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Abstract

The primary objective of this project was to firstly identify the main threats that face IoT
devices in a smart grid system and then recommend security policies that could mitigate these
threats. To test that the outlined policies were fit for purpose they were modelled and verified
using Scyther, a tool for the automated verification of cryptographic protocols. The project found
that smart grids face a diverse threat landscape and that without specific security measures IoT
devices in these systems are particularly vulnerable to attack. However, verification results from
Scyther for the policies developed within this project show that well implemented security policies
and best practices can successfully mitigate these threats.
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1 Project Description

IoT devices present many exciting applications for both industrial and consumer use. However, in-
creased dependence on these devices opens up new consequences and attack vectors that an adversary
can use to attack a target. This is of particular importance in the case of IoT devices connected to
smart grid infrastructure as cyberattacks could be used to disrupt critical national infrastructure.

Figure 1: Reference diagram of my smart grid scenario
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The scenario for my project is an IoT based smart grid with a focus on the communications between
IoT devices and their interactions with the cloud layer. The reference diagram above details the devices
present in the system. The devices within the home network are installed in each household and interact
with their local cloud server which manages all the households in an area.

1.1 Project Aims and Objectives

This project aims to produce, model and verify a collection of policies and protocols that are suitable
for mitigating the threats that a IoT enabled smart grid may face. I wish to focus on the following
goals within this project:

• Investigate and conduct a risk assessment on the main vulnerabilities and threats faced by IoT
devices within a smart grid environment.

• Recommend security policies that can mitigate these threats, justifying these policies by taking
into account secondary factors including the cost to implement and any loss to productivity these
policies might incur.

• Implement and verify that these communication protocols mitigate the identified vulnerabilities
using Scyther, a formal method based protocol verification tool.

• Clearly explain the impact of each of my policies by comparing the possible attack vectors with
and without each policy using Scyther.

• Create a purpose built, portable Scyther virtual machine environment allowing myself and others
to quickly set up and start using Scyther on a new device. Therefore allowing others to verify
and extend upon the results of the project.

The scope of this project will be investigating, modelling and verifying the best policies and practices
for IoT devices and their communications in my smart grid scenario. The project focuses mainly on
IoT communication protocols and their configuration rather examine flaws in the hardware or firmware
ran by these devices.

2 Glossary of terms

Nonce A randomly generated value that is used only a single time in a cryptographic protocol.
Often used as a timestamp to prevent the reuse of old message credentials.

Adversary A term used to describe a party attempting to disrupt the security of a system.

Hypervisor A piece of software that creates an instance of a virtual machine from a virtual
machine file.

Communication party An intended sender/recipient of a communication.

Malware Malicious software designed to attack the security of a computer/computer network.
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3 Literature Review

My literature review explores the IoT and smart grid landscape before looking into the cybersecurity
issues that a smart grid implementation may face. Finally, the review discuss the verification of
cryptographic protocols in the context of my scenario

3.1 Internet of Things (IoT) Devices

IoT as a general concept can be described as physical objects also being network identifiable devices
that are able to communicate without the need for human interaction [1]. These devices can be used
in a home or industrial context to automate processes or afford additional functionality. IoT devices
can do this as they are able to leverage information by collecting/receiving it across a network. As an
example of an IoT implementation in a chemical production plant, IoT monitoring devices could be
used to monitor the temperature of a reaction. If the temperature fell outside of the requirement, the
device could communicate with another IoT device that controls the coolant flow through the reaction
and correct it without the need for any human interaction.

These IoT networks can offer benefits for existing processes such as improved efficiency, fewer employees
required to manage it and data which can be used to improve the process. However, it is important
to consider from a cybersecurity perspective that the introduction of networked devices to a process
opens it up to the possibility of cyberattacks.

3.2 Smart Grids

The term smart grid refers to the integration of technology into electrical grid systems allowing them
to dynamically change to meet the current needs of consumers [2]. Whilst the implementation of smart
grids can vary significantly, several elements generally remain constant:

• Smart Meters and Monitors - These IoT devices are used to measure and analyse the energy
usage within a single home. Typically smart meters simply collect energy readings from a room
and send this information to the smart monitor. This monitor relays energy information to a
collection server and receives information on current energy prices. [3]

• Smart Hub - This device allows the homeowner to track their electricity usage as well as view
the current electricity price to help time their electricity usage to get the best price resulting in
a better distribution of power demand across the power grid.

• Cloud Layer - This layer communicates with the Smart Meter to receive electricity usage in-
formation and send electricity pricing information. This information can then be used by the
rest of the smart grid system to adjust the routing and production of electricity based on current
demand.

3.3 IoT Smart Grid, the Threats, Attitudes and Best Practices

A key finding from my research, summarised by Robles [4] is that one of the key differences between
securing a traditional system compared with a national infrastructure system, such as smart grid, is
the reduction in the effectiveness of standard security measures such as patches, password manage-
ment and access control. Stating that this is due to the size and diverse combination of hardware
and software that comprises this class of system. Whilst traditional controls do have their place in
smart grid security Sajid [5] identifies the need for specific security measures that directly mitigate the
threats smart grids face. This point is further explored by Bere [6] which states that large industrial
control systems are often the target of state-funded Advanced Persistent Threat(APT) groups whose
capabilities and resources far outmatch the typical threat actors a system faces. [6] Bere goes onto rec-
ommend that the security protocols and controls implemented should be layered, providing a ’defence
in depth’ security approach which Virvilis [7] states as a key countermeasure against APT groups as
these groups have the ability to execute zero-day exploits. Zero-day exploits offer very little chance
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of mitigating an attack against part of a system as the vulnerability is only known to the adversary
at the time of execution [8]. However, a layered system means that in the event of such an attack,
the entire system will not be compromised due to the presence of other security measures and protocols.

Another area of difficulty when it comes to securing these systems is the perspective and attitudes of
governments and other organisations when it comes to securing these systems. Wang [9] states that
many organisations do not see investing in the protection of these systems as economically viable.
Virvilis [7] adds that disruption to productivity and user experience due to the increase in latency or
removal of features that hardened security protocols may necessitate is another factor in the lack of
implemented protocols on these systems. Mcqueen [10] suggests that it is difficult to quantify cyber
risk using traditional risk assessment methods. This may further contribute to the reluctant attitude
towards cybersecurity investment as it is difficult to quantify the reduction in risk to management.

3.4 Verification of Security Policies and Protocols

Creamers [11] states that it is very difficult for humans to analyse and find flaws in cryptographic
protocols, as evidenced by the number of protocols that are found to have security flaws after their
release. An example of this is the Needham-Schroeder key distribution protocol which even after ex-
tensive analysis and verification by hand was found to have a security flaw which allowed an adversary
to pass off an old session key as a new and valid one [12]. Meadows [12] goes on to suggest that formal
methods are a good choice for analysing these cryptographic protocols as they are enclosed enough to
make modelling and verification feasible whilst also having the potential for subtle and counter-intuitive
flaws that an informal analysis may miss.

In order to verify a protocol using automated formal methods, it must first be modelled so that it can
be interpreted by a protocol verification tool. In my research, I have found two tools that are the most
suitable for this purpose; Pro-Verif and Scyther. In their comparative analysis of these two tools Dalal
et al. [13] identifies that whilst the two tools share several similarities, there are several differences that
make Scyther more suitable than Pro-Verif for my scenario and skillset.

• Modelling Language - Scyther uses ’security protocol description language’ (SPDL) described
as ”a mix between java and C” by creator Cas Creamers [11] to model protocols. Whereas Pro-
Verif protocols are represented using horn clauses or pi calculus [13]. The SPDL used by Scyther
is closer to pseudo-code than Pro-Verif making it more suitable for illustrating the implementation
of protocols as well as being more fitting to my skillset.

• Attack Graphs - Scyther automatically generates attack graphs when a flaw is found in verifi-
cation, generating a visual flow diagram of the attack. Pro-Verif does not support this feature.

Based on these factors, the project will use Scyther for the modelling and verification of protocols.
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4 Research and Design

When it comes to implementing a best practice cybersecurity strategy, NIST [14] recommends a five
step process for analysing and securing smart grid systems. This process is defined below along with
how the project will implement each of the points outlined.

1. Defining use cases - The use cases of the system should be defined.

Though the use of a reference diagram, the scope and elements comprising the project’s IoT
system are clearly defined.

2. Risk Assessment - The vulnerabilities, threats and the impact these threats can
cause should be evaluated for the system.

A threat model based on the reference diagram will be used to illustrate where vulnerabilities in
the system are present. The vulnerabilities will be further described in isolation with emphasis
placed on the threats posed by this vulnerability and the impact of these threats in the context
of the project’s scenario.

3. Specification of Security Requirements - The security requirements for the system
should be stated and specified.

Taking into account the threats outlined in the previous step, A list of policies will be produced
outlining the security requirements of the system.

4. Design and Development of a Security Architecture - A security architecture to
protect the smart grid system should be designed and implemented.

Protocols will be designed and then implemented in Scyther that satisfy the policies defined in
the previous step.

5. Assessment of implementation - The architecture should be assessed against the
defined security requirements to test if it is fit for purpose.

The project will use Scyther’s protocol verification tools to test the protocols against the require-
ments defined.

4.1 Scyther development environment

One of the key goals of the project was to create a portable environment for Scyther development.
When researching what the most suitable tools to create this would be, particular emphasis was placed
on the following criteria:

• Self-contained - Once installed, the virtual machine should contain all the components and
dependencies required to develop using Scyther

• Portable - The machine must be simple to install and ideally small enough that it can be hosted
using common software distribution tools such as GitHub.

• Configurable - Users should be able to make changes to the environment to suit their individual
preferences and needs. This includes elements such as the flavour of Linux used and the resources
assigned to the machine.

• Versionable - Changes made to the machine configuration should be versionable using git, the
most common version control method. This allows for future adaptations and iterations upon the
machine to be easily tracked as well as making it easy for users to revert changes made to the
machine if issues occur.

• Compatible - The machine should be formatted so it does not require the use of proprietary
software to run.

During research, two virtual machine formats stood out as being suitable for the project; the Open
Virtualisation Format (OVF) and Vagrant. Both of these formats are non-proprietary and easily
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compatible with common hypervisors like VirtualBox. Either format would also allow for the packing
of all the required software to develop using Vagrant.

One of the key advantages Vagrant possess over OVF is the vagrant file. Vagrant environments are
packaged in formats known as boxes, vagrant files allow a user to customise and specialise a box to
suit their needs. As Vagrant files are written in the Ruby programming language, they are versionable
and compatible with git, this makes the process of collaborating with others and extending vagrant
files simple. However, Vagrant virtual boxes are slightly more complex to install as they require the
vagrant software to be installed on the host machine, OVF files can just be imported into the chosen
hypervisor. Despite this, the configurability and git compatibility that vagrant files provide offer great
value in this use case making them the best choice for the project’s Scyther environment.

4.1.1 Requirements and development methodology

Based on the criteria outlined in the section above, a list of requirements for the Scytherbox have been
developed. To prioritize these development requirements, the MoSCoW method has been used:

Must Have Should Have

Scyther v1.13 installation from VagrantFile Linux flavour options

Scyther dependencies installed from VagrantFile Shared folder between host and Scytherbox

Versionable using git Installation Instructions

Example Protocols within the box

Scytherbox documentation

Could Have Won’t Have Now

Git configuration within the box Windows version of scytherbox

Scyther user guide

Table 1: Table showing the prioritisation of the scytherbox requirements

Despite a lack of clearly defined stakeholders for this part of the project, elements of the AGILE
methodology will be used to plan and manage the development of the Scytherbox. The main reason
for this is that a basic version of the box that can run Scyther is required to complete the modelling
and verification of the suggested protocols making a initial working release a high priority.

11



To estimate the development time each requirement will take to implement, t-shirt sizing has been
used. The table below shows a description of each requirement and it’s estimated size.

Requirement Title Description Estimated Size

Scyther v1.13 installation
The latest version of Scyther should be im-
ported into the box using the VagrantFile

Medium

Scyther dependencies installed
Python 2.7, as well as the GraphViz and wx-
Python libraries, should be installed on the
box using the VagrantFile

Medium

Versionable using git
Changes to the box configuration should be
visible in git so they can be versioned.

Small

Linux flavour options
Allow changing of Linux flavour during box
configuration

Small

Git configuration
Implement functionality allowing git reposito-
ries to be cloned and configured on the box
during configuration

Large

Shared folder
Implement a synced folder on the host ma-
chine and Scytherbox allowing for the easy
transfer of files between the two

Small

Installation instructions
A set of instructions explaining how to install
Scytherbox

Medium

Example protocols
A folder on the host machine attached to the
box allowing sample protocols to be included
in an installation of the box.

Medium

Scytherbox documentation
A documentation of the VagrantFile and shell
scripts used to create the Scytherbox, making
it easier for others to iterate on in the future

Large

Scyther user guide
A guide installed on the box explaining the
basics of Scyther and the scyther protocol de-
scription language (SDPL)

Medium

Windows version
A version of the Scytherbox that uses Win-
dows as the box’s operating system

Extra Large

Table 2: Table describing and estimating the size of each Scytherbox requirement

Key:

Small - 1 Hour

Medium - 2 Hours

Large - 4 Hours

Extra Large - 10 Hours
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4.1.2 Development plan

The development of the Scytherbox environment is scheduled to take place over a 3 week period with
1 week allotted for each sprint. The modelling and verification of the project’s policies is scheduled
to take place 1 week into this period hence the core features required to develop using Scyther being
assigned to the first sprint.

Sprint 1 Sprint 2 Sprint 3

Scyther Installation Git configuration within the box Scyther user guide

Scyther dependencies installed Linux flavour options Example Protocols within the box

Versionable using git Scytherbox documentation Installation Instructions

Shared folder

Sprint Hours: 6 Sprint Hours: 9 Sprint Hours: 6

Table 3: Scytherbox sprint plan

13



4.2 Threat Model

The threat model below shows the key attack vectors and vulnerabilities an adversary could exploit
within the scenario:

Figure 2: Threat Model of my smart grid scenario
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A detailed breakdown of each threat and how they can be mitigated through the application of security
protocols can be found in the preceding sections.

4.2.1 Weak/Default Password Fuzzing Attack

OWASP [15] states than the most common vulnerability exploited in IoT devices is the use of weak or
default passwords. These attacks are usually performed by automated scripts commonly referred to as
bots that scan the internet for connected devices and run a list of common passwords. As an example
of this, the Mirai botnet was able to infect and recruit over 500,000 IoT devices using a list of just 60
common passwords.

Figure 3: Adversary using a common password to compromise the network

In this scenario, an adversary could exploit an internet connected smart hub with a weak or guessable
password to recruit the device into a botnet or potentially use the compromised device as an attack
vector to mount further attacks on the rest of the network.

4.2.2 Man In The Middle (MITM) Attack

Man in the middle attacks occur when an adversary is able to act as an intermediary or proxy between
communication parties without their knowledge. This allows the adversary to view the contents of the
messages sent between parties as well as silently modify their contents.

Figure 4: Adversary relaying and modifying smart monitor data

An Adversary could perform a MITM attack by secretly relaying and modifying the electricity usage
information sent to the data model. A large scale attack of this kind effecting many monitor to model
connections could cause a false data injection attack on the smart grid system where false data could
cause the system to make an incorrect decision when routing power.
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4.2.3 Passive Eavesdropping

Low power IoT devices commonly use weak or no cryptography in their communications protocols, this
means an adversary could use devices such as a wireless packet sniffer to intercept traffic sent between
devices and read the contents of the communications sent. OWASP [15] lists these insecure protocols
as the 2nd most common IoT vulnerability.

Figure 5: Adversary reading an insecure communication

This attack could occur anywhere in the scenario where devices communicate with each other without
the use of an encrypted communication protocol. For example, the adversary could sniff packets between
the smart meter and monitor to know if a home is occupied based on their current electricity usage or
to gather information on the network for further attacks.

4.2.4 Replay Attack

Replay attacks occur when an adversary is able to identify and collect authentication credentials from a
legitimate communication and use those credentials in a later communication to bypass authentication.
This commonly occurs when communication partners do not make use of a unique identifier for each
communication such as a session key.

Figure 6: Adversary sniffing and reusing hashed authentication credentials

The adversary could sniff an encrypted communication between router and server used for the transmis-
sion of energy usage data. With this they could use the hashed authenticator code to send messages to
the server posing as that home network without needing to know the actual authenticator code.
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4.2.5 Impersonation Attack

An Impersonation attack occurs when an Adversary is able to pose as the identity of a legitimate
party in a communication protocol allowing them to bypass authorisation or act on the legitimate
user’s behalf [16]. Protocols that do not use unique tokens for each communication are particularly
susceptible to this form of attack.

Figure 7: Adversary posing as a legitimate smart meter

An adversary could use this attack to pose as a monitor communicating data model and may use this
to report false energy readings reducing trust in the system or use this access to perform further attacks
against the infrastructure.

4.2.6 Open Port Scanning

An open port is a port number that a device accepts packets from. If ports are not configured correctly,
adversaries can use a insecure port that has not been blocked as an attack vector. Botnet recruitment
malware such as the Mirai botnet scan for insecure open ports to identify IoT devices that can be
compromised. [17]

Figure 8: Adversary using an open port to attack a device

This attack can occur in the scenario where any devices are configured to allow network traffic in
from unnecessary communication protocols. Whilst any unnecessary open ports increase risk exposure,
communication ports such as Telnet (port 23) are particularly dangerous as they lack any in-built
security measures.
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4.2.7 Network Traversal

Network traversal can allow malware on a compromised network to spread to other networks connected
to it. Malware’s such as ransomware and worms often employ this technique to spread to as many users
as possible. This is a serious issue for high security systems that have to interface with home networks
as the home network is likely to have much poorer security controls.

Figure 9: Malware traversing from an infected home network to industrial network

This attack could occur in the IoT scenario as the smart hub is connected to the homeowner’s network
and communicates with the smart monitor which is part of the industrial network. If a malware on a
user’s home network is able to compromise the smart monitor, an adversary could gain remote control
over the device and use it to make further attacks on the system.
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5 Recommendation of policies and practices

Based on the threats identified above and research into the security needs of smart grid systems, a set
of policies have been defined. These policies are split into two groups, communication policies which
define the standards that communications between devices in the scenario must meet to ensure they are
cryptographically secure. As well as best practices which define non-communication policies to protect
the devices in the scenario against other forms of attack.

5.1 Communication Policies

These are the policies which are to be modelled and verified using Scyther. A brief description of each
policy is defined below explaining why they have been included, as well as any potential drawbacks
that implementing each policy may cause.

Message Encryption

This policy is the most fundamental aspect of a cryptographic protocol and is designed to mitigate the
threat of passive eavesdropping. Message encryption defines that the contents of all communications
between parties should be encoded in such a way that only those with access to the decryption key can
decode and read the message.

In a 2018 investigation into the impact of the popular encryption standard AES on IoT communications,
Hung CW and Hsu WT [18] found that Hardware AES increased power consumption of the average
communication by 31%. Despite this increased power draw, encryption is an essential component of
a cryptographic protocol as without it, an adversary an simply eavesdrop on messages in transit and
view their contents as shown in section 4.2.3.

Implicit Key Authentication

Implicit key authentication is a policy that will be implemented during the key distribution process.
This process is where communication parties share the secrets keys allowing them to generate session
keys for the messages they send between each other. The policy defines that only the authorised parties
should be able to access these keys. Without this policy, an adversary could perform a man in the
middle (section 4.2.2) or impersonation (section 4.2.5) attack.

The reason for implementing a key distribution process is because symmetric encryption protocols
require a shared secret key between communication parties in order to function. Whilst it is the case
that asymmetric encryption algorithms do not require this step, asymmetric encryption is also more
computationally intensive as it takes more CPU cycles to encrypt and decrypt messages. This factor
becomes significant when considering the low computational power possessed by the IoT devices with
the scenario and the need to communicate energy readings frequently.

Session Keys

Session keys are a randomly generated keys that parties agree on to encrypt and decrypt a single
communication. These keys are generated and shared with the assistance of the secret keys that the
parties already shared in the key distribution process. Unique session keys are being implemented to
mitigate the threat of replay attacks (section 4.2.4) as they prevent the use of intercepted credentials.
This is because the session key intercepted from a previous communication will never be reused as the
session keys are regenerated for each new communication.

Mutual Authentication

Mutual Authentication requires that both parties are able to authenticate and trust the identity of each
other. This policy is being implemented to prevent impersonation attacks (section 4.2.5). Particularly
impersonation attacks that involve the the mass creation of fake meters which send false information
to the cloud server as well as the prevention of false cloud server identities causing meters to send their
information to an adversary’s server instead of the smart grid cloud server.
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5.2 Description and specification of IoT Best Practices

The policies defined in this section are designed to mitigate the non-communication based threats a
smart grid system faces. The sections below justify the need to implement each practice and provide
information how how each practice can be implemented into a smart grid scenario.

5.2.1 Password Management

The password management policy is designed to prevent the success of popular automated password
fuzzing attacks which often target IoT devices (section 4.2.2)

In a study examining user behaviour toward password policies, Inglesant [19] found that excessively
restrictive password policies with too much of a focus on password complexity caused users to adopt
insecure workarounds such has writing down passwords or using the same password across multiple
accounts. Therefore, a good password management policy should aim to balance the need for users to
choose a password that is unique and complex enough to not fall victim to common password lists and
brute force attacks whilst also not being too restrictive or complicated that the user has to resort to
insecure methods of remembering it.

Based on this, the following key points are recommended for the implementation of an effective IoT
password management policy:

• Default passwords should be a 15 character string of random characters, this serves two purposes
by making the default password less susceptible to fuzzing attacks whilst also encouraging the
user to change their password from the default due to the inconvenience of entering the default
password.

• Passwords must be at least 8 characters long. This is the minimum length recommended by
NIST for memory based authentication methods as of 2017 [20]. Whilst even longer passwords do
provide more security, a minimum of 8 allows the password to be easier for the user to remember,
reducing the chance of insecure workarounds being used.

• Before hashing, passwords should be checked against OWASP’s top 10,000 password list [21].
This is because password fuzzing attacks look to try the most common passwords before using
brute force methods.

• User created passwords must not be reused across other platforms. User credentials stolen in large
commercial data breaches are usually sold online, this often occurs without the user knowing that
their password has been leaked. The database Collection#1 was found by security researchers on
the dark web in 2019 and it contained over 21 million leaked passwords.

One notable exception from this list common in other password policies is a requirement to change the
password every set period. Whilst in circumstances where the expectation on the user is higher for
managing their passwords such as a organisational account with access to confidential information. It
was not deemed necessary here as the advantage of having a password change every few months is out-
weighed by the frustration this will causes users likely leading to the use of low effort passwords.

5.2.2 Network Segregation

Whilst the IoT smart grid system as a whole is an industrial system, meters and monitors are installed
in peoples homes. Because of this, the implementation of a network segregation policy is necessary
to prevent vulnerabilities in other networks manifesting in the IoT system (section 4.2.7) . The
main challenge when considering the given scenario is the smart hub. The smart hub connects to the
homeowner’s WiFi network and visually displays information about their electricity usage to them.
The concern is that without proper controls, a poorly secured home network could provide a route for
malware to enter the industrial system.

To effectively segregate a network from another two criteria are required. The first criteria is to reduce
the points of contact between the two networks as much as possible, networks that are deeply intertwined
make the sanitisation of network traffic between them much harder. In the given IoT scenario this has
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been reduced to a single point of contact between the smart monitor and smart hub. As the smart
hub has no direct contact to either the cloud server or the smart meters in the household. The number
of attack vectors for network traversal is decreased and therefore securing the points of contact is less
complex.

The second criteria is using a well configured firewall at points of contact between the two networks.
Firewalls are a security control used to monitor and block communications between parties based on
a set of defined rules. In the case of the IoT scenario, rules should be defined to only allow outgoing
traffic from the smart monitor to the smart hub, this can be implemented as the smart hub’s function
is to display information to the homeowner that the smart monitor sends it therefore a one way
communication is sufficient to do this.

5.2.3 Patch Management

Software vulnerabilities being discovered over time are an inevitable reality that every secure system
must plan for. When a vulnerability is discovered in software used by a system there are two options
for mitigation. The first is to isolate the system from any outside connections and employ restrictive
policies to limit how the system can be accessed. This is not an option in a smart grid scenario
as the IoT devices need to communicate with each other to perform their core functionalities, the
distributed layout of a smart grid also makes isolation much more challenging as devices are spread
across different networks and physical locations. The second option is apply a security patch fixing the
vulnerability. Large, always on and distributed systems such as smart grids face difficult challenges
when managing the application of patches as applying a security update across the system is a much
more time intensive process compared to a traditional network. This becomes an important factor
when considering that a smart grid system does not have inactive hours where software updates can
be installed overnight.

Patch bundling is a technique which can be used to reduce the number of security patches required over
a period of time by bundling all required updates into a single patch which is applied every 3 months.
However, this comes with significant drawbacks as it introduces a delay between the time a patch is
released and the time it applied, this increases the time that the system is vulnerable and therefore
the chance that an adversary will exploit it. NIST recommends that patches be prioritised based on
the threat that a vulnerability poses to a system. With severe vulnerabilities that are being actively
exploited, patches should be applied as soon as possible whereas the patching of vulnerabilities which
pose a lower threat can be delayed until the next patch bundle [22]. CVSS(Common Vulnerability
Scoring System) is a method of rating the threat that a vulnerability poses on a 0-10 scale, it takes
into account the severity of vulnerability if it were to be exploited, how easy it is to exploit and how
much access an adversary needs to exploit it. By using this score, a patch management policy can be
created for each level of threat.

CVSS score Patching Policy

0-4
Updates for these vulnerabilities pose a reduced threat to the system and should
only be implemented as part of the next planned patch.

4-6
Updates for vulnerabilities in this category should be evaluated on a case by
case basis and either implemented as part of the next planned patch or applied
after a week to give time for testing

6-8
Updates for these vulnerabilities should be applied in the week that they are
released.

8-10
Vulnerabilities in this category must be patched as soon as possible, if an update
is not yet available the possibility of workarounds or reducing functionality to
mitigate the threat should be considered.

Table 4: Patch Management policy based on the CVSS score of a vulnerability
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5.2.4 Minimum Design

Minimum design refers to the practice of limiting the configuration of a device to the absolute minimum
required for the device to function within it’s role. A well implemented minimum design policy reduces
a device’s risk exposure to cyberattacks whilst not compromising it’s functionality. One of the key
threats the minimum design policy counters is open port scanning (section 4.2.7). By default the IoT
devices used in the smart grid system will have been configured to accept packets from a large range
of network services. However, the vast majority of these ports are not necessary for their functionality
within the smart grid system.

To limit these network services there are two opposing filtering techniques that can be used, blacklisting
and whitelisting. Blacklisting refers to creating a list of in this case network services that are to be
filtered out whereas whitelisting refers to filtering out everything except for a specific list of services. In
this scenario whitelisting is the most sensible option as the smart devices have explicit communication
roles and all other communication ports are not required.
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6 Implementation and modelling of communication protocol
policies

6.1 Message Encryption

The first policy to be implemented is message encryption. The aim of this policy is to mitigate the
threat of passive eavesdropping. Whilst the implementation of this policy alone forms a very basic
protocol, it makes up the backbone that the more advanced protocols will be based on.

Policy Criteria

• Message contents must be secure against a adversary passively eavesdropping on the communi-
cation.

• The monitor must be able to decrypt and read the message contents from the meter.

6.1.1 Design

Figure 10: Message encryption protocol design
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6.1.2 Implementation

To model the symmetric encryption method used for this protocol, the key (k) is used to represent a
symmetric key. As this protocol does not feature a key distribution element, the key is a default key
loaded onto each device as part of their initial configuration for use in the smart grid system.

0 protocol smartExchange(Meter,Monitor)

1

2 {

3

4 role Meter {

5

6 fresh Message: Nonce;

7 var Confirm;

8

9 send_1(Meter,Monitor,{Message}k(k));

10

11 recv_2(Monitor,Meter,{Confirm}k(k));

12

13 claim_Meter1(Meter, Secret, (k));

14 claim_Meter2(Meter, Secret, Message);

15

16 }

17

18 role Monitor {

19

20 var Message;

21 fresh Confirm: Nonce;

22

23 recv_1(Meter,Monitor,{Message}k(k));

24

25 send_2(Monitor,Meter,{Confirm}k(k));

26

27 claim_Monitor1(Monitor, Secret, (k));

28 claim_Monitor2(Monitor, Secret, Message);

29

30 }

31

32 }

Figure 11: Message encryption protocol design
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6.1.3 Review

To model the criteria of the message contents not being readable to an eavesdropping adversary,
Scyther’s Secret claim was made on the message which models an adversary attempting to eaves-
drop on the message during communication. By modelling this claim on both the Monitor and Meter
it can also be used to check that the monitor has received the message thereby fulfilling the second
policy criteria.

Without the implementation of the symmetric key encryption, running the secret claim generates a
successful eavesdropping attack.

Figure 12: Message encryption protocol test results

The figure above shows that by eavesdropping the un-encrypted commutation, demonstrated in this
case by DataIntruder1 the adversary can read the contents of the message therefore disproving the
secret claim.

The first iteration of the protocol the defined tests successfully with Scyther showing that no attacks of
this type are possible within the bounds of the protocol. Results using a wider range of claims however
show that threats such as man-in-the-middle attacks can easily break this protocol demonstrating the
need to iterate upon it and implement the remaining policies

Role Claim Result

Meter Secret Message Pass

Secret key(k) Pass

Monitor Secret Message Pass

Secret key(k) Pass

Table 5: Log of claims made against the message encryption protocol and their results
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6.2 Implicit key authentication

Later policies will require the use of secret keys to create symmetric encryption protocols, implicit key
authentication must be enforced when these keys are distributed to prevent an adversary posing as a
legitimate communication party using an intercepted secret key. To implement this policy a secure key
distribution protocol is required.

Policy Criteria

• The secret key must not be interceptable by an eavesdropping adversary

• Parties must be able to identify the sender of each step of the protocol to prevent an adversary
impersonating a party to get the key.

• Parties must both have the same secret key at the end of the protocol.

6.2.1 Design

When looking to design this protocol, a decision had to be made on which style of key distribution
was most suitable. These two styles being considered are best represented by the two popular key
distribution protocols signed Diffie-Hellman and Needham-Schroeder.

Needham-Schroeder makes use of a trusted 3rd party to securely establish authentication which can be
used to exchange symmetric secret keys over an insecure network as shown in the figure below.

Figure 13: Illustration of the Needham Schroeder authentication process [23]
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In comparison, Diffie-Hellman does not require the use of a third party and instead relies on the concept
of never actually sending a shared key over an insecure network but instead exchanging information
that along with secret information both parties posses, allows the parties to generate the same key
which becomes the shared secret key to be used in future communications.

For the given IoT scenario a Diffie-Hellman style solution is the most appropriate based mainly on the
fact that it does not require an additional third party. This makes the protocol less computationally
complex for the IoT devices as they only need to communicate with each other, as well as negating the
need infrastructure in the form of an additional server.

The design for this policy in the project scenario, as illustrated below, works by having the two com-
munication parties each come up with a fresh value. The aim of the protocol is then to allow the
two parties to exchange their values whilst ensuring that an adversary cannot either eavesdrop on the
message or pose as one of the parties to gain both of the values.

Figure 14: Illustration of the planned key exchange [23]

Once each party exchanges it’s generated value with the other, they are then combined together using
a predetermined hash function. This means that the two values are inputted into a function that is

27



computationally expensive to reverse engineer, because of this an adversary cannot work out what the
two inputs were from the resulting output. This output is then used as the shared secret key that all
session keys for future communications will use as the base.

6.2.2 Implementation

0

1 hashfunction hashed;

2 usertype Message;

3

4 protocol KeyExchange(Monitor,CloudServer)

5 {

6 role Monitor

7

8 {

9

10 fresh MonitorValue : Nonce;

11 fresh Confirm: Message;

12 var CloudServerValue : Nonce;

13

14 send_1(Monitor,CloudServer,{Monitor,MonitorValue}pk(CloudServer));

15

16 recv_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),

17 CloudServer}pk(Monitor));

18

19 send_3(Monitor,CloudServer, hashed(CloudServerValue, Confirm));

20

21 claim_Monitor1(Monitor,Niagree);

22 claim_Monitor2(Monitor,Nisynch);

23 claim_Monitor3(Monitor, Secret, MonitorValue);

24 claim_Monitor4(Monitor, Secret, CloudServerValue);

25

26 }

27

28 role CloudServer

29

30 {

31

32 var MonitorValue: Nonce;

33 var Confirm: Message;

34 fresh CloudServerValue: Nonce;

35

36 recv_1(Monitor,CloudServer,{Monitor,MonitorValue}pk(CloudServer));

37

38 send_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),

39 CloudServer}pk(Monitor));

40

41 recv_3(Monitor,CloudServer, hashed(CloudServerValue, Confirm));

42

43 claim_CloudServer1(CloudServer,Niagree);

44 claim_CloudServer2(CloudServer,Nisynch);

45 claim_CloudServer3(CloudServer, Secret, MonitorValue);

46 claim_CloudServer4(CloudServer, Secret, CloudServerValue);

47

48 }

49 }
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6.2.3 Review

To test the criteria that the secret key is not interceptable through eavesdropping, Scyther’s Secret
claim will be used on both the cloud server and monitor value for both communication parties. If these
secret claims hold, the criteria will be verified as an adversary would need to eavesdrop on at least one
of the values to intercept the key.

By using the Niagree and Nisynch claims, Scyther can verify if the roles within a protocol are able to
authenticate the identity of a message sender. The Ni prefix denotes that the attack scope is limited
to non-injective attacks, these are attacks that do not assume the adversary has knowledge from a
previous run of the protocol [24]. If these claims hold then a impersonation attack is not possible and
the 2nd criteria which specfies security against this form of attack will be verified.

The 3rd Criteria, which states that both parties must be able to agree on a shared secret key can be
verified by ensuring that both parties posses both the cloud server and monitor value at the end of the
protocol. This can again be verified using the Secret claim as it will only pass if the role specified does
have access to the object the secrecy claim is being made on.

Role Claim Result

Monitor Niagree Pass

Nisynch Pass

Secret, MonitorValue Pass

Secret, CloudServerValue Pass

Cloud Server Niagree Pass

Nisynch Pass

Secret, MonitorValue Pass

Secret, CloudServerValue Pass

Table 6: Log of claims made against the key distribution protocol and their results

The required claims all pass for this protocol demonstrating that it is fit for purpose and allows for the
secure distribution of secret keys.

29



6.3 Unique Session Keys

Implementing fresh session keys between parties for each communication is a policy aimed at preventing
replay attacks when the monitor sends energy usage information to the cloud server. Communication
parties have established a shared secret key using the key distribution policy in the section above. A
protocol is now required that generates session keys using this secret key and defines how messages are
to be encrypted with them.

Policy Criteria

• The session key used for each communication must be unique

• The cloud server must be able to authenticate that the monitor it sends information to is legitimate

6.3.1 Design

By deriving session keys from the shared secret key now present between both communication parties,
it is possible to design a simple protocol that meets the policy criteria. Simplicity is an important factor
for this protocol as the communication between the monitor and cloud server where current electricity
usage is sent is very frequent and therefore should be as lightweight as possible.

Figure 15: Illustration of a one-way communication utilising session keys [23]
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6.3.2 Implementation

In Scyther, the SessionKey usertype can be used to model a session key. The fresh prefix during the
initialisation of the key (line 14 and line 24) denotes that a new key is generated for each communica-
tion. To model the information exchange between the two parties after the session key is established,
a Message user type has been defined.

0 hashfunction hashed;

1 hashfunction sharedkey;

2 usertype Message;

3 usertype SessionKey;

4

5 protocol SessionKeys(Monitor,CloudServer) {

6

7 role Monitor {

8

9 fresh MonitorValue : Nonce;

10 var CloudServerValue : Nonce;

11

12 fresh info : Message;

13 var info: Message;

14 fresh sharedkey: SessionKey;

15

16 send_1(Monitor,CloudServer,{Monitor,MonitorValue}pk(CloudServer));

17

18 recv_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),

19 CloudServer}pk(Monitor));

20

21 send_3(Monitor,CloudServer, {info} sharedkey);

22

23 claim_Monitor1(Monitor,Alive);

24 claim_Monitor2(Monitor,Secret, info);

25 }

26

27 role CloudServer {

28

29 var MonitorValue: Nonce;

30 fresh CloudServerValue: Nonce;

31

32 var info: Message;

33 fresh info: Message;

34 fresh sharedkey: SessionKey;

35

36 recv_1(Monitor,CloudServer,{Monitor,MonitorValue}pk(CloudServer));

37

38 send_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),

39 CloudServer}pk(Monitor));

40

41 recv_3(Monitor,CloudServer, {info} sharedkey);

42

43 claim_CloudServer1(CloudServer,Niagree);

44 claim_CloudServer2(CloudServer,Nisynch);

45 claim_CloudServer3(CloudServer,Alive);

46 claim_CloudServer4(CloudServer,Secret, info);

47 }

48 }
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6.3.3 Review

To model the policy criteria in Scyther, the Alive and Niagree/Nisynch claims will be used to verify
that the cloud server is able to authenticate the monitor, for this protocol only one way authentication
is required due to the protocol being one-way. Alive verifies that the protocol has completed all
the steps of the protocol in the specified order. This ensures that the session key is agreed upon
before communications occur and is how the unique session key requirement for this protocol will be
verified.

As shown in the figure below, without the implementation of session keys it is trivial for an adversary
to reuse credentials from previous communications.

Figure 16: Replay attack before the implementation of session keys

After the implementation of session keys this replay attack is no longer possible and the protocol is
able to meet all of the specified criteria as shown by the results table below .

Role Claim Result

Monitor Monitor, Alive Pass

Secret, info Pass

Cloud Server Niagree Pass

Nisynch Pass

Cloud Server,Alive Pass

Secret, info Pass

Table 7: Log of claims made against the session key protocol and their results
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6.4 Mutual Authentication

Whilst the session keys protocol is effective at establishing a secure connection between monitor and
cloud server as well as allowing the cloud server to authenticate the identity of the monitor sending
information. It is possible for an adversary to pose as a cloud server and establish a communication
channel with the monitor. This would allow the adversary to send malicious information to smart
monitors such as fake electricity information or potentially use the communication channel as an attack
vector for malware.

Policy Criteria

• The session key used for each communication must be unique

• The Monitor must be able to authenticate that the Cloud Server it sends information to is
legitimate

• The Cloud Server must also be able to authenticate that the Monitor it sends information to is
legitimate

6.4.1 Design

The design for this protocol is based of the design of the preceding session keys protocol. Due to
the increased number of messages sent in a single round of this protocol and the need for additional
authentication, this protocol will not be as lightweight as the session keys protocol.

Figure 17: Illustration of a two-way mutually authenticated protocol [23]
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However, the two-way communication where the Cloud Server sends electricity pricing information to
the smart monitor as well as receiving electricity usage does not occur as frequently as the one-way
sending of electricity usage meaning the complexity of this protocol is not as much of a concern.

6.4.2 Implementation

0 hashfunction hashed;

1 hashfunction sharedkey;

2 usertype Message;

3 usertype SessionKey;

4

5 protocol MutualAuthentication(Monitor,CloudServer)

6 {

7 role Monitor

8

9 {

10

11 fresh MonitorValue : Nonce;

12 var CloudServerValue : Nonce;

13

14 fresh MonitorInformation : Message;

15 var CloudServerInformation: Message;

16 fresh sharedkey: SessionKey;

17

18

19 send_1(Monitor,CloudServer,{Monitor,MonitorValue}pk(CloudServer));

20

21 recv_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),

22 CloudServer}pk(Monitor));

23

24 send_3(Monitor,CloudServer,{CloudServerValue, MonitorInformation} sharedkey );

25

26 recv_4(CloudServer,Monitor,{MonitorValue,CloudServerInformation} sharedkey);

27

28 claim_Monitor1(Monitor,Niagree);

29 claim_Monitor2(Monitor,Nisynch);

30 claim_Monitor3(Monitor, Secret, CloudServerInformation);

31 claim_Monitor4(Monitor,Alive);

32

33 }

34

35 role CloudServer

36

37 {

38

39 var MonitorValue: Nonce;

40 fresh CloudServerValue: Nonce;

41

42 fresh CloudServerInformation: Message;

43 var MonitorInformation: Message;

44 var sharedkey: SessionKey;

45

46 recv_1(Monitor,CloudServer,{Monitor,MonitorValue}pk(CloudServer));

47 send_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),

48 CloudServer}pk(Monitor));

49

50 recv_3(Monitor,CloudServer, {CloudServerValue, MonitorInformation} sharedkey );

51

52 send_4(CloudServer,Monitor,{MonitorValue,CloudServerInformation} sharedkey);
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53

54 claim_CloudServer1(CloudServer,Niagree);

55 claim_CloudServer2(CloudServer,Nisynch);

56 claim_CloudServer3(CloudServer, Secret, MonitorInformation);

57 claim_CloudServer4(CloudServer,Alive);

58

59 }

60 }

6.4.3 Review

To model the mutual authentication policy criteria that both parties must be able to authenticate
the identity of each other, Niagree/Nisynch as well as the alive claim will be verified for both the
cloud server and monitor, this provides assurance that both parties in the communication are able
to authenticate each other. Secret claims on the monitor and cloud server information will be used
to verify that the message contents cannot be intercepted through eavesdropping. To verify that the
session key is unique the Alive claim will be used as it was in the session key protocol.

Role Claim Result

Monitor Niagree Pass

Nisynch Pass

Secret, CloudServerInformation Pass

Alive, Monitor Pass

Cloud Server Niagree Pass

Nisynch Pass

Secret, MonitorInformation Pass

Alive, CloudServer Pass

Table 8: Log of claims made against the mutual authentication protocol and their results

As shown by the Scyther results, this protocol has been verified to meet all of the policy criteria.
This protocol implements all of the preceding policies as well and therefore is cryptographically secure
against all the identified communication based threats in the threat model (section 4.2).
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7 Project Management

All deliverables for this project were completed within the required deadlines. To ensure this was the
case, the main tool used for macro project management was the Gantt chart.

To catalogue and plan mitigation against risks which could pose issues for the project, a risk manage-
ment matrix was created outlining the key risks the project faces. To measure the threat level each
risk posed a scoring system was used, each risk was rated out of 5 based on how likely the risk was
to occur and the magnitude of impact if it did, these values were then multiplied together to give a
risk score out of 25. Each risk was assigned a baseline score which represents the level of risk before
any mitigation was put in place. A mitigation plan for each risk follows detailing how the threat posed
by that risk can be reduced. Finally, a residual risk score is displayed showing the threat posed by
each risk after the mitigation plan is put in place. The full risk matrix can be found under Appendix
C.

7.1 Coronavirus mitigation

When comparing the project plan Gantt chart Appendix A with the Gantt chart showing how work
was actually completed Appendix B, the factor that had the biggest impact was coronavirus. The
threat that access to Scyther and university computers could be lost was identified on my risk matrix
and was one of the reasons the creation of a portable Scyther development environment is part of this
project. As a result of this, the effect that coronavirus had on my ability to complete my project was
negligible. A week of work starting on the 23rd of March was missed due to relocating home, preparing
for and settling into the quarantine however the 2 week deadline extension given negated this.

To stay in contact with my supervisor and ensure I still benefited from their feedback without physical
meetings, Microsoft Teams was used to schedule online meetings. The project is hosted on the University
GitLab and issue boards were used to track my progress through each task as well as keep my supervisor
informed about what I was working on at a given time.

7.2 Scyther development environment

To manage and prioritise the development of the Scytherbox, requirements were prioritised using
MoSCoW and divided into development sprints allowing for the rapid creation of a development en-
vironment with the ’Must’ requirements. This allowed for the modelling of protocols to begin within
the scheduled time-frame. A breakdown of the work completed for each sprint can be found in the
Appendix D,E,F.

One ’Could Have’ requirement from Sprint 2 was not completed which was to allow the user to set up a
Git configuration within the Scyther development environment using the VagrantFile. After researching
the methods that could be used to do this, I came to the conclusion that a VagrantFile git setup would
be more time intensive than I estimated in my requirements planning to set up and it would be difficult
to design in a way that is easy for the user to use. To Mitigate this issue I found that creating a section
within the shared folder for Git repositories was a more elegant solution and much easier to use. This
means that changes made to the repository in the development environment are automatically reflected
in the host machine side of the shared folder, changes can then be pushed to the remote git branch
using the user’s choice of git client from the host machine.
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8 Project Evaluation

This section examines the success of the project and details the future plans for this work.

8.1 Achievement against project goals

To evaluate the project’s success, the achievements made during the course of the project will be
compared against against the initial project goals

1. Investigate and conduct a risk assessment on the main vulnerabilities and threats faced
by IoT devices within a smart grid environment.

After extensive research, a threat model showing the key vulnerabilities faced by a smart grid system
was produced. Each vulnerability was described, and the specific threat it posed to the smart grid
system documented.

2. Recommend security policies that can mitigate these threats, justifying these policies
by taking into account secondary factors including the cost to implement and any loss to
productivity these policies might incur.

A set of policies based on industry standards was created to specifically mitigate the vulnerabilities
identified during the threat analysis. Design choices for these policies were justified with supporting
literature and where necessary the potential disadvantages of each policy were discussed.

3. Implement and verify that these communication protocols mitigate the identified vul-
nerabilities using Scyther, a formal method based protocol verification tool.

Communication policies and their criteria were modelled in Scyther, the review section for each policy
explained how each criteria was converted into Scyther claims. The final versions of all policies passed
their verification in Scyther confirming that they are fit for purpose.

4. Clearly explain the impact of each of my policies by comparing the possible attack
vectors with and without each policy using Scyther.

Where appropriate Scyther attack graphs were included in the review section illustrating the attacks
possible before each protocol was implemented.

5. Create a purpose built, portable Scyther virtual machine environment allowing myself
and others to quickly set up and start using Scyther on a new device. Therefore allowing
others to verify and extend upon the results of the project.

The Scyther environment was successfully created and utilised in the modelling and verification of the
project’s policies. The versionable nature of VagrantFiles make it easy for others to set up and add to
the virtual machine to suit their needs.
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8.2 Conclusion

Though the course of this project, a set of security policies have been designed,implemented and verified
to mitigate the threats that IoT devices within a smart grid system face. The project shows that whilst
the introduction of smart grids to a countries’ power grid does introduce the possibility of cyberattacks
against critical national infrastructure, with proper security controls these threats can be identified and
mitigated. The project also explored the use of Scyther for the modelling and verification of security
protocols, demonstrating it’s ability to find flaws based on the security requirements defined for each
protocol. Overall, the project has achieved it’s primary goals and provides a overview of the security
measures that can be taken to secure IoT devices within a smart grid scenario.

8.3 Future Plans

An aim for the future is to submit this project to the 2020 International Verification and Security Work-
shop. This will allow for the sharing of this project’s results with the wider cybersecurity community
as well as gaining the perspective of industry leaders as to how this project could be developed on and
improved in the future.

One of the key difficulties of learning Scyther for this project was the lack of internet resources available
for those new to cryptographic protocol verification. This project has the capability to provide a starting
point for others inside or outside the university that wish to verify security policies using Scyther.
Through my time on this project, my supervisor has found and I have made contact with a PhD student
at the university who is interested in using Scyther as part of their research project. The research and
protocols developed in this project will be made available to them. With the longer project schedule
and higher level of academic experience the student could take the cryptographic protocol modelling
demonstrated in this report to a higher level. The Scyther development environment created for this
project will also be made publicly available for others to use.

This project provides a high level overview of the cyber threat landscape faced by smart grids. Further
work could focus on a single threat in far greater detail than was possible in this project. For example,
a project focusing on session keys alone would allow for an analysis into additional factors such as the
specific algorithm used to derive keys and a more detailed analysis of how replay attacks occur.
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9 Appendix

A Projected Gantt Chart

Figure 18: Initial Gantt chart for project
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B Actual Gantt Chart

Figure 19: Gantt chart for the project
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C Risk Management Matrix

Risk Baseline Mitigation Residual

Scyther stops being sup-
ported/allowed on the
university computers and
I lose my access to the
software

Impact: 5

Likelihood: 2

Score: 10

I am using vagrant to set-up a box with
Scyther and all the software required
to run it installed so I always have it
available, the vagrant box has a cloud
backup. This allows for the easy trans-
fer of work over to personal devices

Impact: 5

Likelihood: 0

Score: 0

I fail to manage time cor-
rectly on the project and
do not finish parts

Impact: 4

Likelihood: 3

Score: 10

My Gantt chart will help when identi-
fying if I am falling behind schedule on
certain parts. Meeting weekly with my
supervisor where I share my progress
will also help me hold myself account-
able for work.

Impact: 4

Likelihood: 1

Score: 4

My laptop is lost, stolen,
or damaged causing me to
lose all the content on the
hard drive

Impact: 4

Likelihood: 2

Score: 8

My project files are uploaded to Git and
frequently pushed to the remote branch
when I make changes. I can continue to
work on my desktop and the university
computers.

Impact: 3

Likelihood: 1

Score: 3

Sections of work are larger
or more difficult than I
anticipated meaning I fail
to complete parts of the
project

Impact: 4

Likelihood: 3

Score: 12

My background research and experi-
ence of learning Scyther in the last
month has helped me estimate the dif-
ficulty of each task. The scheduling of
tasks in the project will assign extra
time in each task for potential delays
that may occur due to unexpected dif-
ficulties.

Impact: 3

Likelihood: 2

Score: 6

Personal/family issue oc-
curs

Impact: 4

Likelihood: 3

Score: 12

Whilst this risk is difficult to mitigate,
the university support service will be
used if needed and I will keep my su-
pervisor informed of any issues.

Impact: 3

Likelihood: 3

Score: 9

Table 9: Qualitative risk analysis and mitigation plan for the key risks
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D Sprint 1 Work Breakdown

Figure 20: Breakdown of the work completed in the first Scyther development environment sprint

44



E Sprint 2 Work Breakdown

Figure 21: Breakdown of the work completed in the second Scyther development environment sprint
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F Sprint 3 Work Breakdown

Figure 22: Breakdown of the work completed in the third Scyther development environment sprint
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