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Abstract 
 

Posit is designed as a replacement of IEEE-754 floating-point numbers. The aim of this project is to 
compare accuracy, power consumption, performance and area used between IEEE-754 single-precision 
floating-point format and 8-bit Posit. This paper demonstrates an approach to compute Posit in terms 
of addition and multiplication, and an assumption relevant to the Posit adder algorithm. This is a 
working theory which is based on ‘Type 3’ Unum, proposed by John L. Gustafson. With the use of 
simulation tool like Modelsim and synthesis tool like Quartus, the accuracy, power consumption, 
performance and area used between two number formats are compared. The result of the experiment 
indicates that 8-bit Posit is either saving energy and area or providing higher performance than IEEE-
754 floating-point single-precision format, but the accuracy is lesser than the IEEE-754 floating-point 
number. 

 

Keywords: Unum, Posit, IEEE-754 floating-point number, Posit adder, Posit multiplier, accuracy, 
power consumption, area, performance, energy saving 
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1 Introduction 
 

The Unum is a superset of IEEE-754. Comparing with the IEEE-754, Unum has no overflow to infinity 
and no rounding to zero, which means fewer limitations [1]. There are two special representations of 
Unum: zero and infinity, which are represented by all bits with zero and all bits but the sign bit are zero 
respectively. By not including ‘NaN’ (not a number), for an N-bit FP mantissa, Posit saves 2 * (2𝑁𝑁 −
 1) ‘NaN’ combinations. Also, Unum obeys algebraic laws and is safe to compute in parallel. Moreover, 
it has fewer bits than the floating point. The universal number system was first published at the year of 
2015 by John L. Gustafson. The ‘Type 3 (Posit)’ is the latest version of Unum. Interestingly, the Posit 
format is more similar to the IEEE-754 floating-point number format than ‘Type 1’ and ‘Type 2’. Posit 
can provide better dynamic range and accuracy within the same bit width. 

 

The reason why this project is useful is that using the Posit instead of floating-point might save energy 
or provide better performance. As is known to all, energy means money, and that is what the vendors 
care the most about. Energy saving is what makes this project meaningful. 

 

The aim of this project is to compare accuracy, power consumption, performance and area used between 
IEEE-754 floating point number and Unum (Posit). As we all know, the IEEE-754 floating-point 
number is widely learnt and used in current design field. The floating-point arithmetic use numbers of 
specific fields to represent a real number. Take 32-bit floating-point number as an example, it consists 
of sign bit (1 bit), exponent width (8 bits) and mantissa (23 bits). The maximum value of the IEEE-754 
32-bit floating-point variable is approximately 3.4028235 × 1038. However, just using an 8-bit Posit, 
with es = 4, the maximum value of it could be 7.9228162 × 1028.  

 

In the rest of the dissertation, background information is first presented, including potential problems 
about floating point, a brief introduction of ‘Type 1’, ‘Type 2’ and ‘Type 3’ Unum. After that, the 
related work is presented to show what has been done. Second, the design chapter suggests the 
computational flow of Posit adder and Posit multiplier, providing detail explanations for each line in 
the flow. Third, the simulation results are shown, including exceptional cases (zero, infinity), random 
number test and Quartus synthesis. 
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2 Background 
 

In the background section, it shows the floating- point number composition and the potential problems 
of the IEEE-754 floating-point numbers. More importantly, the development progress of the Unum is 
illustrated. 

 

Nowadays, almost every hardware floating-point units are using the IEEE-754 standard format. The 
following figure shows an example layout for 32-bit floating-point number. 

 

Figure 2.1 32-bit floating-point number format 

0.1562510 is represented in binary as 0.001012 = 1
8
 + 1

32 , which can be written as: 1.01 * 2-3. Biased by 
127, the exponent part -3 is stored as 127-3 = 12410 = 011111002. Leading one is not store for the 
mantissa. 

 

Currently, several big problems we faced in terms of computing. John L. Gustafson proposes the 
following problems, which vendors care the most. First, the current calculation consumed too much 
energy and power. For example, huge heat sinks are needed to cool down the chip. When heat causing 
the design becomes bigger, which will increase the latency, therefore, limiting the speed of the whole 
design. The data centre needs loads of electric bills to maintain, the mobile device’s battery life is a 
potential problem. Second, the bandwidth is not enough. The following diagram shows the one size fits 
all format like double-precision wasting energy, storage and bandwidth. 

 

Figure 2.2 IEEE-754 double-precision energy cost 

The energy cost of ‘Read 64-bits from DRAM’ under the frequency of 2GHz is 24 watts, which most 
of it cost for nothing. That is a clear weakness of this format. Third, floating-point prevent the use of 
parallelism computing. For instance, it seems wrong that (a + b) + (c + d) ≠ ((a + b) + c) + d. However, 
computer programmers adopt serial rather than parallel, the IEEE-754 floating-point report rounding, 
overflow and underflow in the register that hide in the whole process without showing. 

 

The Unum is developing from ‘Type 1’ to ‘Type 3 (Posit)’. The ‘Type 1’ and ‘Type 2’ are introduced 
in detail at the following parts. 



8 

 

 

2.1 Type 1 
 

Proposed in March 2015, the Unum (universal number) arithmetic system was first presented to the 
world at the year of 2013. The original version is titled “Type I” Unum, which is a superset of IEEE 
754 standard floating-point format. In this version, it has a special bit at the end of the fraction called 
‘ubit’, which indicates whether this number is an exact float or within an open interval between near 
floats. With the inclusion of ‘ubit’, rounding, overflow and underflow are eliminated. Instead of 
overflow, the ‘ubit’ marks the number as lying in the open interval between the largest number of the 
dynamic range and infinity [6]. Instead of underflow, the ‘ubit’ marks the number as lying in the open 
interval between zero and the smallest number in the dynamic range. There is a misunderstanding that 
higher precision will produce more accuracy. However, it cannot be guaranteed. The meaning of sign, 
exponent and mantissa field has the same definition compared with IEEE 754 standard. The bit width 
of the exponent and mantissa field can be changed manually by the user through varing the number of 
‘esize’ and ‘fsize’. ‘utag’ is suggested to represent the combination of ‘ubit’, ‘esize’ and ‘fsize’. Adding 
‘utag’ into the bit string can save total bit width, comparing with the floating-point. The format is as 
follows: 

 

Figure 2.1.1 Type 1 Unum number format 

Because the Unum has flexible dynamic range and precision, it eliminates the chance for the designer 
to select oversize data type with the aim of solving all the numerical problems. The “oversize fits all” 
data type obviously wastes storage and bandwidth. Since the “oversize fits all” precision is only 
needed for small amounts of calculations, designers choosing double precision format as an over-
insurance seems not an optimum option. 

 

2.2 Type 2 
 

Introduced in January 2016, the ‘Type 2’ Unum is a brand-new version, which abandons 
compatibility with floating points, allowing an obvious, more efficient design based on the projective 
reals. All signed integers within the dynamic range are mapped around projective reals, from positive 
to infinity to negative numbers, with the same ordering. The structure of the 5-bit ‘Type 2’Unum is 
shown below in figure 2. The main principle of where the Unum number set is within the ‘Type 2’ 
circle, the upper left side, aligned 2n-3-1 real numbers, which could be named as xi. At the upper left-
hand side, aligning the same amounts of numbers in negative value of xi. Reflection through the 
horizontal axis, the lower half of the circle aligns reciprocals value of the upper half. ‘Type 2’ Unum 
inherits the idea of ‘ubit’ within ‘Type 1’ Unum. Ending 1 suggests an uncertain value between two 
real numbers, which represent by two Unum numbers with ending 0. 
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Figure 2.2.1 Type 2 Unum number format circle 

2.3 Type 3 Posit 
 

Posit is the latest version of Universal Number (Unum), which was published in February 2017. It can 
be seen as a potential counterpart of floating-point number system. Furthermore, Posit provides many 
advantages over floating-point, which include dynamic range flexibility, accuracy, smaller storage 
space and exact arithmetic computation. Both ‘Type 1’ and ‘Type 2’ Unum are using the idea of ‘ubit’. 
However, if the Unum number string keep adopting this uncertain function in every operation, it is 
better to use this last bit as an extra fraction bit in order to achieve more accuracy. ‘Type 3’ Unum is 
named as ‘Posit’. Merriam-Webster dictionary defines Posit as: to assume or affirm the existence.  Posit 
is similar to ‘Type 2’ Unum in some extends. It is also a hardware-friendly version of Unum, which 
problems facing in ‘Type 1’ Unum due to changeable size are solved. The following graph shows the 
format of Posit. 

 

Figure 2.3.1 Type 3 Unum (Posit) number format 

As it shows in the above figure, the Posit format can be divided into four parts: sign, regime, exponent 
and mantissa. Before anything to be written in code, the bit width (N) and exponent size (es) need to be 
defined first. The regime bits are varied during run-time, providing more flexible dynamic range and 
precision. Flexibility is a good technique to ensure Posit can be a useful number format that can be 
adopted by applications that have different groups of requirements, dynamic range and accuracy. The 
following figure shows how the regime bits work. 

 

Figure 2.3.2 Posit regime value representations 
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The binary regime bits string begin with a couple of all zero or all one and terminate with one opposite 
number appearing in the next bit or if the string reaches the end. The number of identical bits can be 
represented as ‘i’. If the identical bit string is started with 1, then k = i – 1. Otherwise, k = -i. For 
example, in the above table, ‘0000’ is started with 0 to the end, therefore, i is equal to 4, and k = -i = -
4. ‘10xx’ is started with 1, terminating with 0 at the second bit. In that situation, leaving the remaining 
bit ‘xx’, thus, ‘i’ is equal to 1, k = i – 1 = 0. The regime value k suggests a power factor of useedk.               
‘useed’ is a scale factor related to the exponent bit, which is represented by ‘useed’ = 22𝑒𝑒𝑒𝑒 . The 
following figure shows the example of the ‘useed’ value. 

 

Figure 2.3.3 Posit exponent value representations 

The next bit field is the exponent bits, which are unsigned integers. Different from the IEEE-754 
floating-point numbers, Posit does not need bias in the final exponent calculation. As it is defined 
before, there can be up to es exponent bits, but it will depend on how many bits are left after the regime 
bits. This is a good technique to demonstrate tapered accuracy, which means numbers around one have 
more accuracy than extremely huge or small numbers. 

 

If there are any bits remaining besides sign bit, regime bits and exponent bits, it is on behalf of the 
mantissa bits. Due to this reason, a short bit width may lose some accuracy. This part is the same 
compared with the IEEE-754 floating-point number. It could be illustrated by the format of 
‘1.mantissa’, with a hidden bit 1 always in front of the mantissa bits. Subnormal numbers with a hidden 
bit 0 in floats cannot exist in the Posit number format.  

 

The Posit value can be calculated by the following equation, including the sign bit (s), regime value (k), 
exponent value (e), and mantissa value (f), which includes a hidden bit 1. 

                                                          Posit value = s * (22𝑒𝑒𝑒𝑒)𝑘𝑘 * 2𝑒𝑒 * f                                             (1-1) 

If the remaining bits are lesser than ‘es’ bits, then those bits will be treated as MSB of the exponent 
field. Take N = 8, es = 4 Posit as an example, for the bit string 01111101, sign bit is 0, the regime 
sequence is 111110, therefore, only one bit left in the exponent field, which will be treated as 1000 by 
adding zeros on the right side. Hence, the Posit value is equal to + (224)4  * 28  * 1 = 
4,722,366,482,869,645,213,696. 

 

Posit can be illustrated by a circle populating numbers, and the posit precision can be increased by 
adding extra bits. Appending bits with the value of zero will make no difference to the former value, 
new bit string remains where it is on the circle as before. However, adding ones to the bit string will 
create new values between two original values on the circle. The following figure shows only the right 
half of the circle from 3-bit to 5-bit posit with es = 2. 
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Figure 2.3.4 right half circle from 3-bit to 5-bit posit with es=2 

Using simple example of multiplication can express why Posit can reduce energy consumption. Take -
1024 * 0.046875 as an example, result is easily calculated, which is -48. If use IEEE-754 single-
precision floating-point format, this equation can be transformed to 
1_10001001_00000000000000000000000 * 0_01111010_10000000000000000000000 = 
1_10000100_10000000000000000000000. However, when calculate in Posit, which is 8-bit width with 
es=4, this equation can be interpreted as 1_01_0110_0 * 0_01_1011_1 = 1_01_1010_1. It is obvious to 
discover that number format wastes lots of bits and the mantissa part, which will cost power for nothing. 

 

2.4 Related work 
 

The universal number system has undergone a progressive evolution since ‘Type 1’ is presented [2] – 
[4]. ‘Type 2’ [5], [6]. Since Posit was proposed, there were some papers attracting people’s attention, 
increasing their interest like [1], [2], [6]. The Posit number system can be seen as a simple replacement 
of IEEE-754 floating-point format [7]. Numbers of articles were writing about the hardware 
implementation of the Posit [8] – [11]. A parameterized Posit arithmetic generator, including floating-
point to Posit converter, Parameterized leading one detection (LOD), leading zero detection (LZD), 
dynamic left shifter (DLS), Posit to FP converter, Posit adder/multiplier computational flow is presented 
in [8]. Similar problem is not solved in the later paper [11]. They both lack the details about rounding, 
which is just mentioned by ‘round-to-zero’ or barely noticed. This is an important factor that will cause 
the reduction of accuracy. [9], [10] present a fixed width 32-bits Posit adder and Posit multiplier. The 
recent article [12] mentioned the details about rounding, which makes the design more rigorous.  
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3 Design 
 

In this chapter, the details about the computational flow of Posit adder and Posit multiplier are 
presented. Also, there is an assumption about changing the algorithm into another form, which might 
change the total cost of the Posit adder.  

 

3.1 Posit adder 
 

In this part, a detail description of parameterized computational flow of a Posit adder is proposed. The 
flow can be further subcategorized as data extraction, leading one detection (LOD), dynamic left/right 
shifter (DLS/DRS), core arithmetic flow, computation of final regime and exponent, rounding and Posit 
construction. Basically, this computational flow can be categorized into three stages: Posit data 
extraction, Posit core arithmetic, rounding and Posit construction. 

 

3.1.1 Stage 1: Posit data extraction 
 

Posit data extraction is the first step of the whole algorithm, which is presented in Algorithm 1. The 
algorithm is executed by first setting the parameter, including Posit width (N) and exponent bits (es). 
Because the regime bits are varied during run-time, it can be up to (N-1) bits except for the sign bit, 
which can be stored in ‘Bs’ bits (Bs = log2 𝑁𝑁). The given inputs are ‘in1’ and ‘in2’, first and foremost 
is to check whether those two inputs are special cases like zero and infinity. The binary representation 
of those two special cases are mentioned in chapter 1. After checking for the special cases, data could 
be extracted from two inputs. The extractor extracts signs, regimes, exponents and mantissa. However, 
there are certain rules about extraction. The extraction flow is as follow (line 3 – 9). First, extracting 
the MSB of both inputs as sign bits and storing in the register named s1 and s2 (line 12). Second, if the 
sign bit is equal to 1, it indicates the input is a negative operand, otherwise, the input is positive. On the 
one hand, for negative inputs, all the remaining bits are encoded in 2’s complement form in the Posit 
number system. On the other hand, in terms of positive inputs, it will remain unchanged (line 13). Third, 
according to the Posit number format, after the sign bit are the regime bits. The remaining bits of ‘in1’ 
and ‘in2’ will be stored in (N-2) bit registers ‘xin1’ and ‘xin2’ respectively. The first bit of ‘xin’ regime 
check (RC) is used for checking the regime bits are beginning with one or zero. Therefore, following 
the explanation in chapter 1, the regime value is decided. However, to execute in hardware, it requires 
the LZD and LOD technique to find the terminating bit and the regime left shift amount ‘Lshift’. 
However, if the regime check (rc) is equal to 1, ‘xin’ can be complemented to avoid using both LOD 
and LZD, therefore, same more hardware (line 14 - 17). Finally, in order to extract the exponent and 
mantissa bits, numbers in the ‘xin’ registers need to be left shifted by ‘LOP + 1’ bits, which means all 
the regime bits are flushed out (line 18). Obviously, now the MSB es bits are the exponent bits and all 
the other bits are the mantissa bits (line 19 -20). The details of the data extraction are shown below in 
Algorithm 1: 
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3.1.1.1 Algorithm 1 Proposed Posit Data Extraction Flow 
 

Given parameters: N: Posit width, es: Posit exponent size, Bs: log2 (N) (Posit regime value storage 
size) 

Inputs: in1, in2 

Outputs: s1, s2, rc1, rc2, regime1, regime2, exp1, exp2, mant1, mant2, zero, inf 

1: Check for exceptions (infinity (inf), zero (zero)) 

2: Check for infinity 

3: inf1 = in1[N-1] & ~(|in1[N-2:0]), inf2 = in2[N-1] & ~(|in2[N-2:0])     // all bits except sign bit are 0 

4: inf = inf1 | inf2     

5: Check for zero 

6: zero1 = |in1, zero2 = |in2                                                                        // all bits are 0 

7: zero = zero1 & zero2 

8: Data extraction: sign (s), remaining bits (xin), regime check (rc), regime value (regime), exponent 
(exp), mantissa (mant). 

9: Extraction from in1: 

10: s1 = in1[N-1] 

11: xin1 = s1 ? ~in1[N-2:0] : in1[N-2:0]                                                    // 2's Complement if sign is 1 

12: rc1 = xin1[N-2]                                                                                    // Regime check 

13: xint = rc ? ~xin : xin 

14: LOP = Leading one detection (LOD) (xin1[N-2:0]) 

15: regime1 = rc1 ? LOP-1 : ~LOP (Effective Regime Value) 

16: xin = xin << LOP + 1 (Flush out regime sequence) 

17: exp1 = MSB es-bits of xint (Exponent) 

18: mant1 = remaining bits of xint (do not forget the hidden bit) 

19: Extraction from in2: s2, xin2, regime2, exp2, mant2 

 

In the data extraction algorithm, leading one detector (LOD) finds the position of leading one bit (LOP) 
from ‘xint’. The detail of the LOD algorithm is shown below: 
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3.1.1.2 Algorithm 2 Leading One Detector (LOD) 
 

Given parameters: N: Posit width, es: Posit exponent size, Bs: log2 (N) (Posit regime value storage 
size) 

Inputs: A (the width of A is donated by LA) 

Outputs: Position of leading one (LOP) 

1: Set default value: LOP = 0 (lead one position initialization), t = 0, found = 0 

2: for i = 0 to LA – 1 

3:     if (A[LA - i -1]) == 1  

4:            found = 1 

5:      t = t | found 

6:      if (t == 0)  

7:             LOP = LOP + 1 

 

 

After the value of LOP is known, ‘xin’ needs to be left-shifted by ‘LOP + 1’ bits through the use of 
dynamic left shifter. In the next algorithm, a parameterized dynamic left shifter (DLS) is presented. 
Following the given Posit size and the shifting amount ‘LOP’. Using the basic principle of barrel shifter, 
which requires ‘LOP’ numbers 2 to 1 multiplexers with the bit width of (N-1). Algorithm 3 below shows 
the detail of DLS. 

 

3.1.1.3 Algorithm 3 Parameterized Dynamic Left Shifter (DLS) 
 

Given parameters: N: Posit width, Bs: log2 (N) (Posit regime value storage size) 

Inputs: in[N-1:0], b[Bs-1:0] 

Output: OUT 

[N-1:0] t [Bs-1:0] 

1: t[0] = b[0] ? in << 7’d1 : in; 

2: genvar i 

3: generate 

4: for (i=1; i<Bs; i=i+1) begin 

5:     t[i] = b[i] ? (t[i-1] << 2**i) : t[i-1] 

6: end 

7: endgenerate 

8: OUT = t[Bs-1] 
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With the help of LOD and DLS the data extraction process can be completed, all the variables for further 
calculation are extracted. 

 

3.1.2 Stage 2: Posit core adder arithmetic 
 

3.1.2.1 Algorithm 4 Posit Adder Core Arithmetic Flow 
 

Given parameters: N: Posit width, es: Posit exponent size, Bs: log2 (N) (Posit regime value storage 
size) 

Inputs: s1, s2, rc1, rc2, regime1, regime2, exp1, exp2, mant1, mant2 

Outputs: exp_o, e_o, r_o, add_m 

1: large checking and assignment 

2: op =  s1 xor with s2                                                                         // Effective operand 

3: Check for large input and small input 

4: in1 greater than in2 = xin1 >= xin2 ? 1 : 0                                                   // Operands comparison 

5: Large (l) component: ls, lrc, lr, le, and lm 

6: ls = in1 greater than in2 ? s1 : s2 

7: lrc = in1 greater than in2 ? rc1 : rc2 

8: lr = in1 greater than in2 ? regime1 : regime2 

9: le = in1 greater than in2 ? e1 : e2 

10: lm = in1 greater than in2 ? m1 : m2 

11: Small (s) component: src, sr, se, and sm 

12: ss = in1 greater than in2 ? s2 : s1 

13: src = in1 greater than in2 ? rc2 : rc1 

14: sr = in1 greater than in2 ? regime2 : regime1 

15: se = in1 greater than in2 ? e2 : e1 

16: sm = in1 greater than in2 ? m2 : m1 

17: Regime difference: r_diff, r_diff0, r_diff1, r_diff2                                             

18: r_diff0 = lr - sr 

19: r_diff1 = lr + sr 

20: r_diff2 = sr – lr 

21: r_diff = lrc ? (src ? r_diff0 : r_diff1) : r_diff2 

22: effective exponent difference: diff, exp_diff                               // lower mantissa shift amount 
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23: diff = {r_diff,le} – {Bs+1{1’b0},se} 

24: exp_diff = (|diff[Bs+es:Bs]} ? {Bs{1’b1}} : diff[Bs-1:0] 

25: sm_tmp  = sm >> exp_diff                                                          // right shift sm by exp_diff amount 

26: add lm and sm_tmp                                                                     // Mantissa addition/subtraction 

27: add_m = op ? lm - sm_tmp : lm + sm_tmp 

28: Movf  = add_m[MSB]                                                                 // Mantissa overflow check 

29: add_m = Movf ? add_m : add_m << 1 

30: Normalization of add_m: 

31: Nshift = LOD of add_m                                                              // Check for Leading-One 

32: add_m = add m << Nshift                                                           // Dynamic left shifting by Nshift 

33: Final exponent (e_o) and regime (r_o) computation: 

34: exp_o  is the concatenation of lr, le, movf and Nshift 

35: lr1 = lrc ?  lr : -lr 

36: exp_tmp = {lr1, le} - Nshift 

37: exp_o = exp_tmp + Movf 

38: exp_o1 = exp_o[MSB] ? – exp_o  : exp_o 

39: e_o: based on +/- of exp_o, compute LSB es bits from exp_o 

40: e_o = (exp_o[MSB] & | exp_o1[es-1:0]) ? exp_o[es-1:0] : exp_o1[es-1:0] 

41: r_o:  based on +/- of exp_o, compute MSB Bs bits from exp_o 

42: r_o = ~ (exp_o[MSB]) | (exp_o[MSB] & (exp_o1[es-1:0])) ? exp_o1[es+Bs-1:es] + 1 : 
exp_o1[es+Bs-1:es] 

 

This algorithm is used for calculating the mantissa part of the Posit. In order to attain the process, several 
values need to be determined. First of all, whether the mantissa calculation is addition or subtraction is 
related to the sign between two Posit numbers. The effective arithmetic operation (op) between two 
mantissa inputs is decided by a XOR operation between two operands’ sign bit, if op = 1, which means 
the sign of two Posit numbers are opposite, therefore, a subtraction operation is operated. Otherwise, 
an addition operation is executed (line 2). Second, to perform a mantissa arithmetic operation, which 
input is larger than the other one needs to be find out first. The easiest way to achieve that is to compare 
the value of ‘xin1’ and ‘xin2’. Therefore, the sign, regime, exponent and mantissa of the larger input 
will be assigned to ‘ls’, ‘lrc’, ‘lr’, ‘le’, ‘lm’ respectively. And the smaller input’s components will be 
assigned to ‘ss’, ‘src’, ‘sr’, ‘se’, ‘sm’ respectively (line 3 - 16). Third, after decided all the components, 
the smaller mantissa needs to be right-shifted to achieve decimal alignment. The right-shift amount is 
determined by the difference of effective exponent, which contains the difference of the regime value 
and the exponent value (line 17 - 24). Algorithm 5 below is a parameterized dynamic right shifter, which 
has the same basic idea used in Algorithm 3. 
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3.1.2.2 Algorithm 5 Parameterized Generation of Dynamic Right Shifter (DRS) 
 

Given parameters: N: Posit width, Bs: log2 (N) (Posit regime value storage size) 

Inputs: in[N-1:0], b[Bs-1:0] 

Output: OUT 

[N-1:0]t[Bs-1:0] 

1: t[0] = b[0] ? in >> 1 : in; 

2: genvar i 

3: generate 

4: for (i=1; i<Bs; i=i+1) begin 

5:     t[i] = b[i] ? (t[i-1] >> 2**i) : t[i-1] 

6: end 

7: endgenerate 

8: OUT = t[S-1] 

 

The arithmetic operation of the aligned small mantissa and the larger mantissa can be calculated using 
an adder or a subtractor unit (line 26 - 27). By detecting the MSB of the adding result, which will be 
evaluated if there is an overflow (Movf), if there is an overflow, the value of final total exponent will 
be increased by 1. Otherwise, the ‘add_m’ mantissa will be left-shift by one bit. This step requires a 
two to one multiplexer (line 28 - 29). In terms of the subtraction operation for the mantissa, if two 
number does not have huge difference, it might affect the result since the ‘add_m’ will lose several 
MSB bits. Due to this reason, a stage of normalization is required, which needs a LOD on the ‘add_m’ 
to get the shift amount for later left shifting (line 31 - 32). After the process of normalization, the value 
of final regime value (r_o) and final exponent (e_o) are calculated and performed. By calculating the 
effective exponent (exp_o), the first step is to check the sign of ‘lrc’, if it is true, then keep the former 
value. Otherwise, convert it into 2’s complement. Then combining with the large exponent ‘le’, subtract 
it by the underflow amount (Nshift) and add it by the mantissa overflow (Movf) (line 33 - 37). If the 
sign of ‘exp_o’ is equal to 1, it is converted into 2’s complement as exp_o1 (line 38). The final regime 
(r_o) and final exponent (r_o) are calculated in line 39 – 42. 

 

 

3.1.3 Stage 3: Posit data composition and rounding 
 

When every final component is ready, this stage is to compose them all together and perform rounding. 
The detail of the composition is demonstrated in the following figure. 
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Figure 3.1.3.1 Posit data composition and rounding 

According to the figure, the Posit is first composed of the complement of the sign bit of the effective 
exponent (exp_o) at the MSB N-bit act as regime sequence. Interestingly, this arrangement creates a 
regime sequence that is desired, which fits the regime value calculation. Because when the regime is 
beginning with 1, the exponent will be positive, on the contrary, the exponent will be negative. 
Therefore, using the complement of sign bit of the real exponent can act as regime sequence. 
Furthermore, in calculating the regime value process, the termination bit is the opposite value as the 
former bits, hence, the sign bit without complement will act as a regime sequence termination bit. The 
next es bits are from the final exponent output (e_o), after that is followed by the mantissa part ‘add_m’. 
Finally, three bits are initialized to zero appending at the LSB of the Posit sequence, which are guard 
bit (G), round bit (R) and sticky bit (S) aimed for rounding (line 2). The details of the Posit composition 
and rounding algorithm are presented at Algorithm 6. 

 

3.1.3.1 Algorithm 6 Posit composition and rounding 
 

Given parameters: N: Posit width, es: Posit exponent size, Bs: log2 (N) (Posit regime value storage 
size) 

Inputs: ls, r_o, exp_o, e_o, add_m, zero, inf 

Outputs: out 

1: Posit data composition: regime bits, exponent bits and mantissa bits packing: 

2: REM = {N{!exp_o[MSB]}, exp_o[MSB], e_o, add_m, 3’b0}    // remaining bits except for sign bit 

3: REM = REM >> r_o                                                                     // right shift by r_o btis  

4: G = REM[2] 

5: R = REM[1] 

6: S = REM[0] 

7: LB = REM[3] 

8: Rounding: round to nearest even  

9: If (r_o < N-es-2) 

10:    ulp_add = (G & (R | S)) | (LB & G & (!(R|S))) 

11:    REM =  REM + {(N-1) {1’b0}, ulp_add} 
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12: REM_N = ls  ? -REM : REM 

13: Combine ls with N-2 bits of rounded REM to perform Output while considering exceptions 
(infinity and zero): 

14: out = inf ? {inf, {N-1 {1’b0}}} : (zero ? {N {1’b0}} : {ls, REM_N}) 

 

In the step of rounding, there is only one method for Posit arithmetic, which is round to the nearest even. 
To use that technique, rounding needs to generate a ‘ulp_add’ bit using the combination of variables 
like:  LSB of the mantissa (LB), the next bit is guard bit (G), the next bit is round bit (R), the next bit is 
sticky bit (S) (line 4 - 8). If r_o is lesser than N-es-2, then through a few numbers of logic gates, 
executing the equation like line 11, the ‘ulp_add’ bit is added to REM (line 12). There might be a 
problem when using the principle at [3] to decide the value of sticky bit, since in that article the sticky 
bit is determined by OR of remaining all bits as sticky bit, but in SystemVerilog it is wrong to make a 
register’s width an inconstant value like r_o. therefore, Algorithm 9 in the assumption might be a 
solution to this problem. Then the final REM, which is composed of the regime part, exponent part and 
the mantissa part. Furthermore, for true sign bit (ls == 1), REM is 2’s complemented, otherwise, it will 
remain unchanged (line 13). The exceptions check is taken to make sure they will not affect the final 
output. For the case of zero, all the output bits are 0. And for the infinity case, all the output bis are 0, 
except for the sign bit. In normal cases, the output is the concatenation of ‘ls’ and ‘REM’ (line 14 - 15). 

 

3.2 Assumption 
 

It is interesting to make an assumption that when combining the regime and exponent part together 
through the calculation, it might save some space that will cause lesser area, which will lead to lesser 
delay. There are some slightly differences about the data extraction stage, where the regime bits and the 
exponent bits are combined together to perform effective exponent ‘eff_e’. The most important part of 
this assumption is in stage 2: core arithmetic (Algorithm 7).  

 

3.2.1 Algorithm 7: Core arithmetic (combine regime and exponent part together) 
 

Given parameters: N: Posit width, es: Posit exponent size, Bs: log2 (N) (Posit regime value storage 
size) 

Inputs: sign bit (s1, s2), regime part (regime1, regime2), exponent part (exp1, exp2), mantissa part 
(mant1, mant2), effective exponent (eff_e1, eff_e2) 

Outputs: mantissa with higher effective exponent is assigned to MB, mantissa with lesser effective 
exponent is assigned to MS, added mantissa MI (by adding MB and MS), final mantissa C, higher 
effective exponent is assigned to Eeff 

// Finding difference of regimes 

regime difference: r_diff1 = regime1 – regime2, r_diff2 = regime2 – regime1, r_diff = r_diff1                                                                          

// Finding difference of exponents 

exponent difference: exp_diff1 = exp1 – exp2, exp_diff2 = exp2 – exp1, exp_diff = exp_diff1                                                                                       
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a = 0 

Sr1 = regime1[MSB]; Sr2= regime2[MSB]                                // Sign of regimes 

if (Sr1 ^ Sr2 == 1)                                                                         // Regimes are of different sign 

if (Sr1 == 0)                                                                               // If input 1 is positive 

MB = mant1; MS = mant2; Eeff = eff_e1 

else                                                                                             // If input 2 is positive 

MB = mant2; MS = mant1; Eeff = eff_e2; a = 1; r_diff = r_diff2 

else                                                                                                 // Regimes are of same sign 

if (|r_diff [Bs:0] == 0)                                                                // If two regimes have the same value  

if (exp_diff[MSB] == 1)                                                        // If exp1 > exp2 

MB = mant1; MS = mant2; Eeff = eff_e1 

else                                                                                          // If exp1 < exp2 

MB = mant2; MS = mant1; Eeff = eff_e2; a = 1; r_diff = r_diff2 

else 

if (r_diff[msb] == 1)                                                                       // If regime1 > regime2  

MB = mant1; MS = mant2; Eeff = eff_e1 

else                                                                                                  // If regime1 < regime2 

MB = mant2; MS = mant1; Eeff = eff_e2; a = 1; r_diff = r_diff2 

if (a == 1) 

exp_diff = exp_diff2 

if (exp_diff[MSB] == 0) 

if (|r_diff == 1) 

r_diff = r_diff - 1 

else 

exp_diff = exp_diff2; 

shift = {r_diff[Bs:0], exp_diff[es-1:0]} 

if (shift >= N-es+3) 

MS = 0; shift = 0 

else 

MS = sticky_bit_adjustor(MS, shift) 

MB = {0, MB}; MS = {0, MS} 

if (s1 ^ s2 == 1) 
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if (s1 == 1)  

MB = -MB 

else 

MS = -MS 

else 

if (a == 0) 

MS = -MS 

else 

MB = -MB 

// adding two mantissas 

MI = MB + MS 

// determine the final sign bit SF and mantissa C 

SF = (s1 ^ s2) ? (!MI[MSB]) : s1 

C = (s1 ^ s2) & SF ? -MI : MI 

 

At this stage, the first step is to find the difference of both the regime and the exponent. Using outputs 
from the data extraction stage, the regime difference and the exponent difference are calculated in 
parallel. The regime and exponent of ‘in1’ are subtracted by the regime and exponent part from ‘in2’ 
irrespective of which one has the higher value. Because this result could be adjusted to make sure the 
effective exponent has an overall positive value. Based on the sign of the regime, the bigger mantissa 
and smaller mantissa are assigned to MB and MS respectively. If two regimes’ signs are opposite, the 
operand has the positive regime value assigned their mantissa, effective exponent part to MB and Eeff. 
Another operand’s mantissa part is assigned to MS. ‘a’ is assigned the value of 1 and ‘r_diff’ is 2’s 
complemented to convert it into a positive value when ‘regime2’ has a positive value. In the 
circumstance that ‘Sr1’ and ‘Sr2’ have the same sign, then based on the value of ‘r_diff’ and ‘exp_diff’, 
the value of ‘MB’, ‘MS’, ‘Eeff’, ‘a’, ‘r_diff’ can be determined. If two regimes have the same value 
(|r_diff = 0), then based on the MSB of exp_diff, the value of ‘MB’, ‘MS’, ‘Eeff’ is assigned. When 
‘exp1 < exp2’, then ‘mant2’, ‘eff_e2’ and ‘mant1’ are assigned to ‘MB’ , ‘Eeff’ and ‘MS’ respectively. 
Moreover, ‘a’ is set to 1 and ‘r_diff’ is converted into 2’s complement to become a positive value. When 
‘exp1 > exp2’, then ‘mant1’, ‘eff_e1’ and ‘mant2’ are assigned to ‘MB’ , ‘Eeff’ and ‘MS’ respectively. 
If two regime values are not the same (r_diff ≠ 0), then if r_diff[MSB] = 0, which means the effective 
exponent value of ‘in1’ is greater than ‘in2’, thus, ‘mant1’, ‘eff_e1’ and ‘mant2’ are assigned to ‘MB’ , 
‘Eeff’ and ‘MS’ respectively. if r_diff[MSB] = 1, this implies the effective exponent value of ‘in1’ is 
lesser than ‘in2’, then ‘mant2’, ‘eff_e2’ and ‘mant1’ are assigned to ‘MB’ , ‘Eeff’ and ‘MS’ respectively, 
‘a’ is set to 1 and ‘r_diff’ is converted into 2’s complement to become a positive value. After the former 
process is finished, if ‘a’ is set to 1 , the ‘exp_diff’ is converted into 2’s complement. If ‘exp_diff’ is a 
negative value, ‘r_diff’ and itself need to be adjusted. If exp_diff[MSB] = 1 and r_diff is not equal to 
zero, ‘r_diff’ is decreased by 1, else ‘exp_diff’ is converted into 2’s complement form. 

 

After the above part of the algorithm, the ‘r_diff’ and the ‘exp_diff’ are both positive values, the 
alignment can be proceed using the sticky bit adjustor at Algorithm 7. The ‘shift’ value can be 
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determined only by the concatenation of ‘r_diff’ and ‘exp_diff’. The maximum shift amount can be 
limited by the value of N-es+3. If the shift amount is greater than the maximum value, both the shifted 
mantissa ‘MS’ and shift are set to zero. Otherwise, ‘MS’ is shifted by ‘shift’ amount using Algorithm 9. 
Based on the arithmetic operation and the value of ‘a’, both ‘MB’ and ‘MS’ need to be adjusted. For 
instance, if the operation is addition, if ‘s1’ and ‘a’ are both equal to zero, ‘MS’ is converted into its 2’s 
complement. Further details are illustrated in Algorithm 8. After decided the value of ‘MB’ and ‘MS’, 
‘MI’ is equal to the result of ‘MB’ + ‘MS’. Using the MI[MSB] and ‘s1’ the final sign ‘SF’ and mantissa 
C is performed, and C could act as the ‘add_m’ in Algorithm 4, which can be further used in 
normalization, data composition and rounding. 

 

For the data composition and rounding, the normalized mantissa ‘C’ is rounded, and the final output 
‘out’ is generated. The methodology is similar to the rounding technique in Algorithm 6, except for 
using Algorithm 9.  The sticky bit adjustor right-shifted the input and adjusts the sticky bit (LSB). The 
sticky bit is initialized to 1, and the input A is padded with Lpad numbers of zero at the right-hand side 
to make ‘t’ fits the bit width. Then the padded input is right-shifted by ‘B’ amount. The sticky bit is set 
to 0 if there are no bits with the value of one in the right -shifted part. Finally, remove the padded bits 
and update the LSB bits if the sticky bit is equal to 1. 

 

3.2.2 Algorithm 8 Posit composition and rounding 
 

Given parameters: N: Posit width, es: Posit exponent size, Bs: log2 (N) (Posit regime value storage 
size) 

Inputs: SF, r_o, exp_o, e_o, C, zero, inf 

Outputs: out 

1: Posit data composition: regime bits, exponent bits and mantissa bits packing: 

2: Tp = {N{!exp_o[MSB]}, exp_o[MSB], e_o, C}.                           // remaining bits except sign bit 

3: Tp = sticky_bit_adjustor(Tp, r_o)                                               // right shift by r_o btis  

4: G = Tp [2] 

5: R = Tp [1] 

6: S = Tp [0] 

7: LB = Tp [3] 

8: IP = Tp [N+1:3] 

8: Rounding: round to nearest even  

9: If (r_o < N-1) 

10:    ulp_add = (G & (R | S)) | (LB & G & (!(R|S))) 

11:     IP =  IP +  ulp_add 

12: IP = SF  ? - IP : IP 
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13: Combine ls with N-2 bits of rounded REM to perform Output while considering exceptions 
(infinity and zero): 

14: out = inf ? {inf, {N-1 {1’b0}}} : (zero ? {N {1’b0}} : { SF, IP}) 

 

3.2.3 Algorithm 9: sticky_bit_adjustor 
 

Given parameters: N: Posit width, es: Posit exponent size, Bs: log2 (N) (Posit regime value storage 
size), width of the pad (Lpad), width of the input A (LA) 

Inputs: A, B 

Output: C 

sticky bit adjustor  

begin 

sticky_bit = 1 

t = {A, Lpad{1′b0}} 

t = t >> B 

if t[Lpad −1:0]==0 

sticky_bit = 0 

sticky_bit = sticky_bit|t[Lpad] 

C = {t[LA + Lpad − 1 : Lpad + 1], sticky_bit} 

end 

 

3.3 Posit multiplier 
 

The Posit multiplier is very similar to the Posit adder in terms of the algorithm. They both adopt 3 
processing stages, which are data extraction, core arithmetic, data composition and rounding. The 
algorithm for the Posit multiplier computational flow is shown in Algorithm 9. 

 

3.3.1 Algorithm 10 Proposed Posit Multiplier Computational Flow 
 

Given parameters: N: Posit width, es: Posit exponent size, Bs: log2 (N) (Posit regime value storage 
size) 

Inputs: in1, in2 

Output: out 

1: Posit Data Extraction: Algorithm 1 

2: Data from in1: xin1, s1, rc1, regime1, exp1, mant1, inf1, zero1 
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3: Data from in2: xin2, s2, rc2, regime2, exp2, mant2, inf2, zero2 

4: Check for zero and infinity: zero = zero1 | zero2, inf = inf1 | inf2 

5: Posit Multiplier Core Arithmetic: 

6: Sign determination: 

7: mult_s = s1 xor s2 

8: Mantissa Multiplication Processing: 

9: mult_m =  mant1 * mant2                                                           //Mantissa multiplication 

10: mult_m_ovf = mult_m[MSB]                                                   //Check mantissa overflow 

11: mult_mN = mult_m_ovf ? mult_m : mult_m << 1                   //1-bit mantissa shifting for overflow 

12: Effective regime computation: 

13: regime1 = rc1 ? regime1 : -regime1                                          //Effective regime1 value 

14: regime2 = rc2 ? regime2 : -regime2                                          //Effective regime2 value 

15: Final exponent (e_o) and regime (r_o) processing: 

16: Using full-adder to calculate total exponent value: 

17:  mult_e[es+Bs+1:0] = {regime1, exp1} + {regime2, exp2} + mult_m_ovf 

18: mult_eN[es+Bs:0] = mult_e[es+Bs+1] ? - mult_e: mult_e      // Absolute value of total exponent  

18: e_o[es-1:0] = mult_e[es-1:0]                                                    // Exponent output 

20: r_o[Bs:0] = !( mult_e[es+Bs+1]) | (|mult_eN[es-1:0]) ? mult_eN[es+Bs:es] + 1'b1 : 
mult_eN[es+Bs:es]                                                                         // Absolute regime value 

21: Posit Construction, Rounding and Final Processing: 

22: Using the same strategy as Algorithm 6: regime, termination bit, exponent, mantissa, GRS 

23: Posit Data Composition: 

24: Regime bits, exponent bits and mantissa bits packing: 

25: REM = {{N{!mult_e[MSB]}}, mult_e[MSB],e_o, mult_mN[MSB N-es-1 bits], mult_mN[Next 2 
bits], 3’b0} 

26: REM = REM >> r_o 

27: Rounding: round to nearest even  

28: If (r_o < N-es-2) 

29: ulp_add = (G & (R | S)) | (L & G & (!(R|S))) 

30: REM = REM + {(N-1) {1’b0}, ulp_add} 

31: REM_N = ls  ? -REM : REM 

32: Final Output: 
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33: Combine ls with N-2 bits of rounded REM to perform Output while considering exceptions 
(infinity and zero): 

34: out = zero ? {N{1'b0}} : (inf ? {inf,{N-1{1'b0}}} : {mult_s, REM_N[N-1:1]}) 

 

The Posit multiplication data extraction stage is mostly the same as in Algorithm 1. The extracted datas 
are including sign bits (s1, s2), 2’s complemented form inputs (xin1, xin2), regime check bits (rc1, rc2), 
absolute regime values (regime1, regime2), exponent bits (exp1, exp2), mantissa bits (mant1, mant2), 
the flags of zero and infinity (zero1, zero2, inf1, inf2) (line 2 - 3). What is slightly different from 
algorithm 1 is the zero flag. Because in the multiplication process, only one operand equal to zero could 
cause the result to be zero, therefore, the zero flag here should be: ‘zero = zero1 | zero2’ (line 4).  

 

The extracted data are then processed by the core arithmetic unit. The final sign bit is computed by 
using a 1-bit XOR gate among s1 and s2 (line 7). The mantissa multiplication processing use a multiplier 
to calculate ‘mant1 * mant2’ and stored in the result register ‘mult_m’ (line 9). The result is then 
checked for overflow by detecting the MSB bit of ‘mult_m’ (line 10). If multiplication result is not 
overflowed, the result mantissa is left-shifted by 1-bit for later normalization (line 11). The final regime 
and exponent computation start with computing the absolute regime value using the regime check bit 
(line 13 - 14). Combining with the exponent bits (exp1, exp2), these absolute regime values are then 
added with ‘mult_m_ovf’ to provide the final output effective exponent ‘mult_e’ for each input (line 
17). Using the same strategy in Algorithm 4, the absolute total exponent value and ‘mult_eN’, final 
regime value ‘r_o’ and final exponent value ‘e_o’ is computed in line 18 – 20. After the core arithmetic 
unit is finished, the Posit composition and rounding unit are presented just like in Algorithm 6. 
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4 Result and Analysis 
 

In this chapter, all the test results are included, which contain Modelsim simulation for exceptional cases, 
random number test and Quartus synthesis. More importantly, all the test results are analyzed and 
compared. The accuracy test of an 8-bit Posit adder result is got by using well-designed testbench and 
the Modelsim simulation. The comparison of area used between Posit and IEEE-754 floating-point is 
given by Quartus total ALMs used. 

 

4.1 Accuracy test and comparison 
 

In this section, the accuracy and the comparison test between two number formats are provided. Using 
examples of exceptional case and random normal case of the Posit number format could test whether 
the calculation is correct. Also, the accuracy comparison between two number formats is by both 
computing the largest number 8-bit Posit can represent, then analyzing the result. 

 

The result of Posit adder (exceptional cases) is shown in the below figure, including the Posit size, 
exponent width, inputs, intermediate variables and outputs. First, testing the exceptional cases: zero and 
infinity. As it is shown below, these three figures show the result of zero condition, also some of the 
numbers plus zero. Simply from the results, it implies the calculation is correct, which means any 
number plus zero is equal to itself. However, the regime value seems incorrect in this exceptional case, 
in principle, the regime value should be -7, because it does not have a termination bit. Moreover, the 
regime bits are not set to ‘signed’. This is fixed at the assumption Posit adder by adding two variables 
‘Rmax’ and ‘Rmin’ concerning the exceptional cases and setting regime to ‘signed’. The following 
figures show the result for the Posit adder with the exceptional case: adding zero. 
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Figure 4.1.1 Posit adder exceptional case: zero add zero 

The following figures show the results for the assumption Posit adder with the exception case: adding 
zero. 

 

Figure 4.1.2 Posit assumption adder exceptional case: zero add zero (part1) 
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Figure 4.1.3 Posit assumption adder exceptional case: zero add zero (part2) 

As figure 4.1.2 and figure 4.1.3 show above, the regime is set to its smallest number Rmin = -7, the 
extracted exponent bits are zero and mantissa bits are appended with the hidden one. Moreover, the 
regime part and the exponent part are combined together to perform the effective exponent ‘Eeff’, 
bigger and smaller mantissa are chosen and assigned to ‘MB’ and ‘MS’ respectively. And after the 
normalization step, the ‘E_normal’ and ‘M_normal’ is performed for the final rounding purpose. 

 

The following figures show the results for the Posit adder with the exception case: adding infinity. 

 

Figure 4.1.4 Posit adder exceptional case: adding infinity 

 

As the above figure 4.1.4 shows, when one operand is equal to infinity, the adding result is infinity. 
Even though the result in the figure is correct, however, it still has the same problem as the zero case 
above. The regime value is not correct according to the principle. The assumption Posit adder fix this 
problem either, the simulation waveforms are shown below: 
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Figure 4.1.5 Posit assumption adder exceptional case: adding infinity (part1) 

 

Figure 4.1.6 Posit assumption adder exceptional case: adding infinity (part2) 

 

For the assumption Posit adder, although the result of this exceptional case is correct, some of the other 
extracted components are not correct. For example, the in the bigger highlight square, it is obviously 
the wrong answer. The reason why this problem appears is the incorrectness of rounding technique, 
which might be the limitation of this assumption. 

 

Then, the normal case is tested, the waveform is shown below, 10011000 * 00101110 = 10011000, 
which is -16777216 + 0.001953125 = -16777216. Using the rounding technique, this example is correct. 
The simulation waveform is shown below. 
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Figure 4.1.7 Posit adder random test 

To compare the accuracy between two number formats, use the biggest number the 8-bit Posit with 4-
bit exponent bits can represent added to itself, which is 01111111 + 01111111. The result of this 
addition is equal to 158,456,325,028,528,675,187,087,900,672 in decimal, which can be represent as 
0_11100000_00000000000000000000000 in the form of single-precision floating point number. 
However, this result cannot be presented by the 8-bit Posit, because it is beyond its dynamic range. The 
simulation result is shown below. 

 

 

Figure 4.1.8 Posit adder accuracy test 

In this simulation waveform above, all the numbers added ‘01111111’ is rounded to ‘01111111’, which 
means the accuracy is not enough to represent the adding result. In the below figure, in comparison, 
using the same operands the Posit represent in the above figure 01111111 + 01111111, in the floating-
point format, this could be transferred to 01101111100000000000000000000000 + 
01101111100000000000000000000000, and the result is correctly shown as 
01110000000000000000000000000000 
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Figure 4.1.9 Floating-point adder accuracy test 

This comparison shows the accuracy of 8-bit Posit is lesser than IEEE-754 floating-point format in 
terms of huge numbers. 

 

4.2 Cost comparison  
 

The cost testing using the synthesis tool Quartus, which will show the logic utilization (in ALMs) of 
each design.  

 

The cost comparison between two number formats and two addition algorithms are shown below. For 
the single-precision floating-point number, the logic utilization (in ALMs) for an adder is 574, which 
is shown in the below figure. 

 

Figure 4.2.1 Floating-point adder cost test 

 

For the Posit, the logic utilization (in ALMs) for an adder is 350, which is shown in the below figure. 
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Figure 4.2.2 Posit adder cost test 

 

The result of two tests above clearly shows that Posit adder saves approximately 40% of the logic unit 
in terms of hardware, which suggests Posit can use lesser resources than the floats to finish the add 
operation. 

 

The cost comparison between two number formats in terms of multiplication is shown below. For the 
single-precision floating-point number, the logic utilization (in ALMs) for a multiplier is 70, which is 
shown in the below figure. 
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Figure 4.2.3 Floating-point multiplier cost test 

 

For the Posit the logic utilization (in ALMs) for a multiplier is 206, which is shown in the below figure. 

 

Figure 4.2.4 Posit multiplier cost test 
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The result of these two tests shows that the Posit multiplier uses more ALMs than the IEEE-754 
floating-point number multiplier, which disobeyed the assumption at first about Posit could save more 
resources compared with the floating-point. At this circumstance, these two designs should be further 
analyzed by the performance test below. Combining these two test results together could make the test 
conclusion more precise. 

  

4.3 Performance test 
 

The performance test uses the simulation tool to analyze how many clock cycles the design needs in 
order to finish the calculation. With lesser clock cycle means higher speed or performance. 

 

In this small section, using a simple example of multiplication could test the performance, through 
analyzing how many clock cycle the design is used. In terms of performance, using the multiplication 
of both formats as an example, -512 * 0.046875 = -24. The simulation form shows the multiplication 
result using floating-point multiplier. 

 

Figure 4.3.1 Floating-point multiplier performance test 

 

As shows in the above figure, the calculation takes three clock cycles to provide the multiplication 
result. Combining with the test result in the above section, which uses lesser ALMs, suggests using 
performance trade for cost. With lesser performance could decrease the cost. 
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Figure 4.3.2 Posit multiplier performance test 

 

The figure above shows that the calculation in Posit finished in one clock cycle, because it is 
composed of purely combinational logic, which makes the calculation quicker than the floating-point 
number format mentioned before. 
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5 Conclusion  
 

Unum has been through a series of developments. The latest version of Unum is named Posit, which 
can be the counterpart of IEEE-754 floating-point number. This new number format provides many 
potential advantages over floating-point number. The project aims to design a Posit adder and Posit 
multiplier and compare the accuracy, power consumption, performance and area used with the floating-
point number adder and multiplier. 

 

This dissertation uses some ideas of recent published algorithms to produce a parameterized Posit adder 
and multiplier. Also, providing an assume adder try to make some improvements in terms of the 
hardware use. The result and analysis part of this dissertation shows three findings. First, the 8-bit Posit 
has lesser accuracy and dynamic range compared with the IEEE-754 single-precision floating-point 
number. Using the example of adding the largest number of the 8-bit Posit can represent added to itself, 
the rounding technique of the Posit will make sure the result is not ‘NaN’ like floating-point numbers 
when there is an overflow, but the result is not correct. However, these two huge numbers could be 
calculated correctly using the single-precision floating-point adder, which means the single-precision 
floating-point number has greater accuracy and dynamic range compared with 8-bit Posit (es=4). 
Second, the Posit format consumes lesser area and energy than floats, using the information that Quartus 
provide to decide the cost. Logic utilization is a reasonable parameter which suggests the cost of a 
design. Comparing the number Quartus provides could determine which number format has the lower 
cost. In this case, the 8-bit Posit has lesser cost than the single-precision floating-point number. Third, 
Posit provides higher performance than the floats. In terms of performance comparison, the first thing 
comes to mind is the speed of the calculation. Using the example of multiplication simulation waveform 
provided by Modelsim, which holds the Posit could computing the result immediately. However, the 
floating-point multiplier used in this design takes three clock cycles to provide the result of the result, 
meaning that the Posit multiplier’s performance is better than the floating-point number multiplier. 

 

The limitation of this paper is that in the test and compare stage, using 8-bit Posit to compare with 32-
bit floating point is not strong enough to suggest Posit is greater than the floats. For example, although 
the accuracy and dynamic range of the Posit are lesser than the 32-bit floating-point, when increasing 
the size of the Posit, this problem can be fixed, and that brings new questions in terms of performance 
and cost. 

 

To put it in a nutshell, this would be a fruitful area for further work. For example, when Posit provides 
the result that 32-bit floating-point number cannot represent? Is Posit using lesser energy and providing 
higher performance? Also, with the same bit width which number format calculator has the better 
performance or using lesser energy? 
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7 Appendix  
 

7.1 Gantt chart 
 

 

Figure 7.1.1 Gantt chart 

There are some uncertainties of the project, therefore the first draft of the plan needs to be changed 
during the process. Blue stands for the original plan, red representing change the plan to the grey space. 

 

7.2 Code 
 

The code of the project is in an archive file, including: 

• Posit adder and testbench 
• Posit adder (assumption) and testbench 
• Posit multiplier and testbench 
• 32-bit floating-point adder and testbench 
• 32-bit floating-point multiplier and testbench 

 


	List of Figures
	1 Introduction
	2 Background
	2.1 Type 1
	2.2 Type 2
	2.3 Type 3 Posit
	2.4 Related work

	3 Design
	3.1 Posit adder
	3.1.1 Stage 1: Posit data extraction
	3.1.1.1 Algorithm 1 Proposed Posit Data Extraction Flow
	3.1.1.2 Algorithm 2 Leading One Detector (LOD)
	3.1.1.3 Algorithm 3 Parameterized Dynamic Left Shifter (DLS)

	3.1.2 Stage 2: Posit core adder arithmetic
	3.1.2.1 Algorithm 4 Posit Adder Core Arithmetic Flow
	3.1.2.2 Algorithm 5 Parameterized Generation of Dynamic Right Shifter (DRS)

	3.1.3 Stage 3: Posit data composition and rounding
	3.1.3.1 Algorithm 6 Posit composition and rounding


	3.2 Assumption
	3.2.1 Algorithm 7: Core arithmetic (combine regime and exponent part together)
	3.2.2 Algorithm 8 Posit composition and rounding
	3.2.3 Algorithm 9: sticky_bit_adjustor

	3.3 Posit multiplier
	3.3.1 Algorithm 10 Proposed Posit Multiplier Computational Flow


	4 Result and Analysis
	4.1 Accuracy test and comparison
	4.2 Cost comparison
	4.3 Performance test

	5 Conclusion
	6 Reference
	7 Appendix
	7.1 Gantt chart
	7.2 Code


