diff --git a/neopixel.py b/neopixel.py new file mode 100644 index 0000000000000000000000000000000000000000..bd875a4e2a63c40bfec1cdae05ed681f783e1f3b --- /dev/null +++ b/neopixel.py @@ -0,0 +1,340 @@ +import array, time +from machine import Pin +import rp2 + +##downloaded from the official site + +# PIO state machine for RGB. Pulls 24 bits (rgb -> 3 * 8bit) automatically +@rp2.asm_pio(sideset_init=rp2.PIO.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24) +def ws2812(): + T1 = 2 + T2 = 5 + T3 = 3 + wrap_target() + label("bitloop") + out(x, 1) .side(0) [T3 - 1] + jmp(not_x, "do_zero") .side(1) [T1 - 1] + jmp("bitloop") .side(1) [T2 - 1] + label("do_zero") + nop() .side(0) [T2 - 1] + wrap() + + +# PIO state machine for RGBW. Pulls 32 bits (rgbw -> 4 * 8bit) automatically +@rp2.asm_pio(sideset_init=rp2.PIO.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=32) +def sk6812(): + T1 = 2 + T2 = 5 + T3 = 3 + wrap_target() + label("bitloop") + out(x, 1) .side(0) [T3 - 1] + jmp(not_x, "do_zero") .side(1) [T1 - 1] + jmp("bitloop") .side(1) [T2 - 1] + label("do_zero") + nop() .side(0) [T2 - 1] + wrap() + + +# we need this because Micropython can't construct slice objects directly, only by +# way of supporting slice notation. +# So, e.g. slice_maker[1::4] gives a slice(1,None,4) object. +class slice_maker_class: + def __getitem__(self, slc): + return slc + + +slice_maker = slice_maker_class() + + +# Delay here is the reset time. You need a pause to reset the LED strip back to the initial LED +# however, if you have quite a bit of processing to do before the next time you update the strip +# you could put in delay=0 (or a lower delay) +# +# Class supports different order of individual colors (GRB, RGB, WRGB, GWRB ...). In order to achieve +# this, we need to flip the indexes: in 'RGBW', 'R' is on index 0, but we need to shift it left by 3 * 8bits, +# so in it's inverse, 'WBGR', it has exactly right index. Since micropython doesn't have [::-1] and recursive rev() +# isn't too efficient we simply do that by XORing (operator ^) each index with 3 (0b11) to make this flip. +# When dealing with just 'RGB' (3 letter string), this means same but reduced by 1 after XOR!. +# Example: in 'GRBW' we want final form of 0bGGRRBBWW, meaning G with index 0 needs to be shifted 3 * 8bit -> +# 'G' on index 0: 0b00 ^ 0b11 -> 0b11 (3), just as we wanted. +# Same hold for every other index (and - 1 at the end for 3 letter strings). + +class Neopixel: + # Micropython doesn't implement __slots__, but it's good to have a place + # to describe the data members... + # __slots__ = [ + # 'num_leds', # number of LEDs + # 'pixels', # array.array('I') of raw data for LEDs + # 'mode', # mode 'RGB' etc + # 'W_in_mode', # bool: is 'W' in mode + # 'sm', # state machine + # 'shift', # shift amount for each component, in a tuple for (R,B,G,W) + # 'delay', # delay amount + # 'brightnessvalue', # brightness scale factor 1..255 + # ] + + def __init__(self, num_leds, state_machine, pin, mode="RGB", delay=0.0001): + """ + Constructor for library class + :param num_leds: number of leds on your led-strip + :param state_machine: id of PIO state machine used + :param pin: pin on which data line to led-strip is connected + :param mode: [default: "RGB"] mode and order of bits representing the color value. + This can be any order of RGB or RGBW (neopixels are usually GRB) + :param delay: [default: 0.0001] delay used for latching of leds when sending data + """ + self.pixels = array.array("I", [0] * num_leds) + self.mode = mode + self.W_in_mode = 'W' in mode + if self.W_in_mode: + # RGBW uses different PIO state machine configuration + self.sm = rp2.StateMachine(state_machine, sk6812, freq=8000000, sideset_base=Pin(pin)) + # tuple of values required to shift bit into position (check class desc.) + self.shift = ((mode.index('R') ^ 3) * 8, (mode.index('G') ^ 3) * 8, + (mode.index('B') ^ 3) * 8, (mode.index('W') ^ 3) * 8) + else: + self.sm = rp2.StateMachine(state_machine, ws2812, freq=8000000, sideset_base=Pin(pin)) + self.shift = (((mode.index('R') ^ 3) - 1) * 8, ((mode.index('G') ^ 3) - 1) * 8, + ((mode.index('B') ^ 3) - 1) * 8, 0) + self.sm.active(1) + self.num_leds = num_leds + self.delay = delay + self.brightnessvalue = 255 + + def brightness(self, brightness=None): + """ + Set the overall value to adjust brightness when updating leds + or return class brightnessvalue if brightness is None + :param brightness: [default: None] Value of brightness on interval 1..255 + :return: class brightnessvalue member or None + """ + if brightness is None: + return self.brightnessvalue + else: + if brightness < 1: + brightness = 1 + if brightness > 255: + brightness = 255 + self.brightnessvalue = brightness + + def set_pixel_line_gradient(self, pixel1, pixel2, left_rgb_w, right_rgb_w, how_bright=None): + """ + Create a gradient with two RGB colors between "pixel1" and "pixel2" (inclusive) + :param pixel1: Index of starting pixel (inclusive) + :param pixel2: Index of ending pixel (inclusive) + :param left_rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing starting color + :param right_rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing ending color + :param how_bright: [default: None] Brightness of current interval. If None, use global brightness value + :return: None + """ + if pixel2 - pixel1 == 0: + return + right_pixel = max(pixel1, pixel2) + left_pixel = min(pixel1, pixel2) + + with_W = len(left_rgb_w) == 4 and self.W_in_mode + r_diff = right_rgb_w[0] - left_rgb_w[0] + g_diff = right_rgb_w[1] - left_rgb_w[1] + b_diff = right_rgb_w[2] - left_rgb_w[2] + if with_W: + w_diff = (right_rgb_w[3] - left_rgb_w[3]) + + for i in range(right_pixel - left_pixel + 1): + fraction = i / (right_pixel - left_pixel) + red = round(r_diff * fraction + left_rgb_w[0]) + green = round(g_diff * fraction + left_rgb_w[1]) + blue = round(b_diff * fraction + left_rgb_w[2]) + # if it's (r, g, b, w) + if with_W: + white = round(w_diff * fraction + left_rgb_w[3]) + self.set_pixel(left_pixel + i, (red, green, blue, white), how_bright) + else: + self.set_pixel(left_pixel + i, (red, green, blue), how_bright) + + def set_pixel_line(self, pixel1, pixel2, rgb_w, how_bright=None): + """ + Set an array of pixels starting from "pixel1" to "pixel2" (inclusive) to the desired color. + :param pixel1: Index of starting pixel (inclusive) + :param pixel2: Index of ending pixel (inclusive) + :param rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing color to be used + :param how_bright: [default: None] Brightness of current interval. If None, use global brightness value + :return: None + """ + if pixel2 >= pixel1: + self.set_pixel(slice_maker[pixel1:pixel2 + 1], rgb_w, how_bright) + + def set_pixel(self, pixel_num, rgb_w, how_bright=None): + """ + Set red, green and blue (+ white) value of pixel on position <pixel_num> + pixel_num may be a 'slice' object, and then the operation is applied + to all pixels implied by the slice (most useful when called via __setitem__) + :param pixel_num: Index of pixel to be set or slice object representing multiple leds + :param rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing color to be used + :param how_bright: [default: None] Brightness of current interval. If None, use global brightness value + :return: None + """ + if how_bright is None: + how_bright = self.brightness() + sh_R, sh_G, sh_B, sh_W = self.shift + bratio = how_bright / 255.0 + + red = round(rgb_w[0] * bratio) + green = round(rgb_w[1] * bratio) + blue = round(rgb_w[2] * bratio) + white = 0 + # if it's (r, g, b, w) + if len(rgb_w) == 4 and self.W_in_mode: + white = round(rgb_w[3] * bratio) + + pix_value = white << sh_W | blue << sh_B | red << sh_R | green << sh_G + # set some subset, if pixel_num is a slice: + if type(pixel_num) is slice: + for i in range(*pixel_num.indices(self.num_leds)): + self.pixels[i] = pix_value + else: + self.pixels[pixel_num] = pix_value + + def get_pixel(self, pixel_num): + """ + Get red, green, blue and white (if applicable) values of pixel on position <pixel_num> + :param pixel_num: Index of pixel to be set + :return rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing color to be used + """ + balance = self.pixels[pixel_num] + sh_R, sh_G, sh_B, sh_W = self.shift + if self.W_in_mode: + w = (balance >> sh_W) & 255 + b = (balance >> sh_B) & 255 + r = (balance >> sh_R) & 255 + g = (balance >> sh_G) & 255 + red = int(r * 255 / self.brightness() ) + green = int(g * 255 / self.brightness() ) + blue = int(b * 255 / self.brightness() ) + if self.W_in_mode: + white = int(w * 255 / self.brightness() ) + return (red,green,blue,white) + else: + return (red,green,blue) + + def __setitem__(self, idx, rgb_w): + """ + if npix is a Neopixel object, + npix[10] = (0,255,0) # <- sets #10 to green + npix[15:21] = (255,0,0) # <- sets 16,17 .. 20 to red + npix[21:29:2] = (0,0,255) # <- sets 21,23,25,27 to blue + npix[1::2] = (0,0,0) # <- sets all odd pixels to 'off' + (the 'slice' cases pass idx as a 'slice' object, and + set_pixel processes the slice) + :param idx: Index can either be indexing number or slice + :param rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing color to be used + :return: + """ + self.set_pixel(idx, rgb_w) + + def colorHSV(self, hue, sat, val): + """ + Converts HSV color to rgb tuple and returns it. + The logic is almost the same as in Adafruit NeoPixel library: + https://github.com/adafruit/Adafruit_NeoPixel so all the credits for that + go directly to them (license: https://github.com/adafruit/Adafruit_NeoPixel/blob/master/COPYING) + :param hue: Hue component. Should be on interval 0..65535 + :param sat: Saturation component. Should be on interval 0..255 + :param val: Value component. Should be on interval 0..255 + :return: (r, g, b) tuple + """ + if hue >= 65536: + hue %= 65536 + + hue = (hue * 1530 + 32768) // 65536 + if hue < 510: + b = 0 + if hue < 255: + r = 255 + g = hue + else: + r = 510 - hue + g = 255 + elif hue < 1020: + r = 0 + if hue < 765: + g = 255 + b = hue - 510 + else: + g = 1020 - hue + b = 255 + elif hue < 1530: + g = 0 + if hue < 1275: + r = hue - 1020 + b = 255 + else: + r = 255 + b = 1530 - hue + else: + r = 255 + g = 0 + b = 0 + + v1 = 1 + val + s1 = 1 + sat + s2 = 255 - sat + + r = ((((r * s1) >> 8) + s2) * v1) >> 8 + g = ((((g * s1) >> 8) + s2) * v1) >> 8 + b = ((((b * s1) >> 8) + s2) * v1) >> 8 + + return r, g, b + + def rotate_left(self, num_of_pixels=None): + """ + Rotate <num_of_pixels> pixels to the left + :param num_of_pixels: Number of pixels to be shifted to the left. If None, it shifts for 1. + :return: None + """ + if num_of_pixels is None: + num_of_pixels = 1 + self.pixels = self.pixels[num_of_pixels:] + self.pixels[:num_of_pixels] + + def rotate_right(self, num_of_pixels=None): + """ + Rotate <num_of_pixels> pixels to the right + :param num_of_pixels: Number of pixels to be shifted to the right. If None, it shifts for 1. + :return: None + """ + if num_of_pixels is None: + num_of_pixels = 1 + num_of_pixels = -1 * num_of_pixels + self.pixels = self.pixels[num_of_pixels:] + self.pixels[:num_of_pixels] + + def show(self): + """ + Send data to led-strip, making all changes on leds have an effect. + This method should be used after every method that changes the state of leds or after a chain of changes. + :return: None + """ + # If mode is RGB, we cut 8 bits of, otherwise we keep all 32 + cut = 8 + if self.W_in_mode: + cut = 0 + sm_put = self.sm.put + for pixval in self.pixels: + sm_put(pixval, cut) + time.sleep(self.delay) + + def fill(self, rgb_w, how_bright=None): + """ + Fill the entire strip with color rgb_w + :param rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing color to be used + :param how_bright: [default: None] Brightness of current interval. If None, use global brightness value + :return: None + """ + # set_pixel over all leds. + self.set_pixel(slice_maker[:], rgb_w, how_bright) + + def clear(self): + """ + Clear the entire strip, i.e. set every led color to 0. + :return: None + """ + self.pixels = array.array("I", [0] * self.num_leds) \ No newline at end of file