diff --git a/neopixel.py b/neopixel.py deleted file mode 100644 index 386dfe51325f8aac6e94235eb34ea7bd895037e4..0000000000000000000000000000000000000000 --- a/neopixel.py +++ /dev/null @@ -1,339 +0,0 @@ -import array, time -from machine import Pin -import rp2 - - -# PIO state machine for RGB. Pulls 24 bits (rgb -> 3 * 8bit) automatically -@rp2.asm_pio(sideset_init=rp2.PIO.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24) -def ws2812(): - T1 = 2 - T2 = 5 - T3 = 3 - wrap_target() - label("bitloop") - out(x, 1) .side(0) [T3 - 1] - jmp(not_x, "do_zero") .side(1) [T1 - 1] - jmp("bitloop") .side(1) [T2 - 1] - label("do_zero") - nop() .side(0) [T2 - 1] - wrap() - - -# PIO state machine for RGBW. Pulls 32 bits (rgbw -> 4 * 8bit) automatically -@rp2.asm_pio(sideset_init=rp2.PIO.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=32) -def sk6812(): - T1 = 2 - T2 = 5 - T3 = 3 - wrap_target() - label("bitloop") - out(x, 1) .side(0) [T3 - 1] - jmp(not_x, "do_zero") .side(1) [T1 - 1] - jmp("bitloop") .side(1) [T2 - 1] - label("do_zero") - nop() .side(0) [T2 - 1] - wrap() - - -# we need this because Micropython can't construct slice objects directly, only by -# way of supporting slice notation. -# So, e.g. slice_maker[1::4] gives a slice(1,None,4) object. -class slice_maker_class: - def __getitem__(self, slc): - return slc - - -slice_maker = slice_maker_class() - - -# Delay here is the reset time. You need a pause to reset the LED strip back to the initial LED -# however, if you have quite a bit of processing to do before the next time you update the strip -# you could put in delay=0 (or a lower delay) -# -# Class supports different order of individual colors (GRB, RGB, WRGB, GWRB ...). In order to achieve -# this, we need to flip the indexes: in 'RGBW', 'R' is on index 0, but we need to shift it left by 3 * 8bits, -# so in it's inverse, 'WBGR', it has exactly right index. Since micropython doesn't have [::-1] and recursive rev() -# isn't too efficient we simply do that by XORing (operator ^) each index with 3 (0b11) to make this flip. -# When dealing with just 'RGB' (3 letter string), this means same but reduced by 1 after XOR!. -# Example: in 'GRBW' we want final form of 0bGGRRBBWW, meaning G with index 0 needs to be shifted 3 * 8bit -> -# 'G' on index 0: 0b00 ^ 0b11 -> 0b11 (3), just as we wanted. -# Same hold for every other index (and - 1 at the end for 3 letter strings). - -class Neopixel: - # Micropython doesn't implement __slots__, but it's good to have a place - # to describe the data members... - # __slots__ = [ - # 'num_leds', # number of LEDs - # 'pixels', # array.array('I') of raw data for LEDs - # 'mode', # mode 'RGB' etc - # 'W_in_mode', # bool: is 'W' in mode - # 'sm', # state machine - # 'shift', # shift amount for each component, in a tuple for (R,B,G,W) - # 'delay', # delay amount - # 'brightnessvalue', # brightness scale factor 1..255 - # ] - - def __init__(self, num_leds, state_machine, pin, mode="RGB", delay=0.0001): - """ - Constructor for library class - :param num_leds: number of leds on your led-strip - :param state_machine: id of PIO state machine used - :param pin: pin on which data line to led-strip is connected - :param mode: [default: "RGB"] mode and order of bits representing the color value. - This can be any order of RGB or RGBW (neopixels are usually GRB) - :param delay: [default: 0.0001] delay used for latching of leds when sending data - """ - self.pixels = array.array("I", [0] * num_leds) - self.mode = mode - self.W_in_mode = 'W' in mode - if self.W_in_mode: - # RGBW uses different PIO state machine configuration - self.sm = rp2.StateMachine(state_machine, sk6812, freq=8000000, sideset_base=Pin(pin)) - # tuple of values required to shift bit into position (check class desc.) - self.shift = ((mode.index('R') ^ 3) * 8, (mode.index('G') ^ 3) * 8, - (mode.index('B') ^ 3) * 8, (mode.index('W') ^ 3) * 8) - else: - self.sm = rp2.StateMachine(state_machine, ws2812, freq=8000000, sideset_base=Pin(pin)) - self.shift = (((mode.index('R') ^ 3) - 1) * 8, ((mode.index('G') ^ 3) - 1) * 8, - ((mode.index('B') ^ 3) - 1) * 8, 0) - self.sm.active(1) - self.num_leds = num_leds - self.delay = delay - self.brightnessvalue = 255 - - def brightness(self, brightness=None): - """ - Set the overall value to adjust brightness when updating leds - or return class brightnessvalue if brightness is None - :param brightness: [default: None] Value of brightness on interval 1..255 - :return: class brightnessvalue member or None - """ - if brightness is None: - return self.brightnessvalue - else: - if brightness < 1: - brightness = 1 - if brightness > 255: - brightness = 255 - self.brightnessvalue = brightness - - def set_pixel_line_gradient(self, pixel1, pixel2, left_rgb_w, right_rgb_w, how_bright=None): - """ - Create a gradient with two RGB colors between "pixel1" and "pixel2" (inclusive) - :param pixel1: Index of starting pixel (inclusive) - :param pixel2: Index of ending pixel (inclusive) - :param left_rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing starting color - :param right_rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing ending color - :param how_bright: [default: None] Brightness of current interval. If None, use global brightness value - :return: None - """ - if pixel2 - pixel1 == 0: - return - right_pixel = max(pixel1, pixel2) - left_pixel = min(pixel1, pixel2) - - with_W = len(left_rgb_w) == 4 and self.W_in_mode - r_diff = right_rgb_w[0] - left_rgb_w[0] - g_diff = right_rgb_w[1] - left_rgb_w[1] - b_diff = right_rgb_w[2] - left_rgb_w[2] - if with_W: - w_diff = (right_rgb_w[3] - left_rgb_w[3]) - - for i in range(right_pixel - left_pixel + 1): - fraction = i / (right_pixel - left_pixel) - red = round(r_diff * fraction + left_rgb_w[0]) - green = round(g_diff * fraction + left_rgb_w[1]) - blue = round(b_diff * fraction + left_rgb_w[2]) - # if it's (r, g, b, w) - if with_W: - white = round(w_diff * fraction + left_rgb_w[3]) - self.set_pixel(left_pixel + i, (red, green, blue, white), how_bright) - else: - self.set_pixel(left_pixel + i, (red, green, blue), how_bright) - - def set_pixel_line(self, pixel1, pixel2, rgb_w, how_bright=None): - """ - Set an array of pixels starting from "pixel1" to "pixel2" (inclusive) to the desired color. - :param pixel1: Index of starting pixel (inclusive) - :param pixel2: Index of ending pixel (inclusive) - :param rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing color to be used - :param how_bright: [default: None] Brightness of current interval. If None, use global brightness value - :return: None - """ - if pixel2 >= pixel1: - self.set_pixel(slice_maker[pixel1:pixel2 + 1], rgb_w, how_bright) - - def set_pixel(self, pixel_num, rgb_w, how_bright=None): - """ - Set red, green and blue (+ white) value of pixel on position <pixel_num> - pixel_num may be a 'slice' object, and then the operation is applied - to all pixels implied by the slice (most useful when called via __setitem__) - :param pixel_num: Index of pixel to be set or slice object representing multiple leds - :param rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing color to be used - :param how_bright: [default: None] Brightness of current interval. If None, use global brightness value - :return: None - """ - if how_bright is None: - how_bright = self.brightness() - sh_R, sh_G, sh_B, sh_W = self.shift - bratio = how_bright / 255.0 - - red = round(rgb_w[0] * bratio) - green = round(rgb_w[1] * bratio) - blue = round(rgb_w[2] * bratio) - white = 0 - # if it's (r, g, b, w) - if len(rgb_w) == 4 and self.W_in_mode: - white = round(rgb_w[3] * bratio) - - pix_value = white << sh_W | blue << sh_B | red << sh_R | green << sh_G - # set some subset, if pixel_num is a slice: - if type(pixel_num) is slice: - for i in range(*pixel_num.indices(self.num_leds)): - self.pixels[i] = pix_value - else: - self.pixels[pixel_num] = pix_value - - def get_pixel(self, pixel_num): - """ - Get red, green, blue and white (if applicable) values of pixel on position <pixel_num> - :param pixel_num: Index of pixel to be set - :return rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing color to be used - """ - balance = self.pixels[pixel_num] - sh_R, sh_G, sh_B, sh_W = self.shift - if self.W_in_mode: - w = (balance >> sh_W) & 255 - b = (balance >> sh_B) & 255 - r = (balance >> sh_R) & 255 - g = (balance >> sh_G) & 255 - red = int(r * 255 / self.brightness() ) - green = int(g * 255 / self.brightness() ) - blue = int(b * 255 / self.brightness() ) - if self.W_in_mode: - white = int(w * 255 / self.brightness() ) - return (red,green,blue,white) - else: - return (red,green,blue) - - def __setitem__(self, idx, rgb_w): - """ - if npix is a Neopixel object, - npix[10] = (0,255,0) # <- sets #10 to green - npix[15:21] = (255,0,0) # <- sets 16,17 .. 20 to red - npix[21:29:2] = (0,0,255) # <- sets 21,23,25,27 to blue - npix[1::2] = (0,0,0) # <- sets all odd pixels to 'off' - (the 'slice' cases pass idx as a 'slice' object, and - set_pixel processes the slice) - :param idx: Index can either be indexing number or slice - :param rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing color to be used - :return: - """ - self.set_pixel(idx, rgb_w) - - def colorHSV(self, hue, sat, val): - """ - Converts HSV color to rgb tuple and returns it. - The logic is almost the same as in Adafruit NeoPixel library: - https://github.com/adafruit/Adafruit_NeoPixel so all the credits for that - go directly to them (license: https://github.com/adafruit/Adafruit_NeoPixel/blob/master/COPYING) - :param hue: Hue component. Should be on interval 0..65535 - :param sat: Saturation component. Should be on interval 0..255 - :param val: Value component. Should be on interval 0..255 - :return: (r, g, b) tuple - """ - if hue >= 65536: - hue %= 65536 - - hue = (hue * 1530 + 32768) // 65536 - if hue < 510: - b = 0 - if hue < 255: - r = 255 - g = hue - else: - r = 510 - hue - g = 255 - elif hue < 1020: - r = 0 - if hue < 765: - g = 255 - b = hue - 510 - else: - g = 1020 - hue - b = 255 - elif hue < 1530: - g = 0 - if hue < 1275: - r = hue - 1020 - b = 255 - else: - r = 255 - b = 1530 - hue - else: - r = 255 - g = 0 - b = 0 - - v1 = 1 + val - s1 = 1 + sat - s2 = 255 - sat - - r = ((((r * s1) >> 8) + s2) * v1) >> 8 - g = ((((g * s1) >> 8) + s2) * v1) >> 8 - b = ((((b * s1) >> 8) + s2) * v1) >> 8 - - return r, g, b - - def rotate_left(self, num_of_pixels=None): - """ - Rotate <num_of_pixels> pixels to the left - :param num_of_pixels: Number of pixels to be shifted to the left. If None, it shifts for 1. - :return: None - """ - if num_of_pixels is None: - num_of_pixels = 1 - self.pixels = self.pixels[num_of_pixels:] + self.pixels[:num_of_pixels] - - def rotate_right(self, num_of_pixels=None): - """ - Rotate <num_of_pixels> pixels to the right - :param num_of_pixels: Number of pixels to be shifted to the right. If None, it shifts for 1. - :return: None - """ - if num_of_pixels is None: - num_of_pixels = 1 - num_of_pixels = -1 * num_of_pixels - self.pixels = self.pixels[num_of_pixels:] + self.pixels[:num_of_pixels] - - def show(self): - """ - Send data to led-strip, making all changes on leds have an effect. - This method should be used after every method that changes the state of leds or after a chain of changes. - :return: None - """ - # If mode is RGB, we cut 8 bits of, otherwise we keep all 32 - cut = 8 - if self.W_in_mode: - cut = 0 - sm_put = self.sm.put - for pixval in self.pixels: - sm_put(pixval, cut) - time.sleep(self.delay) - - def fill(self, rgb_w, how_bright=None): - """ - Fill the entire strip with color rgb_w - :param rgb_w: Tuple of form (r, g, b) or (r, g, b, w) representing color to be used - :param how_bright: [default: None] Brightness of current interval. If None, use global brightness value - :return: None - """ - # set_pixel over all leds. - self.set_pixel(slice_maker[:], rgb_w, how_bright) - - def clear(self): - """ - Clear the entire strip, i.e. set every led color to 0. - :return: None - """ - self.pixels = array.array("I", [0] * self.num_leds) \ No newline at end of file