame1 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=(self.height * 1 / 2))
+        self.frame1.grid(row=0, column=0, padx=10, pady=10, sticky="nsew")
+
+        self.frame2 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=self.height * 1 / 2)
+        self.frame2.grid(row=1, column=0, padx=10, pady=10, sticky="nsew")
+
+        if 'COM5' in self.ports :
+            self.arduino_EMG = serial.Serial('COM5', 9600, timeout=1)
+            self.outer_EMG_label = tk.Label(self.frame2, text=f"EMG for Extensor Carpi Ulnaris is :")
+            self.outer_EMG_label.config(font=("Arial", 12))
+            self.outer_EMG_label.place(relx=0.1, rely=0.2, anchor='w')
+            self.outer_EMG_Number = tk.Label(self.frame2, text="", fg="red")
+            self.outer_EMG_Number.config(font=("Arial", 12))
+            self.outer_EMG_Number.place(relx=0.2, rely=0.3, anchor='w')
+            self.inner_EMG_label = tk.Label(self.frame2, text=f"EMG for Flexor Carpi Radialis is :")
+            self.inner_EMG_label.config(font=("Arial", 12))
+            self.inner_EMG_label.place(relx=0.1, rely=0.4, anchor='w')
+            self.inner_EMG_Number = tk.Label(self.frame2, text="", fg="blue")
+            self.inner_EMG_Number.config(font=("Arial", 12))
+            self.inner_EMG_Number.place(relx=0.2, rely=0.5, anchor='w')
+            self.gesture_label = tk.Label(self.frame2, text=f"Gesture is :")
+            self.gesture_label.config(font=("Arial", 12))
+            self.gesture_label.place(relx=0.1, rely=0.6, anchor='w')
+            self.gesture_predict = tk.Label(self.frame2, text="")
+            self.gesture_predict.config(font=("Arial", 12))
+            self.gesture_predict.place(relx=0.2, rely=0.7, anchor='w')
+            self.a, self.b = self.load_Function()
+            self.emg_thread = threading.Thread(target=self.EMG_Display)
+            self.emg_thread.start()
+
+
+            #self.EMG_Display()
+        if 'COM6' in self.ports:
+            self.column_limit = 9
+            self.last_averageRoll = 0
+            self.last_averageyaw = 0
+            self.last_averagePitch = 0
+
+            self.averageroll = 0
+            self.averageyaw = 0
+            self.averagepitch = 0
+            self.last_print_time = time()
+            self.arduino = serial.Serial('COM6', 115200)
+            self.roll_label = tk.Label(self.frame1, text="roll is : ")
+            self.roll_label.config(font=("Arial", 12))
+            self.roll_label.place(relx=0.2, rely=0.3, anchor='w')
+            self.pitch_label = tk.Label(self.frame1, text="pitch is : ")
+            self.pitch_label.config(font=("Arial", 12))
+            self.pitch_label.place(relx=0.2, rely=0.4, anchor='w')
+            self.yaw_label = tk.Label(self.frame1, text="yaw is : ")
+            self.yaw_label.config(font=("Arial", 12))
+            self.yaw_label.place(relx=0.2, rely=0.5, anchor='w')
+            self.imu_thread = threading.Thread(target=self.IMU_Display)
+            self.imu_thread.start()
+            #self.IMU_Display()
+
+
+    def _decode(self, serial_data):
+        serial_string = serial_data.decode(errors="ignore")
+        adc_string_1 = ""
+        adc_string_2 = ""
+        self.adc_values = [0, 0]
+        if '\n' in serial_string:
+            # remove new line character
+            serial_string = serial_string.replace("\n", "")
+            if serial_string != '':
+                # Convert number to binary, placing 0s in empty spots
+                serial_string = format(int(serial_string, 10), "024b")
+
+                # Separate the input number from the data
+                for i0 in range(0, 12):
+                    adc_string_1 += serial_string[i0]
+                for i0 in range(12, 24):
+                    adc_string_2 += serial_string[i0]
+
+                self.adc_values[0] = int(adc_string_1, base=2)
+                self.adc_values[1] = int(adc_string_2, base=2)
+
+                return self.adc_values
+
+    def EMG_Display(self):
+            try:
+                while (self.arduino_EMG.inWaiting() > 0):
+                    data = self.arduino_EMG.readline()
+                    emg_data = self._decode(data)
+                    if emg_data is not None:
+                        print(f"EMG 1: {emg_data[0]} , EMG 2: {emg_data[1]}")
+                        self.outer_EMG_Number.config(text=f"{emg_data[0]}")
+                        self.inner_EMG_Number.config(text=f"{emg_data[1]}")
+                        data = [emg_data[0], emg_data[1]]
+                        predictions = self.predict(data, self.a, self.b)
+                        ges_predictions = None
+                        if predictions is not None:
+                            if predictions == -1:
+                                ges_predictions = "Hand Open"
+                            if predictions == 1:
+                                ges_predictions = "Hand Close"
+                            if predictions == 0:
+                                ges_predictions = "Unknown"
+                        self.gesture_predict.config(text=f"{ges_predictions}")
+                        self.send_command_to_unity(f"Hand :{ges_predictions}")
+
+
+            except Exception as e:
+                print(f"An error occurred: {e}")
+
+            # Call update_display() again after 50 milliseconds
+            self.EMG_display_id = self.root.after(1, self.EMG_Display)
+
+    def IMU_Display(self):
+      while True:
+        try:
+            while self.arduino.inWaiting() == 0:
+                pass
+
+            dataPacket = self.arduino.readline().decode()
+            cleandata = dataPacket.replace("\r\n", "")
+            row = cleandata.strip().split(',')
+
+            if len(row) == self.column_limit:
+                splitPacket = cleandata.split(',')
+
+                emg = float(splitPacket[0])  # emg sensor data
+                q0 = float(splitPacket[1])  # qw
+                q1 = float(splitPacket[2])  # qx
+                q2 = float(splitPacket[3])  # qy
+                q3 = float(splitPacket[4])  # qz
+
+                # Callibration Statuses
+                aC = float(splitPacket[5])  # Accelerometer
+                gC = float(splitPacket[6])  # Gyroscope
+                mC = float(splitPacket[7])  # Magnetometer
+                sC = float(splitPacket[8])  # Whole System
+
+                # calculate angle
+                roll = math.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
+                pitch = -math.asin(2 * (q0 * q2 - q3 * q1))
+                yaw = -math.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
+
+                self.roll_label.config(text="roll is : " + str(roll))
+                self.pitch_label.config(text="pitch is : " + str(pitch))
+                self.yaw_label.config(text="yaw is : " + str(yaw))
+
+                current_time = time()
+
+                if current_time - self.last_print_time >= 0.01:
+
+                    print(f"roll is: {roll}")
+                    print(f"last roll is: {self.last_averageRoll}")
+                    differ_roll = self.last_averageRoll - roll
+                    print(f"differ roll is: {differ_roll}")
+                    CalculatedAngle = differ_roll * 3000 / 2.5
+                    print(f"CalculatedAngle is: {CalculatedAngle}")
+                    if (differ_roll) > 0:
+                        self.send_command_to_unity(f"Command : down {CalculatedAngle}")
+                    if (differ_roll) < 0:
+                        self.send_command_to_unity(f"Command : up {-CalculatedAngle}")
+
+                    if (yaw < 0):
+                        yaw = -yaw
+
+                    print(f"yaw is: {yaw}")
+                    print(f"last yaw is: {self.last_averageyaw}")
+                    differ_yaw = self.last_averageyaw - yaw
+                    print(f"differ yaw is: {differ_yaw}")
+                    yawAngle = differ_yaw * 90 / 2
+                    print(f"yawAngle is: {yawAngle}")
+                    if (differ_yaw) < 0:
+                        self.send_command_to_unity(f"Command : back {-yawAngle}")
+                    if (differ_yaw) > 0:
+                        self.send_command_to_unity(f"Command : roll {yawAngle}")
+
+                    self.last_print_time = current_time
+                    self.last_averageRoll = roll
+                    self.last_averageyaw = yaw
+                    self.last_averagePitch = pitch
+
+        except Exception as e:
+            print("Error:", str(e))
+
+
+    def load_Function(self,filename='trained.txt'):
+        try:
+            with open(filename, 'r') as file:
+                lines = file.readlines()
+                if len(lines) < 2:
+                    raise ValueError("File content is insufficient to read the vertical line parameters.")
+
+                a = float(lines[0].strip())
+                b = float(lines[1].strip())
+                print(f"a is {a}, b is {b}")
+
+                return a,b
+
+        except FileNotFoundError:
+            raise FileNotFoundError(f"The file {filename} does not exist.")
+        except ValueError as e:
+            raise ValueError(f"Error reading the file: {e}")
+
+    def predict(self, point, a, b):
+        """判断点是否在垂直线的左侧或右侧"""
+        x, y = point
+        # 计算点的y值与垂直线的y值比较
+        line_y = a * x + b
+        if y < line_y:
+            return -1  # 点在垂直线的左侧
+        elif y > line_y:
+            return 1  # 点在垂直线的右侧
+        else:
+            return 0  # 点在垂直线上(可选)
+
+    def send_command_to_unity(self,command):
+        host = '127.0.0.1'  # Unity服务器的IP地址
+        port = 65432  # Unity服务器监听的端口
+
+        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
+            s.connect((host, port))
+            s.sendall(command.encode())
+            response = s.recv(1024)
+            print('Received', repr(response))
+
+
+
+
+
+if __name__ == "__main__":
+    root1 = tk.Tk()
+    appWelcome = WelcomeWindow(root1)
+    root1.mainloop()
+
+
+'''
 if __name__ == "__main__":
     root = tk.Tk()
     app = Window(root)
-    root.mainloop()
\ No newline at end of file
+    root.mainloop()
+
+'''