
nanoSoC Configuration Manual

SoC Labs

December 16, 2024

http://www.soclabs.org

Additional information.

You must run ’source set env.sh’ from the accelerator-project directory
every time you open a new terminal!

Preamble, copyrights licenses etc.

1

Contents

1 Introduction 3
1.1 Summary . 3
1.2 Repository Structure . 3
1.3 IP . 4

1.3.1 Arm(R) . 4
1.3.2 SoCLabs . 4
1.3.3 Synopsys . 4

1.4 Environment Variables . 5

2 Adding your IP 6
2.1 Integrating your IP . 6
2.2 Configuring nanoSoC . 7

2.2.1 DMA config . 7
2.3 Mixed signal IP . 7
2.4 Synopsys IP . 8

3 Simulating nanoSoC 9
3.1 Supported Simulators . 9
3.2 Running Simulations . 9
3.3 Adding Tests . 9

3.3.1 Creating your C code . 10
3.3.2 Preloading expansion memories 11

4 FPGA Flow 12
4.1 Summary . 12
4.2 Building the FPGA image . 12
4.3 Running test code on the FPGA 12

5 ASIC Flow 13

2

Chapter 1

Introduction

1.1 Summary

1.2 Repository Structure

The nanosoc-tech repository should be included as part of the accelerator-
project repository. To use nanosoc please make sure you have cloned the
accelerator-project repository as this contains IP that nanosoc needs in order
to run correctly.

You can clone the accelerator-project using the command:

g i t c l one −−r ecur se−submodules \
https : // g i t . soton . ac . uk/ s o c l a b s / a c c e l e r a t o r−p r o j e c t . g i t

Below is the repository structure showing all the dependancies from the top
level accelerator-project.

• accelerator-project (top level)

– accelerator-wrapper-tech

– asic-lib-tech

– fpga-lib-tech

– generic-lib-tech

– nanosoc-tech

∗ sl-ams-tech

∗ slcorem0-tech

∗ sldma230-tech

∗ sldm350-tech

∗ socdebug-tech

∗ synopsys-28nm-slm-integration

– rtl-primitives-tech

– soctools-flow

3

https://git.soton.ac.uk/soclabs/accelerator_wrapper_tech
https://git.soton.ac.uk/soclabs/asic_library_tech
https://git.soton.ac.uk/soclabs/fpga_lib_tech
https://git.soton.ac.uk/soclabs/generic_lib_tech
https://git.soton.ac.uk/soclabs/nanosoc_tech
https://git.soton.ac.uk/soclabs/sl_ams_tech
https://git.soton.ac.uk/soclabs/slcorem0_tech
https://git.soton.ac.uk/soclabs/sldma230_tech
https://git.soton.ac.uk/soclabs/sldma350_tech
https://git.soton.ac.uk/soclabs/socdebug_tech
https://git.soton.ac.uk/soclabs/synopsys_28nm_slm_integration
https://git.soton.ac.uk/soclabs/rtl_primitives_tech
https://git.soton.ac.uk/soclabs/soctools_flow

1.3 IP

The nanoSoC reusable SoC platform relies on IP’s from certain vendors. In
order to build the system you will need the following IP.

1.3.1 Arm(R)

Arm IP should be downloaded from Arm and placed into the recommended IP
directories.

• Cortex-M0

• Corstone-101

• (Optional) PL230

• (Optional) DMA-350

1.3.2 SoCLabs

SoCLabs IP is all open domain and the repositories for these are automatically
cloned into the nanosoc tech directories when you run a git clone.

• ASCII Debug Protocol Controller (SoCDebugTech Git)

• FT1248 Controller (SoCDebugTech Git)

• EXTIO Controller (EXTIO8x4-axis Git)

• (Optional) PLL (for TSMC 65nm)

• (Optional) ADC (for TSMC 65nm)

• (Optional) DAC (for TSMC 65nm)

1.3.3 Synopsys

Synopsys IP is only used for chips that are taped out on a TSMC 28nm HPC+
node.

• (Optional) 3 GHz PLL

• (Optional) Silicon Lifetime Management

4

https://git.soton.ac.uk/soclabs/socdebug_tech
https://git.soton.ac.uk/soclabs/socdebug_tech
https://git.soton.ac.uk/soclabs/extio8x4-axis

Additional information.

You must run ’source set env.sh’ from the accelerator-project directory
every time you open a new terminal!

1.4 Environment Variables

When you run ’source set env.sh’ it sets up environment variables that are used
by the tools (simulators, fpga, synthesis etc.). The main ones that are important
for developing your IP are:

$SOCLABS PROJECT DIR - points to the accelerator-project directory
$ACCELERATOR DIR - points to your accelerator directory

$ACCELERATOR DIR can be set up in the accelerator-project/env/dependency env.sh
file using:

export ACCELERATOR\ DIR=”$SOCLABS\ PROJECT\ DIR/∗∗Your−IP−d i r e c t o r y ∗∗”

5

Chapter 2

Adding your IP

In order to add the files for your IP there are 2 options. Either as a local version
of your project or as a remote version.

1. Local version: you can just place your IP files into a new directory or in
the system/src directory

2. Remote version: you can fork the accelerator-project git to your own git
account, this allows you to add your IP either in the system/src directory
or as a git submodule.

2.1 Integrating your IP

There are 2 steps to integrating your IP in nanosoc

1. Include your IP in the file list

2. Instantiate your IP in the system/src/accelerator subsystem.v file

For step 1. you can add paths to your files in the flist/project/accelera-
tor.flist file. We recommend that you use the environment variables as men-
tioned in section 1.4. In order for fpga and asic flows to work properly you
should split verilog and system verilog files into seperate .flist files. We suggest
adding an accelerator sv.flist to the accelerator-project/flist/project directory
and adding the following to accelerator.flist

-f $SOCLABS PROJECT DIR/flist/project/accelerator sv.flist

For step 2. you need to edit the accelerator subsystem.v file (found in
accelerator-project/system/src/). The ports of this file are an AHB-lite port,
2x EXP DRQ (data request from accelerator to DMA), 2x EXP DLAST (last
signal from DMA to accelerator), 4x EXP IRQ (Interrupts from accelerator to
CPU), and some AXI stream interfaces (these are only there if the DMA350 is
configured with stream interfaces)

6

Additional information.

Add the option ACCELERATOR=yes to to include your accelerator
when you run make commands!

2.2 Configuring nanoSoC

The nanoSoC reference design allows for some configuration flexibility. Most of
these configuration options are in the accelerator-project/nanosoc.config file. In
order to change this configuration, put a ’yes’ next to the relevant options to
include these options, otherwise leave it blank.

2.2.1 DMA config

The DMA options are fundamentally:

• 1x PL230

• 2x PL230

• 1x DMA350

More details on these DMA IP’s are available from the Arm website.
The DMA-350 also has some extra configuration options

• DMA350 SMALL - Small configuration of DMA, 2 channels, no stream
interface, no extended features

• DMA350 DEFAULT - Default configuration of DMA, 2 channels, stream
interface, extended features

• DMA350 BIG - Big configuration of DMA, 3 channels, stream interface,
extended features

If you use either the SMALL or BIG options for this, you must reconfigure
the DMA-350. Follow the below steps:

1. cd to accelerator-project/nanosoc tech/nanosoc/sldma350 tech

2. run ’make clean ip’

3. run ’make config dma ahb small’ or ’make config dma ahb big’

2.3 Mixed signal IP

! Still under development !
You can also include mixed signal IP in this design. In order to do this you
must also have the relevant IP for this

7

2.4 Synopsys IP

! Still under development !
If you are taping out with a TSMC 28nm node, and also have access to the
Synopsys IP mentioned in section 1.3.3

8

Chapter 3

Simulating nanoSoC

3.1 Supported Simulators

• Mentor Graphics: QuestaSim

• Synopsys: VCS

• Cadence: Xcelium

• Icarus Verilog

3.2 Running Simulations

You can run make commands from the nanosoc tech directory to run the sim-
ulation.

make run SIM=x TESTNAME=y ACCELERATOR=yes

Where x=mti, vcs, xm, or iverilog for QuestaSim, VCS, Xcelium, or Icarus
Verilog respectively. And y is the name of the test, the default test is hello (a
hello world example).

Or to run the simulation in the GUI you can use:

make sim SIM=x TESTNAME=y ACCELERATOR=yes

Whilst the simulation is running, you should see the output from the UART
std out channel in the console/terminal.

3.3 Adding Tests

To add your own testcodes to run on nanosoc in the simulation environment,
you can add these to the accelerator-project/system/testcodes directory.

1. Create a new directory for your testcode

9

2. Create a .c source file with the same name as the directory

3. Copy the makefile from one of the example testcodes to your test code
directory

4. Edit the TESTNAME variable in the new makefile to the name of your
test

5. If you want to run any ADP code before your test, add an adp.cmp file
(example in the adp v4 cmd tests)

6. If you want to preload expansion memories, add an expram l.hex and/or
expram h.hex

7. Add the name of your test to the accelerator-project/system/software list.txt
file

3.3.1 Creating your C code

The below code is a basic layout for your C code. It initialises the standard out
channel over UART. You can then use printf statements that will output over
UART, which will be printed on the console output.

The UartEndSimulation() function sends an escape character over UART,
which the testbench will use to end the simulation.

Listing 3.1: Basic Template

#inc lude ”CMSDK CM0. h”
#inc lude ” uar t s tdout . h”
#inc lude <s t d i o . h>

int main (void) {
// I n i t i a l i s e the UART standard out channel
UartStdOutInit () ;

p r i n t f (”Foo\n”) ; // Print over UART s tdou t

/∗ I n s e r t your code here ∗/

// End s imu la t i on by sending escape char
UartEndSimulation () ;
return 0 ;

}

For more detailed C code templates, please see the firmware in the accelerator-
project/nanosoc tech/software/common/validation. These are also the test-
codes used for validating nanoSoC.

10

3.3.2 Preloading expansion memories

You may want to load test vectors directly into the expansion memories to run
your tests. Doing this can save space in the instruction memory space as you
then don’t have to load data in as arrays or vectors in your testcode. Instead
you can use the simulator to automatically load these memories at the start of
simulation.

To do this, simply add an ”expram l.hex” file and/or ”expram h.hex” file to
your testcode directory. These files will then be loaded to the EXPRAM L or
EXPRAM H region repectively. These can then be addressed in your testcode
from 0x80000000 for EXPRAM L and 0x90000000 for EXPRAM H.

The expram l.hex files must be ASCII text files with a single byte per line.
They will look very similar to the .hex files that are used to preload the instruc-
tion memory.

11

Chapter 4

FPGA Flow

4.1 Summary

4.2 Building the FPGA image

To build the FPGA image, run the below command from the nanosoc tech
directory:

make b u i l d f p g a ACCELERATOR=yes FPGA=x

Where x is either zcu104, mps3, kr260, kv260, z2. If you would like another
FPGA target to be included please contact the soclabs team or raise an issue
on the accelerator-project git.

4.3 Running test code on the FPGA

12

Chapter 5

ASIC Flow

13

	Introduction
	Summary
	Repository Structure
	IP
	Arm(R)
	SoCLabs
	Synopsys

	Environment Variables

	Adding your IP
	Integrating your IP
	Configuring nanoSoC
	DMA config

	Mixed signal IP
	Synopsys IP

	Simulating nanoSoC
	Supported Simulators
	Running Simulations
	Adding Tests
	Creating your C code
	Preloading expansion memories

	FPGA Flow
	Summary
	Building the FPGA image
	Running test code on the FPGA

	ASIC Flow

