
1

Cross-site Scripting attacks
protection methods

Yang Ding

Abstract—Cross-site scripting (XSS) attack is one of the most
common used method to attack a digital system. It can hide itself
in HTML, JavaScript and many other programming languages,
with the ability to do anything from gaining information of the
victim, to getting full control to the system been attacked. In
oder to deal with this problem, many developer have figure
out different way to protect a system from XSS attack. This
paper listed several different approach to counter XSS attack
and discuss their strengths and weaknesses.

Index Terms—Cross-site scripting attacks (XSS), cyber secu-
rity.

I. INTRODUCTION

Cross-site scripting (XSS) attack is a computer vulnerability
that allow attacker to insert their own script to the web page to
modified the web page in a way they want. Attacker could let
browser sending sensitive information of the user, monitoring
user action without been noticed, or even gaining access to
control user’s system. Usually, attacker hide its code in web
applications using HTML, JavaScript, Flash and many other
programming languages. According to Open Web Application
Security Project (OWASP), XSS attack is at the seven place
of OWASP top 10 web application security risk in 2017 [1].

II. BACKGROUND

According to the data from CVE security vulnerability
database [2], from 1999 to 2019, 12.5% of the recorded vul-
nerabilities are XSS attacks. In 2019, 1593 vulnerabilities are
based on XSS (only considering the vulnerabilities that have
been identified), make it the second common vulnerabilities
of the year, detailed data shown in the figure 1 below.

25.3%
17.7%

13.9%

10.2%

10.0% 5.5%
4.6%

4.4%

8.4%

Code Execution

XSS

Overflow

Denial of Service

Gain Information

Bypass Something

SQL Injection

Cross Site Request Forgery

Others

Fig. 1. percentage of different vulnerabilities been found in 2019

III. XSS ATTACK AND POSSIBLE CONSEQUENCE

As XSS can be insert into different programming languages,
there are lots of ways to perform a XSS attacks. One com-
monly used method is to hide the code in a session during user
using browser. If the browser doesn’t recognized the malicious
script and consider the session is from a trusted source, the
script will be in the system and provide benefit for attacker
to gain the access of user’s system. According to OWASP,
XSS attacks always occur when data enters a Web application
through an untrusted source, most frequently a web request,
or when data is included in dynamic content that is sent to a
web user without being validated for malicious content [1].

The result of XSS attack can be vary, cause the consequence
of been attack is highly depended on what the malicious code
could do. For example, if the code is used for hijacking the
transmission between client and server, as the result the at-
tacker will be able to get the data been transferred and possibly
even change it. If the code is for starting a connection between
victim and attacker, then it could end up as attacker have full
access of victim’s system. In conclusion, the consequence of
under a XSS attack has a high range of possibility.

Lots of websites have been found out having XSS vulner-
abilities and that include well known websites like Facebook,
Twitter, Youtube and ebay. In 2010, famous open-souse foun-
dation Apache was hacked by a hacker using XSS attack
and all user password stored on that server was stolen [3].
One more recent case is in January 2019, a game made by
Epic games, Fortnite was found vulnerable to multiple attacks
including XSS attack. By clicking the URL send by attacker,
the gamer account can be took over control and personal
information are exposed to the attacker [4].

IV. TYPE OF XSS ATTACK

There are three types of XSS attack, persistent XSS attack,
non-persistent XSS attack, and DOM-based XSS attack.

A. persistent XSS attack

Persistent XSS attack (also called type-I XSS or Stored
XSS), is the XSS attack that scripts has been inject into
vulnerable server through invalid input. The script is then
stored in the database, forms, user logs or other data that will
be requested by client from server. When client communicate
with the server, it will receive data that contain the malicious
scripts and then the script can perform harmful action to the
client device.



2

B. non-persistent XSS attack

Also called type-II XSS or reflected XSS. This kind of XSS
hide the script into the information in the data that can be
reflected from server’s error, form or any part that can show
a response that include some of information from the request.
For example the search bar always show the information you
are searching in the result page, this kind of operation is
where non-persistent XSS could happen. When victim got
a email or message from a website that ask victim to do
somethings, like click a link, visit a website, or submit a form,
the links/website/form can be modified by attacker and that can
send the script with user request, then the vulnerable website
will reflect the information been sent back to victim, as the
data received from server is the responds from victim’s own
request, the data will be consider to be safe and the script hide
in the data will be executed, which will do what attacker want
to the victim.

C. DOM-based XSS attack

DOM-based XSS attack also known as type-0 XSS, it
happens as a result of allowing the modification of document
object model (DOM) when browser rendering the web page.
Consider the hacker inject the script into the parameter in a
URL, which is been used only when browser rending the page,
then when victim click the URL, the request and response
HTML will be no different from normal web page, but when
browser rending the page based on HTML’s client side script,
the DOM can be modified by the parameter and the injection
of hacker’s script can change how the web page operate and
probably run some code for hacker. This is a complete different
XSS attack compare to other two, because the script hacker
uses not affecting HTML source code from response, only
when client rendering the web page, the script will be hid into
the page and do what it wants to do, while other two attacks
already got script in the code when server sending back the
response.

V. DIFFERENT APPROACHES TO PROTECT THE SYSTEM
FROM XSS ATTACK

Developer have different ways to protect there system from
XSS attacks, none of them are perfect but all those methods
have advantages and drawbacks. Five different approaches are
discussed in this section.

A. Pattern filtering for user input

One simple way to protect server from XSS attack is to
check every user input and us a filter to eliminate all insecure
string that has similar pattern to a XSS attack code. Usually
the system choose to replace/remove the malicious string.
Others will use escaping method, which the string that has
special meaning for computer will be modified, or just give a
restriction to the input with limited amount of specified input
is allowed.

This method has good result dealing with all kind of XSS
attacks as the user input is always where XSS is hiding.
Imran Yusof and Al-Sakib Khan Pathan build up a pattern

filtering method specifically for persistent XSS attacks [5],
which has a very good result filtering the input by filtering
different potential XSS attack code including event handlers,
data URIs, insecure keywords, escape codes, common word in
XSS payload and XSS Buddies. Some examples of the filter
logics been used are: using pattern “/on\w+=—fscommand/i”
to find event handlers then replace them to “” (null), or remove
all insecure HTML keywords in user input like isindex, script,
form to break the logic of potential XSS code.

According to their paper [5], they used a collection of XSS
cheat sheets from the Internet and successfully filtered all
patterns in those cheat sheets. This show that there method
is effective to known XSS patterns. But as the effectiveness
of pattern filtering is highly based on the database of known
vulnerabilities, the effectiveness of newly developed pattern
or complex pattern is not ideal. It also has a strong demand
for updating the database regularly to keep up with new attack
pattern, otherwise the filter will become less and less effective.

B. client side pattern matching technique

As mentioned in second section, XSS script always hide
inside the user input or data inside the response. This means
the malicious code will be send to user browser, so if the
browser can identified the script and protect user from been
attack, the problem will be solves. Many modern browsers
have a function that allow the installation of extensions, and
it’s possible to create an extension that check all data been
send and received, then protect system from XSS attacks.

There is a research on these kind of extension in 2018
[6]. In the paper they developed a Chrome extension called
CounterXSS and try to identify three common XSS attack
pasterns based on HTML5. The extension can identified direct
attack patterns, which is script like onscroll = “script” been
hide directly into a HTML element, a multiple format attack
patterns that use attributes like src to directly put URL with
modified parameter into the web page, or DOM-base pattern
that use attribute like onerror, onload to modified HTML
code using JavaScript when browser rendering the page. The
extension can run in the background and will send a alert to
user when a pattern has been found. Not much detailed on
how the extension performed under multiple testing, but this
approach show a new way to prevent XSS.

This research didn’t provide a powerful method like the
first one provide, but the idea is what can be borrowed.
According to NetMarketShare [7], from May 2019 to April
2018, over 68% Internet users is using Google Chrome, taking
other Chromium based browsers like new Microsoft Edge and
Opera into consideration, the number will be easily above
70%. With all this high amount of user using browser that
support Chromium extension, using a extension to provide
XSS protect service will be a very effective way to improve the
security of whole Internet. But there are also limitations. Just
like the extension been developed in the research, extensions
are usually small piece of code that couldn’t acquire too much
processing power, and it can only protect one browser, not
the whole system. Client side approach also is said to be not
effective toward web content manipulation [9].



3

C. server side approach

Beside from preventing XSS attack from client side, there
are also server side approaches to mitigate the possibility of
XSS attack. Usually server side approach need to cooperate
with client side browser, server will generate the content that
should be generated by browser, check it for any XSS possible
content, then send the already generate page to browser. This
will increase the work done by server and can also to be found
not so effective [8]. So Hossain Shahriar and Mohammad
Zulkernine create a new way to perform server side XSS
protection based on the concept of “boundary injection” and
“policy generation”, witch mainly focus on JSP programs [8].

In their approach, the server look for the dynamic content on
every pages, then add a “boundary” with a specified token to it,
for every content, it also generate a expected content features
(attributes, JavaScript method name and other information of
the content) as the “policy” and stored the policy on the
server. When a client request for a web page, the server
generate the response and then compare it to the boundary
and policy of original page, if the feature in the boundary is
different from what was expected in policy, the XSS attack
is consider to be found and will deal with it using an attack
handler program. If no policy deviation, server then check
for boundary informations based on tokens, if there are new
boundaries found or boundaries with same token, the server
will remove all those boundaries. Finally the server sent the
response to the server.

In there paper, the false positive rate of there approach vary
between 0% - 5.2%, with a 2% - 6% delay compare to normal
response due to the processing on server side, they also point
out that their method has detect some advanced XSS attack
other server side method failed to detect [8]. Compare to other
server side method, their method is no doubt a improvement
to current method, although the delay on response could be a
further work to be improve.

D. static analysis method

Different from other method that focus on improving the
system to be more resistant to XSS attacks, static analysis
focus on identifying the vulnerabilities in server code. Static
analysis usually tracked the input that are not trusty, see how
the information flows and see if the data has reach a part,
which it can be considered as a part of statement such as
HTML or JavaScript statement.

Traditional static analysis can quickly detect XSS vulnera-
bilities, but it also suffers from problems like always giving
wrong positive result [9]. To improve this method, Gary
Wassermann and Zhendong Su bring string analysis to the
traditional method [10]. They translate the testing code to a
static single assignment(SSA) to encode data dependencies,
they also use other techniques like context free grammar(CFG)
to help improve the checking of blacklisted string values [9].

According to Gary Wassermann and Zhendong Su, there
technique has improved the accuracy of static analysis, but
couldn’t analysis arbitrarily complex code, and the black-list
policy rather than white-list policy also cause some problem.
What’s more, the new method still couldn’t fix the weakness

that static analysis won’t detect any DOM-based XSS attack
[10].

E. static analysis combined with dynamic analysis

With the goal of improving static analysis, developers start
to combine dynamic analysis with static analysis, in oder
to solve the problems of producing too many false positive
result. Based on a open source static analysis project [11],
Davide Balzarotti and his colleagues build up a method that
use both static and dynamic analysis to give a more accurate
vulnerability analysis result [12].

For static analysis, they added a over-approximation for
each testing string at every point of the program, so that they
can use the value to check whether the string really poses a
security risk when reaching that sink of the code. The overall
performance is nearly the same. For dynamic analysis, they
take the suspicious program path for every string, and try to
identify if it can really harm the system. By simulating the
program operating the string and check the result, dynamic
analysis tried to identified false positive automatically for
developer [12].

The method has proved to be more effective than static
analysis, but it still has several problems. It contain some
programing errors when dealing with regular expressions, the
dynamic analysis process can still be insufficient [12]. As it
is still a server based analysis, DOM-based XSS attack is still
not been tested just like static analysis.

VI. CONCLUSION

Overall, 5 different approaches have been introduce, every-
one of them has their own advantage and draw back. Pattern
filtering is one of the most easiest way to counter XSS attack
and it’s very effective to known vulnerabilities. But the needed
of a database with a regular update make it hard to enforce
after deploy.

Client side pattern matching is deployed on client side,
which make it a personal protection method for XSS attack,
the pay back is that it won’t be able to have complex protection
like a normal server does, as client has much less computing
power compare to server machine. it also won’t detect the
attack if web content manipulation is involved [9].

Opposite to client side approach, server side approach
can be much more powerful than client side giving more
processing power, with more method could be used to detect
a XSS attack. Some server side approach is too complex that
even need to corporate with client side browser, but there are
new approach that are more effective and won’t need the help
of client browser [8].

Static analysis approach focus on if the vulnerability exist
rather than defending an attack. This method need to track
down the input string so it’s not effective when input string is
too complex, it also has issue about high false positive rate,
with no ability to find vulnerability related to DOM-based
attack [9].

To improve static analysis, developers combine it with
dynamic analysis to get better performance. New method
have lower false positive rate, but the method couldn’t handle



4

regular expression effectively, and it still not going to test
DOM-based XSS attack.

Considering all methods are far from perfect, and XSS
attack is still one of the most popular vulnerabilities in the
world, which means attacker is only going to find more ways to
use XSS in attacking, the importance to develop more effective
approach to prevent from XSS attack will keep increasing.

REFERENCES

[1] “QWASP Top Ten” [Online]. Available:
https://owasp.org/www-project-top-ten/

[2] “Vulnerability distribution of cve vulnerability by types” [Online]. Avail-
able:
https://www.cvedetails.com/vulnerabilities-by-types.php

[3] “Apache Foundation Hit by Targeted XSS Attack — Threatpost” [Online].
Available:
https://threatpost.com/apache-foundation-hit-targeted-xss-attack-041310/73815/

[4] “Hacking Fortnite Accounts - Check Point Research” [Online]. Available:
https://research.checkpoint.com/2019/hacking-fortnite/

[5] I. Yusof and A. K. Pathan, ”Preventing persistent Cross-Site Scripting
(XSS) attack by applying pattern filtering approach,” The 5th Interna-
tional Conference on Information and Communication Technology for
The Muslim World (ICT4M), Kuching, 2014, pp. 1-6.

[6] A. P. Sivanesan, A. Mathur and A. Y. Javaid, ”A Google Chromium
Browser Extension for Detecting XSS Attack in HTML5 Based Web-
sites,” 2018 IEEE International Conference on Electro/Information Tech-
nology (EIT), Rochester, MI, 2018, pp. 0302-0304.

[7] “Market share for mobile, browsers, operating systems and search engines
— NetMarketShare” [Online]. Available:
https://netmarketshare.com/

[8] H. Shahriar and M. Zulkernine, ”S2XS2: A Server Side Approach to
Automatically Detect XSS Attacks,” 2011 IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing, Sydney,
NSW, 2011, pp. 7-14.

[9] L. K. Shar and H. B. K. Tan, ”Defending against Cross-Site Scripting
Attacks,” in Computer, vol. 45, no. 3, pp. 55-62, March 2012.

[10] G. Wassermann and Z. Su, ”Static detection of cross-site scripting vul-
nerabilities,” 2008 ACM/IEEE 30th International Conference on Software
Engineering, Leipzig, 2008, pp. 171-180.

[11] N. Jovanovic, C. Kruegel and E. Kirda, ”Pixy: a static analysis tool
for detecting Web application vulnerabilities,” 2006 IEEE Symposium on
Security and Privacy (S&P’06), Berkeley/Oakland, CA, 2006, pp. 6 pp.-
263.

[12] D. Balzarotti et al., ”Saner: Composing Static and Dynamic Analysis
to Validate Sanitization in Web Applications,” 2008 IEEE Symposium on
Security and Privacy (sp 2008), Oakland, CA, 2008, pp. 387-401.


