diff --git a/Utilities/Generic/Julia/.gitkeep b/Utilities/Generic/Julia/.gitkeep
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/Utilities/Generic/Julia/InNovaUtils.jl b/Utilities/Generic/Julia/InNovaUtils.jl
deleted file mode 100644
index a5104ae6531d70fd96e9cd9045c370c92013ceb2..0000000000000000000000000000000000000000
--- a/Utilities/Generic/Julia/InNovaUtils.jl
+++ /dev/null
@@ -1,224 +0,0 @@
-"""
-This is the module with the Julia implementations of the generic utilities of the IN-NOVA project.
---------------------------------------------------
-Author: Achilles Kappis
-e-mail: axilleaz@protonmail.com
-
-Date: 19/08/2024 (DD/MM/YYYY)
-
-Copyright: MIT
---------------------------------------------------
-
-# Functions included
-- stepFunc
-- rotMat3d
-- pickValProb
-- twoPtDist
---------------------------------------------------
-"""
-module Utils
-
-# Add packages that are needed
-using LinearAlgebra # Native linear algebra
-
-
-"""
-Numerical (simple) Heaviside function
---------------------------------------------------
-Author: Achilles Kappis
-e-mail: axilleaz@protonmail.com
-
-Date: 19/08/2024 (DD/MM/YYYY)
-
-Copyright: MIT
---------------------------------------------------
-Functionality: A Heaviside numerical (step) function
---------------------------------------------------
-# Input
-
-x::Real: The argument of the function.
-
-zeroHalf::Bool (Optional): The way x = 0 is treated. If this argument is true, the returned value is 0.5 when x = 0, otherwise it is 1. [Default: false].
-
---------------------------------------------------
-# Output
-
-result::Float64/Bool: The returned value can either be a boolean or a Float64 with value 0.5 if the "zeroHalf" argument is set "x" is zero.
-
---------------------------------------------------
-# Notes
-
---------------------------------------------------
-"""
-function stepFunc(x::Real; zeroHalf::Bool = false)
-    if zeroHalf && x == 0
-        result = 0.5
-    else
-        result = x >= 0
-    end
-    
-    return result
-end
-
-
-
-
-"""
-Calculate a 3D rotation matrix
---------------------------------------------------
-Author: Achilles Kappis
-e-mail: axilleaz@protonmail.com
-
-Date: 10/08/2024 (DD/MM/YYYY)
-
-Copyright: MIT
---------------------------------------------------
-Functionality: Calculate a 3D rotation matrix.
---------------------------------------------------
-# Input
-
-xAng::Real: Rotation angle around the x-axis.
-
-yAng::Real (Optional): Rotation angle around the y-axis. [Default: 0].
-
-zAng::Real (Optional): Rotation angle around the z-axis. [Default: 0].
-
-deg::Bool (Optional) [keyword]: This value declares if the provided angles are in degrees or not. If not, radians are assumed. [Default: false].
---------------------------------------------------
-# Output
-
-rotMat::Matrix{Real}: A 3x3 matrix which applies the rotation.
-
-xRotMat::Matrix{Real}: A 3x3 matrix which applies the rotation around the x-axis.
-
-yRotMat::Matrix{Real}: A 3x3 matrix which applies the rotation around the y-axis.
-
-zRotMat::Matrix: A 3x3 matrix which applies the rotation around the z-axis.
---------------------------------------------------
-# Notes
-
---------------------------------------------------
-"""
-function rotMat3d(xAng::Real, yAng::Real = 0, zAng::Real = 0; deg::Bool = false)
-    # Check for units of the angles
-    if deg
-        xAng = deg2rad(xAng)
-        yAng = deg2rad(yAng)
-        zAng = deg2rad(zAng)
-    end
-    
-    # Generate the respective matrices
-    xRotMat = [1 0 0; 0 cos(xAng) -sin(xAng); 0 sin(xAng) cos(xAng)]
-    yRotMat = [cos(yAng) 0 sin(yAng); 0 1 0; -sin(yAng) 0 cos(yAng)]
-    zRotMat = [cos(zAng) -sin(zAng) 0; sin(zAng) cos(zAng) 0; 0 0 1]
-    
-    # Calculate the "total" matrix
-    rotMat = xRotMat * yRotMat * zRotMat
-    
-    # Return
-    return rotMat, xRotMat, yRotMat, zRotMat
-end
-
-
-
-
-
-"""
-Pick a value based on its probability
---------------------------------------------------
-Author: Achilles Kappis
-e-mail: axilleaz@protonmail.com
-
-Date: 19/08/2024 (DD/MM/YYYY)
-
-Copyright: MIT
---------------------------------------------------
-Functionality: Pick numbers from an array based on their probabilities
---------------------------------------------------
-# Input
-
-vals::Vector{Number}: All values from which to pick some.
-
-probs::Vector{Real}: These are the probabilities of each element being picked. It must has as many elements as the "vals" argument. Its elements must lie in the range [0, 1] and their sum must equal 1 (with a tolerance of about 1000 epsilon of Float64).
-
-nVals::Real (Optional): The number of values to return. [Default: 1]
-
---------------------------------------------------
-# Output
-
-result::Vector{Number}: The picked value(s).
-
---------------------------------------------------
-# Notes
-
---------------------------------------------------
-"""
-function pickValProb(vals::Vector{<:Real}, probs::Vector{<:Real}, nVals::Real = 1)
-    # Validate input arguments
-    if length(vals) != length(probs)
-        error("pickValProb(): The length of the values and probabilities vectors must be the same.")
-    elseif !isapprox(sum(convert.(Float64, probs)), 1, atol = 1e3 * eps(Float64))
-        error("pickValProb(): The probabilities must sum to unity with a tolerance of about 1000 times epsilon of Float64.")
-    end
-
-
-    # Calculate cumulative probability
-    P = cumsum(probs/sum(probs));
-
-    # Generate random values
-    randIdx = rand(nVals, 1) * ones(1, length(vals));
-
-    # Get the correct elements
-    randIdx = [sum(P .< randIdx[i, :]) + 1 for i = 1:nVals]
-    
-    # Get and return the corresponding values
-    result = vals[randIdx]
-    return result
-end
-
-
-
-
-
-
-"""
-Calculate the distance between two points in space
---------------------------------------------------
-Author: Achilles Kappis
-e-mail: axilleaz@protonmail.com
-
-Date: 19/08/2024 (DD/MM/YYYY)
-
-Copyright: MIT
---------------------------------------------------
-Functionality: Calculate distance between positions in 3D space.
---------------------------------------------------
-Input arguments
-
-sPts::Matrix{Real}: The 3D position vectors of the starting points. The rows represent points and the columns their Cartesian coordinates [x,y,z] resulting in an Nx3 matrix with N being the number of points.
-
-ePts::Matrix{Real}: The 3D position vectors of the end points. The rows represent points and the columns their Cartesian coordinates [x,y,z] resulting in an Mx3 matrix with M being the number of points.
-
---------------------------------------------------
-Output arguments
-
-dist::Matrix{Real}: The distance between each start and end point. This is an NxM matrix where each row corresponds to the distance between the nth start point and each of the M end points.
-
---------------------------------------------------
-Notes
-
---------------------------------------------------
-"""
-function twoPtDist(sPts::Matrix{<:Real}, ePts::Matrix{<:Real})
-    # Validate arguments
-    if size(sPts, 2) != 3
-        error("twoPtDist(): Wrong dimensions of the starting point coordinates. This must be an Nx3 matrix where N is the number of points and the columns correspond to the Cartesian coordinates.")
-    elseif size(ePts, 2) != 3
-        error("twoPtDist(): Wrong dimensions of the ending point coordinates. This must be an Nx3 matrix where N is the number of points and the columns correspond to the Cartesian coordinates.")
-    end
-    
-    # Calculate distances
-    dist = [norm(sPts[sIdx, :] - ePts[eIdx, :]) for sIdx = 1:size(sPts, 1), eIdx = 1:size(ePts, 1)]
-    return dist
-end
-end # Module end