diff --git a/3217-classification-lr-example4.py b/3217-classification-lr-example4.py deleted file mode 100644 index 0ea5ae675780c2dae877adc3dca768c029b69bb9..0000000000000000000000000000000000000000 --- a/3217-classification-lr-example4.py +++ /dev/null @@ -1,59 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np -from sklearn import datasets, linear_model -from sklearn.metrics import mean_squared_error, r2_score - -# Load the diabetes dataset -diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True) - -print (diabetes_X.shape) -# Use only one feature -feature_to_use = 2 -diabetes_X = diabetes_X[:, np.newaxis, feature_to_use] -print (diabetes_X.shape) - -test_samples = 20 - -# Split the data into training/testing sets -diabetes_X_train = diabetes_X[:-test_samples] -diabetes_X_test = diabetes_X[-test_samples:] - -# Split the targets into training/testing sets -diabetes_y_train = diabetes_y[:-test_samples] -diabetes_y_test = diabetes_y[-test_samples:] - - - - -# Create linear regression object -regr = linear_model.LinearRegression() - - -# Train the model using the training sets -regr.fit(diabetes_X_train, diabetes_y_train) - -# Make prediction using the testing set -diabetes_y_pred = regr.predict(diabetes_X_test) - -print (diabetes_y_train.shape) - -print (diabetes_y_test.shape) - -# The coefficients -print("Coefficients: \n", regr.coef_) -# The mean squared error -print("Mean squared error: %.2f" % mean_squared_error(diabetes_y_test, diabetes_y_pred)) -# The coefficient of determination: 1 is perfect prediction -print("Coefficient of determination: %.2f" % r2_score(diabetes_y_test, diabetes_y_pred)) - -# Plot outputs -plt.scatter(diabetes_X_test, diabetes_y_test, color="black") #grond truth actual test labels -plt.scatter(diabetes_X_test, diabetes_y_pred, color="red") #predicted test labels - -plt.plot(diabetes_X_test, diabetes_y_pred, color="blue", linewidth=3)#predicted test labels - -plt.xticks(()) -plt.yticks(()) - -plt.show()