diff --git a/integration/Window.py b/integration/Window.py
index 131033d3caf0c7b9c3d8556b81645fa4fda9768e..97fb6ba1bbc1cfa45202a4ea20a9d511dcbba7ef 100644
--- a/integration/Window.py
+++ b/integration/Window.py
@@ -23,6 +23,8 @@ from torch.utils.data import DataLoader, TensorDataset, random_split
 import pickle
 import joblib
 
+#this is the file for seperated hardware detectors
+
 class Window:
     def __init__(self, root):
         self.root = root
diff --git a/integration/Window2-copyformlp.py b/integration/Window2-copyformlp.py
new file mode 100644
index 0000000000000000000000000000000000000000..e8c3beb2fbdc71d7baafd67f532aa49b5146bfe6
--- /dev/null
+++ b/integration/Window2-copyformlp.py
@@ -0,0 +1,1091 @@
+import threading
+import tkinter as tk
+from matplotlib.figure import Figure
+from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
+from mpl_toolkits.mplot3d.art3d import Poly3DCollection
+import numpy as np
+import serial
+import serial.tools.list_ports
+from time import sleep
+import math
+import time
+import socket
+import os
+from PIL import Image, ImageTk
+from time import sleep, time
+import torch
+import torch.nn as nn
+import torch.optim as optim
+from sklearn.model_selection import train_test_split
+
+#this is the file for the combined hardware detector
+
+class Window:
+    def __init__(self, root):
+        self.input_port='COM9'
+        self.root = root
+        self.root.title("Integration")
+        self.ports = [port.device for port in serial.tools.list_ports.comports()]
+        self.arduino = None
+
+        # Set the initial size and position of the popup window
+        self.width = 1000
+        self.height = 600
+        screen_width = self.root.winfo_screenwidth()
+        screen_height = self.root.winfo_screenheight()
+        x = (screen_width // 2) - (self.width // 2)
+        y = (screen_height // 2) - (self.height // 2)
+        self.root.geometry(f"{self.width}x{self.height}+{x}+{y}")
+
+        # Configure the grid to be expandable
+        self.root.columnconfigure(0, weight=1)
+        self.root.columnconfigure(1, weight=1)
+        self.root.rowconfigure(0, weight=1)
+        self.root.rowconfigure(1, weight=1)
+
+        # Create a frame
+        self.frame1 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width / 3, height=self.height / 2)
+        self.frame1.grid(row=0, column=0, padx=10, pady=10, sticky="nsew")
+
+        self.frame2 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width * 2 / 3, height=self.height / 2)
+        self.frame2.grid(row=0, column=1, padx=10, pady=10, sticky="nsew")
+
+
+        self.frame3 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width / 3, height=self.height / 2)
+        self.frame3.grid(row=1, column=0, padx=10, pady=10, sticky="nsew")
+
+        self.frame4 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width * 2 / 3, height=self.height / 2)
+        self.frame4.grid(row=1, column=1, padx=10, pady=10, sticky="nsew")
+        self.frame4.grid_propagate(False)
+        label4 = tk.Label(self.frame4, text="Section 4")
+        label4.place(relx=0.5, rely=0.5, anchor='center')
+        self.start_button = tk.Button(self.frame2, text="Game Start", command=self.game_Start, width=15, height=1,
+                                      font=("Helvetica", 12))
+        self.start_button.place(relx=0.7, rely=0.15, anchor='center')
+
+        #self.imu_thread = threading.Thread(target=self.initial_IMU)
+        #self.emg_thread = threading.Thread(target=self._initialise_EMG_graph)
+        #self.emg_thread.start()
+        #self.imu_thread.start()
+
+
+
+
+        self.emg_data_1 = [-1.0] * 41
+        self.emg_data_2 = [-1.0] * 41
+
+        self.initial_IMU()
+        self._initialise_EMG_graph()
+        self.display_IMU_thread=threading.Thread(target=self.update_display)
+        self.display_EMG_thread=threading.Thread(target=self.EMG_Display)
+
+    # initial button, commands and 3D metrics for IMU detector
+    def initial_IMU(self):
+        # Serial Port Setup
+        if self.input_port in self.ports:#port maybe different on different laptop
+
+            self.label2 = tk.Label(self.frame2, text=f"Port: {self.input_port} ")
+            self.label2.place(relx=0.35, rely=0.8, anchor='center')
+            self.label1 = tk.Label(self.frame2,
+                                   text="click the Connect button to see the animation",
+                                   wraplength=self.width / 2)
+            self.label1.place(relx=0.5, rely=0.9, anchor='center')
+            # Add a button to start data transmission
+            self.start_buttonConnect = tk.Button(self.frame2, text="connect", command=self.start_data_transmission)
+            self.start_buttonConnect.place(relx=0.5, rely=0.8, anchor='center')
+
+            self.start_buttonDisConnect = tk.Button(self.frame2, text="Disconnect", command=self.disconnect)
+            self.start_buttonDisConnect.place(relx=0.7, rely=0.8, anchor='center')
+
+        else:
+            print("IMU is not connected")
+            self.label2 = tk.Label(self.frame2, text="Port: None ")
+            self.label2.place(relx=0.35, rely=0.8, anchor='center')
+            self.label1 = tk.Label(self.frame2,
+                                   text="Please check the IUM connection",
+                                   wraplength=self.width / 2)
+            self.label1.place(relx=0.5, rely=0.9, anchor='center')
+
+        sleep(1)
+
+        # Conversions
+        self.transmitting = False
+        self.toRad = 2 * np.pi / 360
+        self.toDeg = 1 / self.toRad
+
+        # Initialize Parameters
+        self.count = 0
+        self.averageroll = 0
+        self.averageyaw = 0
+        self.averagepitch = 0
+        self.averageemg = 0
+        self.iterations = 10  # EMG measurements to get average
+
+        # Create a figure for the 3D plot
+        self.fig = Figure(figsize=((self.width / 300), (self.height / 200)))
+        self.ax = self.fig.add_subplot(111, projection='3d')
+
+        # Set Limits
+        self.ax.set_xlim(-2, 2)
+        self.ax.set_ylim(-2, 2)
+        self.ax.set_zlim(-2, 2)
+
+        # Set labels
+        self.ax.set_xlabel('X')
+        self.ax.set_ylabel('Y')
+        self.ax.set_zlabel('Z',labelpad=0)
+
+        # Draw Axes
+        self.ax.quiver(0, 0, 0, 2, 0, 0, color='red', label='X-Axis', arrow_length_ratio=0.1)  # X Axis (Red)
+        self.ax.quiver(0, 0, 0, 0, -2, 0, color='green', label='Y-Axis', arrow_length_ratio=0.1)  # Y Axis (Green)
+        self.ax.quiver(0, 0, 0, 0, 0, 4, color='blue', label='Z-Axis', arrow_length_ratio=0.1)  # Z Axis (Blue)
+
+        # Draw the board as a rectangular prism (solid)
+        self.prism_vertices = np.array([
+            [-1.5, -1, 0], [1.5, -1, 0], [1.5, 1, 0], [-1.5, 1, 0],  # bottom vertices
+            [-1.5, -1, 0.1], [1.5, -1, 0.1], [1.5, 1, 0.1], [-1.5, 1, 0.1]
+            # top vertices (height=0.1 for visual thickness)
+        ])
+
+        self.prism_faces = [
+            [self.prism_vertices[j] for j in [0, 1, 2, 3]],  # bottom face
+            [self.prism_vertices[j] for j in [4, 5, 6, 7]],  # top face
+            [self.prism_vertices[j] for j in [0, 1, 5, 4]],  # side face
+            [self.prism_vertices[j] for j in [1, 2, 6, 5]],  # side face
+            [self.prism_vertices[j] for j in [2, 3, 7, 6]],  # side face
+            [self.prism_vertices[j] for j in [3, 0, 4, 7]]  # side face
+        ]
+
+        self.prism_collection = Poly3DCollection(self.prism_faces, facecolors='gray', linewidths=1, edgecolors='black',
+                                                 alpha=0.25)
+        self.ax.add_collection3d(self.prism_collection)
+
+        # Front Arrow (Purple)
+        self.front_arrow, = self.ax.plot([0, 2], [0, 0], [0, 0], color='purple', marker='o', markersize=10,
+                                         label='Front Arrow')
+
+        # Up Arrow (Magenta)
+        self.up_arrow, = self.ax.plot([0, 0], [0, -1], [0, 1], color='magenta', marker='o', markersize=10,
+                                      label='Up Arrow')
+
+        # Side Arrow (Orange)
+        self.side_arrow, = self.ax.plot([0, 1], [0, -1], [0, 1], color='orange', marker='o', markersize=10,
+                                        label='Side Arrow')
+
+        # Create a canvas to draw on
+        self.canvas = FigureCanvasTkAgg(self.fig, master=self.frame1)
+        self.canvas.draw()
+        self.canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True)
+
+        # Create a label for average EMG
+        # self.emg_label = tk.Label(self.frame1, text="Average EMG: 0", font=("Arial", 14))
+        # self.emg_label.pack(pady=10)
+
+        self.roll_label = tk.Label(self.frame2, text="roll is : " )
+        self.roll_label.config(font=("Arial", 12))
+        self.roll_label.place(relx=0.2, rely=0.3, anchor='w')
+        self.pitch_label = tk.Label(self.frame2, text="pitch is : " )
+        self.pitch_label.config(font=("Arial", 12))
+        self.pitch_label.place(relx=0.2, rely=0.4, anchor='w')
+        self.yaw_label = tk.Label(self.frame2, text="yaw is : " )
+        self.yaw_label.config(font=("Arial", 12))
+        self.yaw_label.place(relx=0.2, rely=0.5, anchor='w')
+
+    # initial button, commands and metrics for EMG detector
+    def _initialise_EMG_graph(self):
+        if self.input_port in self.ports:#port maybe different on different laptop
+
+            self.label2 = tk.Label(self.frame3, text=f"Port: {self.input_port} ")
+            self.label2.place(relx=0.23, rely=0.8, anchor='center')
+            self.label1 = tk.Label(self.frame3,
+                                   text="click the Connect button to see the animation",
+                                   wraplength=self.width / 2)
+            self.label1.place(relx=0.5, rely=0.9, anchor='center')
+            # Add a button to start data transmission
+            #self.start_button = tk.Button(self.frame3, text="connect", command=self.start_EMG_data_transmission)
+            #self.start_button.place(relx=0.45, rely=0.8, anchor='center')
+
+            #self.start_button = tk.Button(self.frame3, text="Disconnect", command=self.disconnect)
+            #self.start_button.place(relx=0.7, rely=0.8, anchor='center')
+
+        else:
+            print("EMG is not connected")
+            self.label2 = tk.Label(self.frame3, text="Port: None ")
+            self.label2.place(relx=0.35, rely=0.8, anchor='center')
+            self.label1 = tk.Label(self.frame3,
+                                   text="Please check the IUM connection",
+                                   wraplength=self.width / 2)
+            self.label1.place(relx=0.5, rely=0.9, anchor='center')
+
+     # Create a figure and axis
+        self.EMG_transmitting = False
+        fig = Figure(figsize=((self.width / 200), (self.height / 200)))  # Adjusting figsize based on frame size
+        self.ax1 = fig.add_subplot(111)
+
+        self.ax1.set_title("Electromyography Envelope", fontsize=14, pad=0)
+
+
+        self.ax1.set_xlim(0, 5)
+        self.ax1.set_ylim(0, 5)
+
+        self.ax1.set_xlabel("Sample(20 samples per second)",fontsize=8,labelpad=-2)
+        self.ax1.set_ylabel("Magnitude",labelpad=0)
+
+        self.ax1.set_xticks(np.arange(0, 41, 8))
+        self.ax1.set_yticks(np.arange(0, 1001, 200))
+
+        for x_tick in self.ax1.get_xticks():
+            self.ax1.axvline(x_tick, color='gray', linestyle='--', linewidth=0.5)
+        for y_tick in self.ax1.get_yticks():
+            self.ax1.axhline(y_tick, color='gray', linestyle='--', linewidth=0.5)
+
+
+
+
+            # Plot two lines
+        self.line1, = self.ax1.plot([], [], color='red', label='Outer Wrist Muscle (Extensor Carpi Ulnaris)')
+        self.line2, = self.ax1.plot([], [], color='blue', label='Inner Wrist Muscle (Flexor Carpi Radialis)')
+        self.ax1.legend(fontsize=9, loc='upper right')
+
+
+
+
+            # Embed the plot in the tkinter frame
+        self.canvas1 = FigureCanvasTkAgg(fig, master=self.frame4)
+        self.canvas1.draw()
+        self.canvas1.get_tk_widget().pack(fill=tk.BOTH, expand=True)
+        self.EMG_Display()
+
+        self.outer_EMG_label = tk.Label(self.frame3, text=f"EMG for Extensor Carpi Ulnaris is :")
+        self.outer_EMG_label.config(font=("Arial", 12))
+        self.outer_EMG_label.place(relx=0.1, rely=0.2, anchor='w')
+        self.outer_EMG_Number = tk.Label(self.frame3, text="",fg="red")
+        self.outer_EMG_Number.config(font=("Arial", 12))
+        self.outer_EMG_Number.place(relx=0.2, rely=0.3, anchor='w')
+        self.inner_EMG_label = tk.Label(self.frame3, text=f"EMG for Flexor Carpi Radialis is :")
+        self.inner_EMG_label.config(font=("Arial", 12))
+        self.inner_EMG_label.place(relx=0.1, rely=0.4, anchor='w')
+        self.inner_EMG_Number = tk.Label(self.frame3, text="",fg="blue")
+        self.inner_EMG_Number.config(font=("Arial", 12))
+        self.inner_EMG_Number.place(relx=0.2, rely=0.5, anchor='w')
+        self.gesture_label = tk.Label(self.frame3, text=f"Gesture is :")
+        self.gesture_label.config(font=("Arial", 12))
+        self.gesture_label.place(relx=0.1, rely=0.6, anchor='w')
+        self.gesture_predict = tk.Label(self.frame3, text="")
+        self.gesture_predict.config(font=("Arial", 12))
+        self.gesture_predict.place(relx=0.2, rely=0.7, anchor='w')
+        self.a, self.b = self.load_Function()
+
+
+
+
+    #button effect when connect
+    def start_data_transmission(self):
+        # Set the transmitting flag to True and start the update loop
+        if self.input_port in self.ports:
+            if self.arduino==None:
+             self.arduino = serial.Serial(self.input_port, 9600)
+        self.transmitting = True
+        self.update_display()
+
+   #button effect when connect for EMG
+    def start_EMG_data_transmission(self):
+        # Set the transmitting flag to True and start the update loop
+        if self.input_port in self.ports:
+            if self.arduino==None:
+             self.arduino = serial.Serial(self.input_port, 9600)
+        self.EMG_transmitting = True
+        self.EMG_Display()
+
+    #Go to the interface for metrics
+    def game_Start(self):
+        self.root.destroy()  # Close the welcome window
+        new_root = tk.Tk()
+        app = gameScreen(new_root)
+        new_root.mainloop()
+
+
+     #effect for disconnect button
+    def disconnect(self):
+        self.transmitting = False
+        self.EMG_transmitting=False
+        self.root.after_cancel(self.update_display_id)
+        if self.arduino is not None:
+            self.arduino.close()
+            self.arduino = None
+
+
+
+    #when the IMU connected show the real-time 3D metrics
+    def update_display(self):
+        if self.transmitting:
+            try:
+                while ((self.arduino.inWaiting() > 0)and
+                       (self.transmitting==True)):
+                    dataPacket = self.arduino.readline()
+                    dataPacket = dataPacket.decode()
+                    cleandata = dataPacket.replace("\r\n", "")
+                    row = cleandata.strip().split(',')
+
+
+                    if len(row) == 10:
+                        splitPacket = cleandata.split(',')
+                        q0 = float(splitPacket[2])  # qw
+                        q1 = float(splitPacket[3])  # qx
+                        q2 = float(splitPacket[4])  # qy
+                        q3 = float(splitPacket[5])  # qz
+                        emg1 = float(splitPacket[0])  # First EMG sensor data
+                        emg2 = float(splitPacket[1])  # Second EMG sensor data
+                        #print(f"emg1: {emg1}, emg2: {emg2}")
+                        data = [emg1, emg2]
+                        predictions = self.predict(data, self.a, self.b)
+                        ges_predictions = None
+                        if predictions is not None:
+                            if predictions == -1:
+                                ges_predictions = "Hand Open"
+                            if predictions == 1:
+                                ges_predictions = "Hand Close"
+                            if predictions == 0:
+                                ges_predictions = "Unknown"
+                        self.gesture_predict.config(text=f"{ges_predictions}")
+
+
+                        self.outer_EMG_Number.config(text=f"{emg1}")
+                        self.inner_EMG_Number.config(text=f"{emg2}")
+                        self.emg_data_1.append(emg1)
+                        self.emg_data_1.pop(0)
+                        self.emg_data_2.append(emg2)
+                        self.emg_data_2.pop(0)
+
+                            # Update the line data to shift the line from right to left
+                        self.line1.set_data(range(len(self.emg_data_1)), self.emg_data_1)
+                        self.line2.set_data(range(len(self.emg_data_2)), self.emg_data_2)
+
+                            # Redraw the canvas
+                        self.canvas1.draw()  # Redraw the canvas
+
+                        # Calculate Angles
+                        roll = math.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
+                        pitch = -math.asin(2 * (q0 * q2 - q3 * q1))
+                        yaw = -math.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
+
+
+                        self.roll_label.config( text="roll is : "+str(roll))
+                        self.pitch_label.config(text="pitch is : "+str(pitch))
+                        self.yaw_label.config(text="yaw is : "+str(yaw))
+                        #print(roll, pitch, yaw)
+
+
+                        # Rotation matrices
+                        Rz = np.array([
+                            [np.cos(yaw), -np.sin(yaw), 0],
+                            [np.sin(yaw), np.cos(yaw), 0],
+                            [0, 0, 1]
+                        ])
+
+                        Ry = np.array([
+                            [np.cos(pitch), 0, np.sin(pitch)],
+                            [0, 1, 0],
+                            [-np.sin(pitch), 0, np.cos(pitch)]
+                        ])
+
+                        Rx = np.array([
+                            [1, 0, 0],
+                            [0, np.cos(roll), -np.sin(roll)],
+                            [0, np.sin(roll), np.cos(roll)]
+                        ])
+
+                        R = Rz @ Ry @ Rx  # Combined rotation matrix
+
+                        # Apply the rotation
+                        rotated_vertices = (R @ self.prism_vertices.T).T
+
+                        prism_faces_rotated = [
+                            [rotated_vertices[j] for j in [0, 1, 2, 3]],  # bottom face
+                            [rotated_vertices[j] for j in [4, 5, 6, 7]],  # top face
+                            [rotated_vertices[j] for j in [0, 1, 5, 4]],  # side face
+                            [rotated_vertices[j] for j in [1, 2, 6, 5]],  # side face
+                            [rotated_vertices[j] for j in [2, 3, 7, 6]],  # side face
+                            [rotated_vertices[j] for j in [3, 0, 4, 7]]   # side face
+                        ]
+
+                        # Update the collection
+                        self.prism_collection.set_verts(prism_faces_rotated)
+
+                        # Update Arrows
+                        k = np.array([np.cos(yaw) * np.cos(pitch), np.sin(pitch), np.sin(yaw) * np.cos(pitch)])  # X vector
+                        y = np.array([0, 1, 0])  # Y vector: pointing down
+                        s = np.cross(k, y)  # Side vector
+                        v = np.cross(s, k)  # Up vector
+                        vrot = v * np.cos(roll) + np.cross(k, v) * np.sin(roll)  # Rotated Up vector
+
+                        self.front_arrow.set_data([0, k[0] * 2], [0, k[1] * 2])
+                        self.front_arrow.set_3d_properties([0, k[2] * 2])
+                        self.up_arrow.set_data([0, vrot[0] * 1], [0, vrot[1] * 1])
+                        self.up_arrow.set_3d_properties([0, vrot[2] * 1])
+                        self.side_arrow.set_data([0, s[0] * 1], [0, s[1] * 1])
+                        self.side_arrow.set_3d_properties([0, s[2] * 1])
+
+                        # Update canvas
+                        self.canvas.draw()
+
+
+                        #self.averageemg += emg
+
+
+                        # Update EMG Label
+                        #self.emg_label.config(text=f"Average EMG: {self.averageemg:.2f}")
+
+            except Exception as e:
+                print(f"An error occurred: {e}")
+
+            # Call update_display() again after 50 milliseconds
+            self.update_display_id =self.root.after(1, self.update_display)
+
+    #when the EMG connected for the line metrics for EMG data
+    def EMG_Display(self):
+        data_collection_duration = 3
+        if self.EMG_transmitting:
+            try:
+                while self.arduino.inWaiting() > 0:
+                    dataPacket = self.arduino.readline()
+                    dataPacket = dataPacket.decode()
+                    cleandata = dataPacket.replace("\r\n", "")
+                    row = cleandata.strip().split(',')
+
+                    if len(row) == 10:
+                        splitPacket = cleandata.split(',')
+
+
+
+            except Exception as e:
+                print(f"An error occurred: {e}")
+
+            # Call update_display() again after 50 milliseconds
+            self.EMG_display_id = self.root.after(1, self.EMG_Display)
+
+
+    #decode the EMG data from detectors
+    def _decode(self, serial_data):
+        serial_string = serial_data.decode(errors="ignore")
+        adc_string_1 = ""
+        adc_string_2 = ""
+        self.adc_values = [0, 0]
+        if '\n' in serial_string:
+            # remove new line character
+            serial_string = serial_string.replace("\n", "")
+            if serial_string != '':
+                # Convert number to binary, placing 0s in empty spots
+                serial_string = format(int(serial_string, 10), "024b")
+
+                # Separate the input number from the data
+                for i0 in range(0, 12):
+                    adc_string_1 += serial_string[i0]
+                for i0 in range(12, 24):
+                    adc_string_2 += serial_string[i0]
+
+                self.adc_values[0] = int(adc_string_1, base=2)
+                self.adc_values[1] = int(adc_string_2, base=2)
+
+                return self.adc_values
+
+    #load trained function for predict
+    def load_Function(self,filename='trained.txt'):
+        try:
+            with open(filename, 'r') as file:
+                lines = file.readlines()
+                if len(lines) < 2:
+                    raise ValueError("File content is insufficient to read the vertical line parameters.")
+
+                a = float(lines[0].strip())
+                b = float(lines[1].strip())
+                print(f"a is {a}, b is {b}")
+
+                return a,b
+
+        except FileNotFoundError:
+            raise FileNotFoundError(f"The file {filename} does not exist.")
+        except ValueError as e:
+            raise ValueError(f"Error reading the file: {e}")
+
+    #predict the gestures
+    def predict(self, point,a,b):
+        """predict whether the point is located in the left or right"""
+        x, y = point
+        line_y = a * x + b
+        if y < line_y:
+            return -1  # left
+        elif y > line_y:
+            return 1  # right
+        else:
+            return 0  # on
+
+class WelcomeWindow:
+    def __init__(self, root):
+        self.root = root
+        self.root.title("Welcome")
+        self.width = 1000
+        self.height = 600
+        screen_width = self.root.winfo_screenwidth()
+        screen_height = self.root.winfo_screenheight()
+        x = (screen_width // 2) - (self.width // 2)
+        y = (screen_height // 2) - (self.height // 2)
+        self.root.geometry(f"{self.width}x{self.height}+{x}+{y}")
+
+        # Configure the grid to be expandable
+        self.root.columnconfigure(0, weight=1)
+        self.root.columnconfigure(1, weight=1)
+        self.root.rowconfigure(0, weight=1)
+        self.root.rowconfigure(1, weight=1)
+
+        try:
+            self.bg_image = Image.open("backGrond.jpg")
+            #print("Image loaded successfully")
+            self.bg_image = self.bg_image.resize((self.width, self.height), Image.Resampling.LANCZOS)
+            self.bg_photo = ImageTk.PhotoImage(self.bg_image)
+
+            self.bg_label = tk.Label(self.root, image=self.bg_photo)
+            self.bg_label.place(x=0, y=0, relwidth=1, relheight=1)
+        except Exception as e:
+            print(f"Error loading image: {e}")
+
+        #self.frame1 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=self.height)
+        #self.frame1.grid(row=0, column=0, columnspan=2, rowspan=2, sticky="nsew")
+        #self.button1 = tk.Button(self.frame1, text="Start", command=self.startButton)
+        #self.button1.place(relx=0.5, rely=0.8, anchor='center')
+        self.button1 = tk.Button(self.root, text="Start", command=self.startButton,width=18,
+                                             height=2, font=("Helvetica", 15))
+        self.button1.place(relx=0.8, rely=0.8, anchor='center')  # Position the button relative to the root window
+
+    def startButton(self):
+        self.root.destroy()  # Close the welcome window
+        new_root = tk.Tk()
+        app = trainingInterface(new_root)
+        new_root.mainloop()
+
+class trainingInterface:
+    def __init__(self, root):
+        self.input_port='COM9'
+        self.root = root
+        self.root.title("preparation Interface")
+        self.width = 1000
+        self.height = 600
+        self.width = 1000
+        self.height = 600
+        screen_width = self.root.winfo_screenwidth()
+        screen_height = self.root.winfo_screenheight()
+        x = (screen_width // 2) - (self.width // 2)
+        y = (screen_height // 2) - (self.height // 2)
+        self.root.geometry(f"{self.width}x{self.height}+{x}+{y}")
+        self.ports = [port.device for port in serial.tools.list_ports.comports()]
+
+        # Configure the grid to be expandable
+        self.root.columnconfigure(0, weight=1)
+        self.root.columnconfigure(1, weight=1)
+        self.root.rowconfigure(0, weight=1)
+        self.root.rowconfigure(1, weight=1)
+
+
+        # Create a frame
+        self.frame1 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=(self.height *2/ 3))
+        self.frame1.grid(row=0, column=0, padx=10, pady=10, sticky="nsew")
+
+
+        self.frame2 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=self.height *1/ 3)
+        self.frame2.grid(row=1, column=0, padx=10, pady=10, sticky="nsew")
+
+        self.initialEMGTraining()
+        if self.input_port in self.ports:
+
+            self.emg_data_1 = [-1.0] * 41
+            self.emg_data_2 = [-1.0] * 41
+            self.savingData=[]
+            self.openHandButton=tk.Button(self.frame2,text="Hand Open",command=self.EMG_connect_HandOpen,width=15, height=2,font=("Helvetica", 12))
+            self.openHandButton.place(relx=0.3, rely=0.3, anchor='center')
+            self.handCloseButton=tk.Button(self.frame2,text="Hand Close",command=self.handCloseButton,width=15, height=2,font=("Helvetica", 12))
+            self.handCloseButton.place(relx=0.7, rely=0.3, anchor='center')
+            self.gameStartButton = tk.Button(self.frame2, text="Start", command=self.startButton, width=15,
+                                         height=2,font=("Helvetica", 12))
+            self.gameStartButton.place(relx=0.5, rely=0.5, anchor='center')
+        if self.input_port not in self.ports:
+            self.label=tk.Label(self.frame2, text="No EMG device found, Please check the hardware connection",font=("Helvetica", 15))
+            self.label.place(relx=0.5, rely=0.3, anchor='center')
+            self.gameStartButton = tk.Button(self.frame2, text="Start", command=self.startButton, width=15,
+                                             height=2, font=("Helvetica", 12))
+            self.gameStartButton.place(relx=0.5, rely=0.5, anchor='center')
+
+    #Button effect for start game button
+    def startButton(self):
+        self.root.destroy()  # Close the welcome window
+        new_root = tk.Tk()
+        app = Window(new_root)
+        new_root.mainloop()
+
+    # Button effect for start recording when the gesture is handOpen
+    def EMG_connect_HandOpen(self):
+        self.arduino_EMG = serial.Serial(self.input_port, 9600, timeout=1)
+        gesture = "handOpen"
+        self.start_countdown(11)
+        self.displayAndsaveDate()
+
+    # Button effect for start recording when the gesture is handClose
+    def handCloseButton(self):
+        self.arduino_EMG = serial.Serial(self.input_port, 9600, timeout=1)
+        gesture = "handOpen"
+        self.start_countdown_close(11)
+        self.displayAndsaveDate()
+
+    # Button effect for disconnect
+    def EMG_disconnect(self):
+        if self.arduino_EMG is not None:
+            self.arduino_EMG.close()
+            self.arduino_EMG = None
+
+    #show the countdown numbers when record hand open
+    def start_countdown(self, count):
+        if count > 0:
+            self.startSave=True
+            if count<11:
+             self.openHandButton.config(text=str(count))
+            self.frame2.after(1000, self.start_countdown, count - 1)
+        else:
+            self.openHandButton.config(text="Hand Open")
+            self.startSave = False
+            self.savedDataOpen = []
+            for i in self.savingData:
+                self.savedDataOpen.append(i)
+            print(f"open: {self.savedDataOpen}")
+            self.savingData.clear()
+            self.EMG_disconnect()
+
+    #show the countdown numbers hwne record hand close
+    def start_countdown_close(self, count):
+        if count > 0:
+            self.startSave=True
+            if count<11:
+             self.handCloseButton.config(text=str(count))
+            self.frame2.after(1000, self.start_countdown_close, count - 1)
+        else:
+            self.handCloseButton.config(text="Hand Close")
+            self.startSave = False
+            self.savedDataClose=[]
+            for i in self.savingData:
+             self.savedDataClose.append(i)
+            self.savingData.clear()
+            print(f"close:{self.savedDataClose}")
+            self.EMG_disconnect()
+            self.trainData()
+
+
+    #save data
+    def displayAndsaveDate(self):
+      if self.startSave:
+        try:
+            while ((self.arduino_EMG.inWaiting() > 0) ):
+                dataPacket = self.arduino_EMG.readline()
+                dataPacket = dataPacket.decode()
+                cleandata = dataPacket.replace("\r\n", "")
+                row = cleandata.strip().split(',')
+
+                if len(row) == 10:
+                    splitPacket = cleandata.split(',')
+                    emg1 = float(splitPacket[0])  # First EMG sensor data
+                    emg2 = float(splitPacket[1])  # Second EMG sensor data
+                    print(f"emg1: {emg1}, emg2: {emg2}")
+
+
+                    self.emg_data_1.append(emg1)
+                    self.emg_data_1.pop(0)
+                    self.emg_data_2.append(emg2)
+                    self.emg_data_2.pop(0)
+                    if self.startSave==True:
+                     self.savingData.append([emg1,emg2])
+                     print(len(self.savingData))
+
+
+                    # Update the line data to shift the line from right to left
+                    self.line1.set_data(range(len(self.emg_data_1)), self.emg_data_1)
+                    self.line2.set_data(range(len(self.emg_data_2)), self.emg_data_2)
+
+                    # Redraw the canvas
+                    self.canvas1.draw()  # Redraw the canvas
+
+        except Exception as e:
+            print(f"An error occurred: {e}")
+
+        self.EMG_display_id = self.root.after(1, self.displayAndsaveDate)
+
+
+
+    #draw the buttons, metrics for initial training interface
+    def initialEMGTraining(self):
+        self.EMG_transmitting = False
+        fig = Figure(figsize=(self.frame1.winfo_width() / 100, self.frame1.winfo_height() / 100))
+        self.ax1 = fig.add_subplot(111)
+
+        self.ax1.set_title("Electromyography Envelope", fontsize=14, pad=0)
+        self.ax1.set_xlim(0, 5)
+        self.ax1.set_ylim(0, 5)
+        self.ax1.set_xlabel("Sample (20 samples per second)", fontsize=8, labelpad=-2)
+        self.ax1.set_ylabel("Magnitude", labelpad=0)
+        self.ax1.set_xticks(np.arange(0, 41, 8))
+        self.ax1.set_yticks(np.arange(0, 1001, 200))
+
+        for x_tick in self.ax1.get_xticks():
+            self.ax1.axvline(x_tick, color='gray', linestyle='--', linewidth=0.5)
+        for y_tick in self.ax1.get_yticks():
+            self.ax1.axhline(y_tick, color='gray', linestyle='--', linewidth=0.5)
+
+        self.line1, = self.ax1.plot([], [], color='red', label='Outer Wrist Muscle (Extensor Carpi Ulnaris)')
+        self.line2, = self.ax1.plot([], [], color='blue', label='Inner Wrist Muscle (Flexor Carpi Radialis)')
+        self.ax1.legend(fontsize=9, loc='upper right')
+
+        # Embed the plot in the tkinter frame
+        self.canvas1 = FigureCanvasTkAgg(fig, master=self.frame1)
+        self.canvas1.draw()
+        self.canvas1.get_tk_widget().pack(fill=tk.BOTH, expand=True)
+
+        # Bind the resizing event to the figure update
+        self.frame1.bind("<Configure>", self.on_frame_resize)
+
+    def on_frame_resize(self, event):
+        width = self.frame1.winfo_width()
+        height = self.frame1.winfo_height()
+        self.canvas1.get_tk_widget().config(width=width, height=height)
+        self.canvas1.draw()
+
+    '''
+    Train Data
+    '''
+
+    #turn the saved data to the algorithm and save to the file trained.txt
+    def trainData(self):
+        if os.path.exists('trained.txt'):
+            os.remove('trained.txt')
+
+        if (self.savedDataClose != []) and (self.savedDataClose != []):
+            data, labels=self.prepare_data(self.savedDataClose,self.savedDataClose)
+            vertical_line = Algorithm(self.savedDataClose, self.savedDataOpen)
+            print(f"Function is: y = {vertical_line.a}x + {vertical_line.b}")
+
+            with open('trained.txt', 'w') as file:
+                file.write(f"{vertical_line.a}\n")
+                file.write(f"{vertical_line.b}\n")
+
+            return vertical_line
+
+    def _decode(self, serial_data):
+        serial_string = serial_data.decode(errors="ignore")
+        adc_string_1 = ""
+        adc_string_2 = ""
+        self.adc_values = [0, 0]
+        if '\n' in serial_string:
+            # remove new line character
+            serial_string = serial_string.replace("\n", "")
+            if serial_string != '':
+                # Convert number to binary, placing 0s in empty spots
+                serial_string = format(int(serial_string, 10), "024b")
+
+                # Separate the input number from the data
+                for i0 in range(0, 12):
+                    adc_string_1 += serial_string[i0]
+                for i0 in range(12, 24):
+                    adc_string_2 += serial_string[i0]
+
+                self.adc_values[0] = int(adc_string_1, base=2)
+                self.adc_values[1] = int(adc_string_2, base=2)
+
+                return self.adc_values
+
+    def prepare_data(self,list1, list2):
+        data = torch.tensor(list1 + list2, dtype=torch.float32)
+        labels = torch.cat((torch.zeros(len(list1)), torch.ones(len(list2))), dim=0)
+        return data, labels
+
+
+class Algorithm:
+    def __init__(self, list1, list2):
+        self.a, self.b = self.calculate_line_equation(list1, list2)
+
+    def calculate_average(self, lst):
+        """calculate the average of these points"""
+        n = len(lst)
+        if n == 0:
+            return (0, 0)
+        sum_x = sum(point[0] for point in lst)
+        sum_y = sum(point[1] for point in lst)
+        return (sum_x / n, sum_y / n)
+
+    def calculate_line_equation(self, list1, list2):
+        """calculate the line equation in the form of y = ax + b"""
+        avg1 = self.calculate_average(list1)
+        avg2 = self.calculate_average(list2)
+
+        x1, y1 = avg1
+        x2, y2 = avg2
+
+        # Calculating the slope
+        if x1 == x2:
+            raise ValueError("The slope of a vertical line is undefined because two points are on the same vertical line.")
+
+        slope = (y2 - y1) / (x2 - x1)
+
+        perpendicular_slope = -1 / slope
+
+        # Use the point-slope form to convert the equation y - y1 = m(x - x1) to the form y = ax + b
+        a = perpendicular_slope
+        b = y1 - a * x1
+
+        return a, b
+
+    def predict(self, point):
+        x, y = point
+        line_y = self.a * x + self.b
+        if y < line_y:
+            return -1  # left
+        elif y > line_y:
+            return 1  # right
+        else:
+            return 0  # on
+
+class gameScreen:
+    def __init__(self, root):
+        self.input_port='COM9'
+        self.root = root
+        self.root.title("game Interface")
+        self.width = 1000
+        self.height = 600
+        self.width = 1000
+        self.height = 600
+        screen_width = self.root.winfo_screenwidth()
+        screen_height = self.root.winfo_screenheight()
+        x = (screen_width // 2) - (self.width // 2)
+        y = (screen_height // 2) - (self.height // 2)
+        self.root.geometry(f"{self.width}x{self.height}+{x}+{y}")
+        self.ports = [port.device for port in serial.tools.list_ports.comports()]
+
+        # Configure the grid to be expandable
+        self.root.columnconfigure(0, weight=1)
+        self.root.columnconfigure(1, weight=1)
+        self.root.rowconfigure(0, weight=1)
+        self.root.rowconfigure(1, weight=1)
+
+        # Create a frame
+        self.frame1 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=(self.height * 1 / 2))
+        self.frame1.grid(row=0, column=0, padx=10, pady=10, sticky="nsew")
+
+        self.frame2 = tk.Frame(self.root, borderwidth=1, relief="solid", width=self.width, height=self.height * 1 / 2)
+        self.frame2.grid(row=1, column=0, padx=10, pady=10, sticky="nsew")
+
+        if self.input_port in self.ports :
+            #self.arduino_EMG = serial.Serial(self.input_port, 9600, timeout=1)
+            self.outer_EMG_label = tk.Label(self.frame2, text=f"EMG for Extensor Carpi Ulnaris is :")
+            self.outer_EMG_label.config(font=("Arial", 12))
+            self.outer_EMG_label.place(relx=0.1, rely=0.2, anchor='w')
+            self.outer_EMG_Number = tk.Label(self.frame2, text="", fg="red")
+            self.outer_EMG_Number.config(font=("Arial", 12))
+            self.outer_EMG_Number.place(relx=0.2, rely=0.3, anchor='w')
+            self.inner_EMG_label = tk.Label(self.frame2, text=f"EMG for Flexor Carpi Radialis is :")
+            self.inner_EMG_label.config(font=("Arial", 12))
+            self.inner_EMG_label.place(relx=0.1, rely=0.4, anchor='w')
+            self.inner_EMG_Number = tk.Label(self.frame2, text="", fg="blue")
+            self.inner_EMG_Number.config(font=("Arial", 12))
+            self.inner_EMG_Number.place(relx=0.2, rely=0.5, anchor='w')
+            self.gesture_label = tk.Label(self.frame2, text=f"Gesture is :")
+            self.gesture_label.config(font=("Arial", 12))
+            self.gesture_label.place(relx=0.1, rely=0.6, anchor='w')
+            self.gesture_predict = tk.Label(self.frame2, text="")
+            self.gesture_predict.config(font=("Arial", 12))
+            self.gesture_predict.place(relx=0.2, rely=0.7, anchor='w')
+            self.a, self.b = self.load_Function()
+            #self.emg_thread = threading.Thread(target=self.EMG_Display)
+           # self.emg_thread.start()
+
+
+            #self.EMG_Display()
+        if self.input_port in self.ports:
+            self.column_limit = 9
+            self.last_averageRoll = 0
+            self.last_averageyaw = 0
+            self.last_averagePitch = 0
+
+            self.averageroll = 0
+            self.averageyaw = 0
+            self.averagepitch = 0
+            self.last_print_time = time()
+            self.arduino = serial.Serial(self.input_port, 115200)
+            self.roll_label = tk.Label(self.frame1, text="roll is : ")
+            self.roll_label.config(font=("Arial", 12))
+            self.roll_label.place(relx=0.2, rely=0.3, anchor='w')
+            self.pitch_label = tk.Label(self.frame1, text="pitch is : ")
+            self.pitch_label.config(font=("Arial", 12))
+            self.pitch_label.place(relx=0.2, rely=0.4, anchor='w')
+            self.yaw_label = tk.Label(self.frame1, text="yaw is : ")
+            self.yaw_label.config(font=("Arial", 12))
+            self.yaw_label.place(relx=0.2, rely=0.5, anchor='w')
+            self.IMU_Display()
+            #self.imu_thread = threading.Thread(target=self.IMU_Display)
+            #self.imu_thread.start()
+            #self.IMU_Display()
+
+
+    def _decode(self, serial_data):
+        serial_string = serial_data.decode(errors="ignore")
+        adc_string_1 = ""
+        adc_string_2 = ""
+        self.adc_values = [0, 0]
+        if '\n' in serial_string:
+            # remove new line character
+            serial_string = serial_string.replace("\n", "")
+            if serial_string != '':
+                # Convert number to binary, placing 0s in empty spots
+                serial_string = format(int(serial_string, 10), "024b")
+
+                # Separate the input number from the data
+                for i0 in range(0, 12):
+                    adc_string_1 += serial_string[i0]
+                for i0 in range(12, 24):
+                    adc_string_2 += serial_string[i0]
+
+                self.adc_values[0] = int(adc_string_1, base=2)
+                self.adc_values[1] = int(adc_string_2, base=2)
+
+                return self.adc_values
+
+    #display the real-time IMU data and sent to Unity by Socket
+    def IMU_Display(self):
+            try:
+                while (self.arduino.inWaiting() > 0):
+                    dataPacket = self.arduino.readline()
+                    dataPacket = dataPacket.decode()
+                    cleandata = dataPacket.replace("\r\n", "")
+                    row = cleandata.strip().split(',')
+
+
+                    if len(row) == 10:
+                        splitPacket = cleandata.split(',')
+                        q0 = float(splitPacket[2])  # qw
+                        q1 = float(splitPacket[3])  # qx
+                        q2 = float(splitPacket[4])  # qy
+                        q3 = float(splitPacket[5])  # qz
+                        emg1 = float(splitPacket[0])  # First EMG sensor data
+                        emg2 = float(splitPacket[1])  # Second EMG sensor data
+                        #print(f"emg1: {emg1}, emg2: {emg2}")
+                        data = [emg1, emg2]
+                        predictions = self.predict(data, self.a, self.b)
+                        ges_predictions = None
+                        if predictions is not None:
+                            if predictions == -1:
+                                ges_predictions = "Hand Open"
+                            if predictions == 1:
+                                ges_predictions = "Hand Close"
+                            if predictions == 0:
+                                ges_predictions = "Unknown"
+                        self.gesture_predict.config(text=f"{ges_predictions}")
+                        self.outer_EMG_Number.config(text=f"{emg1}")
+                        self.inner_EMG_Number.config(text=f"{emg2}")
+                        self.send_command_to_unity(f"Hand :{ges_predictions}")
+
+
+                        # Calculate Angles
+                        roll = math.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
+                        pitch = -math.asin(2 * (q0 * q2 - q3 * q1))
+                        yaw = -math.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
+
+
+                        self.roll_label.config( text="roll is : "+str(roll))
+                        self.pitch_label.config(text="pitch is : "+str(pitch))
+                        self.yaw_label.config(text="yaw is : "+str(yaw))
+                        print(roll, pitch, yaw)
+                        current_time = time()
+                        if current_time - self.last_print_time >= 0.01:
+                            print(f"roll is: {roll}")
+                            print(f"last roll is: {self.last_averageRoll}")
+                            differ_roll = self.last_averageRoll - roll
+                            print(f"differ roll is: {differ_roll}")
+                            CalculatedAngle = differ_roll * 3000 / 2.5
+                            print(f"CalculatedAngle is: {CalculatedAngle}")
+                            if (differ_roll) > 0:
+                                print("send_command_to_unity"+(f"Command : down {CalculatedAngle}"))
+                                self.send_command_to_unity(f"Command : down {CalculatedAngle}")
+                            if (differ_roll) < 0:
+                                print("send_command_to_unity" + (f"Command : down {CalculatedAngle}"))
+                                self.send_command_to_unity(f"Command : up {-CalculatedAngle}")
+
+                            if (yaw < 0):
+                                yaw = -yaw
+
+                            print(f"yaw is: {yaw}")
+                            print(f"last yaw is: {self.last_averageyaw}")
+                            differ_yaw = self.last_averageyaw - yaw
+                            print(f"differ yaw is: {differ_yaw}")
+                            yawAngle = differ_yaw * 90 / 2
+                            print(f"yawAngle is: {yawAngle}")
+                            if (differ_yaw) < 0:
+                                print("send_command_to_unity"+(f"Command : back {-yawAngle}"))
+                                self.send_command_to_unity(f"Command : back {-yawAngle}")
+                            if (differ_yaw) > 0:
+                                print("send_command_to_unity" + (f"Command : roll {-yawAngle}"))
+                                self.send_command_to_unity(f"Command : roll {yawAngle}")
+
+                            self.last_print_time = current_time
+                            self.last_averageRoll = roll
+                            self.last_averageyaw = yaw
+                            self.last_averagePitch = pitch
+
+
+
+            except Exception as e:
+                print(f"An error occurred: {e}")
+
+            # Call update_display() again after 50 milliseconds
+            self.update_display_id =self.root.after(1, self.IMU_Display)
+
+   #load the function for predict
+    def load_Function(self,filename='trained.txt'):
+        try:
+            with open(filename, 'r') as file:
+                lines = file.readlines()
+                if len(lines) < 2:
+                    raise ValueError("File content is insufficient to read the vertical line parameters.")
+
+                a = float(lines[0].strip())
+                b = float(lines[1].strip())
+                print(f"a is {a}, b is {b}")
+
+                return a,b
+
+        except FileNotFoundError:
+            raise FileNotFoundError(f"The file {filename} does not exist.")
+        except ValueError as e:
+            raise ValueError(f"Error reading the file: {e}")
+
+    def predict(self, point, a, b):
+        x, y = point
+        line_y = a * x + b
+        if y < line_y:
+            return -1  # left
+        elif y > line_y:
+            return 1  # right
+        else:
+            return 0  # on
+
+    #build the connect to unity with Socket and send the response command
+    def send_command_to_unity(self,command):
+        host = '127.0.0.1'  #  IP address for the Unity server
+        port = 65432  # The port that the Unity server listens on
+
+        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
+            s.connect((host, port))
+            s.sendall(command.encode())
+            response = s.recv(1024)
+            print('Received', repr(response))
+
+
+
+
+
+if __name__ == "__main__":
+    root1 = tk.Tk()
+    appWelcome = WelcomeWindow(root1)
+    root1.mainloop()
diff --git a/integration/Window2.py b/integration/Window2.py
index dec807ce2f37cc1061613fe520d17d5d3ca62054..7eb0fb177ab2d6da810ba99181d23d4b947322b7 100644
--- a/integration/Window2.py
+++ b/integration/Window2.py
@@ -14,6 +14,8 @@ import os
 from PIL import Image, ImageTk
 from time import sleep, time
 
+#this is the file for the combined hardware detector
+
 class Window:
     def __init__(self, root):
         self.input_port='COM9'
diff --git a/integration/mlp.py b/integration/mlp.py
new file mode 100644
index 0000000000000000000000000000000000000000..fb43f9e85e7ab7739583ee5ffe610914ceb321b8
--- /dev/null
+++ b/integration/mlp.py
@@ -0,0 +1,64 @@
+import torch
+import torch.nn as nn
+import torch.optim as optim
+from sklearn.model_selection import train_test_split
+
+# 生成一些随机数据
+def generate_data(num_samples):
+    # 生成两类数据
+    label_0 = torch.randn(num_samples, 2) + torch.tensor([1, 1])
+    label_1 = torch.randn(num_samples, 2) + torch.tensor([-1, -1])
+    labels = torch.cat((torch.zeros(num_samples), torch.ones(num_samples)), dim=0)
+    data = torch.cat((label_0, label_1), dim=0)
+    return data, labels
+
+# 定义MLP模型
+class MLP(nn.Module):
+    def __init__(self):
+        super(MLP, self).__init__()
+        self.fc1 = nn.Linear(2, 16)
+        self.fc2 = nn.Linear(16, 16)
+        self.fc3 = nn.Linear(16, 2)  # 二分类问题
+
+    def forward(self, x):
+        x = torch.relu(self.fc1(x))
+        x = torch.relu(self.fc2(x))
+        x = self.fc3(x)
+        return x
+
+# 超参数
+num_samples = 1000
+num_epochs = 50
+batch_size = 32
+learning_rate = 0.01
+
+# 数据准备
+data, labels = generate_data(num_samples)
+train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2)
+
+# 数据集和数据加载器
+train_dataset = torch.utils.data.TensorDataset(train_data, train_labels)
+train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
+
+# 初始化模型、损失函数和优化器
+model = MLP()
+criterion = nn.CrossEntropyLoss()
+optimizer = optim.Adam(model.parameters(), lr=learning_rate)
+
+# 训练模型
+for epoch in range(num_epochs):
+    for inputs, targets in train_loader:
+        optimizer.zero_grad()
+        outputs = model(inputs)
+        loss = criterion(outputs, targets.long())
+        loss.backward()
+        optimizer.step()
+    print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
+
+# 测试模型
+model.eval()
+with torch.no_grad():
+    test_outputs = model(test_data)
+    _, predicted = torch.max(test_outputs, 1)
+    accuracy = (predicted == test_labels).sum().item() / len(test_labels)
+    print(f'Accuracy on test data: {accuracy * 100:.2f}%')