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Abstract

Critical national infrastructure such as smart grids are becoming an increasingly popular
target for cyberattacks from nation states and other adversaries. One of the key reasons
for this are the often inadequate security measures present in the IoT devices these sys-
tems rely on. In order to protect such a system, the unique threat landscape faced by
smart grids as well as the constraints of a large, distributed network of IoT devices must
be considered.

The primary objective of this project is to firstly identify the main threats that IoT
devices in a smart grid system face and then recommend security policies that could
mitigate these threats. To test that the outlined policies are fit for purpose, they were
modelled and verified using Scyther, a tool for the automated verification of cryptographic
protocols.
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Nomenclature

Nonce A randomly generated value that is used only a single time in a cryptographic protocol.
Often used as a timestamp to prevent the reuse of old message credentials.

Adversary A term used to describe a party attempting to disrupt the security of a system.

Hypervisor A piece of software that creates an instance of a virtual machine from a virtual
machine file.

Communication party An intended sender /recipient of a communication.

Malware Malicious software designed to attack the security of a computer/computer network.
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1 Project Description

IoT devices present many exciting applications for both industrial and consumer use. However, in-
creased dependence on these devices opens up new consequences and attack vectors that an adversary
can use to attack a target. This is of particular importance in the case of IoT devices connected to
smart grid infrastructure as cyberattacks could be used to disrupt critical national infrastructure. For
example, in 2015 the Ukrainian power grid’s industrial control system was attacked causing 225,000
people to lose power for several hours [1].

|oT to Cloud information exchange

Cloud System

Home Network

Figure 1: Reference diagram of my smart grid scenario



The scenario for my project is an IoT based smart grid with a focus on the communications between
IoT devices and their interactions with the cloud layer. The reference diagram above details the devices
present in the system. The devices within the home network are installed in each household and interact
with their local cloud server which manages all the households in an area.

This project focuses mainly on IoT communication protocols and their configuration rather examine
flaws in the hardware or firmware ran by these devices.

1.1 Project Aims and Objectives

This project aims to produce, model and verify a collection of policies that are suitable for mitigating
the threats that an IoT enabled smart grid may face. I wish to focus on the following goals within this
project:

e Conduct a risk assessment on the main vulnerabilities and threats faced by IoT devices within a

smart grid environment.

e Recommend security policies that can mitigate these threats, justifying these policies by clearly
linking them to specific threats.

e Implement and verify that these communication protocols mitigate the identified vulnerabilities
using Scyther, a formal method based protocol verification tool.

e Create a purpose-built, portable Scyther virtual machine environment allowing myself and others
to quickly set up and start using Scyther on a new device. Therefore allowing others to verify
and extend upon the results of the project.



2 Literature Review

My literature review explores the IoT and smart grid landscape before looking into the cybersecurity
issues that a smart grid may face. Finally, the review discuss the verification of cryptographic protocols
in the context of my scenario.

2.1 Internet of Things (IoT) Devices

IoT as a general concept can be described as physical objects also being network identifiable devices
that are able to communicate without the need for human interaction [2]. These devices can be used
in a home or industrial context to automate processes or afford additional functionality. IoT devices
can do this as they are able to leverage information by collecting/receiving it across a network. As an
example of an IoT implementation in a chemical production plant, IoT monitoring devices could be
used to monitor the temperature of a reaction. If the temperature fell outside of the requirement, the
device could communicate with another IoT device that controls the coolant flow through the reaction
and correct it without the need for any human interaction.

These IoT networks can offer benefits for existing processes such as improved efficiency, fewer employees
required to manage it and data which can be used to improve the process. However, it is important
to consider that the introduction of networked devices to a process opens it up to the possibility of
cyberattacks.

2.2 Smart Grids

The term smart grid refers to the integration of technology into electrical grid systems allowing them
to dynamically change to meet the current needs of consumers [3]. Whilst the implementation of smart
grids can vary significantly, several elements generally remain constant:

e Smart Meters and Monitors - These IoT devices are used to measure and analyse the energy
usage within a single home. Typically smart meters simply collect energy readings from a room
and send this information to the smart monitor. This monitor then relays energy information to
a collection server and receives information on current energy prices. [4]

e Smart Hub - This device allows the homeowner to track their electricity usage as well as view
the current electricity price to help time their electricity usage to get the best price resulting in
a better distribution of power demand across the power grid.

e Cloud Layer - This layer communicates with the Smart Meter to receive electricity usage in-
formation and send electricity pricing information. This information can then be used by the
rest of the smart grid system to adjust the routing and production of electricity based on current
demand.

2.3 IoT Smart Grid, the Threats, Attitudes and Best Practices

A key finding from my research, summarised by Robles [5] is that one of the key differences between
securing a traditional system compared with a national infrastructure system, such as smart grid, is the
reduction in the effectiveness of standard security measures such as patches, password management and
access control. Stating that this is due to the size and diverse combination of hardware and software
that comprises this class of system. Whilst traditional controls do have their place in smart grid secu-
rity Sajid [6] identifies the need for specific security measures that directly mitigate the threats smart
grids face. This point is further explored by Bere [7] which states that large industrial control systems
are often the target of state-funded Advanced Persistent Threat(APT) groups whose capabilities and
resources far outmatch the typical threat actors a system faces. [7] Bere goes onto recommend that the
security protocols and controls implemented should be layered, providing a ’defence in depth’ security
approach which Virvilis [8] states as a key countermeasure against APT groups as these groups have the
ability to execute zero-day exploits. Zero-day exploits offer very little chance of mitigating an attack



against part of a system as the vulnerability is only known to the adversary at the time of execution [9].
However, a layered system means that in the event of such an attack, the entire system will not be
compromised due to the presence of other security measures.

Another area of difficulty when it comes to securing these systems is the perspective and attitudes
of governments and other organisations when it comes to securing these systems. Wang [10] states
that many organisations do not see investing in the protection of these systems as economically viable.
Virvilis [8] adds that disruption to productivity and user experience due to the increase in latency or
removal of features that hardened security protocols may necessitate is another factor in the lack of
implemented protocols on these systems. Mcqueen [11] suggests that it is difficult to quantify cyber
risk using traditional risk assessment methods. This may further contribute to the reluctant attitude
towards cybersecurity investment as it is difficult to quantify the benefits of a reduction in risk to
management.

2.4 Verification of Security Policies and Protocols

Creamers [12] states that it is very difficult for humans to analyse and find flaws in cryptographic
protocols, as evidenced by the number of protocols that are found to have security flaws after their
release. An example of this is the Needham-Schroeder key distribution protocol which even after ex-
tensive analysis and verification by hand was found to have a security flaw which allowed an adversary
to pass off an old session key as a new and valid one [13]. Meadows [13] goes on to suggest that formal
methods are a good choice for analysing these cryptographic protocols as they are enclosed enough to
make modelling and verification feasible whilst also having the potential for subtle and counter-intuitive
flaws that an informal analysis may miss.

In order to verify a protocol using automated formal methods, it must first be modelled so that it
can be interpreted by a protocol verification tool. In my research, I have found two tools that are the
most suitable for this purpose; Pro-Verif and Scyther. In their comparative analysis of these two tools
Dalal et al. [14] identifies that whilst the two tools share several similarities, there are key some key
differences as shown below:

e Modelling Language - Scyther uses ’security protocol description language’ (SPDL) to model
protocols. Whereas Pro-Verif protocols are represented using horn clauses or pi calculus [14].
The SPDL used by Scyther is closer to pseudo-code than Pro-Verif making it more suitable for
illustrating the implementation of protocols as well as being more fitting to my skillset.

e Attack Graphs - Scyther automatically generates attack graphs when a flaw is found in verifi-
cation, generating a visual flow diagram of the attack. Pro-Verif does not support this feature.

Based on the easier to understand modelling language and attack graph feature identified in Dalal’s
comparison, the project will used scyther for the modelling and verification of security protocol



2.5 Discussion

My research into the literature surrounding smart grid security brings up the issue that a smart grid
system faces additional cybersecurity obstacles compared with a traditional industrial network. This is
partially due to the nature of the system itself as smart grids comprise of mainly low power devices being
distributed across a large area, resulting in additional factors that must be considered when applying
common cybersecurity controls. Another reason for these additional obstacles is the cyber threat
landscape that smart grids face. As smart grids form part of a nation’s critical national infrastructure,
they can become a target for state-funded advanced persistent threat groups capable of more advanced
attacks than a typical cyber threat actor.

2.6 Conclusion

My literature review has highlighted that smart grids require a bespoke security plan due to the unique
challenges they face. To respond to this, the project will investigate and produce a list of vulnerabilities
based specifically on the smart grid scenario outlined in the project description section. My research has
also shown that when verifying a protocol by hand, it is near impossible to find every attack scenario
and therefore a method of verifying protocols automatically using formal methods is required. The
project will use Scyther for this based on the advantages outlined in the comparative review of Scyther
and Pro-Verif.



3

Research and Design

When it comes to implementing a best practice cybersecurity strategy, NIST [15] recommends a five
step process for analysing and securing smart grid systems. This process is defined below along with
how the project will implement each of the points outlined.

3.1

1. Defining use cases - The use cases of the system should be defined.

Though the use of a reference diagram, the scope and elements comprising the project’s IoT
system are clearly defined.

2. Risk Assessment - The vulnerabilities, threats and the impact these threats can
cause should be evaluated for the system.

A threat model based on the reference diagram will be used to illustrate where vulnerabilities in
the system are present. The vulnerabilities will be further described in isolation with emphasis
placed on the threats posed by each vulnerability and the impact of these threats in the context
of the project’s scenario.

3. Specification of Security Requirements - The security requirements for the system
should be stated and specified.

Taking into account the threats outlined in the previous step, A list of policies will be produced
outlining the security requirements of the system.

4. Design and Development of a Security Architecture - A security architecture to
protect the smart grid system should be designed and implemented.

Protocols will be designed and then implemented in Scyther that satisfy the policies defined in
the previous step.

5. Assessment of implementation - The architecture should be assessed against the
defined security requirements to test if it is fit for purpose.

The project will use Scyther’s protocol verification tools to test the protocols against the require-
ments defined.

Scyther development environment

One of the key goals of the project was to create a portable environment for Scyther development. When
researching the most suitable tools to create this, emphasis was placed on the following criteria:

Self-contained - Once installed, the virtual machine should contain all the components and
dependencies required to develop using Scyther.

Portable - The machine must be simple to install and ideally small enough that it can be hosted
using common software distribution tools such as GitHub.

Configurable - Users should be able to make changes to the environment to suit their individual
preferences and needs. This includes elements such as the flavour of Linux used and the resources
assigned to the machine.

Versionable - Changes made to the machine configuration should be versionable using git. This
allows for future adaptations and iterations upon the machine to be easily tracked as well as
making it easy for users to revert changes made to the machine if issues occur.

Compatible - The machine should be formatted so it does not require the use of proprietary
software to run.

During research, two virtual machine formats stood out as being suitable for the project; the Open
Virtualisation Format (OVF) and Vagrant. Both of these formats are non-proprietary and easily
compatible with common hypervisors like VirtualBox. Either format would also allow for the packing
of all the required software to develop using Vagrant.



One of the key advantages Vagrant possess over OVF is the vagrant file. Vagrant environments are
packaged in formats known as boxes, vagrant files allow a user to customise and specialise a box to
suit their needs. As Vagrant files are written in the Ruby programming language, they are versionable
and compatible with git, this makes the process of collaborating with others and extending vagrant
files simple. However, Vagrant virtual boxes are slightly more complex to install as they require the
vagrant software to be installed on the host machine, OVF files can just be imported into the chosen
hypervisor. Despite this, the configurability and git compatibility that vagrant files provide offer great
value in this use case making them the best choice for the project’s Scyther environment.

3.1.1 Requirements and development methodology

Based on the criteria outlined in the section above, a list of requirements for the Scytherbox have been
developed. To prioritize these development requirements, the MoSCoW method has been used:

Table 1: Table showing the prioritisation of the Scytherbox requirements

Must Have Should Have

Scyther v1.13 installation from VagrantFile Linux flavour options
Scyther dependencies installed from VagrantFile | Shared folder between host and Scytherbox
Versionable using git Installation Instructions

Example Protocols within the box

Could Have ‘Won’t Have Now

Git configuration within the box Windows version of scytherbox

Scyther user guide

Despite a lack of clearly defined stakeholders for this part of the project, elements of the AGILE
methodology will be used to plan and manage the development of the Scytherbox. The main reason
for this is that a basic version of the box that can run Scyther is required to complete the modelling
and verification of the suggested protocols making an initial working release a high priority.



To estimate the development time each requirement will take to implement, t-shirt sizing has been
used. The table below shows a description of each requirement and it’s estimated size.

Table 2: Table describing and estimating the size of each Scytherbox requirement

Requirement Title Description Estimated Size

The latest version of Scyther should be im-

Scyther v1.13 installation ported into the box using the VagrantFile Medium
Python 2.7, as well as the GraphViz and wx-
Scyther dependencies installed | Python libraries, should be installed on the Medium
box
. . . Changes to the box configuration should be
Versionable using git visible in git so they can be versioned. Small
Linux flavour options Allow changing of Linux flavour during box Medium

configuration

Implement functionality allowing git reposito-
Git configuration ries to be cloned and configured on the box Large
during configuration

Implement a synced folder on the host ma-
Shared folder chine and Scytherbox allowing for the easy Small
transfer of files between the two

A set of instructions explaining how to install

Scytherbox Medium

Installation instructions

A folder on the host machine attached to the
Example protocols box allowing sample protocols to be included Medium
in an installation of the box.

A guide installed on the box explaining the

basics of Scyther Medium

Scyther user guide

A version of the Scytherbox that uses Win-

Windows versio .
Hdows version dows as the box’s operating system

Extra Large

Small - 1 Hour
Medium - 2 Hours
Large - 4 Hours

Extra Large - 10 Hours



3.1.2 Development plan

The development of the Scytherbox environment is scheduled to take place over a 3 week period with
1 week allotted for each sprint. The modelling and verification of the project’s policies is scheduled
to take place 1 week into this period hence the core features required to develop using Scyther being
assigned to the first sprint.

Table 3: Scytherbox sprint plan

Sprint 1 Sprint 2 Sprint 3

Scyther Installation Git configuration within the box Scyther user guide

Scyther dependencies installed Linux flavour options Example Protocols within the box

Versionable using git Installation Instructions

Shared folder

Sprint Hours: 6 Sprint Hours: 5 Sprint Hours: 6

3.1.3 Implementation of development plan

The first sprint featured the essential elements required to develop using Scyther, development for this
sprint went largely as expected and after overcoming an issue in the first two days of the sprint relating
to creation of the initial base box, the remaining tasks fell away quickly.

Hour: .
OL.us.: Sprint 1: Work Breakdown
Remaining
6 Shared Folder Shared Folder
5 Versionable using | Versionable using
git git
4 Scyther Scyther Shared Folder
Dependancies Dependancies - ——
3 Installed Installed emona. e using
git
2 S Shared Fold
Scyther Scyther cyther. ared Folder
Installation Installation Dependancies ‘Versionable usin,
1 Installed it & Shared Folder Shared Folder
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Figure 2: Breakdown of the work completed in the first sprint

One 'Could Have’ requirement from Sprint 2 was not completed which was to allow the user to set
up a Git configuration within the environment using the VagrantFile. After researching the methods
that could be used to do this, I came to the conclusion that a VagrantFile git setup would be more
time intensive to set up than I anticipated and it would be difficult to design in a way that is easy to
use.



Hours
Remaining

Sprint 2: Work Breakdown

[

Linux flavour options

Linux flavour options

Limux flavour options.

Limx flavour options

Git configuration within | Git configuration within | Git configuration within | Git configuration within | Git configuration within | Git configuration within | Git configuration within
box box box box box box box
2
1
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Figure 3: Breakdown of the work completed in the second sprint

Sprint 3 featured the requirements that would improve the experience for others using the Scyther
environment in the future and was completed according to plan.

Hours .
L. Sprint 3: Work Breakdown
Remaining

6 . c

Installation Installation
. instructions instructions
4 Example Example Example

Protocols within | Protocols within | Protocols within
3 box box box
2
Scyther user guide|Scyther user gnide|Scyther user gnide|Scyther user guide|Scyther user guide|Scyther user guide
1
Monday Tuesday ‘Wednesday Thursday Friday Saturday Sunday

Figure 4: Breakdown of the work completed in the third sprint
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3.2 Threat Model

The threat model below shows the key attack vectors and vulnerabilities an adversary could exploit
within the scenario:

|oT to Cloud infarmation exchange

Cloud System

4. Replay Attack

Home Metwark

Figure 5: Threat Model of my smart grid scenario
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3.2.1 Weak/Default Password Fuzzing Attack

OWASP [16] states than the most common vulnerability exploited in IoT devices is the use of weak or
default passwords. These attacks are usually performed by automated scripts commonly referred to as
bots that scan the internet for connected devices and run a list of common passwords. As an example
of this, the Mirai botnet was able to infect and recruit almost 500,000 IoT devices using short list of
common passwords [17].

Common Password Payload Metwark Traversa

B - _—
B - =

= k. L -
S

Adversary Smart Hub Router

Figure 6: Adversary using a common password to compromise the network

In this scenario, an adversary could exploit an internet connected smart hub with a weak or guessable
password to recruit the device into a botnet or potentially use the compromised device as an attack
vector to mount further attacks on the rest of the network.

3.2.2 Man In The Middle (MITM) Attack

Man in the middle attacks occur when an adversary is able to act as an intermediary or proxy between
communication parties without their knowledge. This allows the adversary to view the contents of the
messages sent between parties as well as silently modify their contents.

Legitimate Request Modified Request
LU
= B = & =
Joo
TTTT =
Smart Monitor Adversary Data Model

Figure 7: Adversary relaying and modifying smart monitor data

An Adversary could perform a MITM attack by secretly relaying and modifying the electricity usage
information sent to the data model. A large scale attack of this kind effecting many monitor to model
connections could cause a false data injection attack on the smart grid system where false data could
cause the system to make an incorrect decision when routing power.
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3.2.3 Passive Eavesdropping

Low power IoT devices commonly use weak or no cryptography in their communications protocols, this
means an adversary could use devices such as a wireless packet sniffer to intercept traffic sent between
devices and read the contents of the communications sent. OWASP [16] lists these insecure protocols
as the 2" most common IoT vulnerability.

Insecure Communication Read

Smart Meter Adversary

111l
oo
(==
L

Smart Monitor

Figure 8: Adversary reading an insecure communication

This attack could occur anywhere in the scenario where devices communicate with each other without
the use of an encrypted communication protocol. For example, the adversary could sniff packets between
the smart meter and monitor to know if a home is occupied based on their current electricity usage or
to gather information on the network for further attacks.

3.2.4 Replay Attack

Replay attacks occur when an adversary is able to identify and collect authentication credentials from a
legitimate communication and use those credentials in a later communication to bypass authentication.
This commonly occurs when communication partners do not make use of a unique identifier for each
communication such as a session key.

Router Cloud Data Server

Sniffs Hashed Authentication

Replays Hash to Target

Adversary
Figure 9: Adversary reusing authentication credentials

The adversary could sniff an encrypted communication between router and server used for the trans-
mission of energy usage data. With this, they could use the hashed authentication credentials to send
messages to the server posing as that home network without needing to know the actual encryption
key used.
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3.2.5 Impersonation Attack

An Impersonation attack occurs when an Adversary is able to pose as the identity of a legitimate
party in a communication protocol, allowing them to bypass authorisation or act on the legitimate
user’s behalf [18]. Protocols that do not use unique tokens for each communication are particularly
susceptible to this form of attack.

Obtained User Credentials Request Made on User's Behalf

k. bt
:

Adversary Cloud Data Server Data Model

Figure 10: Adversary posing as a legitimate smart meter

An adversary could use this attack to pose as a monitor communicating data model and may use this
to report false energy readings reducing trust in the system or use this access to perform further attacks
against the infrastructure.

3.2.6 Open Port Scanning

An open port is a port number that a device accepts packets from. If ports are not configured correctly,
adversaries can use a insecure port that has not been blocked as an attack vector. Botnet recruitment
malware such as the Mirai botnet scan for insecure open ports to identify IoT devices that can be
compromised [19].

Open port used as an attack vector to compromise device

G0

Adversary Internet Smart Hub

Figure 11: Adversary using an open port to attack a device

This attack can occur in the scenario where any devices are configured to allow network traffic in
from unnecessary communication protocols. Whilst any unnecessary open ports increase risk exposure,
communication ports such as Telnet (port 23) are particularly dangerous as they lack any in-built
security measures.
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3.2.7 Network Traversal

Network traversal can allow malware on a compromised network to spread to other networks connected
to it. Malware’s such as ransomware and worms often employ this technique to spread to as many users
as possible. This is a serious issue for high security systems that have to interface with home networks
as the home network is likely to have much poorer security controls.

D Smart Hub

Breaches Insecure
home network

i ‘ih Traverses to industrial network
r
Adversary Home Network
= e = Smart Meter

Figure 12: Malware traversing from an infected home network to industrial network

This attack could occur in the IoT scenario as the smart hub is connected to the homeowner’s network
and communicates with the smart monitor. If a malware on a user’s home network is able to compromise
the smart monitor, an adversary could gain remote control over the device and use it to make further
attacks on the system.

3.2.8 Software Vulnerability

As time passes, it’s likely that vulnerabilities will be found in any given piece of software, patches are
usually released quickly to fix these vulnerabilities. However, some of the most devastating cyberattacks
of recent years relied on already patched exploits to work. A clear example of this is WannaCry
ransomware, the Windows vulnerability that the malware exploited had been patched over a month
before it appeared [20]. Despite this, thousands of organisations were hit that did not patch this
vulnerability including critical national infrastructure such as the National Health Service.

Exploits known vulnerability

b .
Y

oo
400

Adversary Smart Meter
Figure 13: Adversary exploiting an unpatched IoT device
Software vulnerabilities could occur on software used by any of the devices within the smart grid system.

Patches must be applied in a timely and sensible fashion to minimise the risk exposure one of these
vulnerabilities being exploited.
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4 Recommendation of policies and practices

Based on the threats identified above and research into the security needs of smart grid systems, a
set of policies have been defined. These policies are split into two groups, communication policies
which define the standards that communications between devices must follow. As well as best practices
which define non-communication policies to protect the devices in the scenario against other forms of
attack.

4.1 Communication Policies

These are the policies which are to be modelled and verified using Scyther. A brief description of each
policy is defined below explaining why they have been included, as well as any potential drawbacks
that implementing each policy may cause.

Message Encryption This policy is the most fundamental aspect of a cryptographic protocol and is
designed to mitigate the threat of passive eavesdropping. Message encryption defines that the
contents of all communications between parties should be encoded in such a way that only those
with access to the decryption key can decode and read the message.

In a 2018 investigation into the impact of the popular encryption standard AES on IoT commu-
nications, Hung CW and Hsu WT [21] found that Hardware AES increased power consumption
of the average communication by 31%. Despite this increased power draw, encryption is an es-
sential component of a cryptographic protocol as without it, an adversary an simply eavesdrop
on messages in transit and view their contents as shown in section 4.2.3.

Implicit Key Authentication Implicit key authentication is a policy that will be implemented dur-
ing the key distribution process. This process is where communication parties share the secret
keys allowing them to generate session keys for the messages they send between each other. The
policy defines that only the authorised parties should be able to access these keys. Without
this policy, an adversary could perform a man in the middle (section 4.2.2) or impersonation
(section 4.2.5) attack.

The reason for implementing a key distribution process is because symmetric encryption protocols
require a shared secret key between communication parties in order to function. Whilst it is the
case that asymmetric encryption algorithms do not require this step, asymmetric encryption is
also more computationally intensive as it takes more CPU cycles to encrypt and decrypt messages.
This factor becomes significant when considering the low computational power possessed by the
ToT devices with the scenario and the need to communicate energy readings frequently.

Session Keys Session keys are freshly generated keys that parties agree on to encrypt and decrypt
a single communication. These keys are generated and shared with the assistance of the secret
keys already shared in the key distribution process. This policy is being implemented to mitigate
the threat of replay attacks (section 4.2.4) as they prevent the use of intercepted credentials.
This is because the session key intercepted from a previous run will never be reused as they are
regenerated for each new communication.

Mutual Authentication Mutual Authentication requires that both parties are able to authenticate
and trust the identity of each other. This policy is being implemented to prevent impersonation
attacks (section 4.2.5). Particularly impersonation attacks that involve the the mass creation
of fake meters which send false information to the cloud server as well as the prevention of false
cloud server identities causing meters to send their information to an adversary’s server instead
of the smart grid cloud server.
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4.2 Description and specification of IoT Best Practices

The policies defined in this section are designed to mitigate the non-communication based threats a
smart grid faces. The sections below justify the need to implement each practice and provide informa-
tion on how each practice can be implemented into a smart grid scenario.

4.2.1 Password Management

The password management policy is designed to prevent the success of popular automated password
fuzzing attacks which often target IoT devices (section 4.2.2).

In a study examining user behaviour toward password policies, Inglesant [22] found that excessively
restrictive password policies caused users to adopt insecure workarounds such has writing down pass-
words or using the same password across multiple accounts. Therefore, a good password management
policy should aim to balance the need for users to choose a password that is unique and complex enough
to not fall victim to common password lists and brute force attacks, whilst also not being too restrictive
or complicated that the user has to resort to insecure methods of remembering it.

Based on this, the following key points are recommended for the implementation of an effective IoT
password management policy:

e Default passwords should be a 15 character string of random characters, this serves two purposes
by making the default password less susceptible to fuzzing attacks whilst also encouraging the
user to change their password from the default due to the inconvenience of entering the default
password.

e Passwords must be at least 8 characters long. This is the minimum length recommended by
NIST for memory based authentication methods as of 2017 [23]. Whilst even longer passwords do
provide more security, a minimum of 8 allows the password to be easier for the user to remember,
reducing the chance of insecure workarounds being used.

e Before hashing, passwords should be checked against OWASP’s top 10,000 password list [24].
This is because password fuzzing attacks look to try the most common passwords before using
brute force methods.

e User created passwords must not be reused across other platforms. User credentials stolen in large
commercial data breaches are usually sold online, this often occurs without the user knowing that
their password has been leaked.

One notable exception from this list common in other password policies is a requirement to change
the password every set period. Whilst in circumstances where the expectation on the user is higher
for managing their passwords such as a organisational account with access to confidential information.
It was not deemed necessary here as the advantage of having a password change every few months is
outweighed by the frustration this will cause users likely leading to the use of low effort passwords.

4.2.2 Network Segregation

Whilst the IoT smart grid system as a whole is an industrial system, meters and monitors are installed
in peoples homes. Because of this, the implementation of a network segregation policy is necessary
to prevent vulnerabilities in other networks manifesting in the IoT system (section 4.2.7). The
main challenge when considering the given scenario is the smart hub. The smart hub connects to the
homeowner’s WiFi network and visually displays information about their electricity usage to them.
The concern is that without proper controls, a poorly secured home network could provide a route for
malware to enter the industrial system.

To effectively segregate a network from another, two criteria are required. The first criteria is to
reduce the points of contact between the two networks as much as possible, networks that are deeply
intertwined make the sanitisation of network traffic between them much harder. In the given IoT
scenario this has been reduced to a single point of contact between the smart monitor and smart hub.
As the smart hub has no direct contact to either the cloud server or the smart meters in the household.
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The number of attack vectors for network traversal is decreased and therefore securing the points of
contact is less complex.

The second criteria is using a well configured firewall at points of contact between the two networks.
Firewalls are a security control used to monitor and block communications between parties based on
a set of defined rules. In the case of the IoT scenario, rules should be defined to only allow outgoing
traffic from the smart monitor to the smart hub, this can be implemented as the smart hub’s function
is to display information to the homeowner that the smart monitor sends it therefore a one way
communication is sufficient to do this.

4.2.3 Patch Management

This policy is designed to mitigate the threat of software vulnerabilities (section 4.2.8). When a
vulnerability is discovered in software used by a system there are two options for mitigation. The first
is to isolate the system from any outside connections and employ restrictive policies to limit how the
system can be accessed. This is not an option in a smart grid scenario as the IoT devices need to
communicate with each other to perform their core functionalities, the distributed layout of a smart
grid also makes isolation much more challenging as devices are spread across different networks and
physical locations. The second option is apply a security patch fixing the vulnerability. Large, always
on and distributed systems such as smart grids face difficult challenges when managing the application
of patches as applying a security update across the system is a much more time intensive process
compared to a traditional network. This becomes an important factor when considering that a smart
grid system does not have inactive hours where software updates can be installed overnight.

Patch bundling is a technique which can be used to reduce the number of security patches required over
a period of time by bundling all required updates into a single patch which is applied every 3 months.
However, this comes with significant drawbacks as it introduces a delay between the time a patch is
released and the time it applied, this increases the time that the system is vulnerable and therefore
the chance that an adversary will exploit it. NIST recommends that patches be prioritised based on
the threat that a vulnerability poses to a system. With severe vulnerabilities that are being actively
exploited, patches should be applied as soon as possible whereas the patching of vulnerabilities which
pose a lower threat can be delayed until the next patch bundle [25]. CVSS(Common Vulnerability
Scoring System) is a method of rating the threat that a vulnerability poses on a 0-10 scale, it takes
into account the severity of vulnerability if it were to be exploited, how easy it is to exploit and how
much access an adversary needs to exploit it. By using this score, a patch management policy can be
created for each level of threat.

Table 4: Patch Management policy based on the CVSS score of a vulnerability

CVSS score | Patching Policy

Updates for these vulnerabilities pose a reduced threat to the system and should

0-4 only be implemented as part of the next planned patch.

Updates for vulnerabilities in this category should be evaluated on a case by
4-6 case basis and either implemented as part of the next planned patch or applied
after a week to give time for testing

Updates for these vulnerabilities should be applied in the week that they are

6-8 released.

Vulnerabilities in this category must be patched as soon as possible, if an update
8-10 is not yet available the possibility of workarounds or reducing functionality to
mitigate the threat should be considered.
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4.2.4 Minimum Design

Minimum design refers to the practice of limiting the configuration of a device to the absolute minimum
required for the device to function within it’s role. A well implemented minimum design policy reduces
a device’s risk exposure to cyberattacks whilst not compromising it’s functionality. One of the key
threats the minimum design policy counters is open port scanning (section 4.2.7). By default the IoT
devices used in the smart grid system will have been configured to accept packets from a large range
of network services. However, the vast majority of these ports are not necessary for their functionality
within the smart grid system.

To limit these network services there are two opposing filtering techniques that can be used, blacklisting
and whitelisting. Blacklisting refers to creating a list of in this case network services that are to be
filtered out whereas whitelisting refers to filtering out everything except for a specific list of services. In
this scenario whitelisting is the most sensible option as the smart devices have explicit communication
roles and all other communication ports are not required.
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5 Implementation and modelling of communication protocol
policies

5.1 Message Encryption

The first policy to be implemented is message encryption. The aim of this policy is to mitigate the
threat of passive eavesdropping. Whilst the implementation of this policy alone forms a very basic
protocol, it makes up the backbone that the more advanced protocols will be based on.

Policy Criteria

e Message contents must be secure against an adversary passively eavesdropping on the communi-
cation.

e The monitor must be able to decrypt and read the message contents from the meter.

5.1.1 Design

The protocol’s design is a basic symmetric key encryption protocol where the Meter sends the Monitor
a message containing electricity usage information. Once the message is received, the Monitor sends
back a confirmation message.

Encrypt electricity usage

information using default

symmetric key and send to
Monitor

Recieve and decrypt
communication using
default symmetric key

Encrypt confirmation
message using symmelric
key and send to Meter

Decrypt confirmation
message using symmetric
key

Figure 14: Message encryption protocol design
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5.1.2 Implementation

To model the symmetric encryption method used for this protocol, the key (k) is used to represent a
symmetric key. As this protocol does not feature a key distribution element, the key is a default key
loaded onto each device as part of their initial configuration for use in the smart grid system.

protocol smartExchange(Meter,Monitor)

{

role Meter {

}

fresh Message: Nonce;
var Confirm;

send_1(Meter,Monitor,{Messagelk(k));
recv_2(Monitor,Meter,{Confirm}k(k));

claim_Meterl(Meter, Secret, (k));
claim_Meter2(Meter, Secret, Message);

role Monitor {

var Message;
fresh Confirm: Nonce;

recv_1(Meter,Monitor,{Message}k(k));
send_2(Monitor,Meter,{Confirm}k(k));

claim_Monitorl(Monitor, Secret, (k));
claim_Monitor2(Monitor, Secret, Message);

Figure 15: Message encryption protocol design
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5.1.3 Review

To model the criteria of the message contents not being readable to an eavesdropping adversary,
Scyther’s Secret claim was made on the message which models an adversary attempting to eaves-
drop on the message during communication. By modelling this claim on both the Monitor and Meter
it can also be used to check that the monitor has received the message thereby fulfilling the second
policy criteria.

Without the implementation of the symmetric key encryption, running the secret claim generates a
successful eavesdropping attack.

Run #1
Bob in role Meter

WEiEeE == Eob : Initial intruder knowledge
Monitor - Alice The intruder generates: DataIntruderl

Fresh Message#fl

Var Confirm —-> DataIntruderl

'

send 1 to Alice
Messagefl

'

recv 2 from Alice
DataIntruderl

redirect to 3ecret

Me

Hecret

[Td 1] Protocol smartExchange, role Meter, claim type Secret

Figure 16: Attack on a protocol without encryption

The figure above shows that by eavesdropping the un-encrypted commutation, the adversary can read
the contents of the message therefore disproving the secret claim.

The first iteration of the protocol passed the defined tests with Scyther showing that no attacks of this
type are possible. Results using a wider range of claims however show that threats such as man-in-the-
middle attacks can easily break this protocol demonstrating the need to iterate upon it and implement
the remaining policies

Table 5: Log of claims made against the message encryption protocol and their results

Role Claim Result

Meter Secret Message Pass
Secret key(k) Pass
Monitor Secret Message Pass

Secret key(k) Pass
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5.2 Implicit key authentication

Later policies will require the use of secret keys to create symmetric encryption protocols, implicit key
authentication must be enforced when these keys are distributed to prevent an adversary posing as a
legitimate communication party using an intercepted secret key. To implement this policy a secure key
distribution protocol is required.

Policy Criteria
e The secret key must not be interceptable by an eavesdropping adversary

e Parties must be able to identify the sender of each step of the protocol to prevent an adversary
impersonating a party.

e Parties must both have the same secret key at the end of the protocol.

5.2.1 Design

When designing this protocol, a decision had to be made on which style of key distribution was most
suitable. These two styles being considered are best represented by the two popular key distribution
protocols signed Diffie-Hellman and Needham-Schroeder. Needham-Schroeder makes use of a trusted
3rd party to securely establish authentication which can be used to exchange symmetric secret keys
over an insecure network.

Requests B's public key

from server
1 Sends B's public key to

A signed with the

fserver's digital signature
Generates and sends a

nonce 'A' and it's name

to party B encrypted _\
with B's public key. Decrypts the message

using it's private key

and requests the public
fkey of A from the server
Sends A's public key to

B signed with the

server's digital signaturel
Generates and Sends a

nonce 'B' along with
Recieves back Nonce 'A'/ Nonce 'A’ to party'A
establishing encrypted with A's
authentication with public key.
Party B

Sends Nonce 'B' to

party B encrypted with
B's public key Recieves back Nonce 'B'

establishing
authentication with
Party A

Figure 17: Illustration of the Needham-Schroeder authentication process [26]
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In comparison, Diffie-Hellman does not require the use of a third party and instead never actually
sends a shared key over an insecure network but instead exchanges information that along with secret
information both parties posses, allows the parties to generate the same key which becomes the shared
secret key to be used in future communications.

For the given IoT scenario, a Diffie-Hellman style solution is the most appropriate based mainly on the
fact that it does not require an additional third party. This makes the protocol less computationally
complex for the IoT devices as they only need to communicate with each other, as well as negating the
need infrastructure in the form of an additional server.

The design for this policy in the project scenario works by having the two communication parties each
come up with a fresh value. The aim of the protocol is then to allow the two parties to exchange their
values whilst ensuring that an adversary cannot either eavesdrop on the message or pose as one of the
parties to gain both of the values.

Generates a fresh value to
be used as one half of the
shared key

Sends the fresh value and
the monitor's identity to

the Cloud Server
encrypted with the Cloud \
Server's public key Cloud Server decrypts the

message and now has one
half of the shared key

Sends the fresh value and
the hash of the Monitor's

value encrypted with the
Cloud Server decrypts the monitor's public key

message and now posseses
both halves of the key

Sends a confirmation
message encrypted with
the shared key to to

confirm success .
Decrypts message using

shared secret key and
recieves confirmation

END END

Figure 18: Illustration of the planned key exchange [26]

Once each party exchanges it’s generated value with the other, they are then combined together using
a predetermined hash function. This means that the two values are inputted into a function that is
computationally expensive to reverse engineer, because of this an adversary cannot work out what the
two inputs were from the resulting output.

24



5.2.2 Implementation

hashfunction hashed;
usertype Message;

protocol KeyExchange(Monitor,CloudServer)

role Monitor

fresh MonitorValue : Nonce;
fresh Confirm: Message;
var CloudServerValue : Nonce;

send_1(Monitor,CloudServer,{Monitor,MonitorValue}pk(CloudServer));

recv_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),
CloudServer}pk(Monitor)) ;

send_3(Monitor,CloudServer, hashed(CloudServerValue, Confirm));

claim_Monitorl(Monitor,Niagree);
claim_Monitor2(Monitor,Nisynch) ;
claim_Monitor3(Monitor, Secret, MonitorValue);
claim_Monitor4 (Monitor, Secret, CloudServerValue);

role CloudServer

{
{
}
{
}
}

var MonitorValue: Nonce;
var Confirm: Message;
fresh CloudServerValue: Nonce;

recv_1(Monitor,CloudServer, {Monitor,MonitorValue}pk(CloudServer));

send_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),
CloudServer}pk(Monitor)) ;

recv_3(Monitor,CloudServer, hashed(CloudServerValue, Confirm));

claim_CloudServerl(CloudServer,Niagree) ;
claim_CloudServer2(CloudServer,Nisynch);
claim_CloudServer3(CloudServer, Secret, MonitorValue);
claim_CloudServer4(CloudServer, Secret, CloudServerValue);
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5.2.3 Review

To test the criteria that the secret key is not interceptable through eavesdropping, Scyther’s Secret
claim will be used on both the cloud server and monitor value. If these secret claims hold, the criteria
will be verified as an adversary would need to eavesdrop on at least one of the values to intercept the
key.

By using the Niagree and Nisynch claims, Scyther can verify if the roles within a protocol are able to
authenticate the identity of a message sender. If these claims hold, then an impersonation attack is not
possible and the 279 criteria which specifies security against this form of attack will be verified.

The 3rd Criteria, which states that both parties must be able to agree on a shared secret key can be
verified by ensuring that both parties posses both the cloud server and monitor value at the end of the
protocol. This can again be verified using the Secret claim as it will only pass if the role specified does
have access to the object the secrecy claim is being made on.

Table 6: Log of claims made against the key distribution protocol and their results

Role Claim Result

Monitor Niagree Pass
Nisynch Pass
Secret, MonitorValue Pass

Secret, CloudServerValue Pass

Cloud Server Niagree Pass
Nisynch Pass
Secret, MonitorValue Pass

Secret, CloudServerValue Pass
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5.3 Unique Session Keys

Implementing fresh session keys between parties for each communication is a policy aimed at preventing
replay attacks when the monitor sends energy usage information to the cloud server. Communication
parties have established a shared secret key using the key distribution policy in the section above. A
protocol is now required that generates session keys using this secret key and defines how messages are
to be encrypted with them.

Policy Criteria
e The session key used for each communication must be unique

e The cloud server must be able to authenticate that the monitor it sends information to is legitimate

5.3.1 Design

By deriving session keys from the shared secret key now present between both communication parties,
it is possible to design a simple protocol that meets the policy criteria. Simplicity is an important factor
for this protocol as the communication between the monitor and cloud server where current electricity
usage is sent is very frequent and therefore should be as lightweight as possible.

Monitor Cloud Server

Generates session key Generates session key
for communication from for communication from
shared secret key shared secret key

Sends electricity usage
information to the cloud
server encrypted using
the session key

Decrypts message using
session key

Destroys session key Destroys session key
and generates the session and generates the session
key for the next key for the next
communication from the communication from the
shared secret key shared secret key

Figure 19: Illustration of a one-way communication utilising session keys [26]
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5.3.2 Implementation

In Scyther, the SessionKey usertype can be used to model a session key. The fresh prefix during the
initialisation of the key (line 14 and line 24) denotes that a new key is generated for each communica-
tion. To model the information exchange between the two parties after the session key is established,

a Message user type has been defined.

hashfunction hashed;
hashfunction sharedkey;
usertype Message;
usertype SessionKey;

protocol SessionKeys(Monitor,CloudServer) {

role Monitor {

}

fresh MonitorValue : Nonce;
var CloudServerValue : Nonce;

fresh info : Message;
var info: Message;
fresh sharedkey: SessionKey;

send_1(Monitor,CloudServer,{Monitor,MonitorValue}pk(CloudServer));

recv_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),
CloudServer}pk(Monitor)) ;

send_3(Monitor,CloudServer, {infol} sharedkey);

claim_Monitorl(Monitor,Alive);
claim_Monitor2(Monitor,Secret, info);

role CloudServer {

var MonitorValue: Nonce;
fresh CloudServerValue: Nonce;

var info: Message;
fresh info: Message;
fresh sharedkey: SessionKey;

recv_1(Monitor,CloudServer,{Monitor,MonitorValue}pk(CloudServer));

send_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),
CloudServer}pk(Monitor)) ;

recv_3(Monitor,CloudServer, {info} sharedkey);

claim_CloudServerl(CloudServer,Niagree) ;
claim_CloudServer2(CloudServer,Nisynch) ;
claim_CloudServer3(CloudServer,Alive);
claim_CloudServer4(CloudServer,Secret, info);
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5.3.3 Review

To model the policy criteria in Scyther, the Alive and Niagree/Nisynch claims will be used to verify that
the cloud server is able to authenticate the monitor, for this protocol only one way authentication is re-
quired as the communication is one-way. Alive verifies that the protocol has completed all the protocol’s
steps in the specified order. This ensures that the session key is agreed upon before communications
occur and is how the unique session key requirement for this protocol will be verified.

As shown in the figure below, without the implementation of session keys it is trivial for an adversary

to reuse credentials from previous communications.

Run #1

Eob in role Meter

Meter -> Boh
Monitor -> Alice

Fresh Mi#1,

Tokena#l

Var TokenE -> Tokenaf#l

y

send_1 to Alice
{ Tokena#l }k(k)

y

send 3 to Alice
{ M#l }kik}

2laim Mete

Niag

[Td 5] Protocol EncrpytedExchange, role Meter, claim type Niagree

Figure 20: Replay attack before the implementation of session keys

After the implementation of session keys this replay attack is no longer possible and the protocol is
able to meet all of the specified criteria as shown by the results table below .

Table 7: Log of claims made against the session key protocol and their results

fake sender Alice
redirect to Bob

recv Z from Alice
{ Tokena#l }k(k)

Role Claim Result

Monitor Monitor, Alive Pass
Secret, info Pass

Cloud Server Niagree Pass
Nisynch Pass
Cloud Server,Alive  Pass
Secret, info Pass
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5.4 Mutual Authentication

Whilst the session keys protocol is effective at establishing a secure connection between monitor and
cloud server as well as allowing the cloud server to authenticate the identity of the monitor sending
information. It’s possible for an adversary to pose as a cloud server and establish a communication
channel with the monitor.

Policy Criteria
e The session key used for each communication must be unique

e Both parties must be able to authenticate the identity of the other.

5.4.1 Design

The design for this protocol is based of the design of the preceding session keys protocol. Due to
the increased number of messages sent in a single round of this protocol and the need for additional
authentication, this protocol will not be as lightweight as the session keys protocol.

Monitor Cloud Server

Generates session key Generates session key
for communication from for communication from
shared secret key shared secret key

Sends electricity usage
information to the cloud
server encrypted using
the session key

Decrypts message using
session key

Sends current electricity
price to smart monitor
encrypted with the
session key

Decrypts message using
session key

END

Figure 21: Illustration of a two-way mutually authenticated protocol [26]

However, the two-way communication where the Cloud Server sends electricity pricing information to
the smart monitor as well as receiving electricity usage does not occur as frequently as the one-way
sending of electricity usage meaning the complexity of this protocol is not as much of a concern.
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5.4.2 Implementation

hashfunction hashed;
hashfunction sharedkey;
usertype Message;
usertype SessionKey;

protocol MutualAuthentication(Monitor,CloudServer)
{

role Monitor {

fresh MonitorValue : Nonce;
var CloudServerValue : Nonce;

fresh MonitorInformation : Message;
var CloudServerInformation: Message;
fresh sharedkey: SessionKey;

send_1(Monitor,CloudServer,{Monitor,MonitorValue}pk(CloudServer));

recv_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),
CloudServer}pk(Monitor)) ;

send_3(Monitor,CloudServer,{CloudServerValue, MonitorInformation} sharedkey );
recv_4(CloudServer,Monitor,{MonitorValue,CloudServerInformation} sharedkey) ;
claim_Monitorl(Monitor,Niagree) ;

claim_Monitor2(Monitor,Nisynch) ;

claim_Monitor3(Monitor, Secret, CloudServerInformation);
claim_Monitor4 (Monitor,Alive);

}
role CloudServer {

var MonitorValue: Nonce;
fresh CloudServerValue: Nonce;

fresh CloudServerInformation: Message;
var MonitorInformation: Message;
var sharedkey: SessionKey;

recv_1(Monitor,CloudServer,{Monitor,MonitorValue}pk(CloudServer)) ;
send_2(CloudServer,Monitor, {CloudServerValue,hashed(MonitorValue),
CloudServer}pk(Monitor)) ;

recv_3(Monitor,CloudServer, {CloudServerValue, MonitorInformation} sharedkey );
send_4(CloudServer,Monitor,{MonitorValue,CloudServerInformation} sharedkey);
claim_CloudServerl(CloudServer,Niagree) ;
claim_CloudServer2(CloudServer,Nisynch);

claim_CloudServer3(CloudServer, Secret, MonitorInformation);
claim_CloudServer4(CloudServer,Alive);
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5.4.3 Review

To model the mutual authentication policy criteria that both parties must be able to authenticate
the identity of each other, Niagree/Nisynch as well as the alive claim will be verified for both the
cloud server and monitor, this provides assurance that both parties in the communication are able
to authenticate each other. Secret claims on the monitor and cloud server information will be used
to verify that the message contents cannot be intercepted through eavesdropping. To verify that the
session key is unique, the Alive claim will be used as it was in the session key protocol.

Table 8: Log of claims made against the mutual authentication protocol and their results

Role Claim Result
Monitor Niagree Pass
Nisynch Pass

Secret, CloudServerInformation Pass

Alive, Monitor Pass
Cloud Server Niagree Pass
Nisynch Pass
Secret, MonitorInformation Pass
Alive, CloudServer Pass

As shown by the Scyther results, this protocol has been verified to meet all of the policy criteria.
This protocol implements all of the preceding policies as well and therefore is cryptographically secure
against all the identified communication based threats in the threat model (section 4.2).
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6 Project Management

All deliverables for this project were completed within the required deadlines, this section details the
measures that were taken to manage the project and ensure that this was the case

The main tool used for macro project management was the Gantt chart. The chart below details how
I planned to complete the required tasks for this project.

07/10/2019 04/11/2019  02/12/2019  30/12/2019  27/01/2020  24/02/2020  23/03/2020  20/04/2020
Background research [N
Finalise project brief 1l
Research and practice Scyther I
Literature review |
Produce and model threats |
Suggest policies ]
Write up progress report |
Progress report deadline 4 12th December
Research development enviroment ]
Scytherbox Sprint 1 |
Scytherbox Sprint 2 |
Scytherbox Sprint 3 |
Model policies in Scyther |
Verify and iterate upon policies ]
Evaluate project success ]
Write up final report ]

Final report deadline # 28th April

Figure 22: Gantt chart detailing planned project scheduling

The majority of the project plan featured time spent on either learning or developing using the Scyther
tool. This was a good decision in hindsight as coming into Scyther for the first time was a challenging
experience and it took time to learn how the software worked before I could produce anything of
value.
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6.1 Coronavirus Mitigation

The threat that access to Scyther and university computers could be lost was identified on my risk
matrix and was one of the reasons the creation of a portable Scyther development environment is part
of this project. As a result of this, the effect that coronavirus had on my ability to complete my project
goals was negligible. Despite this, the virus had a large impact on the scheduling of the project as
shown by the gantt chart below detailing how project work was actually completed.

07/10/2019 04/11/2019 02/12/2019 30/12/2019 27/01/2020 24/02/2020 23/03/2020 20/04/2020 18/05/2020
Background research N
Finalise project brief 1l
Research and practice Scyther I
Literature review |
Produce and model threats |
Suggest policies ]
Write up progress report | ]
Progress report deadline 4 12th December
Research development enviroment |
Scytherbox Sprint 1 ]
Scytherbox Sprint 2 |
Scytherbox Sprint 3 | ]
Model policies in Scyther |
Verify and iterate upon policies ]
Evaluate project success ]
Write up final report ]

Final report deadline 4 12th May

Figure 23: Gantt chart detailing how work on the project was actually completed

Tasks in progress around the 23" of March such as the modelling of policies in Scyther took longer
than anticipated due to relocating home, preparing for and settling into the quarantine however the 2
week deadline extension given negated this.

To stay in contact with my supervisor and ensure I still benefited from their feedback without physical
meetings, Microsoft Teams was used to schedule online meetings. The project is hosted on the University
GitLab and issue boards were used to track my progress through each task as well as keep my supervisor
informed about what I was working on at a given time.
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6.2 Risk Management

To catalogue and plan mitigation against risks which could pose issues for the project, a risk manage-
ment matrix was created outlining the key risks the project faces. To measure the threat level each
risk posed a scoring system was used, each risk was rated out of 5 based on how likely the risk was to
occur and the magnitude of impact if it did, these values were then multiplied together to give a risk
score out of 25. Each risk was assigned a baseline score which represents the level of risk before any
mitigation was put in place and a residual risk score showing the level of risk after the mitigation plan

is put in place.

Table 9: Qualitative risk analysis and mitigation plan for key project risks

ported/allowed on the
university computers and
I lose my access to the

Likelihood: 2

to run it installed so I always have it
available, the vagrant box has a cloud

Risk Baseline Mitigation Residual
. I am using vagrant to set-up a box with
Scyther stops being sup- Impact: 5 Scyther and all the software required Impact: 5

Likelihood: 0

I fail to manage time cor-
rectly on the project and
do not finish parts

Likelihood: 3

certain parts. Meeting weekly with my
supervisor where I share my progress

coftware Score: 10 backup. This allows for the easy trans- Score: 0
fer of work over to personal devices
My Gantt chart will help when identi-
Impact: 4 fying if I am falling behind schedule on Impact: 4

Likelihood: 1

or damaged causing me to
lose all the content on the
hard drive

Likelihood: 2

frequently pushed to the remote branch
when I make changes. I can continue to
work on my desktop and the university

Score: 10 will also help me hold myself account- Score: 4
able for work.
My laptop is lost, stolen, Impact: 4 My project files are uploaded to Git and Impact: 3

Likelihood: 1

or more difficult than an-
ticipated meaning 1 fail
to complete parts of the

Likelihood: 3

estimate the difficulty of each task. The
scheduling of tasks in the project will
assign extra time in each task for poten-

Score: 8 computers. Score: 3
My background research and experi-
Sections of work are larger Tmpact: 4 ence of learning Scyther has helped me Impact: 3

Likelihood: 2

Personal/family issue oc-
curs

Likelihood: 3
Score: 12

the university support service will be
used if needed and I will keep my su-
pervisor informed of any issues.

project Score: 12 tial delays that may occur due to unex- Score: 6
pected difficulties.
Impact: 4 Whilst this risk is difficult to mitigate, Impact: 3

Likelihood: 3

Score: 9
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6.3 Reflection on Scytherbox Development Plan

Overall, the structure of the Scytherbox development plan worked well in ensuring that the required
features were implemented on time. Implementing all must have requirements in the first sprint allowed
me to work on modelling policies as soon as this sprint was completed which was inline with my initial
project plan. When examining the completion of requirements, two functional requirements were either
not completed or adapted.

The first of these was allowing the user to integrate a git repository using the Vagrant file. This
requirement was changed as I found that creating a section within the shared folder for Git repositories
was a more elegant solution and much easier to use. This means that changes made to the repository in
the development environment are automatically reflected in the host machine side of the shared folder.
Changes can then be pushed to the remote git branch using the user’s choice of git client from the host
machine.

The second was that the Scyther user guide differs from the original design as the official Scyther
manual was found to explain the basics of Scyther development well. Instead of writing a general
Scyther guide, this manual was included in the virtual machine
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7 Project Evaluation

This section examines the success of the project and details the future plans for this work.

7.1 Achievement against project goals

To evaluate the project’s success, the achievements made during the course of the project will be
compared against against the initial project goals

1. Conduct a risk assessment on the main vulnerabilities and threats faced by IoT devices
within a smart grid environment.

After extensive research, a threat model showing the key vulnerabilities faced by a smart grid system
was produced. Each vulnerability was described, and the specific threat it posed to the smart grid
system documented.

2. Recommend security policies that can mitigate these threats, justifying these policies
by clearly linking them to specific threats.

A set of policies based on industry standards was created to specifically mitigate the vulnerabilities
identified during the threat analysis. Design choices for these policies were justified with supporting
literature and where necessary the potential disadvantages of each policy were discussed.

3. Implement and verify that these communication protocols mitigate the identified vul-
nerabilities using Scyther, a formal method based protocol verification tool.

Communication policies and their criteria were modelled in Scyther, the review section for each policy
explained how each criteria was converted into Scyther claims. The final versions of all policies passed
their verification in Scyther confirming that they are fit for purpose.

4. Create a purpose built, portable Scyther virtual machine environment allowing myself
and others to quickly set up and start using Scyther on a new device. Therefore allowing
others to verify and extend upon the results of the project.

The Scyther environment was successfully created and utilised in the modelling and verification of the
project’s policies. The versionable nature of VagrantFiles make it easy for others to set up and add to
the virtual machine to suit their needs.
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7.2 Conclusion

Though the course of this project, a set of security policies have been designed,implemented and verified
to mitigate the threats that IoT devices within a smart grid system face, as summarised in the table
below.

Table 10: List of threats identified for the smart grid scenario and the policies that mitigate them

Threat Mitigating Policies
Password Fuzzing Password Management
Man In The Middle Attack Mutual Authentication

Passive Eavesdropping Message Encryption, Implicit Key Authentication

Replay Attack Session Keys, Implicit Key Authentication
Impersonation Attack Mutual Authentication
Open Port Scanning Minimum Design
Network Traversal Network Segregation
Software Vulnerability Patch Management

The project shows that whilst the introduction of smart grids to a country’s power grid does introduce
the possibility of cyberattacks against critical national infrastructure, with proper security controls
these threats can be identified and mitigated. The project also explored the use of Scyther for the
modelling and verification of security protocols, demonstrating it’s ability to find flaws based on the
security requirements defined for each protocol.

7.3 Future Plans

An aim for the future is to submit this project to the 2020 International Verification and Security Work-
shop. This will allow for the sharing of this project’s results with the wider cybersecurity community
as well as gaining the perspective of industry leaders as to how this project could be developed on and
improved in the future.

One of the key difficulties of learning Scyther for this project was the lack of internet resources available
for those new to cryptographic protocol verification. This project has the capability to provide a starting
point for others that wish to verify security policies using Scyther. Through my time on this project, my
supervisor has found and I have made contact with a PhD student at the university who is interested in
using Scyther as part of their research project. The research and protocols developed in this project will
be made available to them. With the longer project schedule and higher level of academic experience
the student could take the cryptographic protocol modelling demonstrated in this report to a higher
level. The Scyther development environment created for this project will also be made publicly available
for others to use.

This project provides a high level overview of the cyber threat landscape faced by smart grids. Further
work could focus on a single threat in far greater detail than was possible in this project. For example,
a project focusing on session keys alone would allow for an analysis into the specific algorithm used to
derive keys and a more detailed analysis of how replay attacks occur.

Word count: 9,996
using Foxit PDF reader
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A Project Archive File Tree

DesignArchive // Contains all files required to run the Scytherbox
LfProtocols // The four protocols verified using Scyther in this project

+— ImplicitKeyAuthentication.spdl
+— MessageEncyption.spdl
+— MutualAuthentication.spdl

+— SessionKeys.spdl

+— VagrantScytherboxFiles
+— files // These files are placed on the desktop inside the Scytherbox

scyther // Contains the files required to run Scyther
guide // User guide for starting up Scyther and using the Scytherbox
scyther-manual // 0fficial Scyther manual

+— Shared // Files in this folder are synced between host and virtual machine

L—GitLink // Git repositories go here
+— InstallationInstructions

+— scyther.sh // Installs the Scyther dependencies and configures environment

+— scytherpermissions.sh // Adds the required permissions for Scyther to run

«— VagrantFile // Virtual Machine is initialised from the specifications in this file
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