
University of Southampton

Faculty of Engineering and Physical Sciences

Electronics and Computer Science

A detection method for cross-site

scripting

by

Yang Ding

September 2020

Supervisor: Dr. Nawfal Fadhel

Second Examiner: Dr. Julian Rathke

A dissertation submitted in partial fulfilment of the degree

of MSC Cyber Security

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

University of Southampton

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

ELECTRONICS AND COMPUTER SCIENCE

Master of Science

by Yang Ding

Cross-site scripting (XSS) attack is a computer vulnerability that allow attacker to

insert their own script to the web page to modify the web page in a way they want. By

using XSS attack, attacker can modify the web page, stealing information from user,

etc. These days, developer usually fix known XS vulnerabilities before been attack,

or clean up the suspicious input using firewall before it been sent to the server. Both

approaches cannot let developer react to the attack if a XSS attack really happen. To

answer the question that “Through adding attack detection tools on server side, how

much improvement on the efficiency can a system get when it is attacked?”, his project

focuses on building a server side detection tool using pattern matching technique based

on regular expression, the tool will notify the developer for possible XSS attacks and

in this case make developer react earlier when XSS happened real time. We use three

attack script to attack a server and use our detection tool on server side to test the

effectiveness of the tool. The final result show both advantage and disadvantage of this

detection technique.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

Acknowledgements

I would like to thank my project supervisor for giving me lots of support on writing

thesis, he also provides me much information on different part of my project when I

came into problems. My second examiner provides some advice about the thesis and I

really appreciate that. Also, I would like to thank my university for the online library

support which helps a lot in early stage of my project. I also appreciate the help from

my friend when I am having trouble extracting the input data from HTML requests.

ii

Statement of Originality

- I have read and understood the ECS Academic Integrity information and the University’s

Academic Integrity Guidance for Students.

- I am aware that failure to act in accordance with the Regulations Governing Academic Integrity

may lead to the imposition of penalties which, for the most serious cases, may include

termination of programme.

- I consent to the University copying and distributing any or all of my work in any form and

using third parties (who may be based outside the EU/EEA) to verify whether my work

contains plagiarised material, and for quality assurance purposes.

You must change the statements in the boxes if you do not agree with them.

We expect you to acknowledge all sources of information (e.g. ideas, algorithms, data) using

citations. You must also put quotation marks around any sections of text that you have copied

without paraphrasing. If any figures or tables have been taken or modified from another source,

you must explain this in the caption and cite the original source.

I have acknowledged all sources, and identified any content taken from elsewhere.

If you have used any code (e.g. open-source code), reference designs, or similar resources that

have been produced by anyone else, you must list them in the box below. In the report, you must

explain what was used and how it relates to the work you have done.

I have not used any resources produced by anyone else.

You can consult with module teaching staff/demonstrators, but you should not show anyone else

your work (this includes uploading your work to publicly-accessible repositories e.g. Github, unless

expressly permitted by the module leader), or help them to do theirs. For individual assignments,

we expect you to work on your own. For group assignments, we expect that you work only with

your allocated group. You must get permission in writing from the module teaching staff before

you seek outside assistance, e.g. a proofreading service, and declare it here.

I did all the work myself, or with my allocated group, and have not helped anyone else.

We expect that you have not fabricated, modified or distorted any data, evidence, references,

experimental results, or other material used or presented in the report. You must clearly describe

your experiments and how the results were obtained, and include all data, source code and/or

designs (either in the report, or submitted as a separate file) so that your results could be

reproduced.

The material in the report is genuine, and I have included all my data/code/designs.

We expect that you have not previously submitted any part of this work for another assessment.

You must get permission in writing from the module teaching staff before re-using any of your

previously submitted work for this assessment.

I have not submitted any part of this work for another assessment.

If your work involved research/studies (including surveys) on human participants, their cells or

data, or on animals, you must have been granted ethical approval before the work was carried

out, and any experiments must have followed these requirements. You must give details of this in

the report, and list the ethical approval reference number(s) in the box below.

My work did not involve human participants, their cells or data, or animals.

ECS Statement of Originality Template, updated August 2018, Alex Weddell aiofficer@ecs.soton.ac.uk

Contents

Acknowledgements ii

1 Introduction 1

1.1 Problem . 1

1.2 Research question . 2

1.3 Hypothesis . 2

2 Background and Literature Review 3

2.1 XSS . 3

2.1.1 Definition . 3

2.1.2 How XSS happen and possible consequence 3

2.1.3 Type of XSS attack . 4

2.1.3.1 Stored XSS attack . 4

2.1.3.2 Reflected XSS attack . 4

2.1.3.3 DOM-based XSS attack 5

2.2 Testing platform . 5

2.2.1 Vagrant . 5

2.3 Vulnerable web application on the target machine 6

2.3.1 About Damn Vulnerable Web Application (DVWA) 6

2.4 Tools used to attack the target . 7

2.4.1 Tools been used . 7

2.4.1.1 Cross Site “Scripter” (XSSer) 7

2.4.1.2 Zad Attack Proxy . 8

2.4.1.3 Burp suite Community edition 8

2.4.2 Difference between these tools . 9

2.5 Related works . 9

3 Requirements Analysis and Project Plan 11

3.1 Functional requirements . 11

3.1.1 Importance level analysis . 12

3.2 Non-functional requirements . 12

3.3 MoSCoW analysis . 13

3.4 Risk analysis . 13

3.5 Project plan . 16

4 Design and Implementation 17

4.1 Program design . 17

4.2 Test environment . 19

iv

CONTENTS v

4.3 Implementation . 20

4.3.1 Request listening and extracting 20

4.3.1.1 Listen to HTTP request 20

4.3.1.2 Extracting the data . 21

4.3.2 Checking the request data . 21

4.3.2.1 Data need to check in HTTP request 21

4.3.2.2 Detection method . 23

4.3.3 Extract information needed and store the suspicious request 25

5 Result and Discussion 27

5.1 Testing process . 27

5.1.1 Attack using XSSer . 27

5.1.2 Attack using ZAP . 28

5.1.3 Attack using Burp Suite . 29

5.2 Testing result . 30

5.3 Discussion . 31

5.3.1 Compare stored XSS and reflected XSS 31

5.3.2 Compare result from three tools 31

5.3.2.1 XSSer result . 31

5.3.2.2 ZAP result . 32

5.3.2.3 Burp Suite result . 33

6 Conclusion and Further Work 34

6.1 Conclusion . 34

6.2 Further work . 35

6.3 Legal aspect . 35

A Appendix 36

A.1 Document in COMP6211 - Project Preparation 36

Bibliography 41

List of Figures

1.1 Percentage of different vulnerabilities been found in 2019 1

2.1 DVWA application page . 6

2.2 XSSer . 7

2.3 ZAP user interface . 8

2.4 Burp suite GUI welcome page . 8

3.1 MoSCoW analysis . 13

3.2 Project Plan . 16

4.1 Program logic . 18

5.1 XSSer attack result . 28

5.2 ZAP attack steps . 28

5.3 ZAP fuzzing result window . 29

5.4 Burp Suite attack setting . 29

vi

List of Tables

2.1 Difference between 4 tools . 9

3.1 Functional requirements . 11

3.2 Importance level example . 12

3.3 Importance level of functional requirements 12

3.4 Non-functional requirements . 13

3.5 Risk level example . 14

3.6 Importance level of functional requirements 15

4.1 Test environment . 19

4.2 Tags that are frequently used for XSS attack 24

4.3 Variables that been stored into database 25

5.1 overall result . 30

vii

Chapter 1

Introduction

1.1 Problem

In summary, the problem here is that even through XSS is one of the most vulnerable

and commonly seen vulnerabilities, there isn’t a good way to detect XSS attack while the

server is been attack.

According to the data from CVE security vulnerability database (2020), from 1999 to

2019, 12.5% of the recorded vulnerabilities are XSS attacks. In 2019, among all the

vulnerabilities recorded in CVE, 1593 are based on XSS, make it the second common

vulnerabilities of the year, Figure 1.1 is a pie chart of vulnerabilities been recorded in

2019.

25.3%
17.7%

13.9%

10.2%

10.0%5.5%
4.6%

4.4%

8.4%

Code Execution

XSS

Overflow

Denial of Service

Gain Information

Bypass Something

SQL Injection

Cross Site Request Forgery

Others

Figure 1.1: Percentage of different vulnerabilities been found in 2019

Usually, the common way to deal with XSS attack is to find the vulnerabilities before

the hacker and fix the vulnerabilities first. Developers use different XSS vulnerability

detecting/attacking scripts to find as many vulnerabilities as possible in their own sys-

tem, then fix them one by one. The effectiveness of this process highly depends on how

many vulnerabilities’ developers can find, with another concern that the security of new

code been added after the testing is still not been guaranteed.

1

Chapter 1 Introduction 2

1.2 Research question

As been mentioned in last section, common way to protect a server from XSS attack is

to find the vulnerabilities before attackers make use of it. This approach will fix all the

vulnerabilities been found, but it is always possible to miss some vulnerabilities and the

possibility of adding new vulnerabilities after an update is also needed to be taken into

consideration. Also, when the server is under XSS attack, the system has no ability to

detect the attack and quickly inform the developer to allow developer take into action.

With this in mind, if a tool can be created to detect the XSS attack, the system will be

able to immediately acknowledge that someone is attempting to find vulnerability of the

system, then it can inform the developer to be aware of it. In this way, the developer

will be able to check if the attack attempt is just aiming for already fixed vulnerabilities,

or it has found a new vulnerable code that missed during self testing.

In order to prove the idea is feasible, following question will be answered:

Through adding attack detection tools on server side, how much improvement on the

efficiency can a system get when it is attacked?

By answering the question, the effectiveness of the idea of building a detection tool for

XSS testing can be proved. At the same time, the impact it has to the performance of

the system can be measured.

1.3 Hypothesis

The hypothesis is, by using pattern matching technique on server side, it will be very

effective on XSS attack detection, with a reasonable false positive rate to be considered.

Chapter 2

Background and Literature

Review

2.1 XSS

XSS is a widely used attacking method in cybersecurity, it can basically be injected into

anywhere that has a user input, while also have the ability to do anything.

2.1.1 Definition

Cross-site scripting (XSS) attack is a computer vulnerability that allow attacker to insert

their own script to the web page to modify the web page in a way they want. Attacker

inserts the script in web applications using HTML, combine with other languages like

JavaScript, PHP, etc. As it basically can be inserted everywhere has a user input, with

the ability to do almost anything, XSS is one of the widest spread web vulnerabilities

in the world.

2.1.2 How XSS happen and possible consequence

As XSS can be inserted into different programming languages with the help of HTML

tag, there are lots of ways to perform a XSS attacks. One commonly used method is to

hide the code in a session during user using browser. If the browser doesn’t recognize

the malicious script and consider the session is from a trusted source, the script will

be in the system and provide benefit for attacker to gain the access of user’s system.

According to OWASP, XSS attacks always occur when data enters a Web application

through an untrusted source, most frequently a web request, or when data is included in

dynamic content that is sent to a web user without being validated for malicious content

(The Open Web Application Security Project (2020))

3

Chapter 2 Background and Literature Review 4

The result of XSS attack can be varied, as the outcome of been attack is highly depended

on what the malicious code could do. So consequence of under a XSS attack has a high

range of possibility.

Lots of websites have been found out having XSS vulnerabilities and that include well

known websites like Facebook, Twitter, YouTube and eBay. In 2010, famous open-souse

foundation Apache was hacked by a hacker using XSS attack and all user password stored

on that server was stolen (Threatpost (2010)). One more recent case is in January 2019,

a game made by Epic games, Fortnite was found vulnerable to multiple attacks including

XSS attack. By clicking the URL send by attacker, the gamer account can be taken

over control and personal information are exposed to the attacker (Check Point Research

(2019)).

2.1.3 Type of XSS attack

There are three types of XSS attack, stored XSS attack, reflected XSS attack, and

DOM-based XSS attack.

2.1.3.1 Stored XSS attack

Persistent XSS attack (also called type-I XSS or stored XSS) is the XSS attack that

aimed to store the script on vulnerable server through invalid user input. By sending

unsafe parameter using forms and other kind of parameter, if the parameter been stored

on the server (in database, log, etc.) successfully, when that data is been requested from

other user, the scripts will be sent to the client and do harmful action on client side.

2.1.3.2 Reflected XSS attack

Also called type-II XSS or non-persistent XSS. This kind of XSS hide the script into the

information in the data that can be reflected on server’s respond, rather than stored XSS,

this attack won’t need script been stored on server side. Reflected XSS happened where

user input can be shown on the web page, like a search bar, which always show your

keyword in the response. Attackers to create a link that make use of the vulnerabilities,

hide it in a fake website, or any other method that can trick user to click the link, when

user gets the response, attacker’s scripts will be run and do what attacker plans to do.

This attack make victim machine believe that the script in the response are all safe, as

the victim send the request in the first place.

Chapter 2 Background and Literature Review 5

2.1.3.3 DOM-based XSS attack

DOM-based XSS attack also known as type-0 XSS, it is related to document object model

(DOM), which can making modification on the client side, without sending request to

server. This is a complete different XSS attack compare to other two, because the script

hacker uses not affecting HTML source code from response, so the script only render on

client side and has nothing related to server.

As DOM based XSS request is fully client side attack, which means nothing has been

sent to server, this XSS attack couldn’t be detected on server side, so this project will

focus on detecting reflected and stored XSS attack.

2.2 Testing platform

This project has some unsafe action (e.g. use tools to detect vulnerability on a web

application, set up a web application on the system aim to take XSS attack) need to

be done to the testing system, so virtual machines are need. This project uses Vagrant

combine with VirtualBox to set up the environment.

2.2.1 Vagrant

Vagrant is a “Tool for building and managing virtual machine environments in a single

workflow”(HashiCorp (2020)). By providing a config file for set up the virtual machine,

vagrant can shorten the virtual machine build up time every time a new machine is set

up, other useful cases is you can let other people set up a same machine with same

configuration just by sharing your vagrant config file. This advantage also provide an

easy way to set up the exact same machine every time the machine crash by some reason

or the machine need to be in the same state every time it been tested.

In this project, vagrant is used to great all virtual machine. There are several reasons of

using vagrant. First, using vagrant means the vagrant config file can be seared easily, so

that the machine used for testing can be easily set up for someone that like to perform

further testing about this project. Also, by using vagrant, target machine can be in exact

same state at the start of the test every time. Another reason that vagrant been use

is, after the XSS detection tool been installed on a target machine, an original version

target machine can be build using vagrant file, and a comparison can be set up more

easily.

Chapter 2 Background and Literature Review 6

2.3 Vulnerable web application on the target machine

In this project, a target machine is need to provide a vulnerable web application. With

the vulnerabilities on this machine, we can use tools to find the vulnerability, understand

the attacking process, then build up a tool to detect the attack. The requirement of

this web application should be able to run on local network. Also, it should be easy

to modified so that we can quickly get which part of the code we need to change when

building up the detection tool. There are several open source web applications can be

used, in this project, we choose a project called Damn Vulnerable Web Application

(DVWA).

2.3.1 About Damn Vulnerable Web Application (DVWA)

According to the GitHub page of DVWA (DVWA team (2020)), “Damn Vulnerable

Web Application (DVWA) is a PHP/MySQL web application that is vulnerable. Its

main goal is to be an aid for security professionals to test their skills and tools in a

legal environment, help web developers better understand the processes of securing web

applications and to aid both students & teachers to learn about web application security

in a controlled class room environment.”

Overall, DVWA provide a test bench, which has all kinds of vulnerabilities for user

to test out their cybersecurity skills legally. It includes wide variety of vulnerabilities,

including brute force, command injection, file inclusion, SQL injection, XSS and a lot

more. Each vulnerability has one clearly indicated web page to test it out, with some

other vulnerable points that are not indicated. Each indicated vulnerability has four

security level: low, medium, high and impossible. Low is the easiest level to make use

of the vulnerability, while impossible is the level that is nearly not possible.

(a) DVWA home screen (b) DVWA security level setting

Figure 2.1: DVWA application page

Chapter 2 Background and Literature Review 7

2.4 Tools used to attack the target

To test our tools and analysis the effectiveness of it, several common used attack script-

s/programs are used during the test. These tools have different cheat sheet for XSS

attack, with other different included.

2.4.1 Tools been used

In total, there are 3 XSS vulnerability detection/attacking tool been used in the project.

All tools are open source software, some of them are for XSS attack only and others

can also detect other kinds of vulnerabilities (this project only use there XSS related

functions). Following are the tools been used.

2.4.1.1 Cross Site “Scripter” (XSSer)

Cross Site “Scripter” (XSSer) (epsylon (2020)) is a python 3 based programs that can

easily used to find XSS vulnerabilities on web application. Its developer describes it

as “an automatic -framework- to detect, exploit and report XSS vulnerabilities in web-

based applications”. It has around 1300 attack vectors preloaded in the program and

support different browser. It has multiple settings to fit different testing situations,

including specify different injections techniques (e.g. cookie, document object model)

and options to try bypassing some common anti-XSS filter (e.g. String.FromCharCode()

and Unescape() functions). It provides both command line and GUI interface to fit

different users need. This project use XSSer v1.8 in the test.

(a) command line interface (b) URL generation logic of XSSer

Figure 2.2: XSSer

Chapter 2 Background and Literature Review 8

2.4.1.2 Zad Attack Proxy

OWASPr Zad Attack Proxy (ZAP) is a well known web application scanner (ZAP

Dev Team (2020)). It is based on Java and currently maintained by an international

volunteers team. It provides scripts for multiple vulnerabilities, including XSS, cross

site request forgery (CSRF) and much more. ZAP can run on both command line and

GUI, and OWASP has provided a detailed documentation for users. This project use

ZAP v2.9.0 during the test.

Figure 2.3: ZAP user interface

2.4.1.3 Burp suite Community edition

Burp suite is a Java base web application vulnerability tool. It supports GUI and has

huge amount of functions including scanner, inductor, decoder, etc. The developer of

burp suite aiming to “giving users a competitive advantage through superior research”

(PortSwigger Ltd. (2020)). Burp suite has three editions: enterprise, professional and

community. Community edition is totally free but has lots of limitations, as the com-

munity edition is enough for this project, we use community edition v2020.4 in this

project.

Figure 2.4: Burp suite GUI welcome page

Chapter 2 Background and Literature Review 9

2.4.2 Difference between these tools

Following is a table that shows some of the most significant difference in specs between

the attack tools been used in this project (Table 2.1).

Table 2.1: Difference between 4 tools

Tools/specs XSSer ZAP
Burp suite

Community

Programming

language
Python 3 Java Java

Interface
command

line

command

line & GUI

command

line & GUI

Platform Linux
Linux, Mac,

windows

Linux, Mac,

windows

vulnerabilities

can find
XSS

multiple vul-

nerabilities

multiple vul-

nerabilities

Version been

used in the

project

1.8 2.9.0 2020.4

storage of attack

scrips / cheat

sheets

low high high

browser proxy

setting
not needed needed needed

2.5 Related works

Currently, most of the research are aiming for finding different approaches to protect

the system from XSS attack, which is relevant but not the same compare to what this

project does. This project develops a tool for only detecting if there is a possible XSS

attack in the system and inform the developer of the system on time, while most of the

research focus on finding the vulnerabilities and fix it before attack happen.

There are also approaches that set up a firewall and use the firewall to filter the pos-

sible XSS scripts, this is a better approach compare to our tools in terms of defending

XSS attack, but it usually takes more resource on the system. Shahriar and Zulkernine

(2011) have provided a way to perform server side XSS protection based on the concept

of “boundary injection” and “policy generation”, witch mainly focus on JSP programs.

Chapter 2 Background and Literature Review 10

Compare to other server side method, their method has a lower false positive rate com-

pare to current method, although the delay on response could be a further work to be

improved. This is one of the best filter approach, but it still required lots of resource.

Gupta et al. (2017) provide a system only for detection of XSS attacks just as this

project do. They stated that “This work focuses on the detection of XSS attack using

intrusion detection system. Here attack signature is utilized to detect XSS attack. To

test the usefulness and effectiveness of proposed work a proof of concept prototype has

been implemented using SNORT IDS.”

Compare to the program that aiming to fix the vulnerabilities, tool in this project focus

on quickly detected the attack and inform the developers to provide a better chance

for them to react to the attack on time. If use this tool before the attack protection

program/scripts, it can also give developer a better idea on when there is an attacker

attacking them rather than just simply block every potential attack outside the system.

Chapter 3

Requirements Analysis and

Project Plan

3.1 Functional requirements

Functional requirement is a common way to list the specification or behavior of the

software. Table 3.1 are the functional requirements for the tool building in this project:

Table 3.1: Functional requirements

Requirement Detailed description

Command line

interface

The Tool will interact with user through command line

interface

Listen to port The tool is able to listen on the port provide by user

Requests

checking

The tool is able to check every request go through the port

and see if it contains possible XSS attack script

Timing for

request

frequently

The tool is able to take time on how often one IP providing

suspicious requests, once it is considered to be too frequent,

the IP will be noted

Create request

data
The tool will create a profile for every suspicious data

Store request

data
The tool should be able to add every profile to a database

Review requests

data
The user will be able to review the profile in the database

Notification
Once an IP has sent suspicious request too frequently, the

tool will send user a notification

11

Chapter 3 Requirements Analysis and Project Plan 12

3.1.1 Importance level analysis

We set up some importance level to provide a better understanding on the complexity

and time it takes to finish each functional requirement. Table 3.2 shows the example of

how importance level are set up.

Table 3.2: Importance level example

Complexity/Time Low Medium High

Short 0.0625 0.125 0.25

Medium 0.125 0.25 0.5

Long 0.25 0.5 1

For all the functional requirements, there importance level are shown in Table 3.3 below.

Table 3.3: Importance level of functional requirements

Requirement Complexity Time
Importance

level

Command line interface low medium 0.125

Listen to port medium medium 0.25

Requests data checking high long 1

Timing for request

frequently
high long 1

Create request data medium medium 0.25

Store request data high medium 0.5

Review requests data low short 0.0625

Notification low short 0.0625

3.2 Non-functional requirements

Following are the non-functional requirements for the tool building in this project (Ta-

ble 3.4), these are the requirements that is not a function or behavior, but still needed

for this tool:

Chapter 3 Requirements Analysis and Project Plan 13

Table 3.4: Non-functional requirements

Requirement Detailed description

Availability The tool should run on any Linux machine

Usability
The tool will have a basic instruction of how to use it in

command line to make it easy to use

Open-source The tool will be fully open source

Modifiability
Every one download the program can modified it and make

it fits their use case

Stability
The tool is stable enough to not have any bugs that make

the program exit unexpectedly

3.3 MoSCoW analysis

Figure 3.1 are the scope of this project, MoSCoW method is used to separate all object

to groups. It separates functional requirements in to four groups: must have, should

have, could have and won’t have. These four group help determine the importance of

requirements and determine which are essential and which are optional.

 scope of
 the project

 Must
 have

 Command line
 interface

 Listen to port

 Requests checking

 Create request data

 Notification

 Could
 have

 Timing for request
 frequency

 Won't
 have

 listen to multiple port

 detect other kinds
 of attacks

 Fix the attack script

 Should
 have

 Store request data

 Review requests
 data

Figure 3.1: MoSCoW analysis

3.4 Risk analysis

A risk level similar to importance level is set up depend on the influence of consequence

and possibility of every risk. Table 3.5 show the detailed information of how risk level

is set up.

Chapter 3 Requirements Analysis and Project Plan 14

Table 3.5: Risk level example

Influence /

Possibility
None Minor Medium Major Devastating

Impossible 0 0 0 0 0

Low 0 0.0625 0.125 0.1875 0.25

Medium 0 0.125 0.25 0.375 0.5

High 0 0.1875 0.375 0.5625 0.75

Certain 0 0.25 0.5 0.75 1

Table 3.6 followed show the risk level of all possible accident when using the detection

tool, with the solution of every risk.

Chapter 3 Requirements Analysis and Project Plan 15

Table 3.6: Importance level of functional requirements

Description Influence Possibility
Risk

level
Solution

Program

crash
devastating high 0.75

Have multiple test run

before the test

Network loss major impossible 0

Not, possible, as the

virtual machine

communicate through

intranet in a computer

Data package

loss
major medium 0.375

Usually cased by

request coming too

fast, slow done the

frequency of request

will work (around 5

request per second)

Data

structure

error

major low 0.1875

Cause by not correctly

structured the HTTP

request, try as many

request style as possible

before the test will

prevent this happened

Function error devastating high 0.75

Run several test run

before real testing, try

to find as much error as

possible

Database

operation

error

devastating medium 0.5

Structured the

dictionary been stored

into the database, limit

the character and

length of every

parameter before send

it to database

File I/O error minor low 0.0625

Close every file after

editing before opening

a new file, and check

for the existence of the

file before editing it

Chapter 3 Requirements Analysis and Project Plan 16

3.5 Project plan

With the functions of detection tool been decided, a grant chart is created for planing

the process during preparation, Figure 3.2 is the grant chart for project planing.
O

b
je

ct
iv

es

W
ee

k

to
 s

ta
rt

T
im

e
it

ta
k

es

W
ee

k
 N

o
.

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1

3

P
ro

je
ct

 B
ri

ef

B
ri

ef

1

2

B
ac

k
g

ro
u

n
d

 r
es

ea
rc

h

O
v

er
al

l

1

3

R
es

ea
rc

h
 o

n
 X

S
S

 a
tt

ac
k

1

1

ch
o

o
se

 X
S

S
 a

tt
ac

k
 s

cr
ip

t
to

 u
se

2

1

C
h

o
o

se
 t

h
e

v
u

ln
er

ab
le

 w
eb

 a
p

p
li

ca
ti

o
n

3

1

T
es

t
en

v
ir

o
n

m
en

t
se

t
u

p

O
v

er
al

l
3

3

C
re

at
e

v
ir

tu
al

 m
ac

h
in

e
3

1

A
tt

ac
k

 m
ac

h
in

e
–

 a
tt

ac
k

 s
cr

ip
t

in
st

al
ls

3

2

T
ar

g
et

 m
ac

h
in

e
-

w
eb

 a
p

p
li

ca
ti

o
n

 s
et

u
p

5

1

R
u

n
 t

es
t

w
it

h
 n

o
 d

et
ec

ti
o

n
 t

o
o

l
5

1

Im
p

le
m

en
ta

ti
o

n
 o

f
th

e

d
et

ec
ti

o
n

 t
o

o
l

O
v

er
al

l
6

5

C
o

m
m

an
d
 l

in
e

in
te

rf
ac

e
6

1

L
is

te
n

 t
o

 p
o

rt

7

1

R
eq

u
es

ts
 c

h
ec

k
in

g

8

1

C
re

at
e

re
q

u
es

t
d
at

a
8

1

S
to

re
 r

eq
u

es
t

d
at

a
9

1

R
ev

ie
w

 r
eq

u
es

ts
 d

at
a

9

1

T
im

in
g

 f
o

r
re

q
u

es
t

fr
eq

u
en

cy

1
0

2

N
o

ti
fi

ca
ti

o
n

1

0

1

T
es

ti
n

g
 a

n
d
 r

es
u

lt

an
al

y
si

s

O
v

er
al

l

1
0

2

R
u

n
 t

es
t

w
it

h
 d

et
ec

ti
o

n
 t

o
o

l
o

n
 s

er
v

er
 s

id
e

1
0

1

C
o

m
p

ar
e

an
d
 a

n
al

y
ze

 t
h

e
re

su
lt

1
1

1

d
em

o
n

st
ra

ti
o

n

P
P

T

1
1

2

d
is

se
rt

at
io

n

th
es

is

4

1
0

Figure 3.2: Project Plan

Chapter 4

Design and Implementation

4.1 Program design

The tools focus on listening to HTTP request and check if the user input in the request

has a potential XSS attack script in it, if an IP has sent too many suspicious requests,

the tool will inform the developer of the server.

To better explain the logic of the tools, Figure 4.1 below show the detailed operating

logic of the tool and how user can access database of it.

17

Chapter 4 Design and Implementation 18

start

Listen to

HTTP request

New HTTP

request

Is user inputs

safe?

Do nothing

Take note on

the request

data and send

developer a

notofication

information

of suspicious

request stored

in database

User can

access databese

out side the

prorgam, as

the program

use mySQL to

store the data

Is this IP

sending

suspicious too

frequntly?

Do nothing

Inform de-

veloper for

frequent sus-

picious action

Yes

No

No

Yes

Figure 4.1: Program logic

Chapter 4 Design and Implementation 19

4.2 Test environment

Following (Table 4.1) are the detailed information of test environment been used, All

vagrant machines are running on vagrant 2.2.9 using VM VirtualBox 6.1.12 as virtual

machine provider.

Table 4.1: Test environment

Platform Name Version

Windows Vagrant v2.2.9

Windows VirtualBox v6.1.12

Linux
kalilinux/rolling from vagrant

cloud
v2020.2.1

Kali (attack) Xsser v1.8

Kali (attack) ZAP v2.9.0

Kali (attack) Burp suite community edition v2020.4

Kali (attack) Firefox ESR v68.8.0esr

Kali (target &

target2)
Apache v2.4.46

Kali (target &

target2)
MariaDB v10.3.23

Kali (target &

target2)
DVWA v1.10

Kali (target2) Python v3.8.3rc1

Kali (target2) pypcap v1.2.1

Kali (target2) dpkt v1.9.2

Kali (target2) mysql.connector v8.0

Except applications/tools in Table 4.1, there are multiple Python and Linux packages

been used to successfully set up the environment. As vagrant been used in this project,

nearly all the setup progress has been written in to vagrant configuration file, includ-

ing install necessary application, set up Apache and MySQL through MariaDB, etc.

However, there are some settings need manually, including:

1. For target machine, every time it start, apache2 and MySQL need to be start man-

ually, as vagrant configuration script only loaded when building up the machine, not

every time the machine started.

Chapter 4 Design and Implementation 20

2. VirtualBox additional function package is provided in the ./sync folder in Vagrant

data, user can choose to install it as it is not necessary but can improve the experience

when running the machine.

3. The tool developed in this project need several python package to run, but it is not

installed in the machine, including pypcap, dpkt and mysql.connector. So installation

of them is need to run the tool.

4.3 Implementation

For building up the tool, there are several main functions need to be done, listed as

follows:

1. Listen to the HTTP request and extract the data

2. Checking if the request is possibly unsafe

3. Modified the data structure to storing it

These three functions will be discussed in this section. If you’d like to check out the full

coding of the tool, you can check out the Git project online (Yang Ding (2020)).

4.3.1 Request listening and extracting

To be able to check the data in the HTTP request, we first need to use tools to capture

and extract it from package coming from the internet.

4.3.1.1 Listen to HTTP request

For HTTP request, to let python program be able to listen to the information, pypcap is

used. Pypcap is a “simplified object-oriented Python wrapper for libpcap” (pynetwork

(2018)), it provides the function to listen to a given port through a given network

interface. As the tool we are building will only be a detection tools, which not include

the function to fix/sanitize the input, the tool will only act as a sniffer.

DVWA is running on apache2 platform using HTTP, and the virtual network using in

the test using Eth1, so pypcap is set to Eth1 and listen to port 80.

Chapter 4 Design and Implementation 21

4.3.1.2 Extracting the data

Pypcap not providing the function to unpack the network data, so we use dpkt to help

extract the data we need. Dpkt is a python package that provide function for package

creation and parsing to help analysis the package data. It also includes the definition

for TCP/IP protocols.

We know that in TCP/IP protocol architecture model, There are several layers: appli-

cation, transport, internet, data link and physical network. HTTP is application layer

protocol, and for pypcap, the network package been captured has all information from

application to internet layered, so what we need to do is to clean up the internet and

transport layer data, approach application layer data first. By using dpkt, we can easily

use data() function to get to the next layer of the package. Following code show an

example of how to get HTTP request using pypcap and dpkt.

1 import pcap

2 import dpkt

3 #se t up the network por t f o r pypcap

4 pc = pcap.pcap(’ eth1 ’ , promisc=True , immediate=True)

5 pc.setfilter(’ tcp port 80 ’)

6 #for every package come in

7 for ptime ,pdata in pc:

8 #use dpkt to ge t the data

9 p=dpkt.ethernet.Ethernet(pdata)

10 #we only care about package t ha t has IP pro toco l on i n t e rn e t l a y e r

11 if p.data.__class__.__name__ == ’ IP ’ :

12 #we only care about package t ha t has TCP pro toca l on t ranspor t l a y e r

13 if p.data.data.__class__.__name__ == ’TCP’ :

14 #i f the por t number i s 80

15 if p.data.data.dport ==80:

16 #pr in t the HTTP reque s t data

17 print(dpkt.http.Request(p.data.data.data))

18

In this way, we can easily capture every HTTP request and extract the request data

from the package.

4.3.2 Checking the request data

For this section, what part of the request data are needed for our tools and how our tool

detect the unsafe parameter are discussed.

4.3.2.1 Data need to check in HTTP request

After getting the request package, we need to extract the information we need, then

check if the user input is safe.

HTTP request data has make up by four parts:

Chapter 4 Design and Implementation 22

1. Start line: This start line contain three elements: HTTP method, request target

and HTTP version. HTTP method specified the method of the request, including

GET, POST, DELETE, etc. Request target provide the target URL of the request.

HTTP version specified the version of HTTP protocol. In our case, all the request

are GET and POST request.

2. Request headers: The header of the request contain most of the information that

are used in request. It has a basic structure: a case-insensitive string followed by a

colon (’:’) and a value whose structure depends upon the header. The whole header,

including the value, consist of one single line, which can be quite long. (MDN web

docs (2020))

3. An empty line

4. request body: Not all request has a body, for GET and POST method, only POST

has a request body, it usually includes several user input.

Following are two example of HTTP request, first one is a GET request and second one

is POST request, these are the only two request that are related to this project.

1

2 ------This is a GET request ,you can see userinput in fuirst line , URL part ------

3 GET /dvwa/vulnerabilities/xss_r/?name =%3Ca HTTP /1.1

4 host: 172.28.128.24

5 user -agent: Mozilla /5.0 (X11; Linux x86_64; rv :68.0) Gecko /20100101 Firefox /68.0

6 accept: text/html ,application/xhtml+xml ,application/xml;q=0.9 ,*/*;q=0.8

7 accept -language: en -US,en;q=0.5

8 accept -encoding: gzip , deflate

9 referer: http ://172.28.128.24/ dvwa/vulnerabilities/xss_r/?name =%3Cs

10 connection: keep -alive

11 cookie: security=low; PHPSESSID =01 pru32dtqllrl6cfsmojpq51e

12 upgrade -insecure -requests: 1

13

14

15 ------This is a POST request ,you can see userinput in HTML body part ------

16 POST /dvwa/vulnerabilities/xss_s/ HTTP /1.1

17 host: 172.28.128.24

18 user -agent: Mozilla /5.0 (X11; Linux x86_64; rv :68.0) Gecko /20100101 Firefox /68.0

19 accept: text/html ,application/xhtml+xml ,application/xml;q=0.9 ,*/*;q=0.8

20 accept -language: en -US,en;q=0.5

21 accept -encoding: gzip , deflate

22 referer: http ://172.28.128.24/ dvwa/vulnerabilities/xss_s/

23 content -type: application/x-www -form -urlencoded

24 content -length: 95

25 connection: keep -alive

26 cookie: security=low; PHPSESSID=e962h85ro7ggk5qolf6r8cbb4q

27 upgrade -insecure -requests: 1

28

29 txtName=input&mtxMessage =%3 Cscript %3 Ealert %28%27 XSS %27%29%3C%2 Fscript %3E

30

31

Chapter 4 Design and Implementation 23

In the request, there are two parts that could contain a user input, which are URL in

the start line and request body. As XSS attack happened through unsafe code injection

from user input, these two parts are where XSS could happen.

With dpkt allowing us to extract the raw HTTP request, we can easily get the parameter

in the request as there are only these two part that can have user input.

4.3.2.2 Detection method

As been mentioned in chapter 2, among three types of XSS, only stored and reflected

XSS can be detected on server side. Both these two types of XSS attack try to inject

the suspicious code to server, the difference are stored XSS try to inject the code into

the server data and reflected XSS try to inject the code to the response corresponding

to the request. For server, though they are aiming for different part of the server, they

are the same in terms of scripts and patterns of the code. This project check the user

input from HTTP request, so no matter what XSS attack it is, for the detection tools

it makes no difference.

So for detection, the only task left is to find a XSS attack pattern and then compare it to

every input. The way to detect a XSS attack attempt can be similar to XSS protection.

Server side XSS protection has two main types, including communication between client

and server, or using simple pattern matching technique to clean up possible XSS scripts.

This project choose pattern matching technique similar to the technique been used in

protection method to detect possible attack.

XSS attacks are attacks that focus on using code to change how web page work and

then using the scripts to perform unsafe action. As our tool focus on detecting the XSS

attack on web application, no matter what scripts are injected into the input, it has to

be loaded by HTML code of the web page first, then by using attributes like “onerror”

and “onload”, the scripts can be executed. So we can focus on detecting the HTML tag

and attribute in user input and by detecting those, the tool can find possible XSS attack

action.

There are over 100 tags, only some of them are valuable for XSS attack. During the

research on internet and comparing the cheat sheet used in attacking tools, following 15

tags in the Table 4.2 are considered to be XSS-useable.

Chapter 4 Design and Implementation 24

Table 4.2: Tags that are frequently used for XSS attack

a audio body

details form iframe

img input keygen

marquee script select

svg textarea video

You can see that there are lots of tags are word been used in normal communication, so

we can not just search for these words in all input. HTML tags need a “〈〉” to indicate

itself been a tag, so a “〈” can bee add in front of those words and these will significantly

reduce the false positive rate during the test.

But just search for these fix strings are not enough, lots of scripts can split the tag in

pieces to hide from detection. To detect HTML tags in a better way, regular expression

is used. Regular expression has many advantages compare to just match a string in user

input. Regular expression can express a not only a fix string, but also a pattern, and

this provides much more variable when searching the tags, increase the possibility of

finding the suspicious input. Also, Python provide repackage to full regular expression

support, which make using regular expression easier.

By using regular expression, “(.*)” are added between every character in the keyword.

This make the pattern to match become not sensitive to whether there are other charac-

ters inject into the keyword. For example, for input “〈scri\np\nt〉alert(’XSS’)〈/script〉”,

by using “〈(.*)s(.*)c(.*)r(.*)i(.*)p(.*)t” as keyword, the program can still match the

regular expression to the input. Following are some of the keywords after adding “(.*)”

pattern.

1 <(.*)a

2 <(.*)a(.*)u(.*)d(.*)i(.*)o

3 <(.*)i(.*)m(.*)g

4 <(.*)i(.*)n(.*)p(.*)u(.*)t

5 <(.*)s(.*)c(.*)r(.*)i(.*)p(.*)t

6 <(.*)v(.*)i(.*)d(.*)e(.*)o

7

Except from these keywords, there is also possibility that attacker add a ending tag try

to get out of orignal tag, so we can use those kayword, with a “/” at the front to find

those. On the other hand, commont function can also be used for attack, so “ ’〉” and “

’;” is added into the list. Finally, HTML attributes “onerror”, “onfocus”, “onload” are

also common used key word. So they also been added into the list. All these keyword

are modified using regular expression.

Chapter 4 Design and Implementation 25

This list is provided in a .txt file in the program, so keywords can be modified to fix

different need.

4.3.3 Extract information needed and store the suspicious request

Except from showing a notification on the screen, the program also store the data of

malicious request into a database. For database been used, MySQL is choosen as it is

one of the most used database and it support operating the database using Python by

just import mysql package in the program.

for data been stored in the database, Table 4.3 shows the staucture and component of

data been saved.

Table 4.3: Variables that been stored into database

Name Data type Discription

Time varchar(25)
Time of request, in format of “yyyy-mm-dd

hh-mm-ss”

IP varchar(15) Client IP address, only IPv4 supported

URL varchar(2000) URL of the request

GetParam varchar(2000)
GET parameter of the request, in the

fromat of name: script

PostParam varchar(2000)

POST parameter of the request, in the

format of txtName: input, mtxMessage:

”XSStest”

RawRequest varchar(2000) The raw request

In database, time, IP, URL, GET parameter and POST parameter are shown, these are

some fo the most important information in a request, through database, developer can

quickly find the information need.

Accourding to mysql office document from Oracle Corporation (2020), there is a length

limitation for all variables stored in the table. For varchar though the theoretical max-

inium length of a varchar is 65,535 bytes, the effective length is depends on the maxinuim

row size, which means all data in one row combine shoule not be larger than 65,535 bytes.

As there is no length limitation on HTTP request,so although normally it should not

be a problem, it is still possible for a http request to be too long to stored in mySQL

database.

To fix this problem, a list of .txt files is also used to stored the data. The .txt file has a

structure like below:

Chapter 4 Design and Implementation 26

1 ---

2 Time:

3 2020 -08 -29 12:18:10

4 IP:

5 172.28.128.20

6 URL:

7 /dvwa/vulnerabilities/xss_r /?name =%3Ca

8 GetParam:

9 {’name ’: ’<a’}

10 PostParam:

11 {}

12 RawRequest:

13 GET /dvwa/vulnerabilities/xss_r/?name =%3Ca HTTP /1.1

14 host: 172.28.128.24

15 user -agent: Mozilla /5.0 (X11; Linux x86_64; rv :68.0) Gecko /20100101 Firefox /68.0

16 accept: text/html ,application/xhtml+xml ,application/xml;q=0.9 ,*/*;q=0.8

17 accept -language: en -US,en;q=0.5

18 accept -encoding: gzip , deflate

19 referer: http ://172.28.128.24/ dvwa/vulnerabilities/xss_r/?name =%3Cs

20 connection: keep -alive

21 cookie: security=low; PHPSESSID =01 pru32dtqllrl6cfsmojpq51e

22 upgrade -insecure -requests: 1

23

The .txt file has all data stored, including the variable stored in database. One .txt file

will only stores suspicious requests of one IP in one minute. File name will be “yyyy-

mm-dd hh-mm(%IP).txt” format. If one IP has send more than 5 malicious request in

one minute, the program will send one more warning to developer as 5 malicious request

in a minute shows the possible unsafe input is likely to be intended.

Chapter 5

Result and Discussion

5.1 Testing process

The test process basically include setting up the network and then try each attack tool

against the target machine, each tool two times, first time without the detection tool

on server side, and second time add the detection tool. In this case we can see the

difference between having and not having detection tools and compare the result. In

this section, how we use the attack tools will be shown. The detection tool is just an

auto run program with no configuration so it does not need any guide.

To lower the stress of the detection tools, we set up a delay during every testing, if the

delay is not set up, packages will came too fast and our tool won’t have time to analysis

every one.

5.1.1 Attack using XSSer

XSSer has one cheat sheet for both stored and reflect XSS, only different when using the

post attack is adding “-p” option. Other information need to provide to XSSer is the

cookie of one browser using “–cookie” option, “-u” for target, number of tries (–auto-set)

and “–delay” for a fix delay between every attack.

So overall, the command been used to run XSSer are:

1 //This is for reflected XSS

2 sudo python3 xsser -u ’http ://172.28.128.24/ dvwa/vulnerabilities/xss_r/?name=XSS ’

--cookie=’security=low;PHPSESSID =7 j66eh0ami2me7sispl4un238h ’ --auto --

reverse -check --delay=1 --auto -set =300

3

4 //for Stored XSS , just add -p option and add all paramater into it, with the

parameter you want to test set to XSS , like the example below:

27

Chapter 5 Result and Discussion 28

5 sudo python3 xsser -u ’http ://172.28.128.24/ dvwa/vulnerabilities/xss_s/’ -p ’

txtName=XSS&mtxMessage=asdasdasd&btnSign=Sign+Guestbook ’ --cookie=’security=

low;PHPSESSID =7 j66eh0ami2me7sispl4un238h ’ --auto --reverse -check --delay =1 --

auto -set =10

6

The result should be look like this:

(a) get parameter attack (b) post parameter attack

Figure 5.1: XSSer attack result

5.1.2 Attack using ZAP

For ZAP proxy, A browser is need for testing, this test used preconfigured Firefox browser

in ZAP to perform the attack, once have vulnerable web page loaded once, we can follow

the step in Figure 5.2 to set up XSS payload and start fuzzing.

Figure 5.2: ZAP attack steps

This payload is also made for all kinds of XSS attack, so one payload can be used for

both reflected and stored XSS attack. ZAP will provide result like the screenshot in

Figure 5.3.

Chapter 5 Result and Discussion 29

Figure 5.3: ZAP fuzzing result window

In the window, the section below show all the fuzzing result, and the two windows up

on the right are the data of select request, including the request itself and the response

data.

5.1.3 Attack using Burp Suite

For Burp Suite, the advantage of using it is we can easily load custom payload, which

is exact what we done. We found a huge custom XSS payload that contains over 2000

payload and load it to Burp Suite to attack the server (macroman321 (2020)).

Firefox browser has set up the proxy to connect to Burp Suite, and we use Burp to catch

the request on client side, using inductor to attack the server with attack mode set to

sniper, with the payload we got. We try same payload for both reflected and stored

XSS attack. Cause the payload is too large to load, we choose to randomly select 100

payloads several times when using it.

Figure 5.4: Burp Suite attack setting

Chapter 5 Result and Discussion 30

5.2 Testing result

In conclusion, the result are different depend on the attack tool, but the difference

between attacking a reflected XSS and a stored XSS is zero. Here the table shows the

overall result of the testing (Burp suite community don’t detect weather the attack is

successful, so None). Every tool and payload been used has been tested on both reflected

and stored XSS, but the result is exactly the same so it not shown in the table.

Table 5.1: overall result

Attack Tool Payload Try

Payload attack

tool considered

to be success

Payloads

detected by the

tool

XSSer 1291 1287 1287

ZAP 223 112 126

Burp Suite
100 random, 3

groups
None

2 groups 100, one

group 99

Here we also provide the full check list for regular expression matching below:

1 <(.*)a

2 <(.*)a(.*)u(.*)d(.*)i(.*)o

3 <(.*)b(.*)o(.*)d(.*)y

4 <(.*)d(.*)e(.*)t(.*)a(.*)i(.*)l(.*)s

5 <(.*)f(.*)o(.*)r(.*)m

6 <(.*)i(.*)f(.*)r(.*)a(.*)m(.*)e

7 <(.*)i(.*)m(.*)g

8 <(.*)i(.*)n(.*)p(.*)u(.*)t

9 <(.*)k(.*)e(.*)y(.*)g(.*)e(.*)n

10 <(.*)m(.*)a(.*)r(.*)q(.*)u(.*)e(.*)e

11 <(.*)s(.*)c(.*)r(.*)i(.*)p(.*)t

12 <(.*)s(.*)e(.*)l(.*)e(.*)c(.*)t

13 <(.*)s(.*)v(.*)g

14 <(.*)t(.*)e(.*)x(.*)t(.*)a(.*)r(.*)e(.*)a

15 <(.*)v(.*)i(.*)d(.*)e(.*)o

16 /(.*)a

17 /(.*)a(.*)u(.*)d(.*)i(.*)o

18 /(.*)b(.*)o(.*)d(.*)y

19 /(.*)d(.*)e(.*)t(.*)a(.*)i(.*)l(.*)s

20 /(.*)f(.*)o(.*)r(.*)m

21 /(.*)i(.*)f(.*)r(.*)a(.*)m(.*)e

22 /(.*)i(.*)m(.*)g

23 /(.*)i(.*)n(.*)p(.*)u(.*)t

24 /(.*)k(.*)e(.*)y(.*)g(.*)e(.*)n

25 /(.*)m(.*)a(.*)r(.*)q(.*)u(.*)e(.*)e

26 /(.*)s(.*)c(.*)r(.*)i(.*)p(.*)t

27 /(.*)s(.*)e(.*)l(.*)e(.*)c(.*)t

28 /(.*)s(.*)v(.*)g

29 /(.*)t(.*)e(.*)x(.*)t(.*)a(.*)r(.*)e(.*)a

30 /(.*)v(.*)i(.*)d(.*)e(.*)o

Chapter 5 Result and Discussion 31

31 "(.*)>

32 "(.*);

33 a(.*)l(.*)e(.*)r(.*)t(.*)\(

34 o(.*)n(.*)e(.*)r(.*)r(.*)o(.*)r

35 o(.*)n(.*)f(.*)o(.*)c(.*)u(.*)s

36 o(.*)n(.*)l(.*)o(.*)a(.*)d(.*)

37

5.3 Discussion

We will discuss the test result on two aspects: difference base by two type of attack, and

difference base on using different tools.

5.3.1 Compare stored XSS and reflected XSS

As mentioned in chapter 2, the difference between these two XSS is just where there aim

for. Stored XSS aiming for storing the script on the server and waits for another user

load that page, while reflected XSS aiming for inject the script only to the response of

current request. The script and keywords to use are always the same and for a server

side detection tool that listen to the port, they all be considered as user input and what

kind of XSS they are make no difference.

5.3.2 Compare result from three tools

As the pattern matching technique has been shown in implementation part, it’s clear

what kinds of input will be notified as a suspicious input, so we will not focus on the input

been notified by the tool. Here we mainly focus on the input that not been recognized

but still have XSS attack potential.

5.3.2.1 XSSer result

For XSSer, 1291 payloads has been used and 1287 is said by XSSer to be success, while

detection tools detect exact 1287 vulnerable request. Notice that the 4 payloads said to

be not a success attack is all different from 4 payloads considered to be safe by detection

tools, So our detection tool s has 4/1287 false positive rate in this test. Following are

parameters that detection tools consider to be not suspicious:

1 //{ parameter name: value}

2 {’name ’: ’&{4 ee83fe147d0e96d666a91df83d0d5a2 };’}:

3 {’name ’: ""> < h1/onmouseover = ’%0061 lert (178 fb0683658f118fc61ee5fef11c443)

’>%00"}:

4 {’name ’: ’s%22%20%22+ STYLE %3D%22 background -image%3A+expression %28 alert %28%27

d434e9e018b702f0dddb3168143cdd00 %3F%29%29 ’}:

Chapter 5 Result and Discussion 32

5 {’name ’: ’<// style=x:expression\x028write(f09b133c23186f5fff023397fd642e1f)\x029

>’}:

6

7

These input does not fit the regular expression at the time of performing the test.

Parameter 1 use “{}” to try adding data to HTML, though its value is not working,

this can be used to display variable on the web page, so it is one possible way of XSS.

Second parameter is using HTML attribute not included in the list - onmouseover, this

can also trigger an action like alert() or lead web page to load some script. These two

input shows the limitation of using regular expression: if the attacker’s method is the

way develop do not know, then the attack will be detected. On the other hand, the list

of request expression can be updated, so it can be getting better and better.

5.3.2.2 ZAP result

For ZAP proxy, 223 payloads has been used and 112 is said by XSSer to be success, while

detection tools detect exact 126 vulnerable request. In this result, the success attack

number are not the same as the detected unsafe input. Detection tools has detected

more possible attack than ZAP’s success attack number. After checking the result, we

find out that all the success attack reported by ZAP has been detected, So for a detection

tool, It has work as it should be detected all possible unsafe request. Other scripts that

been considered to be useless on both ZAP and detection tool side are quite the same

pattern as the undetected payload when using XSSer, so we won’t focus on them here.

Compare to result using XSSer, this time it has around 10% false positive rate, following

are some input that detection tool considered to be unsafe but ZAP not consider it to

be a success attack:

1 {’name ’: ’%3Cbody %20 onload =;a2=%7By:eval%7D;a1=%7Bx:a2.y(’al ’+’ert ’)%7D;;;;;;;;;_

=a1.x;_(1) ;;;; ’};

2 {’name ’: ’%3CDIV %20 STYLE =%22 background -image :%20 url (&%231; javascript:alert(’XSS ’)

)%22%3E’};

3 {’name ’: ’+alert (0)+’};

4 {’name ’: " ’;//%0da=eval;b=alert;a(b(9));"}

5

If we try to improve it, how to improve the false positive rate will be a problem. The

detection tool are not able to try render the web page to detect if the vulnerability exist,

it can only make diction depend on the input structure, this is the limitation of detection

tool. Another way is to build up a boundary policy in the first place to check whether

by putting the input in, the boundary change, like Shahriar and Zulkernine (2011) have

done, it is also a server side detection method but with lower false positive rate and a

better detection method. But this concept of building up a boundary policy for every

page on the website will introduce large amount of data, which required more storage

Chapter 5 Result and Discussion 33

and computing power to achieve. So for now there is no good way to reduce the false

positive rate without massively increase the complexity of the detection method. This

false positive rate problem is one of the major disadvantage for using regular expression.

5.3.2.3 Burp Suite result

For the open-source payload list used in Burp Suite, the result is not so bad, except one

script that having same structure as the one been undetected in XSSer result, all other

payloads are detected by detection tool.

The reason of it is that in this payload list, nearly every payload use ’alert()’ in it. Some

example of the payload has been listed below:

1 {’name ’: ’xyz onerror=alert (6) ’};

2 {’name ’: ’style=color: expression(alert (0))’, ’" a’: ’"’};

3 {’name ’: ’<DIV STYLE =" background -image: url(javascript:alert(\’XSS\’))">’};

4

As “alert()” attribute is a commonly used technique in open source XSS payload and

it has been added in to the checklist, this kind of open source payload are not effective

against the detection. So for this part of the test, we can see that through using regular

expression has limitation on not going to detect the attack not been thought of before,

and it has quite high false positive rate, but when dealing with the community based

payload, which always have lots of patterns in the script, it is still very effective.

Chapter 6

Conclusion and Further Work

6.1 Conclusion

In conclusion, The detection tool has showed its ability and limitation. This server

side XSS detection tool using regular expression matching technique has proved that

it can perform quite well when developer has put all possible attack pattern into the

regular expression keyword list. On the other hand, the need of a keyword list is also

the limitation of this method, as if the attack technique is not listed in the list, the

detection tool can do nothing. So in one sentence, the effectiveness of this tool is highly

depend on the variety of patterns stored regular expression list.

Except from that, this tool still has advantages. As a detection tool, regular expres-

sion work pretty well as it can match the string with a pattern rather than a fix key-

word. Using regular expression usually takes less computing power compare to other

detection/protraction tools as they sometimes use dynamic analysis or set up complex

regulation, which give more stress to the server processor.

But, with the advantage of been simple compare to other methods, there comes the

draw back. Using regular expression can produce high false positive rate due to it just

check the patterns in string, not consider the meaning and can not render the web page

in advance to check the real effect user input has on the web page. For detection, the

over 10% false positive rate is acceptable as the tool just log the data, not modifying it.

But it is still a disadvantage compare to other method.

Over all, using regular expression to detect XSS attack is a very simple but efficient

method, but its limitations make it hard to become better compare to much more

complex attack detection system.

34

Chapter 6 Conclusion and Further Work 35

6.2 Further work

Through the analysis of testing result, our detection tool prov to be effective to most

of the stored and reflected XSS attack, with over 95% of the attack payload been found

using different tools. However, there are some further work could be done, list as follows:

1. The tool use MySQL as the database, but MySQL doesn’t fit our need. MySQL has

a length limitation for all variable stored in the table (Oracle Corporation (2020)), a

XSS payload can get longer than that. To fix this, we also store full request in a .txt

file, but we can also change the database to allow longer string input, one possible

solution is MongoDB.

2. Only detection is not enough for protect the application from XSS attack, if we

want to protect the server, a filter can be added to clean up the suspicious input

or encode it into a safe format (like HTMLencode() function). This tool only listen

to the port, it can not manipulate the request data, but if we can modify the data,

then a protection method can be added.

3. As this tool use pattern machine technique, it can be used in all kinds of attack that

related to user input, like SQL injection and code execution. This can be added as

future function of the tool.

6.3 Legal aspect

There is one legal aspect about this project should be discussed. The main point is that

our tool been build in this tool is a tool that is designed to be used for protect a server,

not attacking one.

To make sure the tool won’t be used for attacking a server, this tool use pycap package,

which is Python package for internet package listening, it can only be used to log the

package go through, not modifying it. this make sure that the tool can be used for

changing the data in Package.

What’s more, all the method been used in the program are not able to modify the data

except the data in the file been created by the tool and the MySQL table created by

this tool. So the tools won’t change the data except data not related to the file.

In conclusion, the tool only has the ability to listen to the package, not modifying it,

and the tool can only make changes to the data in that is related to this program, so it

could not be used for attack a server as it is not designed to be able to do it.

Appendix A

Appendix

A.1 Document in COMP6211 - Project Preparation

Following are General Research Review in COMP6211 project preparation, which is

related to this project:

36

1

Cross-site Scripting attacks
protection methods

Yang Ding

Abstract—Cross-site scripting (XSS) attack is one of the most
common used method to attack a digital system. It can hide itself
in HTML, JavaScript and many other programming languages,
with the ability to do anything from gaining information of the
victim, to getting full control to the system been attacked. In
oder to deal with this problem, many developer have figure
out different way to protect a system from XSS attack. This
paper listed several different approach to counter XSS attack
and discuss their strengths and weaknesses.

Index Terms—Cross-site scripting attacks (XSS), cyber secu-
rity.

I. INTRODUCTION

Cross-site scripting (XSS) attack is a computer vulnerability
that allow attacker to insert their own script to the web page to
modified the web page in a way they want. Attacker could let
browser sending sensitive information of the user, monitoring
user action without been noticed, or even gaining access to
control user’s system. Usually, attacker hide its code in web
applications using HTML, JavaScript, Flash and many other
programming languages. According to Open Web Application
Security Project (OWASP), XSS attack is at the seven place
of OWASP top 10 web application security risk in 2017 [1].

II. BACKGROUND

According to the data from CVE security vulnerability
database [2], from 1999 to 2019, 12.5% of the recorded vul-
nerabilities are XSS attacks. In 2019, 1593 vulnerabilities are
based on XSS (only considering the vulnerabilities that have
been identified), make it the second common vulnerabilities
of the year, detailed data shown in the figure 1 below.

25.3%
17.7%

13.9%

10.2%

10.0% 5.5%
4.6%

4.4%

8.4%

Code Execution

XSS

Overflow

Denial of Service

Gain Information

Bypass Something

SQL Injection

Cross Site Request Forgery

Others

Fig. 1. percentage of different vulnerabilities been found in 2019

III. XSS ATTACK AND POSSIBLE CONSEQUENCE

As XSS can be insert into different programming languages,
there are lots of ways to perform a XSS attacks. One com-
monly used method is to hide the code in a session during user
using browser. If the browser doesn’t recognized the malicious
script and consider the session is from a trusted source, the
script will be in the system and provide benefit for attacker
to gain the access of user’s system. According to OWASP,
XSS attacks always occur when data enters a Web application
through an untrusted source, most frequently a web request,
or when data is included in dynamic content that is sent to a
web user without being validated for malicious content [1].

The result of XSS attack can be vary, cause the consequence
of been attack is highly depended on what the malicious code
could do. For example, if the code is used for hijacking the
transmission between client and server, as the result the at-
tacker will be able to get the data been transferred and possibly
even change it. If the code is for starting a connection between
victim and attacker, then it could end up as attacker have full
access of victim’s system. In conclusion, the consequence of
under a XSS attack has a high range of possibility.

Lots of websites have been found out having XSS vulner-
abilities and that include well known websites like Facebook,
Twitter, Youtube and ebay. In 2010, famous open-souse foun-
dation Apache was hacked by a hacker using XSS attack
and all user password stored on that server was stolen [3].
One more recent case is in January 2019, a game made by
Epic games, Fortnite was found vulnerable to multiple attacks
including XSS attack. By clicking the URL send by attacker,
the gamer account can be took over control and personal
information are exposed to the attacker [4].

IV. TYPE OF XSS ATTACK

There are three types of XSS attack, persistent XSS attack,
non-persistent XSS attack, and DOM-based XSS attack.

A. persistent XSS attack

Persistent XSS attack (also called type-I XSS or Stored
XSS), is the XSS attack that scripts has been inject into
vulnerable server through invalid input. The script is then
stored in the database, forms, user logs or other data that will
be requested by client from server. When client communicate
with the server, it will receive data that contain the malicious
scripts and then the script can perform harmful action to the
client device.

2

B. non-persistent XSS attack

Also called type-II XSS or reflected XSS. This kind of XSS
hide the script into the information in the data that can be
reflected from server’s error, form or any part that can show
a response that include some of information from the request.
For example the search bar always show the information you
are searching in the result page, this kind of operation is
where non-persistent XSS could happen. When victim got
a email or message from a website that ask victim to do
somethings, like click a link, visit a website, or submit a form,
the links/website/form can be modified by attacker and that can
send the script with user request, then the vulnerable website
will reflect the information been sent back to victim, as the
data received from server is the responds from victim’s own
request, the data will be consider to be safe and the script hide
in the data will be executed, which will do what attacker want
to the victim.

C. DOM-based XSS attack

DOM-based XSS attack also known as type-0 XSS, it
happens as a result of allowing the modification of document
object model (DOM) when browser rendering the web page.
Consider the hacker inject the script into the parameter in a
URL, which is been used only when browser rending the page,
then when victim click the URL, the request and response
HTML will be no different from normal web page, but when
browser rending the page based on HTML’s client side script,
the DOM can be modified by the parameter and the injection
of hacker’s script can change how the web page operate and
probably run some code for hacker. This is a complete different
XSS attack compare to other two, because the script hacker
uses not affecting HTML source code from response, only
when client rendering the web page, the script will be hid into
the page and do what it wants to do, while other two attacks
already got script in the code when server sending back the
response.

V. DIFFERENT APPROACHES TO PROTECT THE SYSTEM
FROM XSS ATTACK

Developer have different ways to protect there system from
XSS attacks, none of them are perfect but all those methods
have advantages and drawbacks. Five different approaches are
discussed in this section.

A. Pattern filtering for user input

One simple way to protect server from XSS attack is to
check every user input and us a filter to eliminate all insecure
string that has similar pattern to a XSS attack code. Usually
the system choose to replace/remove the malicious string.
Others will use escaping method, which the string that has
special meaning for computer will be modified, or just give a
restriction to the input with limited amount of specified input
is allowed.

This method has good result dealing with all kind of XSS
attacks as the user input is always where XSS is hiding.
Imran Yusof and Al-Sakib Khan Pathan build up a pattern

filtering method specifically for persistent XSS attacks [5],
which has a very good result filtering the input by filtering
different potential XSS attack code including event handlers,
data URIs, insecure keywords, escape codes, common word in
XSS payload and XSS Buddies. Some examples of the filter
logics been used are: using pattern “/on\w+=—fscommand/i”
to find event handlers then replace them to “” (null), or remove
all insecure HTML keywords in user input like isindex, script,
form to break the logic of potential XSS code.

According to their paper [5], they used a collection of XSS
cheat sheets from the Internet and successfully filtered all
patterns in those cheat sheets. This show that there method
is effective to known XSS patterns. But as the effectiveness
of pattern filtering is highly based on the database of known
vulnerabilities, the effectiveness of newly developed pattern
or complex pattern is not ideal. It also has a strong demand
for updating the database regularly to keep up with new attack
pattern, otherwise the filter will become less and less effective.

B. client side pattern matching technique

As mentioned in second section, XSS script always hide
inside the user input or data inside the response. This means
the malicious code will be send to user browser, so if the
browser can identified the script and protect user from been
attack, the problem will be solves. Many modern browsers
have a function that allow the installation of extensions, and
it’s possible to create an extension that check all data been
send and received, then protect system from XSS attacks.

There is a research on these kind of extension in 2018
[6]. In the paper they developed a Chrome extension called
CounterXSS and try to identify three common XSS attack
pasterns based on HTML5. The extension can identified direct
attack patterns, which is script like onscroll = “script” been
hide directly into a HTML element, a multiple format attack
patterns that use attributes like src to directly put URL with
modified parameter into the web page, or DOM-base pattern
that use attribute like onerror, onload to modified HTML
code using JavaScript when browser rendering the page. The
extension can run in the background and will send a alert to
user when a pattern has been found. Not much detailed on
how the extension performed under multiple testing, but this
approach show a new way to prevent XSS.

This research didn’t provide a powerful method like the
first one provide, but the idea is what can be borrowed.
According to NetMarketShare [7], from May 2019 to April
2018, over 68% Internet users is using Google Chrome, taking
other Chromium based browsers like new Microsoft Edge and
Opera into consideration, the number will be easily above
70%. With all this high amount of user using browser that
support Chromium extension, using a extension to provide
XSS protect service will be a very effective way to improve the
security of whole Internet. But there are also limitations. Just
like the extension been developed in the research, extensions
are usually small piece of code that couldn’t acquire too much
processing power, and it can only protect one browser, not
the whole system. Client side approach also is said to be not
effective toward web content manipulation [9].

3

C. server side approach

Beside from preventing XSS attack from client side, there
are also server side approaches to mitigate the possibility of
XSS attack. Usually server side approach need to cooperate
with client side browser, server will generate the content that
should be generated by browser, check it for any XSS possible
content, then send the already generate page to browser. This
will increase the work done by server and can also to be found
not so effective [8]. So Hossain Shahriar and Mohammad
Zulkernine create a new way to perform server side XSS
protection based on the concept of “boundary injection” and
“policy generation”, witch mainly focus on JSP programs [8].

In their approach, the server look for the dynamic content on
every pages, then add a “boundary” with a specified token to it,
for every content, it also generate a expected content features
(attributes, JavaScript method name and other information of
the content) as the “policy” and stored the policy on the
server. When a client request for a web page, the server
generate the response and then compare it to the boundary
and policy of original page, if the feature in the boundary is
different from what was expected in policy, the XSS attack
is consider to be found and will deal with it using an attack
handler program. If no policy deviation, server then check
for boundary informations based on tokens, if there are new
boundaries found or boundaries with same token, the server
will remove all those boundaries. Finally the server sent the
response to the server.

In there paper, the false positive rate of there approach vary
between 0% - 5.2%, with a 2% - 6% delay compare to normal
response due to the processing on server side, they also point
out that their method has detect some advanced XSS attack
other server side method failed to detect [8]. Compare to other
server side method, their method is no doubt a improvement
to current method, although the delay on response could be a
further work to be improve.

D. static analysis method

Different from other method that focus on improving the
system to be more resistant to XSS attacks, static analysis
focus on identifying the vulnerabilities in server code. Static
analysis usually tracked the input that are not trusty, see how
the information flows and see if the data has reach a part,
which it can be considered as a part of statement such as
HTML or JavaScript statement.

Traditional static analysis can quickly detect XSS vulnera-
bilities, but it also suffers from problems like always giving
wrong positive result [9]. To improve this method, Gary
Wassermann and Zhendong Su bring string analysis to the
traditional method [10]. They translate the testing code to a
static single assignment(SSA) to encode data dependencies,
they also use other techniques like context free grammar(CFG)
to help improve the checking of blacklisted string values [9].

According to Gary Wassermann and Zhendong Su, there
technique has improved the accuracy of static analysis, but
couldn’t analysis arbitrarily complex code, and the black-list
policy rather than white-list policy also cause some problem.
What’s more, the new method still couldn’t fix the weakness

that static analysis won’t detect any DOM-based XSS attack
[10].

E. static analysis combined with dynamic analysis

With the goal of improving static analysis, developers start
to combine dynamic analysis with static analysis, in oder
to solve the problems of producing too many false positive
result. Based on a open source static analysis project [11],
Davide Balzarotti and his colleagues build up a method that
use both static and dynamic analysis to give a more accurate
vulnerability analysis result [12].

For static analysis, they added a over-approximation for
each testing string at every point of the program, so that they
can use the value to check whether the string really poses a
security risk when reaching that sink of the code. The overall
performance is nearly the same. For dynamic analysis, they
take the suspicious program path for every string, and try to
identify if it can really harm the system. By simulating the
program operating the string and check the result, dynamic
analysis tried to identified false positive automatically for
developer [12].

The method has proved to be more effective than static
analysis, but it still has several problems. It contain some
programing errors when dealing with regular expressions, the
dynamic analysis process can still be insufficient [12]. As it
is still a server based analysis, DOM-based XSS attack is still
not been tested just like static analysis.

VI. CONCLUSION

Overall, 5 different approaches have been introduce, every-
one of them has their own advantage and draw back. Pattern
filtering is one of the most easiest way to counter XSS attack
and it’s very effective to known vulnerabilities. But the needed
of a database with a regular update make it hard to enforce
after deploy.

Client side pattern matching is deployed on client side,
which make it a personal protection method for XSS attack,
the pay back is that it won’t be able to have complex protection
like a normal server does, as client has much less computing
power compare to server machine. it also won’t detect the
attack if web content manipulation is involved [9].

Opposite to client side approach, server side approach
can be much more powerful than client side giving more
processing power, with more method could be used to detect
a XSS attack. Some server side approach is too complex that
even need to corporate with client side browser, but there are
new approach that are more effective and won’t need the help
of client browser [8].

Static analysis approach focus on if the vulnerability exist
rather than defending an attack. This method need to track
down the input string so it’s not effective when input string is
too complex, it also has issue about high false positive rate,
with no ability to find vulnerability related to DOM-based
attack [9].

To improve static analysis, developers combine it with
dynamic analysis to get better performance. New method
have lower false positive rate, but the method couldn’t handle

4

regular expression effectively, and it still not going to test
DOM-based XSS attack.

Considering all methods are far from perfect, and XSS
attack is still one of the most popular vulnerabilities in the
world, which means attacker is only going to find more ways to
use XSS in attacking, the importance to develop more effective
approach to prevent from XSS attack will keep increasing.

REFERENCES

[1] “QWASP Top Ten” [Online]. Available:
https://owasp.org/www-project-top-ten/

[2] “Vulnerability distribution of cve vulnerability by types” [Online]. Avail-
able:
https://www.cvedetails.com/vulnerabilities-by-types.php

[3] “Apache Foundation Hit by Targeted XSS Attack — Threatpost” [Online].
Available:
https://threatpost.com/apache-foundation-hit-targeted-xss-attack-041310/73815/

[4] “Hacking Fortnite Accounts - Check Point Research” [Online]. Available:
https://research.checkpoint.com/2019/hacking-fortnite/

[5] I. Yusof and A. K. Pathan, ”Preventing persistent Cross-Site Scripting
(XSS) attack by applying pattern filtering approach,” The 5th Interna-
tional Conference on Information and Communication Technology for
The Muslim World (ICT4M), Kuching, 2014, pp. 1-6.

[6] A. P. Sivanesan, A. Mathur and A. Y. Javaid, ”A Google Chromium
Browser Extension for Detecting XSS Attack in HTML5 Based Web-
sites,” 2018 IEEE International Conference on Electro/Information Tech-
nology (EIT), Rochester, MI, 2018, pp. 0302-0304.

[7] “Market share for mobile, browsers, operating systems and search engines
— NetMarketShare” [Online]. Available:
https://netmarketshare.com/

[8] H. Shahriar and M. Zulkernine, ”S2XS2: A Server Side Approach to
Automatically Detect XSS Attacks,” 2011 IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing, Sydney,
NSW, 2011, pp. 7-14.

[9] L. K. Shar and H. B. K. Tan, ”Defending against Cross-Site Scripting
Attacks,” in Computer, vol. 45, no. 3, pp. 55-62, March 2012.

[10] G. Wassermann and Z. Su, ”Static detection of cross-site scripting vul-
nerabilities,” 2008 ACM/IEEE 30th International Conference on Software
Engineering, Leipzig, 2008, pp. 171-180.

[11] N. Jovanovic, C. Kruegel and E. Kirda, ”Pixy: a static analysis tool
for detecting Web application vulnerabilities,” 2006 IEEE Symposium on
Security and Privacy (S&P’06), Berkeley/Oakland, CA, 2006, pp. 6 pp.-
263.

[12] D. Balzarotti et al., ”Saner: Composing Static and Dynamic Analysis
to Validate Sanitization in Web Applications,” 2008 IEEE Symposium on
Security and Privacy (sp 2008), Oakland, CA, 2008, pp. 387-401.

Bibliography

Check Point Research. Hacking fortnite accounts. [online], 2019. Aviliable:

https://research.checkpoint.com/2019/hacking-fortnite/, accessed on June

16 2020.

CVE security vulnerability database. Vulnerability distribution of cve vulnerability by

types. [online], 2020. Aviliable:

https://www.cvedetails.com/vulnerabilities-by-types.php, accessed on June

10, 2020.

DVWA team. Dvwa: Damn vulnerable web application- github. [online], 2020. Aviliable:

https://github.com/digininja/DVWA, accesed on July 27, 2020.

epsylon. Cross site ”scripter” - github. [online], 2020. Aviliable:

https://github.com/epsylon/xsser, accessed on Jult 23, 2020.

K. Gupta, R. Ranjan Singh, and M. Dixit. Cross site scripting (xss) attack detection

using intrustion detection system. In 2017 International Conference on Intelligent

Computing and Control Systems (ICICCS), pages 199–203, 2017.

HashiCorp. Vagrant by hashicorp. [online], 2020. Aviliable:

https://www.vagrantup.com/intro, accessed on July 20, 2020.

macroman321. xss-payload-list. [online], 2020. Aviliable:

https://github.com/payloadbox/xss-payload-list, accessed on August 15, 2020.

MDN web docs. Http messages - http. [online], 2020. Aviliable:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages, accessed on

August 7, 2020.

Oracle Corporation. Mysql 8.0 reference manual. [online], 2020. Aviliable:

https://dev.mysql.com/doc/refman/8.0/en/char.html, accessed on September

12, 2020.

PortSwigger Ltd. Burp suite comminity edition. [online], 2020. Aviliable:

https://portswigger.net/burp, accessed on July 19, 2020.

41

https://research.checkpoint.com/2019/hacking-fortnite/
https://www.cvedetails.com/vulnerabilities-by-types.php
https://github.com/digininja/DVWA
https://github.com/epsylon/xsser
https://www.vagrantup.com/intro
https://github.com/payloadbox/xss-payload-list
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://portswigger.net/burp

BIBLIOGRAPHY 42

pynetwork. pypcap - python libpcap module. [online], 2018. Aviliable:

https://github.com/pynetwork/pypcap, accessed on August 5, 2020.

H. Shahriar and M. Zulkernine. S2xs2: A server side approach to automatically detect

xss attacks. In 2011 IEEE Ninth International Conference on Dependable, Autonomic

and Secure Computing, pages 7–14, 2011.

The Open Web Application Security Project. Owasp top ten. [online], 2020. Aviliable:

https://owasp.org/www-project-top-ten/, accessed on June 15, 2020.

Threatpost. Apache foundation hit by targeted xss attack. [online], 2010. Aviliable:

https://threatpost.com/apache-foundation-hit-targeted-xss-attack-041310/

73815/, accessed on June 15, 2020.

Yang Ding. A detection method for cross-site scripting. [online], 2020. Aviliable:

https://git.soton.ac.uk/yd4u19/msc-project_yd, accessed on September 15,

2020.

ZAP Dev Team. Owasp zap. [online], 2020. Aviliable:

https://www.zaproxy.org/, accessed on July 25, 2020.

https://github.com/pynetwork/pypcap
https://owasp.org/www-project-top-ten/
https://threatpost.com/apache-foundation-hit-targeted-xss-attack-041310/73815/
https://threatpost.com/apache-foundation-hit-targeted-xss-attack-041310/73815/
https://git.soton.ac.uk/yd4u19/msc-project_yd
https://www.zaproxy.org/

	Acknowledgements
	1 Introduction
	1.1 Problem
	1.2 Research question
	1.3 Hypothesis

	2 Background and Literature Review
	2.1 XSS
	2.1.1 Definition
	2.1.2 How XSS happen and possible consequence
	2.1.3 Type of XSS attack
	2.1.3.1 Stored XSS attack
	2.1.3.2 Reflected XSS attack
	2.1.3.3 DOM-based XSS attack

	2.2 Testing platform
	2.2.1 Vagrant

	2.3 Vulnerable web application on the target machine
	2.3.1 About Damn Vulnerable Web Application (DVWA)

	2.4 Tools used to attack the target
	2.4.1 Tools been used
	2.4.1.1 Cross Site ``Scripter'' (XSSer)
	2.4.1.2 Zad Attack Proxy
	2.4.1.3 Burp suite Community edition

	2.4.2 Difference between these tools

	2.5 Related works

	3 Requirements Analysis and Project Plan
	3.1 Functional requirements
	3.1.1 Importance level analysis

	3.2 Non-functional requirements
	3.3 MoSCoW analysis
	3.4 Risk analysis
	3.5 Project plan

	4 Design and Implementation
	4.1 Program design
	4.2 Test environment
	4.3 Implementation
	4.3.1 Request listening and extracting
	4.3.1.1 Listen to HTTP request
	4.3.1.2 Extracting the data

	4.3.2 Checking the request data
	4.3.2.1 Data need to check in HTTP request
	4.3.2.2 Detection method

	4.3.3 Extract information needed and store the suspicious request

	5 Result and Discussion
	5.1 Testing process
	5.1.1 Attack using XSSer
	5.1.2 Attack using ZAP
	5.1.3 Attack using Burp Suite

	5.2 Testing result
	5.3 Discussion
	5.3.1 Compare stored XSS and reflected XSS
	5.3.2 Compare result from three tools
	5.3.2.1 XSSer result
	5.3.2.2 ZAP result
	5.3.2.3 Burp Suite result

	6 Conclusion and Further Work
	6.1 Conclusion
	6.2 Further work
	6.3 Legal aspect

	A Appendix
	A.1 Document in COMP6211 - Project Preparation

	Bibliography

