diff --git a/README.md b/README.md index 95fb094d215706e07e082e90a99f70f4eaae5a00..4b52d191d050e1f8e3b08a06730b5e6840b7aab6 100644 --- a/README.md +++ b/README.md @@ -47,12 +47,15 @@ git submodule update --init --recursive 3. Set up environments: a. For material recognition/DBAT (uses conda): +Get into Dynamic-Backward-Attention-Transformer directory, ```cmd -cd Dynamic-Backward-Attention_Transformer +cd Dynamic-Backward-Atention-Transformer conda env create -f environment.yml ``` +While inside DBAT folder, Download pre-trained [checkpoints](https://drive.google.com/file/d/1ov6ol7A4NU8chlT3oEwx-V51gbOU7GGD/view?usp=sharing) and also [swin_tiny_patch4_window7_224.pth](https://storage.openvinotoolkit.org/repositories/open_model_zoo/public/2022.1/swin-tiny-patch4-window7-224/?sort_by=NEW2OLD) into folder checkpoints +Put epoch=126-valid_acc_epoch=0.87.ckpt checkpoint to Dynamic-Backward-Atention-Transformer\checkpoints\dpglt_mode95\accuracy and swin-tiny-patch4-window7-224.pth to Dynamic-Backward-Attention-Transformer\checkpoints\swin_pretrain ```cmd mkdir checkpoints\dpglt_mode95\accuracy checkpoints\swin_pretrain ``` @@ -68,6 +71,7 @@ c. For edgenet360 (uses WSL): - Make sure wsl thats called in cmd is the one with anaconda installed - Then create the tf2 environment: - MAKE SURE THE COMMAND BELOW ARE RUN IN WSL, from wsl, go up directory then go to /mnt/ to wherever the repo was in to access .yml + ```cmd cd edgenet360 conda env create -f tf2_new_env.yml @@ -80,7 +84,6 @@ d. For 360monodepth (uses Docker): ```cmd cd 360monodepth docker build -t 360monodepth . -docker run -it --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=0 360monodepth sh -c "cd /monodepth/code/python/src; python3 main.py --expname test_experiment --blending_method all --grid_size 8x7" ``` 4. Configure paths: