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1 Project Description

ToT devices present many exciting applications for both industrial and consumer use. However, in-
creased dependence on these devices opens up new consequences and attack vectors that an adversary
can use to attack a target. This is of particular importance in the case of IoT devices connected to
smart grid infrastructure as cyberattacks could be used to disrupt critical national infrastructure.

The scenario for my project is a IoT based smart grid with a focus on the IoT devices in the system
and their interactions with the cloud layer.

= loT to Cloud Reference Diagram

=] Cloud System

Figure 1: Reference diagram of my smart grid scenario



1.1

Project Aims and Objectives

This project aims to produce, model and verify a collection of policies and protocols that are suitable
for mitigating the threats that a IoT enabled smart grid may face. I wish to focus on the following
goals within this project:

1.2

Investigate and conduct a risk assessment on the main vulnerabilities and threats faced by IoT
devices within smart grid environment.

Recommend security policies that can mitigate these threats, justifying these policies by taking
into account secondary factors including the cost to implement and any loss to productivity these
policies might incur.

Implement and verify that these communication protocols mitigate the identified vulnerabilities
using Scyther, a formal method based protocol verification tool.

Clearly explain the impact of each of my policies by comparing the possible attack vectors with
and without each policy using Scyther.

Create a purpose built, portable Scyther virtual machine environment allowing myself and others
to quickly set up and start using Scyther on a new device. Therefore allowing others to verify
and extend upon the results of the project.

Project Scope

The scope of this project will be investigating, modelling and verifying the best policies and practices
for TIoT devices and their communications in my smart grid scenario. The project will focus mainly on
IoT communication protocols and their configuration rather examine flaws in the hardware or firmware
ran by these devices.

2

Glossary of terms

Nonce A randomly generated value that is used only a single time in a cryptographic protocol.
Often used as a timestamp to prevent the reuse of old message credentials.

Adversary A term used to describe a party attempting to disrupt the security of a system.

Hypervisor A piece of software that creates an instance of a virtual machine from a virtual
machine file.

Communication party An intended sender /recipient of a communication.



3 Literature Review

My literature review explores the IoT and smart grid landscape before looking into the cybersecurity
issues that a smart grid implementation may face. Finally, the review discuss the verification of
cryptographic protocols in the context of my scenario

3.1 Internet of Things (IoT) Devices

IoT as a general concept can be described as physical objects also being network identifiable devices
that are able to communicate without the need for human interaction [1]. These devices can be used
in a home or industrial context to automate processes or afford additional functionality. IoT devices
can do this as they are able to leverage information by collecting/receiving it across a network. As an
example of an IoT implementation in a chemical production plant, IoT monitoring devices could be
used to monitor the temperature of a reaction. If the temperature fell outside of the requirement, the
device could communicate with another IoT device that controls the coolant flow through the reaction
and correct it without the need for any human interaction.

These ToT networks can offer benefits for existing processes such as improved efficiency, fewer employees
required to manage it and data which can be used to improve the process. However, it is important
to consider from a cybersecurity perspective that the introduction of networked devices to a process
opens it up to the possibility of cyberattacks.

3.2 Smart Grids

The term smart grid refers to the integration of technology into electrical grid systems allowing them
to dynamically change to meet the current needs of consumers [2]. Whilst the implementation of smart
grids can vary significantly, several elements generally remain constant:

e Smart Meters and Monitors - These IoT devices are used to measure and analyse the energy
usage within a single home. Typically smart meters simply collect energy readings from a room
and send this information to the smart monitor. This monitor relays energy information to a
collection server and receives information on current energy prices. [3]

e Smart Hub - This device allows the homeowner to track their electricity usage as well as view
the current electricity price to help time their electricity usage to get the best price resulting in
a better distribution of power demand across the power grid.

e Cloud Layer - This layer communicates with the Smart Meter to receive electricity usage in-
formation and send electricity pricing information. This information can then be used by the
rest of the smart grid system to adjust the routing and production of electricity based on current
demand.

3.3 IoT Smart Grid, the Threats, Attitudes and Best Practices

A key finding from my research, summarised by Robles [4] is that one of the key differences between
securing a traditional system compared with a national infrastructure system, such as smart grid, is
the reduction in the effectiveness of standard security measures such as patches, password manage-
ment and access control. Stating that this is due to the size and diverse combination of hardware
and software that comprises this class of system. Whilst traditional controls do have their place in
smart grid security Sajid [5] identifies the need for specific security measures that directly mitigate the
threats smart grids face. This point is further explored by Bere [6] which states that large industrial
control systems are often the target of state-funded Advanced Persistent Threat(APT) groups whose
capabilities and resources far outmatch the typical threat actors a system faces. [6] Bere goes onto rec-
ommend that the security protocols and controls implemented should be layered, providing a ’defence
in depth’ security approach which Virvilis [7] states as a key countermeasure against APT groups as
these groups have the ability to execute zero-day exploits. Zero-day exploits offer very little chance



of mitigating an attack against part of a system as the vulnerability is only known to the adversary
at the time of execution [8]. However, a layered system means that in the event of such an attack,
the entire system will not be compromised due to the presence of other security measures and protocols.

Another area of difficulty when it comes to securing these systems is the perspective and attitudes of
governments and other organisations when it comes to securing these systems. Wang [9] states that
many organisations do not see investing in the protection of these systems as economically viable.
Virvilis [7] adds that disruption to productivity and user experience due to the increase in latency or
removal of features that hardened security protocols may necessitate is another factor in the lack of
implemented protocols on these systems. Mcqueen [10] suggests that it is difficult to quantify cyber
risk using traditional risk assessment methods. This may further contribute to the reluctant attitude
towards cybersecurity investment as it is difficult to quantify the reduction in risk to management.

3.4 Verification of Security Policies and Protocols

Creamers [11] states that it is very difficult for humans to analyse and find flaws in cryptographic
protocols, as evidenced by the number of protocols that are found to have security flaws after their
release. An example of this is the Needham-Schroeder key distribution protocol which even after ex-
tensive analysis and verification by hand was found to have a security flaw which allowed an adversary
to pass off an old session key as a new and valid one [12]. Meadows [12] goes on to suggest that formal
methods are a good choice for analysing these cryptographic protocols as they are enclosed enough to
make modelling and verification feasible whilst also having the potential for subtle and counter-intuitive
flaws that an informal analysis may miss.

In order to verify a protocol using automated formal methods, it must first be modelled so that it can
be interpreted by a protocol verification tool. In my research, I have found two tools that are the most
suitable for this purpose; Pro-Verif and Scyther. In their comparative analysis of these two tools Dalal
et al. [13] identifies that whilst the two tools share several similarities, there are several differences that
make Scyther more suitable than Pro-Verif for my scenario and skillset.

e Modelling Language - Scyther uses ’security protocol description language’ (SPDL) described
as ”a mix between java and C” by creator Cas Creamers [11] to model protocols. Whereas Pro-
Verif protocols are represented using horn clauses or pi calculus [13]. The SPDL used by Scyther
is closer to pseudo-code than Pro-Verif making it more suitable for illustrating the implementation
of protocols as well as being more fitting to my skillset.

e Attack Graphs - Scyther automatically generates attack graphs when a flaw is found in verifi-
cation, generating a visual flow diagram of the attack. Pro-Verif does not support this feature.

Based on these factors, the project will use Scyther for the modelling and verification of protocols.



4

Research and Design

When it comes to implementing a best practice cybersecurity strategy, NIST [14] recommends a five
step process for analysing and securing smart grid systems. This process is defined below along with
how the project will implement each of the points outlined.

4.1

1. Defining use cases - The use cases of the system should be defined.

Though the use of a reference diagram, the scope and elements comprising the project’s IoT
system are clearly defined.

2. Risk Assessment - The vulnerabilities, threats and the impact these threats can
cause should be evaluated for the system.

A threat model based on the reference diagram will be used to illustrate where vulnerabilities in
the system are present. The vulnerabilities will be further described in isolation with emphasis
placed on the threats of this vulnerability and the impact of these threats in the context of the
project’s scenario

3. Specification of Security Requirements - The security requirements for the system
should be stated and specified.

Taking into account the threats outlined in the previous step, A list of policies will be produced
outlining the security requirements of the system.

4. Design and Development of a Security Architecture - A security architecture to
protect the smart grid system should be designed and implemented.

Protocols will be designed and then implemented in Scyther that satisfy the policies defined in
the previous step.

5. Assessment of implementation - The architecture should be assessed against the
defined security requirements to test if it is fit for purpose.

The project will use Scyther’s protocol verification tools to test the protocols against the require-
ments defined.

Scyther development environment

One of the key goals of the project was to create a portable environment for Scyther development.
When researching what the most suitable tools to create this would be, particular emphasis was placed
on the following criteria:

Self-contained - Once installed, the virtual machine should contain all the components and
dependencies required to develop using Scyther

Portable - The machine must be simple to install and ideally small enough that it can be hosted
using common software distribution tools such as GitHub.

Configurable - Users should be able to make changes to the environment to suit their individual
preferences and needs. This includes elements such as the flavour of Linux used and the resources
assigned to the machine.

Versionable - Changes made to the machine configuration should be versionable ideally being
compatible with git, the most common version control method. This allows for future adaptations
and iterations upon the machine to be easily tracked as well as making it easy for users to revert
changes made to the machine if issues occur.

Compatible - The machine should be formatted so it does not require the use of proprietary
software to run.

During research, two virtual machine formats stood out as being suitable for the project; the Open
Virtualisation Format (OVF) and Vagrant. Both of these formats are non-proprietary and easily



compatible with common hypervisors like VirtualBox. Either format would also allow for the packing
of all the required software to develop using vagrant.

One of the key advantages Vagrant possess over OVF is the vagrant file. Vagrant environments are
packaged in formats known as boxes, vagrant files allow a user to customise and specialise a box to
suit their needs. As Vagrant files are written in the Ruby programming language, they are versionable
and compatible with git, this makes the process of collaborating with others and extending vagrant
files simple. However, Vagrant virtual boxes are slightly more complex to install as they require the
vagrant software to be installed on the host machine, OVF files can just be imported into the chosen
hypervisor. Despite this, the configurability and git compatibility that vagrant files provide offer great
value in this use case making them the best choice for the project’s Scyther environment.

4.1.1 Requirements and development methodology

Based on the criteria outlined in the section above, a list of requirements for the Scytherbox have been
developed. To prioritize these development requirements, the MoSCoW method has been used:

Must Have Should Have

Scyther v1.13 installation from VagrantFile Linux flavour options
Scyther dependencies installed from VagrantFile | Shared folder between host and Scytherbox
Versionable using git Installation Instructions
Example Protocols within the box

Scytherbox documentation

Could Have ‘Won’t Have Now

Git configuration within the box Windows version of scytherbox

Scyther user guide

Table 1: Table showing the prioritisation of the scytherbox requirements

Despite a lack of clearly defined stakeholders for this part of the project, elements of the AGILE
methodology will be used to plan and manage the development of the Scytherbox. The main reason
for this is that a basic version of the box that can run Scyther is required to complete the modelling
and verification of the suggested protocols making a initial working release a high priority.



To estimate the development time each requirement will take to implement, t-shirt sizing has been
used. The table below shows a description of each requirement and it’s estimated size.

Requirement Title

Description

Estimated Size

Scyther v1.13 installation

The latest version of Scyther should be im-
ported into the box using the VagrantFile

Medium

Scyther dependencies installed

Python 2.7, as well as the GraphViz and wx-
Python libraries, should be installed on the
box using the VagrantFile

Medium

Versionable using git

Changes to the box configuration should be
visible in git so they can be versioned.

Small

Linux flavour options

Allow changing of Linux flavour during box
configuration

Small

Git configuration

Implement functionality allowing git reposito-
ries to be cloned and configured on the box
during configuration

Large

Shared folder

Implement a synced folder on the host ma-
chine and Scytherbox allowing for the easy
transfer of files between the two

Small

Installation instructions

A set of instructions explaining how to install
Scytherbox

Medium

Example protocols

A folder on the host machine attached to the
box allowing sample protocols to be included
in an installation of the box.

Medium

Scytherbox documentation

A documentation of the VagrantFile and shell
scripts used to create the Scytherbox, making
it easier for others to iterate on in the future

Large

Scyther user guide

A guide installed on the box explaining the
basics of Scyther and the scyther protocol de-
scription language (SDPL)

Medium

Windows version

A version of the Scytherbox that uses Win-
dows as the box’s operating system

Extra Large

Table 2: Table describing and estimating the size of each Scytherbox requirement

Small -
Medium - 2 Hours

1 Hour

Large - 4 Hours
Extra Large - 10 Hours
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4.1.2 Development plan

The development of the Scytherbox environment is scheduled to take place over a 3 week period with
1 week allotted for each sprint. The modelling and verification of the project’s policies is scheduled
to take place 1 week into this period hence the core features required to develop using Scyther being
assigned to the first sprit.

Sprint 1 Sprint 2 Sprint 3
Scyther Installation Git configuration within the box Scyther user guide
Scyther dependencies installed Linux flavour options Example Protocols within the box
Versionable using git Scytherbox documentation Installation Instructions
Shared folder

Sprint Hours: 8 Sprint Hours: 9 Sprint Hours: 6

Table 3: Scytherbox sprint plan

11



4.2 Threat Model

The threat model below shows some of the attack vectors and vulnerabilities an adversary could exploit
within my scenario:

=] Threat Model

Figure 2: Threat Model of my smart grid scenario

A detailed breakdown of each threat and how they can be mitigated through the application of security
protocols can be found in the preceding sections.
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4.2.1 Weak/Default Password Fuzzing Attack

OWASP [15] states than the most common vulnerability exploited in IoT devices is the use of weak or
default passwords. These attacks are usually performed by automated scripts commonly referred to as
bots that scan the internet for connected devices and run a list of common passwords. As an example
of this, the Mirai botnet was able to infect and recruit over 500,000 IoT devices using a list of just 60
common passwords.

Common Password Payload MNetwork Traversa

= =] -
= = —
. L.
S

Adversary Smart Hub Router

Figure 3: Adversary using a common password to compromise the network

In this scenario an adversary could exploit an internet connected smart hub with a weak or guessable
password to recruit the device into a botnet or potentially use the compromised device as an attack
vector to mount further attacks on the rest of the network.

4.2.2 Man In The Middle (MITM) Attack

Man in the middle attacks occur when an adversary is able to act as an intermediary or proxy between
communication parties without their knowledge. This allows the adversary to view the contents of the
messages sent between parties as well as silently modify the contents of messages.

Legitimate Request Modified Request
JooE > :
J00F
e Data Model
Smart Monitor Adversary ata Mode

Figure 4: Adversary relaying and modifying smart monitor data

An Adversary could perform a MITM attack by secretly relaying and modifying the electricity usage
information sent to the data model. A large scale attack of this kind effecting many monitor to model
connections could cause false data injection attack on the smart grid system where false data could
cause the system to make an incorrect decision when routing power.
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4.2.3 Passive Eavesdropping

Low power IoT devices commonly use weak or no cryptography in their communications protocols, this
means an adversary could use devices such as a wireless packet sniffer to intercept traffic sent between
devices and read the contents of the communications sent. OWASP [15] lists these insecure protocols
as the 2" most common IoT vulnerability.

Insecure Communication Read

- JoofE
£ 8y Hoof
Trrl
Smart Meter Adversary Smart Monitor

Figure 5: Adversary reading an insecure communication

This attack could occur anywhere in the scenario where devices communicate with each other without
the use of an encrypted communication protocol. For example, the adversary could sniff packets between
the smart meter and monitor to know if a home is occupied based on their current electricity usage or
to gather information on the network for further attacks.

4.2.4 Replay Attack

Replay attacks occur when an adversary is able to identify and collect authentication credentials from a
legitimate communication and use those credentials in a later communication to bypass authentication.
This commonly occurs when communication partners do not make use of a unique identifier for each
communication such as a session key.

Router Cloud Data Server

Sniffs Hashed Authentication

Replays Hash to Target

Adversary
Figure 6: Adversary sniffing and reusing hashed authentication credentials

The adversary could sniff an encrypted communication between router and server used for the transmis-
sion of energy usage data. With this they could use the hashed authenticator code to send messages to
the server posing as that home network without needing to know the actual authenticator code.
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4.2.5 Impersonation Attack

An Impersonation attack occurs when an Adversary is able to pose as the identify of a legitimate
party in a communication protocol allowing them to bypass authorisation or act on the legitimate
user’s behalf [16]. Protocols that do not use unique tokens for each communication are particularly
susceptible to this form of attack.

Obtained User Credentials Request Made on User's Behalf

k. =
:

Adversary Cloud Data Server Data Model

Figure 7: Adversary posing as a legitimate smart meter

An adversary could use this attack to pose as a monitor communicating data model and may use this
to report false energy readings reducing trust in the system or use this access to perform further attacks
against the infrastructure.

4.2.6 Open Port Scanning

An open port is a port number that a device accepts packets from. If ports are not configured correctly,
adversaries can use a insecure port that has not been blocked as an attack vector. Botnet recruitment
malwares such as Mirai scan these ports to identify IoT devices that can be compromised. [17]

Open port used as an attack vector to compromise device

@ o

Adversary Internet Smart Hub

Figure 8: Adversary using an open port to attack a device

This attack can occur in the scenario where any devices are configured to allow network traffic in from
unnecessary communication protocols such as telnet (port 23) and SSH (port 22).
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5 Recommendation of policies and practices

Based on the threats identified above and research into the security needs of smart grid systems, a set
of policies have been defined. These policies are split into two groups, communication policies which
define the standards communications between devices in the scenario must meet to ensure they are
cryptographically secure. As well as best practices which define non-communication policies to protect
the devices in the scenario against other forms of attack.

5.1 Communication Policies

These are the policies which are to be modelled and verified using Scyther. A brief description of each
policy is defined below explaining why they have been included, as well as any potential drawbacks
that implementing each policy may cause.

e Message Encryption

This policy is the most fundamental aspect of a cryptographic protocol and is designed to mit-
igate the threat of passive eavesdropping. Message encryption defines that the contents of all
communications between parties should be encoded in such a way that only those with access to
the decryption key can decode and read the message.

In a 2018 investigation into the impact of the popular encryption standard AES on IoT commu-
nications, Hung CW and Hsu WT [18] found that Hardware AES increased power consumption
of the average communication by 31%. Despite this increased power draw, encryption is an es-
sential component of a cryptographic protocol as without it an adversary an simply eavesdrop on
messages in transit and view their contents as shown in section 4.2.3.

e Implicit Key Authentication

Implicit key authentication is a policy that will be implemented during the key distribution
process. This process is where communication parties share the secrets keys allowing them to
generate session keys for the messages they send between each other. The policy defines that
only the authorised parties should be able to access these keys. Without this policy, an adversary
could perform a man in the middle (section 4.2.2) or impersonation (section 4.2.5) attack.

The reason for implementing a key distribution process is because symmetric encryption protocols
require a shared secret key between communication parties in order to function. Whilst it is the
case that asymmetric encryption algorithms do not require this step, asymmetric encryption is
also more computationally intensive as it takes more CPU cycles to encrypt and decrypt messages.
This factor becomes significant when considering the low computational power possessed by the
IoT devices with the scenario and the need to communicate energy readings frequently.

e Session Keys

Session keys are a randomly generated keys that parties agree on to encrypt and decrypt a single
communication. These keys are generated and shared with the assistance of the secret keys
that the parties already shared in the key distribution process. Unique session keys are being
implemented to mitigate the threat of replay attacks (section 4.2.4) as they prevent the use of
intercepted credentials. This is because the session key intercepted from a previous communication
will never be reused as the session keys are regenerated for each new communication.

e Mutual Authentication

Mutual Authentication requires that both parties are able to authenticate and trust the identity of
each other. This policy is being implemented to prevent impersonation attacks (section 4.2.5).
Particularly impersonation attacks that involve the the mass creation of fake meters which send
false information to the cloud server as well as the prevention of false cloud server identities
causing meters to send their information to an adversary’s server instead of the smart grid cloud
server.
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5.2 Best Practices

Policies defined in this section are designed to mitigate non-communication attacks...

5.2.1 Password Management
5.2.2 Network Segregation
5.2.3 Patch Management

5.2.4 Minimum Design

17



6 Implementation and specification of non-communication IoT
policies

6.1 Smart Hub password management

In a study examining user behaviour toward password policies, Inglesant [19] found that excessively
restrictive password policies with too much of a focus on password complexity caused users to adopt
insecure workarounds such has writing down passwords or using the same password across multiple
accounts. Therefore, a good password management policy should aim to balance the need for users to
choose a password that is unique and complex enough to not fall victim to common password list and
brute force attacks whilst also not being too restrictive or complicated that the user has to resort to
insecure methods of remembering it.

Based on this, the following key points are recommended for the implementation of an effective IoT
password management policy:

e Passwords must be at least 8 characters long
e Before hashing, passwords should be checked against OWASP’s top 10,000 password list [20]

e Created passwords must only be used for the Smart Hub

18



7 Implementation and modelling of communication protocol
policies
7.1 Message Encryption

The first policy to be implemented is message encryption. As this policy is designed to mitigate
the threat of passive eavesdropping, I am defining the implementation successful if an adversary is
unable to decrypt and read either the key or freshly generated message using a passive Eavesdropping
attack.

7.1.1 Design

Meter Monitor

Generate
Fresh value

Encrypt using
Symmetric Key

Send to
Monitor
Recieve
Message
Decrypt using
Symmetric Key
END END
", A " A

Figure 9: Message encryption protocol design
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7.1.2 Implementation

The implementation of the design in Scyther is a two-way communication where the Meter sends infor-
mation to the Monitor and the Monitor sends back a confirmation of having received the message.

protocol smartExchange(Meter,Monitor)
{
role Meter {

fresh Message: Nonce;
var Confirm;

send_1(Meter ,Monitor,{Message}k(k));
recv_2(Monitor,Meter,{Confirm}k(k));

claim_Meterl(Meter, Secret, (k));
claim_Meter2(Meter, Secret, Message);

}
role Monitor {

var Message;
fresh Confirm: Nonce;

recv_1(Meter,Monitor,{Message}k(k));
send_2(Monitor,Meter,{Confirm}k(k));

claim_Monitorl(Monitor, Secret, (k));
claim_Monitor2(Monitor, Secret, Message);

}

Figure 10: Message encryption protocol design
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7.1.3 Review

To model the requirements of both the freshly generated value and the key not being disclosed, Scyther’s
Secret claim was made on the message which models an adversary attempting to eavesdrop on the
message during communication.

Without the implementation of the symmetric key encryption, running the secret claim generates a
successful eavesdropping attack.

Run #1
Bok in role Meter

Meter -= Ech . Initial intruder knowledge
Monitor -» Alice The intruder generates: Datalntruderl

Fresh Message#l

Var Confirm -> DataIntruderl

l

send_1 to Alice
Messageffl

'

recv_2 from ilice
DataIntruderl

redirect to Secret

claim Meterl

decret : Messagefl

[Id 1] Protocol smartExchange, role Meter, claim type Secret

Figure 11: Message encryption protocol test results

The figure above shows by eavesdropping the message, demonstrated in this case by Datalntruderl the
adversary can read the contents of the message therefore disproving the secret claim.

The first iteration of the protocol passed these tests successfully with Scyther showing that no attacks of
this type are possible within the bounds of the protocol. Results using a wider range of claims however
show that threats such as man-in-the-middle attacks can easily break this protocol demonstrating the
need to iterate upon it and implement the remaining policies

Role Claim Result

Meter Secret Message Pass
Secret key(k) Pass
Monitor Secret Message Pass

Secret key(k) Pass

Table 4: Log of claims made against the message encryption protocol and their results
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7.2 Implicit key authentication

Later policies will require the use of secret keys to create symmetric encryption protocols, implicit key
authentication must be enforced when these keys are distributed to prevent an adversary posing as a
legitimate communication party using an intercepted secret key. To implement this policy a secure key
distribution protocol is required.

7.2.1 Design

When looking to design this protocol, a decision had to be made on which style of key distribution
was most suitable. These two styles being considered are best represented by the two popular key
distribution protocols signed Diffie-Hellman and Needham-Schroeder.

Needham-Schroeder makes use of a trusted 3rd party to securely establish authentication which can be
used to exchange symmetric secret keys over an insecure network as shown in the figure below.

Party A Server Farty B

- L J

Requests B's publie
key from server —

L Sends B's publie key
to A signed wWith the
servers digital

. signature
Generates and sends a _ |
nonce "A°" and it's
name to party B e
encrypted with B's T
public key. T Decrypts the message

using it"s private key
and requests the
P public key of A from
the server

Sends A's publie key
to B signed with the
servers digital —
signature

i, Generates and Sends a
nonce "B alang with
e Haonce "A" to party A

Recieves back Monce T encrypted with A's

A" pstablishing — public key.
authentication with
Party B
Sends Monce "B° to
party B encrypted with
B's public key —_—
_%““ﬂk
h““ﬁ«%__ Recieves back Monce
TTm—— B establishing
authentication with
Party A
¢ ™ - | ™,
END END
- kS +

Figure 12: Illustration of the Needham Schroeder authentication process [21]
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In comparison, Diffie-Hellman does not require the use of a third party and instead relies on the concept
of never actually sending a shared key over an insecure network but instead exchanging information
that along with secret information both parties possess, allows the parties to generate the same key
which becomes the shared secret key to be used in future communications.

For the given IoT scenario a Diffie-Hellman style solution is the most appropriate based mainly on the
fact that it does not require an additional third party. This makes the protocol less computationally
complex for the IoT devices as they only need to communicate with each other as well as negating the
need infrastructure in the form of a server.

The design for this policy in the project scenario, as illustrated below, works by having the two com-
munication parties each come up with a fresh value. The aim of the protocol is then to allow the
two parties to exchange their values whilst ensuring that an adversary cannot either eavesdrop on the
message or pose as one of the parties to gain both of the values.

Monitor ] Cloud Server

Generates a fresh
wvalue to be used as
one half of the shared
key

sends the fresh value
and the monitor's
identity to the Cloud

Server encrpyted with ___"‘-—-u_ﬁ
(=~ 1
the ':'lgi'?‘ air\.:er s x“‘u,____ cloud Server Decrpyts
public key ————— the Message and now
has one half of the
shared key
sends the fresh value
and the hash of the
e Monitors value
e encrpyted with the
Cloud Server Decrpyts I monitors public key
the Message and now —
posseses both hslves
of the key
Sends a Confirmation
message encrpyted with
the shared key to to
canfirm success Hﬁ“‘“‘-_h
H‘“‘»__, Decrpyts Message using
T——— shared secret key and
recives confirmation
f’ A f’
END END
o & o &

Figure 13: Illustration of the planned key exchange [21]
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Once each party exchanges it’s generated value with the other, they are then combined together using
a predetermined hash function. This means that the two values are inputted into a function that is
computationally expensive to reverse engineer, because of this an adversary cannot work out what the
two inputs were from the resulting output. This output is then used as the shared secret key that all
session keys for future communications will use as the base.

7.2.2 Implementation

hashfunction hashed;
usertype Message;

protocol KeyExchange (Monitor,CloudServer)
{

role Monitor

fresh MonitorValue : Nonce;
fresh Confirm: Message;
var CloudServerValue : Nonce;

send_1(Monitor,CloudServer,{Monitor,MonitorValue}pk(CloudServer));

recv_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),
CloudServer}pk(Monitor)) ;

send_3 (Monitor,CloudServer, hashed(CloudServerValue, Confirm));

claim_Monitorl(Monitor,Niagree) ;
claim_Monitor2(Monitor,Nisynch) ;
claim_Monitor3(Monitor, Secret, MonitorValue);
claim_Monitor4(Monitor, Secret, CloudServerValue);

role CloudServer

var MonitorValue: Nonce;
var Confirm: Message;
fresh CloudServerValue: Nonce;

recv_1(Monitor,CloudServer, {Monitor,MonitorValue}pk(CloudServer));

send_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),
CloudServer}pk(Monitor)) ;

recv_3(Monitor,CloudServer, hashed(CloudServerValue, Confirm));

claim_CloudServerl(CloudServer,Niagree) ;
claim_CloudServer2(CloudServer,Nisynch) ;
claim_CloudServer3(CloudServer, Secret, MonitorValue);
claim_CloudServer4(CloudServer, Secret, CloudServerValue);
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7.2.3 Review
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7.3 Unique Session Keys

Implementing session keys

7.3.1 Design
7.3.2 Implementation

The Scyther implementation uses the SessionKey usertype to model the session keys. Once both
parties have sent each other an encrypted communication containing the session key, the Meter sends
the Monitor the message.

usertype SessionKey;
usertype Message;

protocol EncrpytedExchange(Meter,Monitor)

{
role Meter {

fresh M: Message;
fresh TokenA: SessionKey;
var TokenB;

send_1(Meter,Monitor,{TokenA}k(k));
recv_2(Monitor,Meter,{TokenB}k(k));
claim(Meter,Running,Monitor,M);
send_3(Meter,Monitor,{M}k(k));

claim_Meterl(Meter, Secret, (k));
claim_Meter2(Meter, Secret, M);
claim_Meter3(Meter,Niagree);
claim_Meter4(Meter,Nisynch) ;

}
role Monitor {

var M;
var TokenA;
fresh TokenB: SessionKey;

recv_1(Meter,Monitor,{TokenA}k(k));
send_2(Monitor,Meter,{TokenB}k(k)) ;
recv_3(Meter,Monitor, {M}k(k));

claim_Monitorl(Monitor, Secret, (k));
claim_Monitor2(Monitor, Secret, M);
claim_Meter3(Monitor,Niagree) ;
claim_Meter4 (Monitor,Nisynch);

}
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7.3.3 Review

By using the Niagree and Nisynch claims, Scyther can verify if the roles within a protocol are able to
authenticate the identity of a message sender. The Ni prefix denotes that the attack scope is limited
to non-injective attacks, these are attacks that do not assume the adversary has knowledge from a
previous run of the protocol. [22]

As shown in the figure below, without the implementation of session keys it is trivial for an adversary
to a pose as a meter which would allow them to send false readings in a message or potentially use the
message as an attack vector for malware.

Run #1
Boh in role Meter

Meter -= Eoh
Monitor -> Alice

Fresh M#l, Tokendfl

Var TokenEB -> Tokena#l

'

send_1 to Alice
{ Tokena#l }k(k)

fake sender Alice
redirect to Bob

recv_2 from Alice
{ Tokena#l ik (k)

'

send_3 to alice
{ Ml }kik)

[Id 5] Protocol EncrpytedExchange, role Meter, <laim type MNiagree

Figure 14: Niagree verification results before session key implementation

The results after the implementation show that whilst the simple impersonation attack

7.4 Mutual Authentication

8 Plan for remaining work

When referring back to NIST’s [14] guidelines for the analysis and security implementation of a smart
grid system, the first 3 phases defining use cases, risk assessment and specification of security require-
ments are reviewed in this report. Whilst the specification of security requirements will be further
developed, the main focus of my remaining work is on the design and development of a security archi-
tecture and the assessment of the implementation of this architecture. This is reflected in my Gantt
chart (fig:16) which shows how I plan to break down this work into tasks and my expected timings for
each of these tasks.
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8.1 Risk Analysis

I have identified 5 risks as key risks which could impact on my delivery of the rest of the work. The
grid below shows my plan to mitigate these risks and my assessment of any residual impact that may

linger.

Risk

Baseline

Mitigation

Residual

Scyther stops being sup-
ported on modern operat-
ing systems and I lose my
access to the software

Impact: 5
Likelihood: 2

I am using vagrant to set-up a box with
Scyther and all the software required
to run it installed so I always have it
available, the vagrant box has a cloud

Impact: 5
Likelihood: 0

I fail to manage time cor-
rectly on the project and
do not finish parts

Score: 10 backup Score: 0
My Gantt chart will help when identi-
Impact: 4 fying if I am falling behind schedule on Impact: 4

Likelihood: 3

certain parts. Meeting weekly with my
supervisor where I share my progress

Likelihood: 1

or damaged causing me to
lose all the content on the
hard drive

Likelihood: 2

Score: 8

frequently pushed to the remote branch
when I make changes. I can continue to
work on my desktop and the university
computers.

Score: 10 will also help me hold myself account- Score: 4
able for work.
My laptop is lost, stolen, Impact: 4 My project files are uploaded to Git and Impact: 3

Likelihood: 1

Score: 3

My remaining work is
larger or more difficult
than I anticipated mean-
ing I fail to complete parts
of it

Impact: 4
Likelihood: 3
Score: 12

My background research and experi-
ence of learning Scyther in the last
month has helped me estimate the dif-
ficulty of each task.

Impact: 3
Likelihood: 2

Score: 6

Personal /family issue

Impact: 3
Likelihood: 3

Score: 9

Use the university support service when
needed. Keep my supervisor informed

Impact: 2
Likelihood: 3

Score: 6

Table 5: Qualitative risk analysis and mitigation plan for the key risks
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8.2 Gantt Chart

My Gantt chart details my time management plan for the progress report and future plan for the rest
of the project.
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(BEve,Alice)

Run #2
Alice in role Monitor

Meter -*> Ewve
Monitor -» Alice

Fresh TokenB#Z

Var Tokend —-> DataIntruderZ

recv_1 from Eve
{ DataTntruderZ }k(Eve,&lice)

Run #1
Charlie in role Meter

send Z to Eve Meter -> Charlie
{ TokenB#Z 1k (k) Monitor -> Boh
Fresh M#l, Tokena#l

Var TokenB —-> TokenB#2

send_1 to Eoh
Tokena#l tki{Charlie,Eoh)

recv 2 from Bob
{ TokenEBH#2 }k(k)

send_3 to Eob
{ M#fl }kik)

[Id 2] Protocol EncrpytedExchange, role Meter, c<laim type Niagree

Figure 15: Niagree verification results after session key implementation

32



October November December January Febuary March April
N Progress Final
Tth | L4th | 2st | 28¢h | 4th | Llth | 18th | 25th | 2nd Repont | L6 | 2 Gth | 13th | 20th | 27th | 3rd | 10th | 17¢h | 24th | 2nd | 9th [ 16th | 23ed 6 | 15th | 20th | 27k | deh | Heh |

Background research

Finalise project brief

Research and practice Scyther

Literature review

Produce and model threats

Suggest policies

Write up progress report

Research development enviroment

Scytherbox Sprint 1

Scytherbox Sprint 2

Scytherbox Sprint 3

Model policies in Scyther

Verify and iterate upon policies

Evaluate Project Success

Write up Final Report

ect

j

Gantt chart for the pro

Figure 16

33



