diff --git a/integration/try.py b/integration/try.py new file mode 100644 index 0000000000000000000000000000000000000000..5aea06557684a67fd320453a49c7c7055bed30aa --- /dev/null +++ b/integration/try.py @@ -0,0 +1,221 @@ +import tkinter as tk +from matplotlib.figure import Figure +from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg +from mpl_toolkits.mplot3d.art3d import Poly3DCollection +import numpy as np +import serial +from time import sleep +import math + +class VisualizationApp: + def __init__(self, root): + self.root = root + self.root.title("3D Visualization") + + # Create a frame + self.frame = tk.Frame(self.root) + self.frame.pack(fill=tk.BOTH, expand=True) + + # Serial Port Setup + self.arduino = serial.Serial('COM6', 115200) + sleep(1) + + # Conversions + self.toRad = 2 * np.pi / 360 + self.toDeg = 1 / self.toRad + + # Initialize Parameters + self.count = 0 + self.averageroll = 0 + self.averageyaw = 0 + self.averagepitch = 0 + self.averageemg = 0 + self.iterations = 10 # EMG measurements to get average + + # Create a figure for the 3D plot + self.fig = Figure(figsize=(8, 6), dpi=100) + self.ax = self.fig.add_subplot(111, projection='3d') + + # Set Limits + self.ax.set_xlim(-2, 2) + self.ax.set_ylim(-2, 2) + self.ax.set_zlim(-2, 2) + + # Set labels + self.ax.set_xlabel('X') + self.ax.set_ylabel('Y') + self.ax.set_zlabel('Z') + + # Draw Axes + self.ax.quiver(0, 0, 0, 2, 0, 0, color='red', label='X-Axis', arrow_length_ratio=0.1) # X Axis (Red) + self.ax.quiver(0, 0, 0, 0, -2, 0, color='green', label='Y-Axis', arrow_length_ratio=0.1) # Y Axis (Green) + self.ax.quiver(0, 0, 0, 0, 0, 4, color='blue', label='Z-Axis', arrow_length_ratio=0.1) # Z Axis (Blue) + + # Draw the board as a rectangular prism (solid) + self.prism_vertices = np.array([ + [-1.5, -1, 0], [1.5, -1, 0], [1.5, 1, 0], [-1.5, 1, 0], # bottom vertices + [-1.5, -1, 0.1], [1.5, -1, 0.1], [1.5, 1, 0.1], [-1.5, 1, 0.1] # top vertices (height=0.1 for visual thickness) + ]) + + self.prism_faces = [ + [self.prism_vertices[j] for j in [0, 1, 2, 3]], # bottom face + [self.prism_vertices[j] for j in [4, 5, 6, 7]], # top face + [self.prism_vertices[j] for j in [0, 1, 5, 4]], # side face + [self.prism_vertices[j] for j in [1, 2, 6, 5]], # side face + [self.prism_vertices[j] for j in [2, 3, 7, 6]], # side face + [self.prism_vertices[j] for j in [3, 0, 4, 7]] # side face + ] + + self.prism_collection = Poly3DCollection(self.prism_faces, facecolors='gray', linewidths=1, edgecolors='black', alpha=0.25) + self.ax.add_collection3d(self.prism_collection) + + # Front Arrow (Purple) + self.front_arrow, = self.ax.plot([0, 2], [0, 0], [0, 0], color='purple', marker='o', markersize=10, label='Front Arrow') + + # Up Arrow (Magenta) + self.up_arrow, = self.ax.plot([0, 0], [0, -1], [0, 1], color='magenta', marker='o', markersize=10, label='Up Arrow') + + # Side Arrow (Orange) + self.side_arrow, = self.ax.plot([0, 1], [0, -1], [0, 1], color='orange', marker='o', markersize=10, label='Side Arrow') + + # Create a canvas to draw on + self.canvas = FigureCanvasTkAgg(self.fig, master=self.frame) + self.canvas.draw() + self.canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) + + # Create a label for average EMG + self.emg_label = tk.Label(self.frame, text="Average EMG: 0", font=("Arial", 14)) + self.emg_label.pack(pady=10) + + # Add a button to start data transmission + self.start_button = tk.Button(self.frame, text="Start Data Transmission", command=self.start_data_transmission) + self.start_button.pack(pady=10) + + # Initialize the data transmission flag + self.transmitting = False + + def start_data_transmission(self): + # Set the transmitting flag to True and start the update loop + self.transmitting = True + self.update_display() + + def update_display(self): + if self.transmitting: + try: + while self.arduino.inWaiting() > 0: + dataPacket = self.arduino.readline() + dataPacket = dataPacket.decode() + cleandata = dataPacket.replace("\r\n", "") + row = cleandata.strip().split(',') + + if len(row) == 9: + splitPacket = cleandata.split(',') + + emg = float(splitPacket[0]) # EMG sensor data + q0 = float(splitPacket[1]) # qw + q1 = float(splitPacket[2]) # qx + q2 = float(splitPacket[3]) # qy + q3 = float(splitPacket[4]) # qz + + # Calculate Angles + roll = math.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) + pitch = -math.asin(2 * (q0 * q2 - q3 * q1)) + yaw = -math.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) + + # Rotation matrices + Rz = np.array([ + [np.cos(yaw), -np.sin(yaw), 0], + [np.sin(yaw), np.cos(yaw), 0], + [0, 0, 1] + ]) + + Ry = np.array([ + [np.cos(pitch), 0, np.sin(pitch)], + [0, 1, 0], + [-np.sin(pitch), 0, np.cos(pitch)] + ]) + + Rx = np.array([ + [1, 0, 0], + [0, np.cos(roll), -np.sin(roll)], + [0, np.sin(roll), np.cos(roll)] + ]) + + R = Rz @ Ry @ Rx # Combined rotation matrix + + # Apply the rotation + rotated_vertices = (R @ self.prism_vertices.T).T + + prism_faces_rotated = [ + [rotated_vertices[j] for j in [0, 1, 2, 3]], # bottom face + [rotated_vertices[j] for j in [4, 5, 6, 7]], # top face + [rotated_vertices[j] for j in [0, 1, 5, 4]], # side face + [rotated_vertices[j] for j in [1, 2, 6, 5]], # side face + [rotated_vertices[j] for j in [2, 3, 7, 6]], # side face + [rotated_vertices[j] for j in [3, 0, 4, 7]] # side face + ] + + # Update the collection + self.prism_collection.set_verts(prism_faces_rotated) + + # Update Arrows + k = np.array([np.cos(yaw) * np.cos(pitch), np.sin(pitch), np.sin(yaw) * np.cos(pitch)]) # X vector + y = np.array([0, 1, 0]) # Y vector: pointing down + s = np.cross(k, y) # Side vector + v = np.cross(s, k) # Up vector + vrot = v * np.cos(roll) + np.cross(k, v) * np.sin(roll) # Rotated Up vector + + self.front_arrow.set_data([0, k[0] * 2], [0, k[1] * 2]) + self.front_arrow.set_3d_properties([0, k[2] * 2]) + self.up_arrow.set_data([0, vrot[0] * 1], [0, vrot[1] * 1]) + self.up_arrow.set_3d_properties([0, vrot[2] * 1]) + self.side_arrow.set_data([0, s[0] * 1], [0, s[1] * 1]) + self.side_arrow.set_3d_properties([0, s[2] * 1]) + + # Update canvas + self.canvas.draw() + + self.averageroll += roll * self.toDeg + self.averageyaw += yaw * self.toDeg + self.averagepitch += pitch * self.toDeg + self.averageemg += emg + + if self.count == self.iterations: + self.averageroll = self.averageroll / self.iterations + self.averageyaw = self.averageyaw / self.iterations + self.averagepitch = self.averagepitch / self.iterations + self.averageemg = self.averageemg / self.iterations + + self.averageroll = round(self.averageroll) + self.averageyaw = round(self.averageyaw) + self.averagepitch = round(self.averagepitch) + + # Print the averaged results + print("iterations:", self.iterations) + print("averageroll is", self.averageroll) + print("averageyaw is", self.averageyaw) + print("averagepitch is", self.averagepitch) + print("averageemg=", self.averageemg) + + self.count = 0 + + self.averageyaw = 0 + self.averageroll = 0 + self.averagepitch = 0 + self.averageemg = 0 + else: + self.count += 1 + + # Update EMG Label + self.emg_label.config(text=f"Average EMG: {self.averageemg:.2f}") + + except Exception as e: + print(f"An error occurred: {e}") + + # Call update_display() again after 50 milliseconds + self.root.after(50, self.update_display) + +if __name__ == "__main__": + root = tk.Tk() + app = VisualizationApp(root) + root.mainloop()