diff --git a/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v1.0-adult.R b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v1.0-adult.R new file mode 100644 index 0000000000000000000000000000000000000000..912824471824add27fec48f7fab137ee1061ae0a --- /dev/null +++ b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v1.0-adult.R @@ -0,0 +1,206 @@ +############################################ +# Time Use data analysis for 'Laundry' paper +# Use MTUS World 6 time-use data (UK subset) to examine: +# - distributions of laundry in 1975 & 2005 +# - changing laundry practices + +# Data source: www.timeuse.org/mtus +# data already in long format (but episodes) + +# This work was funded by RCUK through the End User Energy Demand Centres Programme via the +# "DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) + +# Copyright (C) 2014 University of Southampton +# Author: Ben Anderson (b.anderson@soton.ac.uk, @dataknut, https://github.com/dataknut) + +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 2 of the License +# (http://choosealicense.com/licenses/gpl-2.0/), or +# (at your option) any later version. + +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. + +# clear out all old objects etc to avoid confusion +rm(list = ls()) + +# add libraries +library("lattice", "Hmisc") + +# set up some useful vars +ifile_d <- c("~/Documents/Work/Data/Social Science Datatsets/MTUS/World 6/processed/MTUS-adult-episode-UK-only-wf.dta") +ifile_s <- c("~/Documents/Work/Data/Social Science Datatsets/MTUS/World 6/processed/MTUS-adult-aggregate-UK-only-wf.dta") + +rpath <- c("~/Documents/Work/Projects/RCUK-DEMAND/Theme 1/results/MTUS") +# paste! + +# Loading the data +# load as stata file +library(foreign) +# diary +MTUSW6UK_d <- read.dta(ifile_d) +# survey +MTUSW6UK_s <- read.dta(ifile_s) + +# create a reduced survey frame with the few variables we need so the merge +# does not break memory +MTUSW6UK_s_redvars <- c("diarypid", "empstat", "urban") +MTUSW6UK_s_red <- MTUSW6UK_s[MTUSW6UK_s_redvars] + +# merge +MTUSW6UK_m <- merge(MTUSW6UK_d,MTUSW6UK_s_red,by="diarypid") + +# Take a quick look at the data +head(MTUSW6UK_m) + +# Check what's in it? +names(MTUSW6UK_m) + +# check the distribution of episodes by time of day and year of survey +# NB: stata has already set the date to 1960! We need to re-format to half hours! +table("Half hour"= MTUSW6UK_m$s_halfhour) + +# 21 = "laundry, ironing, clothing repair" +# We've imported from stata so we'll have to use the value label not the value +# Could have imported as csv and then applied labels... might be easier + +# check incidence of laundry as primary & secondary act +table("Laundry as primary"= MTUSW6UK_m$main == "laundry, ironing, clothing repair") +table("Laundry as secondary"= MTUSW6UK_m$sec == "laundry, ironing, clothing repair") + +# create 2 new variables (columns) which are 'laundry' +MTUSW6UK_m$laundry_p <- 0 +MTUSW6UK_m$laundry_p[MTUSW6UK_m$main == "laundry, ironing, clothing repair"] <- 1 + +MTUSW6UK_m$laundry_s <- 0 +MTUSW6UK_m$laundry_s[MTUSW6UK_m$sec == "laundry, ironing, clothing repair"] <- 1 + +MTUSW6UK_m$laundry_all <- 0 +MTUSW6UK_m$laundry_all[MTUSW6UK_m$laundry_p == 1 | MTUSW6UK_m$laundry_s == 1] <- 1 + +table(MTUSW6UK_m$laundry_all) + +# check location of laundry +# lact = -1 (unknown), 1 = home, 2 = elsewhere +table("Laundry as primary"= MTUSW6UK_m$laundry_p == 1, MTUSW6UK_m$eloc) +table("Laundry as secondary"= MTUSW6UK_m$laundry_s == 1, MTUSW6UK_m$eloc) + +# create a frame to hold the various results +# NB the value of the column (x) is meaningless +laundry_fr <- aggregate(MTUSW6UK_m$year, by=list(MTUSW6UK_m$s_halfhour), FUN=mean) +names(laundry_fr) <- c("s_halfhour","junk") +# drop junk +laundry_fr <- laundry_fr["s_halfhour"] + +# there must be a simple way to do this as a loop switching p for s and all +# primary +laundry_p_tod <- aggregate(MTUSW6UK_m$laundry_p, by=list(MTUSW6UK_m$s_halfhour), FUN=sum) +names(laundry_p_tod) <- c("s_halfhour","freq") +# each half hour as a proportion of laundry episodes +laundry_fr$p_laundry_pr <- (laundry_p_tod$freq/sum(laundry_p_tod$freq)) + +# secondary +laundry_s_tod <- aggregate(MTUSW6UK_m$laundry_s, by=list(MTUSW6UK_m$s_halfhour), FUN=sum) +names(laundry_s_tod) <- c("s_halfhour","freq") +# each half hour as a proportion of laundry episodes +laundry_fr$s_laundry_pr <- (laundry_s_tod$freq/sum(laundry_s_tod$freq)) + +# all +laundry_all_tod <- aggregate(MTUSW6UK_m$laundry_all, by=list(MTUSW6UK_m$s_halfhour), FUN=sum) +names(laundry_all_tod) <- c("s_halfhour","freq") +# each half hour as a proportion of laundry episodes +laundry_fr$all_laundry_pr <- (laundry_all_tod$freq/sum(laundry_all_tod$freq)) + +# plot with primary & secondary for all years +# direct graph to file +png(paste(rpath,"/laundry-time-of-day-all-years.png", sep="")) +plot(x = laundry_fr$s_halfhour, y = laundry_fr$p_laundry_pr, + xlab = "Half Hour", + ylab = "% of laundry of that type", + type = "l", + col = "red") +points(x = laundry_fr$s_halfhour, y = laundry_fr$s_laundry_pr, type = "l") +# cex = scaling factor +legend('topright',c("Primary act","Secondary act"), lty=1, col=c('red', 'black'), bty='n', cex=1) +title("% of laundry done at different times of day (all years)", cex=0.75) +dev.off() + +# laundry for each year - how to loop over? +# make subsets to speed things up + +MTUSW6UK_m1974 <- subset(MTUSW6UK_m,survey==1974) + +laundry_tod_1974p <- aggregate(MTUSW6UK_m1974$laundry_p, by=list(MTUSW6UK_m1974$s_halfhour), FUN=sum) +names(laundry_tod_1974p) <- c("s_halfhour","freq") +laundry_fr$laundry_p_1974_pr <- (laundry_tod_1974p$freq/sum(laundry_tod_1974p$freq)) + +laundry_tod_1974s <- aggregate(MTUSW6UK_m1974$laundry_s, by=list(MTUSW6UK_m1974$s_halfhour), FUN=sum) +names(laundry_tod_1974s) <- c("s_halfhour","freq") +laundry_fr$laundry_s_1974_pr <- (laundry_tod_1974s$freq/sum(laundry_tod_1974s$freq)) + +laundry_tod_1974all <- aggregate(MTUSW6UK_m1974$laundry_s, by=list(MTUSW6UK_m1974$s_halfhour), FUN=sum) +names(laundry_tod_1974all) <- c("s_halfhour","freq") +laundry_fr$laundry_all_1974_pr <- (laundry_tod_1974all$freq/sum(laundry_tod_1974all$freq)) + + +MTUSW6UK_m2005 <- subset(MTUSW6UK_m,survey==2005) + +laundry_tod_2005p <- aggregate(MTUSW6UK_m2005$laundry_p, by=list(MTUSW6UK_m2005$s_halfhour), FUN=sum) +names(laundry_tod_2005p) <- c("s_halfhour","freq") +laundry_fr$laundry_p_2005_pr <- (laundry_tod_2005p$freq/sum(laundry_tod_2005p$freq)) + +laundry_tod_2005s <- aggregate(MTUSW6UK_m2005$laundry_s, by=list(MTUSW6UK_m2005$s_halfhour), FUN=sum) +names(laundry_tod_2005s) <- c("s_halfhour","freq") +laundry_fr$laundry_s_2005_pr <- (laundry_tod_2005s$freq/sum(laundry_tod_2005s$freq)) + +laundry_tod_2005all <- aggregate(MTUSW6UK_m2005$laundry_all, by=list(MTUSW6UK_m2005$s_halfhour), FUN=sum) +names(laundry_tod_2005all) <- c("s_halfhour","freq") +laundry_fr$laundry_all_2005_pr <- (laundry_tod_2005all$freq/sum(laundry_tod_2005all$freq)) + +# now compare laundry for 1974 & 2005 +# must be a simple way to loop over these +# direct graph to file +# primary episodes +png(paste(rpath,"/laundry-time-of-day-1974-2005-primary.png", sep="")) +plot(x = laundry_fr$s_halfhour, y = laundry_fr$laundry_p_1974_pr, + xlab = "Half Hour", + ylab = "Proportion of laundry of that type", + pch = 1, + col = "red") +points(x = laundry_fr$s_halfhour, y = laundry_fr$laundry_p_2005_pr, col = "blue", pch=2) +# cex = scaling factor +legend('topright',c("Primary act 1974","Primary act 2005"), + col=c('red', 'blue'), pch=c(1,2), cex=1) +title("% of laundry done at different times of day (1974-2005)", cex=0.75) +dev.off() + +# secondary episodes +png(paste(rpath,"/laundry-time-of-day-1974-2005-secondary.png", sep="")) +plot(x = laundry_fr$s_halfhour, y = laundry_fr$laundry_s_1974_pr, + xlab = "Half Hour", + ylab = "Proportion of laundry of that type", + pch = 1, + col = "red") +points(x = laundry_fr$s_halfhour, y = laundry_fr$laundry_s_2005_pr, col = "blue", pch = 2) +# cex = scaling factor +legend('topright',c("Secondary act 1974","Secondary act 2005"), + col=c('red','blue'), pch=c(1,2), cex=1) +title("% of laundry done at different times of day (1974-2005)", cex=0.75) +dev.off() + +# all laundry episodes +png(paste(rpath,"/laundry-time-of-day-1974-2005-all.png", sep="")) +plot(x = laundry_fr$s_halfhour, y = laundry_fr$laundry_all_1974_pr, + xlab = "Half Hour", + ylab = "Proportion of laundry of that type", + pch = 1, + col = "red") +points(x = laundry_fr$s_halfhour, y = laundry_fr$laundry_all_2005_pr, col = "blue", pch = 2) +# cex = scaling factor +legend('topright',c("All laundry 1974","All laundry 2005"), + col=c('red','blue'), pch=c(1,2), cex=1) +title("% of laundry done at different times of day (1974-2005)", cex=0.75) +dev.off() diff --git a/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis.R b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis.R new file mode 100644 index 0000000000000000000000000000000000000000..fb3964e14d21c59b3f56924ca9768155d1645c43 --- /dev/null +++ b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis.R @@ -0,0 +1,1307 @@ +# Begin header ########################################### +# Data analysis for 'Laundry' paper: + +# Use MTUS World 6 time-use data (UK subset) to examine: +# - distributions of laundry in 1985 & 2005 +# - changing laundry practice +# Data source: www.timeuse.org/mtus +# data already in long format (but episodes) processed using +# DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-data-processing.R + +# Uses FES/EFS/LCFS to examine: +# - historical ownership of washing machines/tumble dryers +# Data source: http://discover.ukdataservice.ac.uk/series/?sn=200016 + +# Uses SPRG water practices survey: +# - reported laundry practices +# Data source: http://www.sprg.ac.uk/projects-fellowships/patterns-of-water + +# This work was funded by RCUK through the End User Energy Demand Centres Programme via the +# "DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) + +# Copyright (C) 2014 University of Southampton +# Author: Ben Anderson (b.anderson@soton.ac.uk, @dataknut, https://github.com/dataknut) + +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 2 of the License +# (http://choosealicense.com/licenses/gpl-2.0/), or +# (at your option) any later version. + +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# End header ########################################### + +# MTUS codes of interest: +# 1983/4/7: Main/Sec21 Laundry, ironing, clothing repair +# <- 0701 Wash clothes, hang out / bring in washing +# 0702 Iron clothes +# 0801 Repair, upkeep of clothes +# so may over-estimate laundry + +# 2005: Main/Sec21 Laundry, ironing, clothing repair <- Pact=7 (washing clothes) + +# Housekeeping ---- +# clear out all old objects etc to avoid confusion +rm(list = ls()) + + +# set up some useful data paths +tudpath <- "~/Documents/Work/Data/MTUS/World 6/processed/" # presume processed data is already in here +efs1985path <- "~/Documents/Work/Data/Family Expenditure Survey/1985/stata8" +sprgpath <- "~/Documents/Work/Projects/ESRC-SPRG/WP4-Micro_water/data/sprg_survey/data/safe/v6" + +rpath <- "~/Documents/Work/Papers and Conferences/The Time and Timing of Demand - Laundry/results" + +# define laundry for time use data +laundry <- "laundry, ironing, clothing repair" + +# Generic functions ---- + +# load packages +loadPackages <- function() { + # add packages + library(foreign) # as loading stata files + library(lattice) # fancy graphs + library(ggplot2) # fancy graphs II + library(data.table) # why use anything else? + library(survey) # weighted survey analysis + library(car) # regression diagnostics + library(gmodels) # nice crosstabs + library(broom) # turns stats objects into dataframes - useful for table output + library(fasttime) # VERY fast time string conversion to POSIXct + # but only IF the input string is in a fixed format - see http://rforge.net/doc/packages/fasttime/fastPOSIXct.html +} + +# Feedback function - cos I can't be bothered to keep writing it out +feedBack <- function(string) { + print(paste0("Feedback: ", string)) +} + +############################################### +# Create a function called # +# logisticPseudoR2s(). To use it # +# type logisticPseudoR2s(myLogisticModel) +# From: Field, A. P., Miles, J., and Field, Z. C. (2012). +# Discovering statistics using R: and sex and drugs and rock ’n’ roll. London: Sage # +############################################### + +logisticPseudoR2s <- function(LogModel) { + dev <- LogModel$deviance + nullDev <- LogModel$null.deviance + modelN <- length(LogModel$fitted.values) + R.hl <- 1 - dev / nullDev + R.cs <- 1- exp ( -(nullDev - dev) / modelN) + R.n <- R.cs / ( 1 - ( exp (-(nullDev / modelN)))) + cat("*") + cat("Pseudo R^2 for logistic regression\n") + cat("-> Hosmer and Lemeshow R^2 ", round(R.hl, 3), "\n") + cat("-> Cox and Snell R^2 ", round(R.cs, 3), "\n") + cat("-> Nagelkerke R^2 ", round(R.n, 3), "\n") +} + +# function to run a logit model & print out diagnostics +doLogit <- function(form, DT) { + print("# <-- New model --> #") + print(paste0("Running logit model: ", form)) + result <- glm(formula = form, + family = binomial(logit), + data = DT + ) + ci <- confint(result) + tidyResult <- tidy(result) # tidy results + tidyResult <- cbind(tidyResult, ci) # stack columns side by side + print("") + print("# Model results") + print ( + tidyResult + ) + print("# Model summary") + print( + glance(result) + ) + logisticPseudoR2s(result) # print rsq + print("") + print("# Diagnostics: independence of errors") + print( + durbinWatsonTest(result) + ) + # value around 2 = OK, 0 or 4 not OK + # if p < 0.05 then a problem as implies autocorrelation + + print("# Diagnostics: collinearity (vif)") + print ( + vif(result) + ) + # if any values > 10 -> problem + + print("# Diagnostics: collinearity (tolerance)") + print( + 1/vif(result) + ) + # if any values < 0.2 -> possible problem + # if any values < 0.1 -> definitely a problem +} + +# function to run an lm model & print out diagnostics +doLm <- function(form, DT) { + print("# <-- New model --> #") + print(paste0("Running linear model: ", form)) + result <- lm(formula = form, + data = DT + ) + ci <- confint(result) + tidyResult <- tidy(result) + tidyResult <- cbind(tidyResult, ci) + print("# Model results") + print ( + tidyResult + ) + print( + glance(result) + ) + print("# Diagnostics: independence of errors") + print( + durbinWatsonTest(result) + ) + # value around 2 = OK, 0 or 4 not OK + # if p < 0.05 then a problem as implies autocorrelation + + print("# Diagnostics: collinearity (vif)") + print ( + vif(result) + ) + # if any values > 10 -> problem + + print("# Diagnostics: collinearity (tolerance)") + print( + 1/vif(result) + ) + # if any values < 0.2 -> possible problem + # if any values < 0.1 -> definitely a problem +} + +# FES data ---- +# Needed for estimates of washing machine adoption in 1985 +# Load as STATA file +efs1985file <- paste0(efs1985path, "/hchars.dta") +feedBack(paste0("Loading ", efs1985file)) +efs1985_DT <- as.data.table(read.dta(efs1985file)) + +# a108 byte %8.0g no of washing machines in h/h +wmachines <- table(efs1985_DT$a108) +prop.table(wmachines) + +# TU data ---- +# Functions for loading pre-processed data + +loadCoreMtusSurvey <- function() { + dfile <- "gMTUSW6UKsurveyCore_DT.csv.gz" + dir <- getwd() # get current + setwd(tudpath) # easier than building file paths + cmd <- paste0("gunzip -c ", dfile) + print(paste0("Loading via ", cmd)) + + # read in the gzipped file using gunzip to 'pipe' the file to fread + # this is a lot faster than non-piped gunzip then fread and you get feedback from fread + # Don't forget to globalise! + gMTUSW6UKsurveyCore_DT <<- fread(cmd, + stringsAsFactors = FALSE) + setwd(dir) # set back to where we started + feedBack("Done loading TU survey data") +} # works + +loadMtusEpisodes <- function() { + dfile <- "gMTUSW6UKdiaryEps_DT.csv.gz" + dir <- getwd() # get current + setwd(tudpath) # easier than building file paths + cmd <- paste0("gunzip -c ", dfile) + print(paste0("Loading via ", cmd)) + + # read in the gzipped file using gunzip to 'pipe' the file to fread + # this is a lot faster than non-piped gunzip then fread and you get feedback from fread + # Don't forget to globalise! + gMTUSW6UKdiaryEps_DT <<- fread(cmd, + stringsAsFactors = FALSE) + setwd(dir) # set back to where we started + feedBack("Done loading TU episodes data") +} # not tested - file does not exist (yet) + +loadMtusSampled <- function() { + # two files: + # - all sampled + # - laundry half hour + dfile <- "gMTUSW6UKdiarySampled_DT.csv.gz" + dir <- getwd() # get current + setwd(tudpath) # easier than building file paths + cmd <- paste0("gunzip -c ", dfile) + print(paste0("Loading via ", cmd)) + + # read in the gzipped file using gunzip to 'pipe' the file to fread + # this is a lot faster than non-piped gunzip then fread and you get feedback from fread + # Don't forget to globalise! + gMTUSW6UKdiarySampled_DT <<- fread(cmd, + stringsAsFactors = FALSE) + feedBack("Done loading TU sampled data") + + dfile <- "gMTUSW6UK_halfhours_laundry_DT.csv.gz" + + cmd <- paste0("gunzip -c ", dfile) + print(paste0("Loading via ", cmd)) + + # read in the gzipped file using gunzip to 'pipe' the file to fread + # this is a lot faster than non-piped gunzip then fread and you get feedback from fread + # Don't forget to globalise! + gMTUSW6UK_halfhours_laundry_DT <<- fread(cmd, + stringsAsFactors = FALSE) + setwd(dir) # set back to where we started + feedBack("Done loading TU sampled laundry data aggregated to half hour level") + +} # works + +# Functions for analysing loaded data +analyseMtusEpisodes <- function() { + # Check on number of primary & secondary acts ---- + # episode data + testEpisodes_p <- with(gMTUSW6UKdiaryEps_DT, xtabs(~ main + ba_survey)) + testEpisodes_s <- with(gMTUSW6UKdiaryEps_DT, xtabs(~ sec + ba_survey)) + feedBack(paste0("Writing results to ", rpath)) + pefile <- paste0(rpath, "/testEpisodes_p.csv") + write.csv(testEpisodes_p, file = pefile) + sefile <- paste0(rpath, "/testEpisodes_s.csv") + write.csv(testEpisodes_s, file = sefile) + + # sampled data + testSampled_p <- with(gMTUSW6UKdiarySampled_DT, xtabs(~ pact + ba_survey)) + testSampled_s <- with(gMTUSW6UKdiarySampled_DT, xtabs(~ sact + ba_survey)) + psfile <- paste0(rpath, "/testSampled_p.csv") + write.csv(testSampled_p, file = psfile) + ssfile <- paste0(rpath, "/testSampled_s.csv") + write.csv(testSampled_s, file = ssfile) + + # Laundry = code 21 + laundry <- "laundry, ironing, clothing repair" + # n episodes in total per year + with(gMTUSW6UKdiaryEps_DT, + table(ba_survey) + ) + # set a laundry code + gMTUSW6UKdiaryEps_DT$laundry_p <- ifelse(gMTUSW6UKdiaryEps_DT$main == laundry, + 1, # laundry as main act + 0) + gMTUSW6UKdiaryEps_DT$laundry_s <- ifelse(gMTUSW6UKdiaryEps_DT$sec == laundry, + 1, # laundry as main act + 0) + gMTUSW6UKdiaryEps_DT$laundry_all <- ifelse(gMTUSW6UKdiaryEps_DT$main == laundry | gMTUSW6UKdiaryEps_DT$sec == laundry, + 1, # laundry as either act + 0) + # totals + with(gMTUSW6UKdiaryEps_DT, + table(laundry_p, ba_survey)) + with(gMTUSW6UKdiaryEps_DT, + table(laundry_s, ba_survey)) + with(gMTUSW6UKdiaryEps_DT, + table(laundry_all, ba_survey)) + + feedBack("# n episodes by duration - to show how recording period varies things") + print( + with(gMTUSW6UKdiaryEps_DT, + xtabs(~ time + ba_survey)) + ) + feedBack("# n episodes of laundry as a primary act by duration (to show how recording period varies things)") + print( + with(gMTUSW6UKdiaryEps_DT, + xtabs(laundry_p ~ time + ba_survey)) + ) + + eps1985 <- length(gMTUSW6UKdiaryEps_DT$diarypid[gMTUSW6UKdiaryEps_DT$ba_survey == 1985]) # n episodes in 1985 + epslaundry1985 <- length(gMTUSW6UKdiaryEps_DT$diarypid[gMTUSW6UKdiaryEps_DT$ba_survey == 1985 & gMTUSW6UKdiaryEps_DT$laundry_all == 1]) + + print(paste0("% episodes that are laundry_all in 1985 = ", (epslaundry1985/eps1985)*100)) + + eps2005 <- length(gMTUSW6UKdiaryEps_DT$diarypid[gMTUSW6UKdiaryEps_DT$ba_survey == 2005]) # n episodes in 2005 + epslaundry2005 <- length(gMTUSW6UKdiaryEps_DT$diarypid[gMTUSW6UKdiaryEps_DT$ba_survey == 2005 & gMTUSW6UKdiaryEps_DT$laundry_all == 1]) + + print(paste0("% episodes that are laundry_all in 2005 = ", (epslaundry2005/eps2005)*100)) + + # work with split files - easier? + eps_1985DT <- gMTUSW6UKdiaryEps_DT[gMTUSW6UKdiaryEps_DT$ba_survey == 1985] + eps_2005DT <- gMTUSW6UKdiaryEps_DT[gMTUSW6UKdiaryEps_DT$ba_survey == 2005] + + # when do most episodes start in 1985? + alleps_byhh1985 <- eps_1985DT[main == laundry, + .( + N_episodes1985 = length(st_halfhour), #n episodes starting in a given half hour + Pr_episodes1985 = length(st_halfhour)/eps1985 # proportion of all episodes in that year starting... + ), + by = .( + Start = st_halfhour + ) + ] + setkey(alleps_byhh1985,Start) + feedBack("Plotting 1985 all episodes start") + plot(alleps_byhh1985$Pr_episodes) + + # and laundry episodes? + laundryeps_byhh1985 <- eps_1985DT[main == laundry, + .( + N_episodes1985 = length(st_halfhour), #n episodes starting in a given half hour + Pr_episodes1985 = length(st_halfhour)/eps1985 # proportion of all episodes in that year starting... + ), + by = .( + Start = st_halfhour + ) + ] + setkey(laundryeps_byhh1985,Start) + feedBack("Plotting 1985 laundry episodes start") + plot(laundryeps_byhh1985$Pr_episodes) + + # when do most episodes start in 2005? + alleps_byhh2005 <- eps_2005DT[, + .( + N_episodes2005 = length(st_halfhour), #n episodes starting in a given half hour + Pr_episodes2005 = length(st_halfhour)/eps2005 # proportion of all episodes in that year starting... + ), + by = .( + Start = st_halfhour + ) + ] + setkey(alleps_byhh2005,Start) + feedBack("Plotting 2005 all episodes start") + plot(alleps_byhh2005$Pr_episodes) + + # and laundry episodes? + laundryeps_byhh2005 <- eps_2005DT[main == laundry, + .( + N_episodes2005 = length(st_halfhour), #n episodes starting in a given half hour + Pr_episodes2005 = length(st_halfhour)/eps2005 # proportion of all episodes in that year starting... + ), + by = .( + Start = st_halfhour + ) + ] + setkey(laundryeps_byhh2005,Start) + feedBack("Plotting 2005 laundry episodes start") + plot(laundryeps_byhh2005$Pr_episodes) + + # join tables for ease of comparison + # ideally these need to be weighted & need 95% CIs for proportions + laundryeps_byhh <- laundryeps_byhh2005[laundryeps_byhh1985] + laundryeps_byhh$diff <- laundryeps_byhh$Pr_episodes2005 - laundryeps_byhh$Pr_episodes1985 + plot(laundryeps_byhh$diff) + + # use ggplot to make a nice plot of 1985, 2005 & difference? + + outf <- paste0(rpath,"/laundryeps_byhh.csv") + feedBack(paste0("Saving episodes results into: ", rpath)) + write.csv(laundryeps_byhh, + file = outf, + na = "" + ) + + feedBack("Done analysing episode file") +} # works + +analyseMtus10minSampled <- function() { + + feedBack("Join survey to sampled data") + MTUSW6UKjoinedSampled_DT <- gMTUSW6UKdiarySampled_DT[gMTUSW6UKsurveyCore_DT] + + with(MTUSW6UKjoinedSampled_DT[], + table(badcase,ba_survey) + ) + + # Keep only good cases for 1985 & 2005 + MTUSW6UKjoinedSampled_DT <- MTUSW6UKjoinedSampled_DT[badcase == "good case"] + MTUSW6UKjoinedSampled_DT <- MTUSW6UKjoinedSampled_DT[ba_survey %in% c("1985","2005")] + + # check + with(MTUSW6UKjoinedSampled_DT, + table(badcase,ba_survey) + ) + # looks like we only had the good cases in the sampled file anyway + + # totals + feedBack("Number of 10 min obs of laundry as primary act") + print( + with(MTUSW6UKjoinedSampled_DT, + table(laundry_p, ba_survey)) + ) + +} # works + +analyseMtusHalfhourSampled <- function() { + feedBack("Join survey to derived half hour data") + setkey(gMTUSW6UK_halfhours_laundry_DT, diarypid) + setkey(gMTUSW6UKsurveyCore_DT, diarypid) + gMTUSW6UKjoinedHalfhour_laundry_DT <<- gMTUSW6UK_halfhours_laundry_DT[gMTUSW6UKsurveyCore_DT] + + head(gMTUSW6UKjoinedHalfhour_laundry_DT) # check + tail(gMTUSW6UKjoinedHalfhour_laundry_DT) # check + + # Lots of NA in ba_survey = other surveys. Drop them + table(gMTUSW6UKjoinedHalfhour_laundry_DT$ba_survey, exclude = FALSE) + gMTUSW6UKjoinedHalfhour_laundry_DT <- gMTUSW6UKjoinedHalfhour_laundry_DT[ + ba_survey == 1985 | ba_survey == 2005] + # check + table(gMTUSW6UKjoinedHalfhour_laundry_DT$ba_survey) + + feedBack("How many half hours have N_obs = 3 (should be all!)") + # gives a count of half hours + print( + xtabs(~ gMTUSW6UKjoinedHalfhour_laundry_DT$ba_survey + + gMTUSW6UKjoinedHalfhour_laundry_DT$N_obs) + ) + # number of half hours by number of obs in the half hour + + feedBack("Number of half hours by frequency of observation ( 0 - 3)") + print( + xtabs(~ gMTUSW6UKjoinedHalfhour_laundry_DT$ba_survey + + gMTUSW6UKjoinedHalfhour_laundry_DT$N_laundry_p) + ) + # now do the comparison by half hour to see if it changes the shape much + feedBack("Distribution of halfhours with given number (1-3) obs of laundry as primary act?") + print( + ftable(gMTUSW6UKjoinedHalfhour_laundry_DT$st_halfhour, + gMTUSW6UKjoinedHalfhour_laundry_DT$ba_survey, + gMTUSW6UKjoinedHalfhour_laundry_DT$N_laundry_p, + col.vars= c(2, 3) # arrange with half hours as rows and frequencies per survey year as cols + ) + ) + feedBack("Same but for any laundry indicator (should be sum of above!)") + print( + ftable(gMTUSW6UKjoinedHalfhour_laundry_DT$st_halfhour, + gMTUSW6UKjoinedHalfhour_laundry_DT$ba_survey, + gMTUSW6UKjoinedHalfhour_laundry_DT$N_laundry_p, + col.vars= c(2, 3) # arrange with half hours as rows and frequencies per survey year as cols + ) + ) + + # the above analysis confirms that the 'any laundry' indicator masks the difference between short duration laundry acts and longer ones + # Longer duration acts are more common and seem to have a different distribution - perhaps this is different components of the practice? + # But NB - 1985 = 2 * 15 min slots per half hour, 2005 = 3 * 10 minutes (as per sampling method) + + # So from here on we use anylaundry_p as we are not sure about reporting of secondary acts and we only care about the timing of laundry + # not the duration of acts at particular times (although it might be interesting for a methodological study) + + # use weighted analysis from here on + + feedBack("Done analysing sampled file") +} # works + +analyseMtusHalfhourSampled_Svy <- function() { + feedBack("Join survey to derived half hour data") + setkey(gMTUSW6UK_halfhours_laundry_DT, diarypid) + setkey(gMTUSW6UKsurveyCore_DT, diarypid) + gMTUSW6UKjoinedHalfhour_laundry_DT <<- gMTUSW6UK_halfhours_laundry_DT[gMTUSW6UKsurveyCore_DT] + + head(gMTUSW6UKjoinedHalfhour_laundry_DT) # check + tail(gMTUSW6UKjoinedHalfhour_laundry_DT) # check + + # Lots of NA in ba_survey = other surveys. Drop them + table(gMTUSW6UKjoinedHalfhour_laundry_DT$ba_survey, exclude = FALSE) + gMTUSW6UKjoinedHalfhour_laundry_DT <- gMTUSW6UKjoinedHalfhour_laundry_DT[ + ba_survey == 1985 | ba_survey == 2005] + # check + table(gMTUSW6UKjoinedHalfhour_laundry_DT$ba_survey) + + print("Recode to 'at a home' vs 'not at a home'") + gMTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_home <- ifelse( + gMTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_ph == 1 | + gMTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_photh == 1, 1, 0 + ) + gMTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_nothome <- ifelse( + gMTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_psh == 1 | + gMTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_poth == 1, 1, 0 + ) + # check + with(gMTUSW6UKjoinedHalfhour_laundry_DT, + table( + Any_laundry_home, Any_laundry_nothome + ) + ) + + print("create types of laundry here so become part of survey design object") + # Specific types of laundry (for Table 3) + # weekday early morning laundry (06:00 – 09:00) + # weekday morning laundry (09:00-12:00) + # weekday evening laundry (18:00 – 21:00) + # Sunday morning laundry (09:00 – 11:00) + + print("Weekday early morning 06:00-09:00") + gMTUSW6UKjoinedHalfhour_laundry_DT$weekday_earlyam <- ifelse( + gMTUSW6UKjoinedHalfhour_laundry_DT$r_dow != "Saturday" & + gMTUSW6UKjoinedHalfhour_laundry_DT$r_dow != "Sunday" & + gMTUSW6UKjoinedHalfhour_laundry_DT$r_hour >= 6 & + gMTUSW6UKjoinedHalfhour_laundry_DT$r_hour <= 8 & + gMTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_home == 1, 1, 0 + ) + # check + with(gMTUSW6UKjoinedHalfhour_laundry_DT[weekday_earlyam == 1], + table( + r_hour, r_dow + ) + ) + + print("Weekday morning 09:00-12:00") + gMTUSW6UKjoinedHalfhour_laundry_DT$weekday_am <- ifelse( + gMTUSW6UKjoinedHalfhour_laundry_DT$r_dow != "Saturday" & + gMTUSW6UKjoinedHalfhour_laundry_DT$r_dow != "Sunday" & + gMTUSW6UKjoinedHalfhour_laundry_DT$r_hour >= 9 & + gMTUSW6UKjoinedHalfhour_laundry_DT$r_hour <= 11 & + gMTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_home == 1, 1, 0 + ) + # check + with(gMTUSW6UKjoinedHalfhour_laundry_DT[weekday_am == 1], + table( + r_hour, r_dow + ) + ) + + print("Weekday evening peak 18:00-21:00") + gMTUSW6UKjoinedHalfhour_laundry_DT$weekday_pm <- ifelse( + gMTUSW6UKjoinedHalfhour_laundry_DT$r_dow != "Saturday" & + gMTUSW6UKjoinedHalfhour_laundry_DT$r_dow != "Sunday" & + gMTUSW6UKjoinedHalfhour_laundry_DT$r_hour >= 18 & + gMTUSW6UKjoinedHalfhour_laundry_DT$r_hour <= 20 & + gMTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_home == 1, 1, 0 + ) + # check + with(gMTUSW6UKjoinedHalfhour_laundry_DT[weekday_pm == 1], + table( + r_hour, r_dow + ) + ) + + print ("Sunday morning 09:00-12:00") + gMTUSW6UKjoinedHalfhour_laundry_DT$sunday_am <- ifelse( + gMTUSW6UKjoinedHalfhour_laundry_DT$r_dow == "Sunday" & + gMTUSW6UKjoinedHalfhour_laundry_DT$r_hour >= 9 & + gMTUSW6UKjoinedHalfhour_laundry_DT$r_hour <= 11 & + gMTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_home == 1, 1, 0 + ) + # check + with(gMTUSW6UKjoinedHalfhour_laundry_DT[sunday_am == 1], + table( + r_hour, r_dow + ) + ) + + print("Other") + gMTUSW6UKjoinedHalfhour_laundry_DT$other <- ifelse( + gMTUSW6UKjoinedHalfhour_laundry_DT$sunday_am != 1 & + gMTUSW6UKjoinedHalfhour_laundry_DT$weekday_earlyam != 1 & + gMTUSW6UKjoinedHalfhour_laundry_DT$weekday_am != 1 & + gMTUSW6UKjoinedHalfhour_laundry_DT$weekday_pm != 1 & + gMTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_home == 1, 1, 0 + ) + # check + with(gMTUSW6UKjoinedHalfhour_laundry_DT[other == 1], + table( + r_hour, r_dow + ) + ) + + print("Set survey data") + # tell survey that the diarypids are the ids (they repeat) + svygMTUSW6UK_halfhours_laundry <<- svydesign(ids = ~diarypid, + weight = ~propwt, + data = gMTUSW6UKjoinedHalfhour_laundry_DT) # does not produce a data table + + # how many weighted half hours do we have? + # any laundry + all_hhs <- svytable(~ba_survey + sex + N_laundry_p, # the row * columns we want + svygMTUSW6UK_halfhours_laundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + # how many weighted half hours do we have? + # any laundry + all_hhs <- svytable(~ba_survey + Any_laundry_p, # the row * columns we want + svygMTUSW6UK_halfhours_laundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + + # any laundry at home (Table 1) + all_hhs <- svytable(~ba_survey + Any_laundry_ph, # the row * columns we want + svygMTUSW6UK_halfhours_laundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + + # any laundry at others' home (Table 1) + all_hhs <- svytable(~ba_survey + Any_laundry_photh, # the row * columns we want + svygMTUSW6UK_halfhours_laundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + # any laundry at shops/services (Table 1) + all_hhs <- svytable(~ba_survey + Any_laundry_psh, # the row * columns we want + svygMTUSW6UK_halfhours_laundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + # any laundry at other locations (Table 1) + all_hhs <- svytable(~ba_survey + Any_laundry_poth, # the row * columns we want + svygMTUSW6UK_halfhours_laundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + + + + # any laundry at a home (Table 1) + # NB: some missing as no location known + all_hhs <- svytable(~ba_survey + Any_laundry_home, # the row * columns we want + svygMTUSW6UK_halfhours_laundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + # any laundry not at a home (Table 1) + # NB: some missing as no location known + all_hhs <- svytable(~ba_survey + Any_laundry_nothome, # the row * columns we want + svygMTUSW6UK_halfhours_laundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + + + # any laundry by gender (Table 1) - frequencies + all_hhs_anylf <- svytable(~ba_survey + sex + Any_laundry_p, # the row * columns we want + svygMTUSW6UK_halfhours_laundry # the data in survey form + ) + print( + ftable(all_hhs_anylf) # nice table + ) + # any laundry by gender (Table 1) - % of halfhours using svyby + all_hhs_anylp <- svyby(~Any_laundry_p, # the data to summarise + ~ba_survey + sex, # the row * columns we want + svygMTUSW6UK_halfhours_laundry, # the data in survey form + svymean # the function to use to summarise + ) + print(all_hhs_anylp) + + # all laundry by gender (Table 1) - % of laundry halfhours + anyl_genderp85 <- svymean(~sex, # the row * columns we want + svygMTUSW6UK_halfhours_laundry[ + svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 + & svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 1985 + ], # the data in survey form + keep.var = TRUE + ) + print( + ftable(anyl_genderp85) # nice table + ) + + anyl_genderp05 <- svymean(~sex, # the row * columns we want + svygMTUSW6UK_halfhours_laundry[ + svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 + & svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 2005 + ], # the data in survey form + keep.var = TRUE + ) + print( + ftable(anyl_genderp05) # nice table + ) + # laundry not at home (recoded for Table 1) + all_hhs_anylh <- svytable(~ba_survey + sex + Any_laundry_home, # the row * columns we want + svygMTUSW6UK_halfhours_laundry # the data in survey form + ) + print( + ftable(all_hhs_anylh) # nice table + ) + + all_hhs_anylnh <- svytable(~ba_survey + sex + Any_laundry_nothome, # the row * columns we want + svygMTUSW6UK_halfhours_laundry # the data in survey form + ) + print( + ftable(all_hhs_anylnh) # nice table + ) + + + ## By day of the week (Fig 1) ## + + # This gives the frequencies (pattern) within all halfhours + svyby(~Any_laundry_home, ~r_dow + ba_survey, + svygMTUSW6UK_halfhours_laundry, + svymean + ) + + # This gives the frequencies (pattern) within laundry + svytable(~r_dow + ba_survey, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1] + ) + # this gives the proportion per day + dow_1985 <- svymean(~r_dow, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 1985] + ) + feedBack("Any laundry by day of the week: 1985") + print(dow_1985) + confint( # check + dow_1985 + ) + + # this gives the proportion per day + dow_2005 <- svymean(~r_dow, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 2005] + ) + feedBack("Any laundry by day of the week: 2005") + print(dow_2005) + confint( # check + dow_2005 + ) + + ## By gender & day of the week (Fig 2) ## + dowg_1985 <- svyby(~r_dow, ~sex, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 1985 ], + svymean + ) + feedBack("Any laundry by day of the week/gender: 1985") + print(dowg_1985) + confint( # check + dowg_1985 + ) + + dowg_2005 <- svyby(~r_dow, ~sex, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 2005 ], + svymean + ) + feedBack("Any laundry by day of the week/gender: 2005") + print(dowg_2005) + confint( # check + dowg_2005 + ) + + ## By women's labour market status (Fig 3) ## + # all half hours + pwork_1985allhh <- svyby(~ba_survey, ~empstat, + svygMTUSW6UK_halfhours_laundry, + svytotal + ) + ftable(pwork_1985allhh) + dowpwork_1985allhh <- svyby(~Any_laundry_home, ~empstat + r_dow, + svygMTUSW6UK_halfhours_laundry[ + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 1985 & + svygMTUSW6UK_halfhours_laundry$variables$sex == "Woman"], + svymean + ) + dowpwork_1985allhh + # laundry half hours + dowfwork_1985 <- svyby(~r_dow, ~empstat, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 1985 & + svygMTUSW6UK_halfhours_laundry$variables$sex == "Woman"], + svymean + ) + feedBack("Any laundry by day of the week/women/labour market status: 1985") + print(dowfwork_1985) + + ## By women's labour market status (Fig 4) ## + dowfwork_2005 <- svyby(~r_dow, ~empstat, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 2005 & + svygMTUSW6UK_halfhours_laundry$variables$sex == "Woman"], + svymean, + keep.var = TRUE + ) + feedBack("Any laundry by day of the week/women/labour market status: 1985") + print(dowfwork_2005) + # ftable(dowfwork_2005) #if desired + + + ## By time of day (Fig 5) ## + # get the mean % of half hours with any laundry as a primary act (and SE) over 24 hours + pcAnylp_hh <- svyby(~Any_laundry_home, # the variable to do the stats on + ~st_halfhour + ba_survey, # the row * columns we want (produces long form) + svygMTUSW6UK_halfhours_laundry, # the data + svymean, # the stats function(s) + keep.var = TRUE) + #ftable(pcAnyl_hh) # flat table fails + print( + pcAnylp_hh # table + ) + # by day (all half hours) + pcAnylp_hhByDay85 <- svyby(~Any_laundry_home, + ~st_halfhour + r_dow, + svygMTUSW6UK_halfhours_laundry[ + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 1985], + svymean) + print(pcAnylp_hhByDay85) + pcAnylp_hhByDay05 <- svyby(~Any_laundry_home, + ~st_halfhour + r_dow, + svygMTUSW6UK_halfhours_laundry[ + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 2005], + svymean) + print(pcAnylp_hhByDay05) + + ## By time of day but within laundry (Fig 6) ## + # get the mean % of half hours with any laundry as a primary act (and SE) over 24 hours + svygMTUSW6UK_halfhours_laundry$variables$ba_survey <- factor(svygMTUSW6UK_halfhours_laundry$variables$ba_survey) + pcAnyl_hh85 <- svymean(~st_halfhour, + svygMTUSW6UK_halfhours_laundry[ + svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 1985] # the data + + ) + print(pcAnyl_hh85) + pcAnyl_hh05 <- svymean(~st_halfhour, + svygMTUSW6UK_halfhours_laundry[ + svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 2005] # the data + + ) + print(pcAnyl_hh05) + + # within laundry by day, (Fig 7) + pcOnlyl_hhByDay85 <- svymean(~interaction(st_halfhour,r_dow), + design = svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 1985 & + svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1]) + print(pcOnlyl_hhByDay85) + + pcOnlyl_hhByDay05 <- svymean(~interaction(st_halfhour,r_dow), + design = svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 2005 & + svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1]) + print(pcOnlyl_hhByDay05) + + # you cannot be serious: + ftable(pcOnlyl_hhByDay85, rownames = list(r_dow = c("S", "M", "T", "W", "T", "F", "S"), + st_halfhour = c("00:00", "00:30", "01:00"))) + + # weekday/weekend flag + svygMTUSW6UK_halfhours_laundry$variables$wd <- ifelse( + svygMTUSW6UK_halfhours_laundry$variables$r_dow != "Sunday" & + svygMTUSW6UK_halfhours_laundry$variables$r_dow != "Saturday" , + 1, # yes = weekday + 0 # no = weekend + ) + + # Specific types of laundry (for Table 3) + # weekday early morning laundry (06:00 – 09:00) + # weekday morning laundry (09:00-12:00) + # weekday evening laundry (17:00 – 21:00) + # Sunday morning laundry (08:00 – 11:00) + + # Weekday early morning 06:00-09:00 + weekday_earlyam_pLhh <- svyby(~weekday_earlyam, + ~ba_survey, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1], + svymean, + keep.var = TRUE + ) + feedBack("Weekday early morning laundry (06:00 – 09:00) out of all laundry") + print(weekday_earlyam_pLhh) + + # Weekday morning 09:00-12:00 + weekday_am_pLhh <- svyby(~weekday_am, + ~ba_survey, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1], + svymean, + keep.var = TRUE + ) + feedBack("Weekday morning laundry out of all laundry") + print(weekday_am_pLhh) + + # Weekday evening peak 17:00-21:00 + weekday_pm_pLhh <- svyby(~weekday_pm, + ~ba_survey, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1], + svymean, + keep.var = TRUE + ) + feedBack("Weekday evening peak laundry out of all laundry") + print(weekday_pm_pLhh) + + # Sunday morning 09:00-12:00 + sunday_am_pLhh <- svyby(~sunday_am, + ~ba_survey, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1], + svymean, + keep.var = TRUE + ) + feedBack("Sunday morning laundry out of all laundry") + print(sunday_am_pLhh) + confint( + sunday_am_pLhh + ) + + # Other + other_pLhh <- svyby(~other, + ~ba_survey, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1], + svymean, + keep.var = TRUE + ) + feedBack("Other laundry out of all laundry") + print(other_pLhh) + + # analysis by employment status in 2005 + print("% within empstat who do sunday_am") + print( + svyby(~sunday_am, ~empstat, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 2005], + svymean, + keep.var = TRUE + ) + ) + print("% within empstat who do weekday early am") + print( + svyby(~weekday_earlyam, ~empstat, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 2005], + svymean, + keep.var = TRUE + ) + ) + print("% within empstat who do weekday am") + print( + svyby(~weekday_am, ~empstat, + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 2005], + svymean, + keep.var = TRUE + ) + ) + print("% within empstat who do weekday pm") + print( + svyby(~weekday_pm, ~empstat, # + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 2005], + svymean, + keep.var = TRUE + ) + ) + print("% within empstat who do other") + print( + svyby(~other, ~empstat, # + svygMTUSW6UK_halfhours_laundry[svygMTUSW6UK_halfhours_laundry$variables$Any_laundry_home == 1 & + svygMTUSW6UK_halfhours_laundry$variables$ba_survey == 2005], + svymean, + keep.var = TRUE + ) + ) + + print("summarise the laundry types by diarypid for 1985 to see how many different kinds of laundry") + laundrySummary1985 <- gMTUSW6UKjoinedHalfhour_laundry_DT[ba_survey == 1985, + .( + N_Any_laundry_home = sum(Any_laundry_home), + N_sunday_morning = sum(sunday_am), + N_weekday_earlyam = sum(weekday_earlyam), + N_weekday_am = sum(weekday_am), + N_weekday_pm = sum(weekday_pm), + N_other = sum(other) + ), + by = .( + diarypid, + empstat, + sex, + r_dow, + r_month, + nchild, + age, + hhtype, + hhldsize, + income, + urban, + propwt + ) + + ] + + print("Summarise the laundry types by diarypid for 2005 to see how many different kinds of laundry") + # globalize for future use + laundrySummary2005 <- gMTUSW6UKjoinedHalfhour_laundry_DT[ba_survey == 2005, + .( + N_Any_laundry_home = sum(Any_laundry_home), + N_sunday_morning = sum(sunday_am), + N_weekday_earlyam = sum(weekday_earlyam), + N_weekday_am = sum(weekday_am), + N_weekday_pm = sum(weekday_pm), + N_other = sum(other) + ), + by = .( + diarypid, + empstat, + sex, + r_dow, + r_month, + nchild, + age, + hhtype, + hhldsize, + income, + urban, + propwt + ) + + ] + + print("Check laundry by sex & hh type - any change in proportions done by men in couples?") + print( + table(laundrySummary1985$hhtype[laundrySummary1985$N_Any_laundry_home > 0], + laundrySummary1985$sex[laundrySummary1985$N_Any_laundry_home > 0]) + ) + print( + table(laundrySummary2005$hhtype[laundrySummary2005$N_Any_laundry_home > 0], + laundrySummary2005$sex[laundrySummary2005$N_Any_laundry_home > 0]) + ) + # convert 1985 to dummies + laundrySummary1985$Sunday_amd <- ifelse( + laundrySummary1985$N_sunday_morning > 0, + 1, # true + 0 # false + ) + laundrySummary1985$WeekdayEarly_amd <- ifelse( + laundrySummary1985$N_weekday_earlyam > 0, + 1, # true + 0 # false + ) + laundrySummary1985$Weekday_amd <- ifelse( + laundrySummary1985$N_weekday_am > 0, + 1, # true + 0 # false + ) + laundrySummary1985$Weekday_pmd <- ifelse( + laundrySummary1985$N_weekday_pm > 0, + 1, # true + 0 # false + ) + laundrySummary1985$Otherd <- ifelse( + laundrySummary1985$N_other > 0, + 1, # true + 0 # false + ) + laundrySummary1985$Any_laundry_homed <- ifelse( + laundrySummary1985$N_Any_laundry_home > 0, + 1, # true + 0 # false + ) + + # convert 2005 to dummies for logitstic models + laundrySummary2005$Sunday_amd <- ifelse( + laundrySummary2005$N_sunday_morning > 0, + 1, # true + 0 # false + ) + laundrySummary2005$WeekdayEarly_amd <- ifelse( + laundrySummary2005$N_weekday_earlyam > 0, + 1, # true + 0 # false + ) + laundrySummary2005$Weekday_amd <- ifelse( + laundrySummary2005$N_weekday_am > 0, + 1, # true + 0 # false + ) + laundrySummary2005$Weekday_pmd <- ifelse( + laundrySummary2005$N_weekday_pm > 0, + 1, # true + 0 # false + ) + laundrySummary2005$Otherd <- ifelse( + laundrySummary2005$N_other > 0, + 1, # true + 0 # false + ) + laundrySummary2005$Any_laundry_homed <- ifelse( + laundrySummary2005$N_Any_laundry_home > 0, + 1, # true + 0 # false + ) + + # recode age + laundrySummary2005$ba_age <- cut(laundrySummary2005$age, + breaks = c(9,24,34,44,54,64,74,84,104), + as.factor.result = TRUE + ) + laundrySummary1985$ba_age <- cut(laundrySummary1985$age, + breaks = c(9,24,34,44,54,64,74,84,104), + as.factor.result = TRUE + ) + # check + tapply(laundrySummary2005$age, laundrySummary2005$ba_age, mean) + # recode in work var to make label easier and in a different order + laundrySummary2005$empstat_r <- factor(laundrySummary2005$empstat, + levels = c("could not be created", "missing", "not applicable/not asked", + "unkown job hours", "not in paid work", "part-time", "full-time" ), + labels = c("could not be created", "missing", "not applicable/not asked", + "unkown-hours", "not_in_work","part-time","full-time") + ) + laundrySummary1985$empstat_r <- factor(laundrySummary1985$empstat, + levels = c("could not be created", "missing", "not applicable/not asked", + "unkown job hours", "not in paid work", "part-time", "full-time" ), + labels = c("could not be created", "missing", "not applicable/not asked", + "unkown-hours", "not_in_work","part-time","full-time") + ) + # check + table(laundrySummary2005$empstat_r, laundrySummary2005$empstat) + + # recode children var + laundrySummary1985$ba_nchild[laundrySummary1985$nchild == 0] <- "0_children" + laundrySummary1985$ba_nchild[laundrySummary1985$nchild == 1] <- "1_child" + laundrySummary1985$ba_nchild[laundrySummary1985$nchild == 2] <- "2_children" + laundrySummary1985$ba_nchild[laundrySummary1985$nchild >= 3] <- "3+_children" + + laundrySummary2005$ba_nchild[laundrySummary2005$nchild == 0] <- "0_children" + laundrySummary2005$ba_nchild[laundrySummary2005$nchild == 1] <- "1_child" + laundrySummary2005$ba_nchild[laundrySummary2005$nchild == 2] <- "2_children" + laundrySummary2005$ba_nchild[laundrySummary2005$nchild >= 3] <- "3+_children" + + # check + table(laundrySummary2005$ba_nchild, laundrySummary2005$nchild) + + # create a 'season' variable + laundrySummary1985$ba_season[laundrySummary1985$r_month == 11 | + laundrySummary1985$r_month == 0 | + laundrySummary1985$r_month == 1 ] <- "Winter" + laundrySummary1985$ba_season[laundrySummary1985$r_month == 2 | + laundrySummary1985$r_month == 3 | + laundrySummary1985$r_month == 4 ] <- "Spring" + laundrySummary1985$ba_season[laundrySummary1985$r_month == 5 | + laundrySummary1985$r_month == 6 | + laundrySummary1985$r_month == 7 ] <- "Summer" + laundrySummary1985$ba_season[laundrySummary1985$r_month == 8 | + laundrySummary1985$r_month == 9 | + laundrySummary1985$r_month == 10 ] <- "Autumn" + # check + table(laundrySummary1985$ba_season, laundrySummary1985$r_month) + + # create a 'season' variable + laundrySummary2005$ba_season[laundrySummary2005$r_month == 11 | + laundrySummary2005$r_month == 0 | + laundrySummary2005$r_month == 1 ] <- "Winter" + laundrySummary2005$ba_season[laundrySummary2005$r_month == 2 | + laundrySummary2005$r_month == 3 | + laundrySummary2005$r_month == 4 ] <- "Spring" + laundrySummary2005$ba_season[laundrySummary2005$r_month == 5 | + laundrySummary2005$r_month == 6 | + laundrySummary2005$r_month == 7 ] <- "Summer" + laundrySummary2005$ba_season[laundrySummary2005$r_month == 8 | + laundrySummary2005$r_month == 9 | + laundrySummary2005$r_month == 10 ] <- "Autumn" + # check + table(laundrySummary2005$ba_season, laundrySummary2005$r_month) + + # how many people exhibit combinations of laundry? + laundrySummary1985$laundry_sum <- laundrySummary1985$Sunday_amd + + laundrySummary1985$WeekdayEarly_amd + laundrySummary1985$Weekday_amd + laundrySummary1985$Weekday_pmd + + # NB - only 1 day diary in 2005 so cannot have Sunday + weekday laundry + laundrySummary2005$laundry_sum <- laundrySummary2005$Sunday_amd + + laundrySummary2005$WeekdayEarly_amd + laundrySummary2005$Weekday_amd + laundrySummary2005$Weekday_pmd + + # combinations by employment type + table(laundrySummary1985$laundry_sum,laundrySummary1985$empstat_r) + table(laundrySummary2005$laundry_sum,laundrySummary2005$empstat_r) + + # Get number of people reporting any laundry + table(laundrySummary2005$laundry_sum,laundrySummary2005$N_Any_laundry_home) + + ## logit models predicting performing a given laundry type ## + + doLogit(Sunday_amd ~empstat + ba_age + ba_nchild, laundrySummary2005[laundrySummary2005$Any_laundry_homed == 1]) + # test with season + doLogit(Sunday_amd ~empstat + ba_age + ba_nchild + ba_season, laundrySummary2005[laundrySummary2005$Any_laundry_homed == 1]) + + doLogit(WeekdayEarly_amd ~empstat + ba_age + ba_nchild, laundrySummary2005[laundrySummary2005$Any_laundry_homed == 1]) + + doLogit(Weekday_amd ~empstat + ba_age + ba_nchild, laundrySummary2005[laundrySummary2005$Any_laundry_homed == 1]) + + doLogit(Weekday_pmd ~empstat + ba_age + ba_nchild, laundrySummary2005[laundrySummary2005$Any_laundry_homed== 1]) + + # number of different habits + doLm(laundry_sum ~empstat_r + ba_age + ba_nchild, laundrySummary2005[laundrySummary2005$Any_laundry_homed == 1]) + + # survey it & + # globalize for future use + glaundrySummary1985 <<- laundrySummary1985 + glaundrySummary2005 <<- laundrySummary2005 + # survey it & + # globalize for future use + gSvylaundrySummary1985 <<- svydesign(ids = ~diarypid, + weight = ~propwt, + data = glaundrySummary1985) # does not produce a data table + gSvylaundrySummary2005 <<- svydesign(ids = ~diarypid, + weight = ~propwt, + data = glaundrySummary2005) # does not produce a data table + + # check changes in % of women < 60 in paid work + print("% in work in 1985") + print( + svyby(~empstat, ~sex, + gSvylaundrySummary1985[gSvylaundrySummary1985$variables$age > 19 & gSvylaundrySummary1985$variables$age < 60], + svymean, + keep.var = TRUE + ) + ) + print("% in work in 2005") + print( + svyby(~empstat, ~sex, + gSvylaundrySummary2005[gSvylaundrySummary2005$variables$age > 19 & gSvylaundrySummary2005$variables$age < 60], + svymean, + keep.var = TRUE + ) + ) + + print("% people who report laundry in 1985") + print( + svymean(~Any_laundry_homed, gSvylaundrySummary1985) + ) + print("% people who report laundry in 2005") + print( + svymean(~Any_laundry_homed, gSvylaundrySummary2005) + ) + + print("Number of people reporting different number of laundry habits") + print( + svytable(~laundry_sum, gSvylaundrySummary2005) + ) + + print("1985: N of respondents who reported laundry of given type") + print( + svytotal(~Sunday_amd + WeekdayEarly_amd + Weekday_amd + Weekday_pmd + Otherd + Any_laundry_homed, + gSvylaundrySummary1985 + ) + ) + print("2005: N of respondents who reported laundry of given type") + print( + svytotal(~Sunday_amd + WeekdayEarly_amd + Weekday_amd + Weekday_pmd + Otherd + Any_laundry_homed, + gSvylaundrySummary2005 + ) + ) + + + feedBack("Done analysing sampled file using survey methods") + +} # works + +# Run to here to load functions + +# Controller ---- +loadPackages() +loadCoreMtusSurvey() +#loadMtusEpisodes() # only run if needed +loadMtusSampled() + +#analyseMtusEpisodes() # only run if needed +#analyseMtus10minSampled() # only run if needed +#analyseMtusHalfhourSampled() # only run if needed +analyseMtusHalfhourSampled_Svy() # only run if needed + +print("Finished") diff --git a/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis.Rmd b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis.Rmd new file mode 100644 index 0000000000000000000000000000000000000000..7b2ab423f8a496250e097d36d51e15c8f6bf7620 --- /dev/null +++ b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis.Rmd @@ -0,0 +1,1350 @@ +--- +title: "Laundry, Energy & Time (ER&SS submission)" +author: Ben Anderson (b.anderson@soton.ac.uk/@dataknut) [Energy & Climate Change, + Faculty of Engineering & Environment, University of Southampton] +date: 'Last run at: `r Sys.time()`' +output: + html_document: + fig_caption: yes + keep_md: yes + number_sections: yes + theme: journal + toc: yes +--- + +```{r knitrSetUp, include=FALSE} +# set default echo to FALSE (code not in output) +knitr::opts_chunk$set(echo = FALSE) +knitr::opts_chunk$set(warning = FALSE) +knitr::opts_chunk$set(message = FALSE) +knitr::opts_chunk$set(fig_caption = TRUE) +knitr::opts_chunk$set(fig_height = 4) +knitr::opts_chunk$set(fig_height = 8) +knitr::opts_chunk$set(tidy = TRUE) +``` + + +# Data analysis for 'Laundry' paper: + +Use MTUS World 6 time-use data (UK subset) to examine: + * distributions of laundry in 1985 & 2005 + * changing laundry practice + * data source: www.timeuse.org/mtus + * data already in long format (but episodes) processed using DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-data-processing.R + +Uses FES/EFS/LCFS to examine: + * historical ownership of washing machines/tumble dryers + * Data source: http://discover.ukdataservice.ac.uk/series/?sn=200016 + +Uses SPRG water practices survey: + * reported laundry practices + * data source: http://www.sprg.ac.uk/projects-fellowships/patterns-of-water + +This work was funded by RCUK through the End User Energy Demand Centres Programme via the +"DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) + +> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License (http://choosealicense.com/licenses/gpl-2.0/), or (at your option) any later version. + +> This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. + + +# MTUS codes of interest: + +1983/4/7: Main/Sec21 Laundry, ironing, clothing repair + * 0701 Wash clothes, hang out / bring in washing + * 0702 Iron clothes + * 0801 Repair, upkeep of clothes +so may over-estimate laundry + +2005: Main/Sec21 Laundry, ironing, clothing repair + * Pact=7 (washing clothes) + +```{r houseKeeping} +# clear out all old objects etc to avoid confusion +rm(list = ls()) + + +# set up some useful data paths +tudpath <- "~/Data/MTUS/World_6/processed/" # presume processed data is already in here +efs1985path <- "~/Data/Family Expenditure Survey/1985/stata8/" +efs2005path <- "~/Data/Expenditure and Food Survey/2004-2005/stata/" + +sprgpath <- "~/Dropbox/Work/Projects/ESRC-SPRG/WP4-Micro_water/data/sprg_survey/data/safe/v6/" + +rpath <- "~/Dropbox/Work/DraftPapers/The Time and Timing of Demand - Laundry/results/" + +# define laundry for time use data +laundry <- "laundry, ironing, clothing repair" + + + +# load packages ---- + +library(foreign) # as loading stata files +library(lattice) # fancy graphs +library(ggplot2) # fancy graphs II +library(data.table) # why use anything else? +library(survey) # weighted survey analysis +library(car) # regression diagnostics +library(knitr) # for kable +library(gmodels) # nice crosstabs +library(broom) # turns stats objects into dataframes - useful for table output +library(fasttime) # VERY fast time string conversion to POSIXct +# but only IF the input string is in a fixed format - see http://rforge.net/doc/packages/fasttime/fastPOSIXct.html +library(dplyr) # data manipulation +library(dtplyr) # data table & dplyr code + +# Generic functions ---- + +# Feedback function - cos I can't be bothered to keep writing it out +feedBack <- function(string) { + print(paste0("Feedback: ", string)) +} + +############################################### +# Create a function called # +# logisticPseudoR2s(). To use it # +# type logisticPseudoR2s(myLogisticModel) +# From: Field, A. P., Miles, J., and Field, Z. C. (2012). +# Discovering statistics using R: and sex and drugs and rock ’n’ roll. London: Sage # +############################################### + +logisticPseudoR2s <- function(LogModel) { + dev <- LogModel$deviance + nullDev <- LogModel$null.deviance + modelN <- length(LogModel$fitted.values) + R.hl <- 1 - dev / nullDev + R.cs <- 1- exp ( -(nullDev - dev) / modelN) + R.n <- R.cs / ( 1 - ( exp (-(nullDev / modelN)))) + cat("*") + cat("Pseudo R^2 for logistic regression\n") + cat("-> Hosmer and Lemeshow R^2 ", round(R.hl, 3), "\n") + cat("-> Cox and Snell R^2 ", round(R.cs, 3), "\n") + cat("-> Nagelkerke R^2 ", round(R.n, 3), "\n") +} + +# function to run a logit model & print out diagnostics +doLogit <- function(form, DT) { + print("# <-- New model --> #") + print(paste0("Running logit model: ", form)) + result <- glm(formula = form, + family = binomial(logit), + data = DT + ) + ci <- confint(result) + tidyResult <- tidy(result) # tidy results + tidyResult <- cbind(tidyResult, ci) # stack columns side by side + print("") + print("# Model results") + print ( + tidyResult + ) + print("# Model summary") + print( + glance(result) + ) + logisticPseudoR2s(result) # print rsq + print("") + print("# Diagnostics: independence of errors") + print( + durbinWatsonTest(result) + ) + # value around 2 = OK, 0 or 4 not OK + # if p < 0.05 then a problem as implies autocorrelation + + print("# Diagnostics: collinearity (vif)") + print ( + vif(result) + ) + # if any values > 10 -> problem + + print("# Diagnostics: collinearity (tolerance)") + print( + 1/vif(result) + ) + # if any values < 0.2 -> possible problem + # if any values < 0.1 -> definitely a problem +} + +# function to run an lm model & print out diagnostics +doLm <- function(form, DT) { + print("# <-- New model --> #") + print(paste0("Running linear model: ", form)) + result <- lm(formula = form, + data = DT + ) + ci <- confint(result) + tidyResult <- tidy(result) + tidyResult <- cbind(tidyResult, ci) + print("# Model results") + print ( + tidyResult + ) + print( + glance(result) + ) + print("# Diagnostics: independence of errors") + print( + durbinWatsonTest(result) + ) + # value around 2 = OK, 0 or 4 not OK + # if p < 0.05 then a problem as implies autocorrelation + + print("# Diagnostics: collinearity (vif)") + print ( + vif(result) + ) + # if any values > 10 -> problem + + print("# Diagnostics: collinearity (tolerance)") + print( + 1/vif(result) + ) + # if any values < 0.2 -> possible problem + # if any values < 0.1 -> definitely a problem +} +``` + +```{r loadEFSSurvey} +# FES data ---- + +# Needed for estimates of washing machine adoption in 1985 +# Load as STATA file +efs1985file <- paste0(efs1985path, "/hchars.dta") +feedBack(paste0("Loading ", efs1985file)) +efs1985_DT <- as.data.table(read.dta(efs1985file)) + + + +efs2005file <- paste0(efs2005path, "dvhh.dta") +feedBack(paste0("Loading ", efs2005file)) +efs2005_DT <- as.data.table(read.dta(efs2005file)) + +``` + +```{r loadCoreMtusSurvey} + dfile <- paste0(tudpath,"MTUSW6UKsurveyCore_DT.csv.gz") + cmd <- paste0("gunzip -c ", dfile) + print(paste0("Loading via ", cmd)) + + # read in the gzipped file using gunzip to 'pipe' the file to fread + # this is a lot faster than non-piped gunzip then fread and you get feedback from fread + # Don't forget to globalise! + MTUSW6UKsurveyCore_DT <- fread(cmd, + stringsAsFactors = FALSE) + feedBack("Done loading TU survey data") +# works +``` + +```{r loadMtusEpisodes} + dfile <- paste0(tudpath,"MTUSW6UKdiaryEps_DT.csv.gz") + cmd <- paste0("gunzip -c ", dfile) + + print(paste0("Loading via ", cmd)) + + # read in the gzipped file using gunzip to 'pipe' the file to fread + # this is a lot faster than non-piped gunzip then fread and you get feedback from fread + # Don't forget to globalise! + MTUSW6UKdiaryEps_DT <- fread(cmd, + stringsAsFactors = FALSE) + + feedBack("Done loading TU episodes data") +# not tested - file does not exist (yet) +``` + +```{r loadMtusSampled} + # two files: + # - all sampled + # - laundry half hour + dfile <- paste0(tudpath,"MTUSW6UKdiarySampled_DT.csv.gz") + cmd <- paste0("gunzip -c ", dfile) + print(paste0("Loading via ", cmd)) + + # read in the gzipped file using gunzip to 'pipe' the file to fread + # this is a lot faster than non-piped gunzip then fread and you get feedback from fread + + MTUSW6UKdiarySampled_DT <- fread(cmd, + stringsAsFactors = FALSE) + feedBack("Done loading TU sampled data") + + dfile <- paste0(tudpath,"MTUSW6UK_halfhours_laundry_DT.csv.gz") + + cmd <- paste0("gunzip -c ", dfile) + print(paste0("Loading via ", cmd)) + + # read in the gzipped file using gunzip to 'pipe' the file to fread + # this is a lot faster than non-piped gunzip then fread and you get feedback from fread + # Don't forget to globalise! + MTUSW6UK_halfhours_laundry_DT <- fread(cmd, + stringsAsFactors = FALSE) + + feedBack("Done loading TU sampled laundry data aggregated to half hour level") + +# works +``` + +# Analysing loaded data + +## EFS/FES data +```{r analyseEfsSurvey} + +# 1985 +# a108 byte %8.0g no of washing machines in h/h +wmachines <- table(efs1985_DT$a108) +prop.table(wmachines) + + +# Needed for estimates of washing machine & tumble drier adoption in 2005 +# Load as STATA file +efs1985file <- paste0(efs1985path, "/hchars.dta") +feedBack(paste0("Loading ", efs1985file)) +efs1985_DT <- as.data.table(read.dta(efs1985file)) + +# a108 byte %8.0g no of washing machines in h/h +wmachines <- table(efs1985_DT$a108) +prop.table(wmachines) + +# 2005 + +wmachines <- table(efs2005_DT$a108) +prop.table(wmachines) + +# a054 byte %8.0g number of workers in household +# a062 byte %8.0g a062 composition of household +# a167 byte %8.0g a167 tumble dryer in household +tdryers <- table(efs2005_DT$a167) +prop.table(tdryers) + + +``` + +## MTUS episodes +```{r analyseMtusEpisodes} + # Check on number of primary & secondary acts ---- + # episode data + testEpisodes_p <- with(MTUSW6UKdiaryEps_DT, xtabs(~ main + ba_survey)) + testEpisodes_s <- with(MTUSW6UKdiaryEps_DT, xtabs(~ sec + ba_survey)) + feedBack(paste0("Writing results to ", rpath)) + pefile <- paste0(rpath, "/testEpisodes_primary.csv") + write.csv(testEpisodes_p, file = pefile) + sefile <- paste0(rpath, "/testEpisodes_ssecondary.csv") + write.csv(testEpisodes_s, file = sefile) + + # sampled data + testSampled_p <- with(MTUSW6UKdiarySampled_DT, xtabs(~ pact + ba_survey)) + testSampled_s <- with(MTUSW6UKdiarySampled_DT, xtabs(~ sact + ba_survey)) + psfile <- paste0(rpath, "/testSampled_primary.csv") + write.csv(testSampled_p, file = psfile) + ssfile <- paste0(rpath, "/testSampled_secondary.csv") + write.csv(testSampled_s, file = ssfile) + + # Laundry = code 21 + laundry <- "laundry, ironing, clothing repair" + # + kable(caption="n episodes in total per year", + with(MTUSW6UKdiaryEps_DT, + as.data.table(table(ba_survey)) + ) + ) + # set a laundry code + MTUSW6UKdiaryEps_DT$laundry_p <- ifelse(MTUSW6UKdiaryEps_DT$main == laundry, + 1, # laundry as main act + 0) + MTUSW6UKdiaryEps_DT$laundry_s <- ifelse(MTUSW6UKdiaryEps_DT$sec == laundry, + 1, # laundry as main act + 0) + MTUSW6UKdiaryEps_DT$laundry_all <- ifelse(MTUSW6UKdiaryEps_DT$main == laundry | MTUSW6UKdiaryEps_DT$sec == laundry, + 1, # laundry as either act + 0) + # totals + with(MTUSW6UKdiaryEps_DT, + table(laundry_p, ba_survey)) + with(MTUSW6UKdiaryEps_DT, + table(laundry_s, ba_survey)) + with(MTUSW6UKdiaryEps_DT, + table(laundry_all, ba_survey)) + + feedBack("# n episodes by duration - to show how recording period varies things") + print( + with(MTUSW6UKdiaryEps_DT, + xtabs(~ time + ba_survey)) + ) + feedBack("# n episodes of laundry as a primary act by duration (to show how recording period varies things)") + print( + with(MTUSW6UKdiaryEps_DT, + xtabs(laundry_p ~ time + ba_survey)) + ) + + eps1985 <- nrow(subset(MTUSW6UKdiaryEps_DT, ba_survey == 1985)) # n episodes in 1985 + epslaundry1985 <- nrow(subset(MTUSW6UKdiaryEps_DT, ba_survey == 1985 & laundry_all == 1)) + + print(paste0("% episodes that are laundry_all in 1985 = ", (epslaundry1985/eps1985)*100)) + + eps2005 <- nrow(subset(MTUSW6UKdiaryEps_DT, ba_survey == 2005)) # n episodes in 2005 + epslaundry2005 <- nrow(subset(MTUSW6UKdiaryEps_DT, ba_survey == 2005 & laundry_all == 1)) + + print(paste0("% episodes that are laundry_all in 2005 = ", (epslaundry2005/eps2005)*100)) + + # work with split files - easier? + eps_1985DT <- MTUSW6UKdiaryEps_DT[MTUSW6UKdiaryEps_DT$ba_survey == 1985] + eps_2005DT <- MTUSW6UKdiaryEps_DT[MTUSW6UKdiaryEps_DT$ba_survey == 2005] + + # when do most episodes start in 1985? + alleps_byhh1985 <- eps_1985DT[, + .( + N_episodes1985 = length(st_halfhour), #n episodes starting in a given half hour + Pr_episodes1985 = length(st_halfhour)/eps1985 # proportion of all episodes in that year starting... + ), + by = .( + Start = st_halfhour + ) + ] + setkey(alleps_byhh1985,Start) + feedBack("Plotting 1985 all episodes start") + plot(alleps_byhh1985$Pr_episodes) + + # and laundry episodes? + laundryeps_byhh1985 <- eps_1985DT[main == laundry, + .( + N_episodes1985 = length(st_halfhour), #n episodes starting in a given half hour + Pr_episodes1985 = length(st_halfhour)/eps1985 # proportion of all episodes in that year starting... + ), + by = .( + Start = st_halfhour + ) + ] + setkey(laundryeps_byhh1985,Start) + feedBack("Plotting 1985 laundry episodes start") + plot(laundryeps_byhh1985$Pr_episodes) + + # when do most episodes start in 2005? + alleps_byhh2005 <- eps_2005DT[, + .( + N_episodes2005 = length(st_halfhour), #n episodes starting in a given half hour + Pr_episodes2005 = length(st_halfhour)/eps2005 # proportion of all episodes in that year starting... + ), + by = .( + Start = st_halfhour + ) + ] + setkey(alleps_byhh2005,Start) + feedBack("Plotting 2005 all episodes start") + plot(alleps_byhh2005$Pr_episodes) + + # and laundry episodes? + laundryeps_byhh2005 <- eps_2005DT[main == laundry, + .( + N_episodes2005 = length(st_halfhour), #n episodes starting in a given half hour + Pr_episodes2005 = length(st_halfhour)/eps2005 # proportion of all episodes in that year starting... + ), + by = .( + Start = st_halfhour + ) + ] + setkey(laundryeps_byhh2005,Start) + feedBack("Plotting 2005 laundry episodes start") + plot(laundryeps_byhh2005$Pr_episodes) + + # join tables for ease of comparison + # ideally these need to be weighted & need 95% CIs for proportions + laundryeps_byhh <- laundryeps_byhh2005[laundryeps_byhh1985] + laundryeps_byhh$diff <- laundryeps_byhh$Pr_episodes2005 - laundryeps_byhh$Pr_episodes1985 + plot(laundryeps_byhh$diff) + + # use ggplot to make a nice plot of 1985, 2005 & difference? + + outf <- paste0(rpath,"/laundryeps_byhh.csv") + feedBack(paste0("Saving episodes results into: ", rpath)) + write.csv(laundryeps_byhh, + file = outf, + na = "" + ) + + # test what comes before/after episode (main act) + eps_1985DT[, + ep_before := shift(main, type = "lag") + ] + eps_1985DT[, + ep_after := shift(main, type = "lead") + ] + + bef_1985DT <- as.data.table(100*(round(prop.table(table(eps_1985DT$ep_before[eps_1985DT$laundry_p == 1])),4))) # % of before laundry + bef_1985DT <- bef_1985DT[order(-N)] + kable(caption = "Main acts before laundry in 1985", + head(bef_1985DT) + ) + aft_1985DT <- as.data.table(100*(round(prop.table(table(eps_1985DT$ep_after[eps_1985DT$laundry_p == 1])),4))) # % of after laundry + aft_1985DT <- bef_1985DT[order(-N)] + kable(caption = "Main acts after laundry in 1985", + head(aft_1985DT) + ) + + eps_2005DT[, + ep_before := shift(main, type = "lag") + ] + eps_2005DT[, + ep_after := shift(main, type = "lead") + ] + eps_2005DT[, + ep_2after := shift(main, n = 2, type = "lead") + ] + eps_2005DT[, + ep_3after := shift(main, n = 3, type = "lead") + ] + + bef_2005DT <- as.data.table(100*(round(prop.table(table(eps_2005DT$ep_before[eps_2005DT$laundry_p == 1])),4))) # % of before laundry + bef_2005DT <- bef_2005DT[order(-N)] + kable(caption = "Main acts after laundry in 2005", + head(bef_2005DT) + ) + aft_2005DT <- as.data.table(100*(round(prop.table(table(eps_2005DT$ep_after[eps_2005DT$laundry_p == 1])),4))) # % of after laundry + aft_2005DT <- aft_2005DT[order(-N)] + kable(caption = "Main acts after laundry in 2005", + head(aft_2005DT) + ) + # need an hour variable + eps_2005DT[, + r_hour := as.POSIXlt(r_epStartTime)$hour + ] + + # now for early morning weekday laundry in 2005 + aft_2005DT <- as.data.table(100*(round(prop.table(table(eps_2005DT$ep_after[eps_2005DT$laundry_p == 1 & + eps_2005DT$r_hour >= 6 & + eps_2005DT$r_hour < 9 & + eps_2005DT$r_dow != "Saturday" & + eps_2005DT$r_dow != "Sunday"] + )),4))) # % of after laundry + aft_2005DT <- aft_2005DT[order(-N)] + kable(caption = "Main acts after early weekday morning laundry in 2005", + head(aft_2005DT) + ) + + # now for early weekday morning laundry in 2005 - 2 after + aft_2005DT <- as.data.table(100*(round(prop.table(table(eps_2005DT$ep_2after[eps_2005DT$laundry_p == 1 & + eps_2005DT$r_hour >= 6 & + eps_2005DT$r_hour < 9& + eps_2005DT$r_dow != "Saturday" & + eps_2005DT$r_dow != "Sunday"] + )),4))) # % of after laundry + aft_2005DT <- aft_2005DT[order(-N)] + kable(caption = "Main acts 2 after early weekday morning laundry in 2005", + head(aft_2005DT) + ) + + # now for early weekday morning laundry in 2005 - 3 after + aft_2005DT <- as.data.table(100*(round(prop.table(table(eps_2005DT$ep_3after[eps_2005DT$laundry_p == 1 & + eps_2005DT$r_hour >= 6 & + eps_2005DT$r_hour < 9& + eps_2005DT$r_dow != "Saturday" & + eps_2005DT$r_dow != "Sunday"] + )),4))) # % of after laundry + aft_2005DT <- aft_2005DT[order(-N)] + kable(caption = "Main acts 3 after early weekday morning laundry in 2005", + head(aft_2005DT) + ) + + + # now evening peak laundry in 2005 + aft_2005DT <- as.data.table(100*(round(prop.table(table(eps_2005DT$ep_before[eps_2005DT$laundry_p == 1 & + eps_2005DT$r_hour >= 17 & + eps_2005DT$r_hour < 20 & + eps_2005DT$r_dow != "Saturday" & + eps_2005DT$r_dow != "Sunday"] + )),4))) # % of after laundry + aft_2005DT <- aft_2005DT[order(-N)] + kable(caption = "Main acts before evening peak weekday laundry in 2005", + head(aft_2005DT) + ) + # now evening peak laundry in 2005 + aft_2005DT <- as.data.table(100*(round(prop.table(table(eps_2005DT$ep_after[eps_2005DT$laundry_p == 1 & + eps_2005DT$r_hour >= 17 & + eps_2005DT$r_hour < 20 & + eps_2005DT$r_dow != "Saturday" & + eps_2005DT$r_dow != "Sunday"] + )),4))) # % of after laundry + aft_2005DT <- aft_2005DT[order(-N)] + kable(caption = "Main acts before evening peak weekday laundry in 2005", + head(aft_2005DT) + ) + feedBack("Done analysing episode file") +``` + + +## Switch to survey analysis of half hour sampled data +```{r analyseMtusHalfhourSampled_Svy} + +feedBack("Join survey to derived half hour data") + # uses new pid created using dplyr:group +setkey(MTUSW6UK_halfhours_laundry_DT, ba_diarypid) + setkey(MTUSW6UKsurveyCore_DT, ba_diarypid) + + # keep '1985' & 2005 only + MTUSW6UKsurveyCore_DT <- subset(MTUSW6UKsurveyCore_DT, + ba_survey == 1985 | ba_survey == 2005 + ) + + MTUSW6UK_halfhours_laundry_DT <- subset(MTUSW6UK_halfhours_laundry_DT, + ba_survey == 1985 | ba_survey == 2005 + ) + + MTUSW6UKjoinedHalfhour_laundry_DT <- MTUSW6UK_halfhours_laundry_DT[MTUSW6UKsurveyCore_DT] + + head(MTUSW6UKjoinedHalfhour_laundry_DT) # check + tail(MTUSW6UKjoinedHalfhour_laundry_DT) # check + + # check + table(MTUSW6UKjoinedHalfhour_laundry_DT$ba_survey, useNA = "always") + + # some NAs, remove them + MTUSW6UKjoinedHalfhour_laundry_DT <- subset(MTUSW6UKjoinedHalfhour_laundry_DT, !is.na(ba_survey)) + + # check + table(MTUSW6UKjoinedHalfhour_laundry_DT$ba_survey, useNA = "always") + + print("Recode to 'at a home' vs 'not at a home'") + MTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_home <- ifelse( + MTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_ph == 1 | + MTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_photh == 1, 1, 0 + ) + MTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_nothome <- ifelse( + MTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_psh == 1 | + MTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_poth == 1, 1, 0 + ) + # check + with(MTUSW6UKjoinedHalfhour_laundry_DT, + table( + Any_laundry_home, Any_laundry_nothome + ) + ) + + print("create types of laundry here so become part of survey design object") + # Specific types of laundry (for Table 3) + # weekday early morning laundry (06:00 – 09:00) + # weekday morning laundry (09:00-12:00) + # weekday evening laundry (18:00 – 21:00) + # Sunday morning laundry (09:00 – 11:00) + + print("Weekday early morning 06:00-09:00") + MTUSW6UKjoinedHalfhour_laundry_DT$weekday_earlyam <- ifelse( + MTUSW6UKjoinedHalfhour_laundry_DT$r_dow != "Saturday" & + MTUSW6UKjoinedHalfhour_laundry_DT$r_dow != "Sunday" & + MTUSW6UKjoinedHalfhour_laundry_DT$r_hour >= 6 & + MTUSW6UKjoinedHalfhour_laundry_DT$r_hour <= 8 & + MTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_home == 1, 1, 0 + ) + # check + with(MTUSW6UKjoinedHalfhour_laundry_DT[weekday_earlyam == 1], + table( + r_hour, r_dow + ) + ) + + print("Weekday morning 09:00-12:00") + MTUSW6UKjoinedHalfhour_laundry_DT$weekday_am <- ifelse( + MTUSW6UKjoinedHalfhour_laundry_DT$r_dow != "Saturday" & + MTUSW6UKjoinedHalfhour_laundry_DT$r_dow != "Sunday" & + MTUSW6UKjoinedHalfhour_laundry_DT$r_hour >= 9 & + MTUSW6UKjoinedHalfhour_laundry_DT$r_hour <= 11 & + MTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_home == 1, 1, 0 + ) + # check + with(MTUSW6UKjoinedHalfhour_laundry_DT[weekday_am == 1], + table( + r_hour, r_dow + ) + ) + + print("Weekday evening peak 18:00-21:00") + MTUSW6UKjoinedHalfhour_laundry_DT$weekday_pm <- ifelse( + MTUSW6UKjoinedHalfhour_laundry_DT$r_dow != "Saturday" & + MTUSW6UKjoinedHalfhour_laundry_DT$r_dow != "Sunday" & + MTUSW6UKjoinedHalfhour_laundry_DT$r_hour >= 18 & + MTUSW6UKjoinedHalfhour_laundry_DT$r_hour <= 20 & + MTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_home == 1, 1, 0 + ) + # check + with(MTUSW6UKjoinedHalfhour_laundry_DT[weekday_pm == 1], + table( + r_hour, r_dow + ) + ) + + print ("Sunday morning 09:00-12:00") + MTUSW6UKjoinedHalfhour_laundry_DT$sunday_am <- ifelse( + MTUSW6UKjoinedHalfhour_laundry_DT$r_dow == "Sunday" & + MTUSW6UKjoinedHalfhour_laundry_DT$r_hour >= 9 & + MTUSW6UKjoinedHalfhour_laundry_DT$r_hour <= 11 & + MTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_home == 1, 1, 0 + ) + # check + with(MTUSW6UKjoinedHalfhour_laundry_DT[sunday_am == 1], + table( + r_hour, r_dow + ) + ) + + print("Other") + MTUSW6UKjoinedHalfhour_laundry_DT$other <- ifelse( + MTUSW6UKjoinedHalfhour_laundry_DT$sunday_am != 1 & + MTUSW6UKjoinedHalfhour_laundry_DT$weekday_earlyam != 1 & + MTUSW6UKjoinedHalfhour_laundry_DT$weekday_am != 1 & + MTUSW6UKjoinedHalfhour_laundry_DT$weekday_pm != 1 & + MTUSW6UKjoinedHalfhour_laundry_DT$Any_laundry_home == 1, 1, 0 + ) + # check + with(MTUSW6UKjoinedHalfhour_laundry_DT[other == 1], + table( + r_hour, r_dow + ) + ) + + print("Set survey data") + # tell survey that the diarypids are the ids (they repeat) + svyMTUSW6UkHalfhoursLaundry <- svydesign(ids = ~diarypid, + weight = ~propwt, + data = MTUSW6UKjoinedHalfhour_laundry_DT) # does not produce a data table + + # how many weighted half hours do we have? + # any laundry + all_hhs <- svytable(~ba_survey + sex + N_laundry_p, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + # how many weighted half hours do we have? + # any laundry + all_hhs <- svytable(~ba_survey + Any_laundry_p, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + + # any laundry at home (Table 1) + all_hhs <- svytable(~ba_survey + Any_laundry_ph, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + + # any laundry at others' home (Table 1) + all_hhs <- svytable(~ba_survey + Any_laundry_photh, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + # any laundry at shops/services (Table 1) + all_hhs <- svytable(~ba_survey + Any_laundry_psh, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + # any laundry at other locations (Table 1) + all_hhs <- svytable(~ba_survey + Any_laundry_poth, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + + + + # any laundry at a home (Table 1) + # NB: some missing as no location known + all_hhs <- svytable(~ba_survey + Any_laundry_home, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + # any laundry not at a home (Table 1) + # NB: some missing as no location known + all_hhs <- svytable(~ba_survey + Any_laundry_nothome, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry # the data in survey form + ) + print( + ftable(all_hhs) # nice table + ) + + + # any laundry by gender (Table 1) - frequencies + all_hhs_anylf <- svytable(~ba_survey + sex + Any_laundry_p, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry # the data in survey form + ) + print( + ftable(all_hhs_anylf) # nice table + ) + # any laundry by gender (Table 1) - % of halfhours using svyby + all_hhs_anylp <- svyby(~Any_laundry_p, # the data to summarise + ~ba_survey + sex, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry, # the data in survey form + svymean # the function to use to summarise + ) + print(all_hhs_anylp) + + # all laundry by gender (Table 1) - % of laundry halfhours + anyl_genderp85 <- svymean(~sex, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry[ + svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 + & svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 1985 + ], # the data in survey form + keep.var = TRUE + ) + print( + ftable(anyl_genderp85) # nice table + ) + + anyl_genderp05 <- svymean(~sex, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry[ + svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 + & svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 2005 + ], # the data in survey form + keep.var = TRUE + ) + print( + ftable(anyl_genderp05) # nice table + ) + # laundry not at home (recoded for Table 1) + all_hhs_anylh <- svytable(~ba_survey + sex + Any_laundry_home, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry # the data in survey form + ) + print( + ftable(all_hhs_anylh) # nice table + ) + + all_hhs_anylnh <- svytable(~ba_survey + sex + Any_laundry_nothome, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry # the data in survey form + ) + print( + ftable(all_hhs_anylnh) # nice table + ) + + + ## By day of the week (Fig 1) ## + + # This gives the frequencies (pattern) within all halfhours + svyby(~Any_laundry_home, ~r_dow + ba_survey, + svyMTUSW6UkHalfhoursLaundry, + svymean + ) + + # This gives the frequencies (pattern) within laundry + svytable(~r_dow + ba_survey, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1] + ) + # this gives the proportion per day + dow_1985 <- svymean(~r_dow, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 1985] + ) + feedBack("Any laundry by day of the week: 1985") + print(dow_1985) + confint( # check + dow_1985 + ) + + # this gives the proportion per day + dow_2005 <- svymean(~r_dow, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 2005] + ) + feedBack("Any laundry by day of the week: 2005") + print(dow_2005) + confint( # check + dow_2005 + ) + + ## By gender & day of the week (Fig 2) ## + dowg_1985 <- svyby(~r_dow, ~sex, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 1985 ], + svymean + ) + feedBack("Any laundry by day of the week/gender: 1985") + print(dowg_1985) + confint( # check + dowg_1985 + ) + + dowg_2005 <- svyby(~r_dow, ~sex, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 2005 ], + svymean + ) + feedBack("Any laundry by day of the week/gender: 2005") + print(dowg_2005) + confint( # check + dowg_2005 + ) + + ## By women's labour market status (Fig 3) ## + # all half hours + pwork_1985allhh <- svyby(~ba_survey, ~empstat, + svyMTUSW6UkHalfhoursLaundry, + svytotal + ) + kable(pwork_1985allhh) + dowpwork_1985allhh <- svyby(~Any_laundry_home, ~empstat + r_dow, + svyMTUSW6UkHalfhoursLaundry[ + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 1985 & + svyMTUSW6UkHalfhoursLaundry$variables$sex == "Woman"], + svymean + ) + kable(dowpwork_1985allhh) + # laundry half hours + dowfwork_1985 <- svyby(~r_dow, ~empstat, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 1985 & + svyMTUSW6UkHalfhoursLaundry$variables$sex == "Woman"], + svymean + ) + feedBack("Any laundry by day of the week/women/labour market status: 1985") + kable(dowfwork_1985) + + ## By women's labour market status (Fig 4) ## + dowfwork_2005 <- svyby(~r_dow, ~empstat, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 2005 & + svyMTUSW6UkHalfhoursLaundry$variables$sex == "Woman"], + svymean, + keep.var = TRUE + ) + feedBack("Any laundry by day of the week/women/labour market status: 1985") + kable(dowfwork_2005) + # ftable(dowfwork_2005) #if desired + + + ## By time of day (Fig 5) ## + # get the mean % of half hours with any laundry as a primary act (and SE) over 24 hours + pcAnylp_hh <- svyby(~Any_laundry_home, # the variable to do the stats on + ~st_halfhour + ba_survey, # the row * columns we want (produces long form) + svyMTUSW6UkHalfhoursLaundry, # the data + svymean, # the stats function(s) + keep.var = TRUE) + #ftable(pcAnyl_hh) # flat table fails + kable( + pcAnylp_hh # table + ) + # by day (all half hours) + pcAnylp_hhByDay85 <- svyby(~Any_laundry_home, + ~st_halfhour + r_dow, + svyMTUSW6UkHalfhoursLaundry[ + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 1985], + svymean) + kable(pcAnylp_hhByDay85) + pcAnylp_hhByDay05 <- svyby(~Any_laundry_home, + ~st_halfhour + r_dow, + svyMTUSW6UkHalfhoursLaundry[ + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 2005], + svymean) + kable(pcAnylp_hhByDay05) + + ## By time of day but within laundry (Fig 6) ## + # get the mean % of half hours with any laundry as a primary act (and SE) over 24 hours + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey <- factor(svyMTUSW6UkHalfhoursLaundry$variables$ba_survey) + pcAnyl_hh85 <- svymean(~st_halfhour, + svyMTUSW6UkHalfhoursLaundry[ + svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 1985] # the data + + ) + kable(as.data.table(pcAnyl_hh85)) + pcAnyl_hh05 <- svymean(~st_halfhour, + svyMTUSW6UkHalfhoursLaundry[ + svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 2005] # the data + + ) + kable(as.data.table(pcAnyl_hh05)) + + # within laundry by day, (Fig 7) + pcOnlyl_hhByDay85 <- svymean(~interaction(st_halfhour,r_dow), + design = svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 1985 & + svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1]) + kable(as.data.table(pcOnlyl_hhByDay85)) + + pcOnlyl_hhByDay05 <- svymean(~interaction(st_halfhour,r_dow), + design = svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 2005 & + svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1]) + kable(as.data.table(pcOnlyl_hhByDay05)) + + # you cannot be serious: + ftable(pcOnlyl_hhByDay85, rownames = list(r_dow = c("S", "M", "T", "W", "T", "F", "S"), + st_halfhour = c("00:00", "00:30", "01:00"))) + + # weekday/weekend flag + svyMTUSW6UkHalfhoursLaundry$variables$wd <- ifelse( + svyMTUSW6UkHalfhoursLaundry$variables$r_dow != "Sunday" & + svyMTUSW6UkHalfhoursLaundry$variables$r_dow != "Saturday" , + 1, # yes = weekday + 0 # no = weekend + ) + + # Specific types of laundry (for Table 3) + # weekday early morning laundry (06:00 – 09:00) + # weekday morning laundry (09:00-12:00) + # weekday evening laundry (17:00 – 21:00) + # Sunday morning laundry (08:00 – 11:00) + + # Weekday early morning 06:00-09:00 + weekday_earlyam_pLhh <- svyby(~weekday_earlyam, + ~ba_survey, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1], + svymean, + keep.var = TRUE + ) + feedBack("Weekday early morning laundry (06:00 – 09:00) out of all laundry") + kable(caption = "Weekday early morning laundry (06:00 – 09:00) out of all laundry",weekday_earlyam_pLhh) + + # Weekday morning 09:00-12:00 + weekday_am_pLhh <- svyby(~weekday_am, + ~ba_survey, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1], + svymean, + keep.var = TRUE + ) + feedBack("Weekday morning laundry out of all laundry") + kable(caption = "Weekday morning laundry out of all laundry", weekday_am_pLhh) + + # Weekday evening peak 17:00-21:00 + weekday_pm_pLhh <- svyby(~weekday_pm, + ~ba_survey, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1], + svymean, + keep.var = TRUE + ) + feedBack("Weekday evening peak laundry out of all laundry") + kable(caption ="Weekday evening peak laundry out of all laundry", weekday_pm_pLhh) + + # Sunday morning 09:00-12:00 + sunday_am_pLhh <- svyby(~sunday_am, + ~ba_survey, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1], + svymean, + keep.var = TRUE + ) + feedBack("Sunday morning laundry out of all laundry") + kable(caption = "Sunday morning laundry out of all laundry", sunday_am_pLhh) + confint( + sunday_am_pLhh + ) + + # Other + other_pLhh <- svyby(~other, + ~ba_survey, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1], + svymean, + keep.var = TRUE + ) + feedBack("Other laundry out of all laundry") + kable(caption = "Other laundry out of all laundry", other_pLhh) + + # analysis by employment status in 2005 + print("% within empstat who do sunday_am") + print( + svyby(~sunday_am, ~empstat, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 2005], + svymean, + keep.var = TRUE + ) + ) + print("% within empstat who do weekday early am") + print( + svyby(~weekday_earlyam, ~empstat, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 2005], + svymean, + keep.var = TRUE + ) + ) + print("% within empstat who do weekday am") + print( + svyby(~weekday_am, ~empstat, + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 2005], + svymean, + keep.var = TRUE + ) + ) + print("% within empstat who do weekday pm") + print( + svyby(~weekday_pm, ~empstat, # + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 2005], + svymean, + keep.var = TRUE + ) + ) + print("% within empstat who do other") + print( + svyby(~other, ~empstat, # + svyMTUSW6UkHalfhoursLaundry[svyMTUSW6UkHalfhoursLaundry$variables$Any_laundry_home == 1 & + svyMTUSW6UkHalfhoursLaundry$variables$ba_survey == 2005], + svymean, + keep.var = TRUE + ) + ) + + print("summarise the laundry types by diarypid for 1985 to see how many different kinds of laundry") + byList <- c("diarypid", "empstat", "sex", "r_dow","r_month","ba_nchild","age", "ba_age_r","hhtype","ba_npeople","income","urban","propwt") + laundrySummary1985 <- MTUSW6UKjoinedHalfhour_laundry_DT[ba_survey == 1985, + .( + N_Any_laundry_home = sum(Any_laundry_home), + N_sunday_morning = sum(sunday_am), + N_weekday_earlyam = sum(weekday_earlyam), + N_weekday_am = sum(weekday_am), + N_weekday_pm = sum(weekday_pm), + N_other = sum(other) + ), + by = byList # saves typos, easy to add new ones + ] + + print("Summarise the laundry types by diarypid for 2005 to see how many different kinds of laundry") + # globalize for future use + laundrySummary2005 <- MTUSW6UKjoinedHalfhour_laundry_DT[ba_survey == 2005, + .( + N_Any_laundry_home = sum(Any_laundry_home), + N_sunday_morning = sum(sunday_am), + N_weekday_earlyam = sum(weekday_earlyam), + N_weekday_am = sum(weekday_am), + N_weekday_pm = sum(weekday_pm), + N_other = sum(other) + ), + by = byList + + ] + + print("Check laundry by sex & hh type - any change in proportions done by men in couples?") + kable(caption = "Check laundry by sex & hh type - any change in proportions done by men in couples?", + table(laundrySummary1985$hhtype[laundrySummary1985$N_Any_laundry_home > 0], + laundrySummary1985$sex[laundrySummary1985$N_Any_laundry_home > 0]) + ) + kable( + table(laundrySummary2005$hhtype[laundrySummary2005$N_Any_laundry_home > 0], + laundrySummary2005$sex[laundrySummary2005$N_Any_laundry_home > 0]) + ) + + # convert 1985 (7 day diary) to dummies so can compare with 2005 (1 day diary) + laundrySummary1985$Sunday_amd <- ifelse( + laundrySummary1985$N_sunday_morning > 0, + 1, # true + 0 # false + ) + laundrySummary1985$WeekdayEarly_amd <- ifelse( + laundrySummary1985$N_weekday_earlyam > 0, + 1, # true + 0 # false + ) + laundrySummary1985$Weekday_amd <- ifelse( + laundrySummary1985$N_weekday_am > 0, + 1, # true + 0 # false + ) + laundrySummary1985$Weekday_pmd <- ifelse( + laundrySummary1985$N_weekday_pm > 0, + 1, # true + 0 # false + ) + laundrySummary1985$Otherd <- ifelse( + laundrySummary1985$N_other > 0, + 1, # true + 0 # false + ) + laundrySummary1985$Any_laundry_homed <- ifelse( + laundrySummary1985$N_Any_laundry_home > 0, + 1, # true + 0 # false + ) + + # convert 2005 to dummies for logitstic models + laundrySummary2005$Sunday_amd <- ifelse( + laundrySummary2005$N_sunday_morning > 0, + 1, # true + 0 # false + ) + laundrySummary2005$WeekdayEarly_amd <- ifelse( + laundrySummary2005$N_weekday_earlyam > 0, + 1, # true + 0 # false + ) + laundrySummary2005$Weekday_amd <- ifelse( + laundrySummary2005$N_weekday_am > 0, + 1, # true + 0 # false + ) + laundrySummary2005$Weekday_pmd <- ifelse( + laundrySummary2005$N_weekday_pm > 0, + 1, # true + 0 # false + ) + laundrySummary2005$Otherd <- ifelse( + laundrySummary2005$N_other > 0, + 1, # true + 0 # false + ) + laundrySummary2005$Any_laundry_homed <- ifelse( + laundrySummary2005$N_Any_laundry_home > 0, + 1, # true + 0 # false + ) + + # check + table(laundrySummary2005$empstat, useNA = "always") + # recode in work var to make label easier and in a different order + laundrySummary2005$empstat_r <- factor(laundrySummary2005$empstat, + labels = c("full-time", "notInPaidWork", "part-time", "unknownHours" ) + ) + laundrySummary1985$empstat_r <- factor(laundrySummary1985$empstat, + labels = c("full-time", "notInPaidWork", "part-time", "unkown" ) + ) + # check + table(laundrySummary2005$empstat_r, laundrySummary2005$empstat, useNA = "always") + + # create a 'season' variable + laundrySummary1985$ba_season[laundrySummary1985$r_month == 11 | + laundrySummary1985$r_month == 0 | + laundrySummary1985$r_month == 1 ] <- "Winter" + laundrySummary1985$ba_season[laundrySummary1985$r_month == 2 | + laundrySummary1985$r_month == 3 | + laundrySummary1985$r_month == 4 ] <- "Spring" + laundrySummary1985$ba_season[laundrySummary1985$r_month == 5 | + laundrySummary1985$r_month == 6 | + laundrySummary1985$r_month == 7 ] <- "Summer" + laundrySummary1985$ba_season[laundrySummary1985$r_month == 8 | + laundrySummary1985$r_month == 9 | + laundrySummary1985$r_month == 10 ] <- "Autumn" + # check + table(laundrySummary1985$ba_season, laundrySummary1985$r_month) # small n for Summer + + # create a 'season' variable + laundrySummary2005$ba_season[laundrySummary2005$r_month == 11 | + laundrySummary2005$r_month == 0 | + laundrySummary2005$r_month == 1 ] <- "Winter" + laundrySummary2005$ba_season[laundrySummary2005$r_month == 2 | + laundrySummary2005$r_month == 3 | + laundrySummary2005$r_month == 4 ] <- "Spring" + laundrySummary2005$ba_season[laundrySummary2005$r_month == 5 | + laundrySummary2005$r_month == 6 | + laundrySummary2005$r_month == 7 ] <- "Summer" + laundrySummary2005$ba_season[laundrySummary2005$r_month == 8 | + laundrySummary2005$r_month == 9 | + laundrySummary2005$r_month == 10 ] <- "Autumn" + # check season + kable(caption = "Check season flag", table(laundrySummary2005$ba_season, laundrySummary2005$r_month)) + + # how many people exhibit combinations of laundry? + laundrySummary1985$laundry_sum <- laundrySummary1985$Sunday_amd + + laundrySummary1985$WeekdayEarly_amd + laundrySummary1985$Weekday_amd + laundrySummary1985$Weekday_pmd + + # NB - only 1 day diary in 2005 so cannot have Sunday + weekday laundry + laundrySummary2005$laundry_sum <- laundrySummary2005$Sunday_amd + + laundrySummary2005$WeekdayEarly_amd + laundrySummary2005$Weekday_amd + laundrySummary2005$Weekday_pmd + + # combinations by employment type + kable(caption = "combinations by employment type 1985", table(laundrySummary1985$laundry_sum,laundrySummary1985$empstat)) + kable(caption = "combinations by employment type 2005", table(laundrySummary2005$laundry_sum,laundrySummary2005$empstat)) + + # Get number of people reporting any laundry by employment status (to give denominator) + kable(caption = "Get number of people reporting any laundry by employment status (to give denominator 1985)", + table(laundrySummary1985$Any_laundry_homed,laundrySummary1985$empstat, useNA = "always") + ) + kable(caption = "Get number of people reporting any laundry by employment status (to give denominator 2005)", + table(laundrySummary2005$Any_laundry_homed,laundrySummary2005$empstat, useNA = "always") + ) + + # combinations by age + kable(caption = "combinations by age - 1985", + table(laundrySummary1985$laundry_sum,laundrySummary1985$ba_age_r)) + kable(caption = "combinations by age - 2005", + table(laundrySummary2005$laundry_sum,laundrySummary2005$ba_age_r)) + + # Get number of people reporting any laundry by age (to give denominator) + kable(table(laundrySummary1985$Any_laundry_homed,laundrySummary1985$ba_age_r, useNA = "always")) + kable(table(laundrySummary2005$Any_laundry_homed,laundrySummary2005$ba_age_r, useNA = "always")) + + ## logit models predicting performing a given laundry type ## + + doLogit(Sunday_amd ~empstat + ba_age_r + ba_nchild, laundrySummary2005[laundrySummary2005$Any_laundry_homed == 1]) + # test with season + doLogit(Sunday_amd ~empstat + ba_age_r + ba_nchild + ba_season, laundrySummary2005[laundrySummary2005$Any_laundry_homed == 1]) + + doLogit(WeekdayEarly_amd ~empstat + ba_age_r + ba_nchild, laundrySummary2005[laundrySummary2005$Any_laundry_homed == 1]) + + doLogit(Weekday_amd ~empstat + ba_age_r + ba_nchild, laundrySummary2005[laundrySummary2005$Any_laundry_homed == 1]) + + doLogit(Weekday_pmd ~empstat + ba_age_r + ba_nchild, laundrySummary2005[laundrySummary2005$Any_laundry_homed== 1]) + + # number of different habits + doLm(laundry_sum ~empstat + ba_age_r + ba_nchild, laundrySummary2005[laundrySummary2005$Any_laundry_homed == 1]) + + # survey it & + # globalize for future use + svyLaundrySummary1985 <- svydesign(ids = ~diarypid, + weight = ~propwt, + data = laundrySummary1985) # does not produce a data table + svyLaundrySummary2005 <- svydesign(ids = ~diarypid, + weight = ~propwt, + data = laundrySummary2005) # does not produce a data table + + # check changes in % of women < 60 in paid work + print("% in work in 1985") + print( + svyby(~empstat, ~sex, + subset(svyLaundrySummary1985, svyLaundrySummary1985$variables$age > 19 & svyLaundrySummary1985$variables$age < 60), + svymean, + keep.var = TRUE + ) + ) + print("% in work in 2005") + all_hhs_anylp <- svyby(~Any_laundry_p, # the data to summarise + ~ba_survey + sex, # the row * columns we want + svyMTUSW6UkHalfhoursLaundry, # the data in survey form + svymean # the function to use to summarise + ) + print( + svyby(~empstat, # the data to summarise + ~sex, + svyLaundrySummary2005[svyLaundrySummary2005$variables$age > 19 & svyLaundrySummary2005$variables$age < 60], + svymean, + keep.var = TRUE + ) + ) + + print("% people who report laundry in 1985") + print( + svymean(~Any_laundry_homed, svyLaundrySummary1985) + ) + print("% people who report laundry in 2005") + print( + svymean(~Any_laundry_homed, svyLaundrySummary2005) + ) + + print("Number of people reporting different number of laundry habits") + print( + svytable(~laundry_sum, svyLaundrySummary2005) + ) + + print("1985: N of respondents who reported laundry of given type") + print( + svytotal(~Sunday_amd + WeekdayEarly_amd + Weekday_amd + Weekday_pmd + Otherd + Any_laundry_homed, + svyLaundrySummary1985 + ) + ) + print("2005: N of respondents who reported laundry of given type") + print( + svytotal(~Sunday_amd + WeekdayEarly_amd + Weekday_amd + Weekday_pmd + Otherd + Any_laundry_homed, + svyLaundrySummary2005 + ) + ) + + + feedBack("Done analysing sampled file using survey methods") + # works +``` + +Finished diff --git a/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis.html b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis.html new file mode 100644 index 0000000000000000000000000000000000000000..58a9f7992784042219f711ccfb1e50526d6ec4a3 --- /dev/null +++ b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis.html @@ -0,0 +1,10817 @@ +<!DOCTYPE html> + +<html xmlns="http://www.w3.org/1999/xhtml"> + +<head> + +<meta charset="utf-8"> +<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> +<meta name="generator" content="pandoc" /> + + +<meta name="author" content="Ben Anderson (b.anderson@soton.ac.uk/@dataknut) [Energy & Climate Change, Faculty of Engineering & Environment, University of Southampton]" /> + + +<title>Laundry, Energy & Time (ER&SS submission)</title> + +<script src="data:application/x-javascript;base64,LyohIGpRdWVyeSB2MS4xMS4zIHwgKGMpIDIwMDUsIDIwMTUgalF1ZXJ5IEZvdW5kYXRpb24sIEluYy4gfCBqcXVlcnkub3JnL2xpY2Vuc2UgKi8KIWZ1bmN0aW9uKGEsYil7Im9iamVjdCI9PXR5cGVvZiBtb2R1bGUmJiJvYmplY3QiPT10eXBlb2YgbW9kdWxlLmV4cG9ydHM/bW9kdWxlLmV4cG9ydHM9YS5kb2N1bWVudD9iKGEsITApOmZ1bmN0aW9uKGEpe2lmKCFhLmRvY3VtZW50KXRocm93IG5ldyBFcnJvcigialF1ZXJ5IHJlcXVpcmVzIGEgd2luZG93IHdpdGggYSBkb2N1bWVudCIpO3JldHVybiBiKGEpfTpiKGEpfSgidW5kZWZpbmVkIiE9dHlwZW9mIHdpbmRvdz93aW5kb3c6dGhpcyxmdW5jdGlvbihhLGIpe3ZhciBjPVtdLGQ9Yy5zbGljZSxlPWMuY29uY2F0LGY9Yy5wdXNoLGc9Yy5pbmRleE9mLGg9e30saT1oLnRvU3RyaW5nLGo9aC5oYXNPd25Qcm9wZXJ0eSxrPXt9LGw9IjEuMTEuMyIsbT1mdW5jdGlvbihhLGIpe3JldHVybiBuZXcgbS5mbi5pbml0KGEsYil9LG49L15bXHNcdUZFRkZceEEwXSt8W1xzXHVGRUZGXHhBMF0rJC9nLG89L14tbXMtLyxwPS8tKFtcZGEtel0pL2dpLHE9ZnVuY3Rpb24oYSxiKXtyZXR1cm4gYi50b1VwcGVyQ2FzZSgpfTttLmZuPW0ucHJvdG90eXBlPXtqcXVlcnk6bCxjb25zdHJ1Y3RvcjptLHNlbGVjdG9yOiIiLGxlbmd0aDowLHRvQXJyYXk6ZnVuY3Rpb24oKXtyZXR1cm4gZC5jYWxsKHRoaXMpfSxnZXQ6ZnVuY3Rpb24oYSl7cmV0dXJuIG51bGwhPWE/MD5hP3RoaXNbYSt0aGlzLmxlbmd0aF06dGhpc1thXTpkLmNhbGwodGhpcyl9LHB1c2hTdGFjazpmdW5jdGlvbihhKXt2YXIgYj1tLm1lcmdlKHRoaXMuY29uc3RydWN0b3IoKSxhKTtyZXR1cm4gYi5wcmV2T2JqZWN0PXRoaXMsYi5jb250ZXh0PXRoaXMuY29udGV4dCxifSxlYWNoOmZ1bmN0aW9uKGEsYil7cmV0dXJuIG0uZWFjaCh0aGlzLGEsYil9LG1hcDpmdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5wdXNoU3RhY2sobS5tYXAodGhpcyxmdW5jdGlvbihiLGMpe3JldHVybiBhLmNhbGwoYixjLGIpfSkpfSxzbGljZTpmdW5jdGlvbigpe3JldHVybiB0aGlzLnB1c2hTdGFjayhkLmFwcGx5KHRoaXMsYXJndW1lbnRzKSl9LGZpcnN0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuZXEoMCl9LGxhc3Q6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5lcSgtMSl9LGVxOmZ1bmN0aW9uKGEpe3ZhciBiPXRoaXMubGVuZ3RoLGM9K2ErKDA+YT9iOjApO3JldHVybiB0aGlzLnB1c2hTdGFjayhjPj0wJiZiPmM/W3RoaXNbY11dOltdKX0sZW5kOmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMucHJldk9iamVjdHx8dGhpcy5jb25zdHJ1Y3RvcihudWxsKX0scHVzaDpmLHNvcnQ6Yy5zb3J0LHNwbGljZTpjLnNwbGljZX0sbS5leHRlbmQ9bS5mbi5leHRlbmQ9ZnVuY3Rpb24oKXt2YXIgYSxiLGMsZCxlLGYsZz1hcmd1bWVudHNbMF18fHt9LGg9MSxpPWFyZ3VtZW50cy5sZW5ndGgsaj0hMTtmb3IoImJvb2xlYW4iPT10eXBlb2YgZyYmKGo9ZyxnPWFyZ3VtZW50c1toXXx8e30saCsrKSwib2JqZWN0Ij09dHlwZW9mIGd8fG0uaXNGdW5jdGlvbihnKXx8KGc9e30pLGg9PT1pJiYoZz10aGlzLGgtLSk7aT5oO2grKylpZihudWxsIT0oZT1hcmd1bWVudHNbaF0pKWZvcihkIGluIGUpYT1nW2RdLGM9ZVtkXSxnIT09YyYmKGomJmMmJihtLmlzUGxhaW5PYmplY3QoYyl8fChiPW0uaXNBcnJheShjKSkpPyhiPyhiPSExLGY9YSYmbS5pc0FycmF5KGEpP2E6W10pOmY9YSYmbS5pc1BsYWluT2JqZWN0KGEpP2E6e30sZ1tkXT1tLmV4dGVuZChqLGYsYykpOnZvaWQgMCE9PWMmJihnW2RdPWMpKTtyZXR1cm4gZ30sbS5leHRlbmQoe2V4cGFuZG86ImpRdWVyeSIrKGwrTWF0aC5yYW5kb20oKSkucmVwbGFjZSgvXEQvZywiIiksaXNSZWFkeTohMCxlcnJvcjpmdW5jdGlvbihhKXt0aHJvdyBuZXcgRXJyb3IoYSl9LG5vb3A6ZnVuY3Rpb24oKXt9LGlzRnVuY3Rpb246ZnVuY3Rpb24oYSl7cmV0dXJuImZ1bmN0aW9uIj09PW0udHlwZShhKX0saXNBcnJheTpBcnJheS5pc0FycmF5fHxmdW5jdGlvbihhKXtyZXR1cm4iYXJyYXkiPT09bS50eXBlKGEpfSxpc1dpbmRvdzpmdW5jdGlvbihhKXtyZXR1cm4gbnVsbCE9YSYmYT09YS53aW5kb3d9LGlzTnVtZXJpYzpmdW5jdGlvbihhKXtyZXR1cm4hbS5pc0FycmF5KGEpJiZhLXBhcnNlRmxvYXQoYSkrMT49MH0saXNFbXB0eU9iamVjdDpmdW5jdGlvbihhKXt2YXIgYjtmb3IoYiBpbiBhKXJldHVybiExO3JldHVybiEwfSxpc1BsYWluT2JqZWN0OmZ1bmN0aW9uKGEpe3ZhciBiO2lmKCFhfHwib2JqZWN0IiE9PW0udHlwZShhKXx8YS5ub2RlVHlwZXx8bS5pc1dpbmRvdyhhKSlyZXR1cm4hMTt0cnl7aWYoYS5jb25zdHJ1Y3RvciYmIWouY2FsbChhLCJjb25zdHJ1Y3RvciIpJiYhai5jYWxsKGEuY29uc3RydWN0b3IucHJvdG90eXBlLCJpc1Byb3RvdHlwZU9mIikpcmV0dXJuITF9Y2F0Y2goYyl7cmV0dXJuITF9aWYoay5vd25MYXN0KWZvcihiIGluIGEpcmV0dXJuIGouY2FsbChhLGIpO2ZvcihiIGluIGEpO3JldHVybiB2b2lkIDA9PT1ifHxqLmNhbGwoYSxiKX0sdHlwZTpmdW5jdGlvbihhKXtyZXR1cm4gbnVsbD09YT9hKyIiOiJvYmplY3QiPT10eXBlb2YgYXx8ImZ1bmN0aW9uIj09dHlwZW9mIGE/aFtpLmNhbGwoYSldfHwib2JqZWN0Ijp0eXBlb2YgYX0sZ2xvYmFsRXZhbDpmdW5jdGlvbihiKXtiJiZtLnRyaW0oYikmJihhLmV4ZWNTY3JpcHR8fGZ1bmN0aW9uKGIpe2EuZXZhbC5jYWxsKGEsYil9KShiKX0sY2FtZWxDYXNlOmZ1bmN0aW9uKGEpe3JldHVybiBhLnJlcGxhY2UobywibXMtIikucmVwbGFjZShwLHEpfSxub2RlTmFtZTpmdW5jdGlvbihhLGIpe3JldHVybiBhLm5vZGVOYW1lJiZhLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk9PT1iLnRvTG93ZXJDYXNlKCl9LGVhY2g6ZnVuY3Rpb24oYSxiLGMpe3ZhciBkLGU9MCxmPWEubGVuZ3RoLGc9cihhKTtpZihjKXtpZihnKXtmb3IoO2Y+ZTtlKyspaWYoZD1iLmFwcGx5KGFbZV0sYyksZD09PSExKWJyZWFrfWVsc2UgZm9yKGUgaW4gYSlpZihkPWIuYXBwbHkoYVtlXSxjKSxkPT09ITEpYnJlYWt9ZWxzZSBpZihnKXtmb3IoO2Y+ZTtlKyspaWYoZD1iLmNhbGwoYVtlXSxlLGFbZV0pLGQ9PT0hMSlicmVha31lbHNlIGZvcihlIGluIGEpaWYoZD1iLmNhbGwoYVtlXSxlLGFbZV0pLGQ9PT0hMSlicmVhaztyZXR1cm4gYX0sdHJpbTpmdW5jdGlvbihhKXtyZXR1cm4gbnVsbD09YT8iIjooYSsiIikucmVwbGFjZShuLCIiKX0sbWFrZUFycmF5OmZ1bmN0aW9uKGEsYil7dmFyIGM9Ynx8W107cmV0dXJuIG51bGwhPWEmJihyKE9iamVjdChhKSk/bS5tZXJnZShjLCJzdHJpbmciPT10eXBlb2YgYT9bYV06YSk6Zi5jYWxsKGMsYSkpLGN9LGluQXJyYXk6ZnVuY3Rpb24oYSxiLGMpe3ZhciBkO2lmKGIpe2lmKGcpcmV0dXJuIGcuY2FsbChiLGEsYyk7Zm9yKGQ9Yi5sZW5ndGgsYz1jPzA+Yz9NYXRoLm1heCgwLGQrYyk6YzowO2Q+YztjKyspaWYoYyBpbiBiJiZiW2NdPT09YSlyZXR1cm4gY31yZXR1cm4tMX0sbWVyZ2U6ZnVuY3Rpb24oYSxiKXt2YXIgYz0rYi5sZW5ndGgsZD0wLGU9YS5sZW5ndGg7d2hpbGUoYz5kKWFbZSsrXT1iW2QrK107aWYoYyE9PWMpd2hpbGUodm9pZCAwIT09YltkXSlhW2UrK109YltkKytdO3JldHVybiBhLmxlbmd0aD1lLGF9LGdyZXA6ZnVuY3Rpb24oYSxiLGMpe2Zvcih2YXIgZCxlPVtdLGY9MCxnPWEubGVuZ3RoLGg9IWM7Zz5mO2YrKylkPSFiKGFbZl0sZiksZCE9PWgmJmUucHVzaChhW2ZdKTtyZXR1cm4gZX0sbWFwOmZ1bmN0aW9uKGEsYixjKXt2YXIgZCxmPTAsZz1hLmxlbmd0aCxoPXIoYSksaT1bXTtpZihoKWZvcig7Zz5mO2YrKylkPWIoYVtmXSxmLGMpLG51bGwhPWQmJmkucHVzaChkKTtlbHNlIGZvcihmIGluIGEpZD1iKGFbZl0sZixjKSxudWxsIT1kJiZpLnB1c2goZCk7cmV0dXJuIGUuYXBwbHkoW10saSl9LGd1aWQ6MSxwcm94eTpmdW5jdGlvbihhLGIpe3ZhciBjLGUsZjtyZXR1cm4ic3RyaW5nIj09dHlwZW9mIGImJihmPWFbYl0sYj1hLGE9ZiksbS5pc0Z1bmN0aW9uKGEpPyhjPWQuY2FsbChhcmd1bWVudHMsMiksZT1mdW5jdGlvbigpe3JldHVybiBhLmFwcGx5KGJ8fHRoaXMsYy5jb25jYXQoZC5jYWxsKGFyZ3VtZW50cykpKX0sZS5ndWlkPWEuZ3VpZD1hLmd1aWR8fG0uZ3VpZCsrLGUpOnZvaWQgMH0sbm93OmZ1bmN0aW9uKCl7cmV0dXJuK25ldyBEYXRlfSxzdXBwb3J0Omt9KSxtLmVhY2goIkJvb2xlYW4gTnVtYmVyIFN0cmluZyBGdW5jdGlvbiBBcnJheSBEYXRlIFJlZ0V4cCBPYmplY3QgRXJyb3IiLnNwbGl0KCIgIiksZnVuY3Rpb24oYSxiKXtoWyJbb2JqZWN0ICIrYisiXSJdPWIudG9Mb3dlckNhc2UoKX0pO2Z1bmN0aW9uIHIoYSl7dmFyIGI9Imxlbmd0aCJpbiBhJiZhLmxlbmd0aCxjPW0udHlwZShhKTtyZXR1cm4iZnVuY3Rpb24iPT09Y3x8bS5pc1dpbmRvdyhhKT8hMToxPT09YS5ub2RlVHlwZSYmYj8hMDoiYXJyYXkiPT09Y3x8MD09PWJ8fCJudW1iZXIiPT10eXBlb2YgYiYmYj4wJiZiLTEgaW4gYX12YXIgcz1mdW5jdGlvbihhKXt2YXIgYixjLGQsZSxmLGcsaCxpLGosayxsLG0sbixvLHAscSxyLHMsdCx1PSJzaXp6bGUiKzEqbmV3IERhdGUsdj1hLmRvY3VtZW50LHc9MCx4PTAseT1oYSgpLHo9aGEoKSxBPWhhKCksQj1mdW5jdGlvbihhLGIpe3JldHVybiBhPT09YiYmKGw9ITApLDB9LEM9MTw8MzEsRD17fS5oYXNPd25Qcm9wZXJ0eSxFPVtdLEY9RS5wb3AsRz1FLnB1c2gsSD1FLnB1c2gsST1FLnNsaWNlLEo9ZnVuY3Rpb24oYSxiKXtmb3IodmFyIGM9MCxkPWEubGVuZ3RoO2Q+YztjKyspaWYoYVtjXT09PWIpcmV0dXJuIGM7cmV0dXJuLTF9LEs9ImNoZWNrZWR8c2VsZWN0ZWR8YXN5bmN8YXV0b2ZvY3VzfGF1dG9wbGF5fGNvbnRyb2xzfGRlZmVyfGRpc2FibGVkfGhpZGRlbnxpc21hcHxsb29wfG11bHRpcGxlfG9wZW58cmVhZG9ubHl8cmVxdWlyZWR8c2NvcGVkIixMPSJbXFx4MjBcXHRcXHJcXG5cXGZdIixNPSIoPzpcXFxcLnxbXFx3LV18W15cXHgwMC1cXHhhMF0pKyIsTj1NLnJlcGxhY2UoInciLCJ3IyIpLE89IlxcWyIrTCsiKigiK00rIikoPzoiK0wrIiooWypeJHwhfl0/PSkiK0wrIiooPzonKCg/OlxcXFwufFteXFxcXCddKSopJ3xcIigoPzpcXFxcLnxbXlxcXFxcIl0pKilcInwoIitOKyIpKXwpIitMKyIqXFxdIixQPSI6KCIrTSsiKSg/OlxcKCgoJygoPzpcXFxcLnxbXlxcXFwnXSkqKSd8XCIoKD86XFxcXC58W15cXFxcXCJdKSopXCIpfCgoPzpcXFxcLnxbXlxcXFwoKVtcXF1dfCIrTysiKSopfC4qKVxcKXwpIixRPW5ldyBSZWdFeHAoTCsiKyIsImciKSxSPW5ldyBSZWdFeHAoIl4iK0wrIit8KCg/Ol58W15cXFxcXSkoPzpcXFxcLikqKSIrTCsiKyQiLCJnIiksUz1uZXcgUmVnRXhwKCJeIitMKyIqLCIrTCsiKiIpLFQ9bmV3IFJlZ0V4cCgiXiIrTCsiKihbPit+XXwiK0wrIikiK0wrIioiKSxVPW5ldyBSZWdFeHAoIj0iK0wrIiooW15cXF0nXCJdKj8pIitMKyIqXFxdIiwiZyIpLFY9bmV3IFJlZ0V4cChQKSxXPW5ldyBSZWdFeHAoIl4iK04rIiQiKSxYPXtJRDpuZXcgUmVnRXhwKCJeIygiK00rIikiKSxDTEFTUzpuZXcgUmVnRXhwKCJeXFwuKCIrTSsiKSIpLFRBRzpuZXcgUmVnRXhwKCJeKCIrTS5yZXBsYWNlKCJ3IiwidyoiKSsiKSIpLEFUVFI6bmV3IFJlZ0V4cCgiXiIrTyksUFNFVURPOm5ldyBSZWdFeHAoIl4iK1ApLENISUxEOm5ldyBSZWdFeHAoIl46KG9ubHl8Zmlyc3R8bGFzdHxudGh8bnRoLWxhc3QpLShjaGlsZHxvZi10eXBlKSg/OlxcKCIrTCsiKihldmVufG9kZHwoKFsrLV18KShcXGQqKW58KSIrTCsiKig/OihbKy1dfCkiK0wrIiooXFxkKyl8KSkiK0wrIipcXCl8KSIsImkiKSxib29sOm5ldyBSZWdFeHAoIl4oPzoiK0srIikkIiwiaSIpLG5lZWRzQ29udGV4dDpuZXcgUmVnRXhwKCJeIitMKyIqWz4rfl18OihldmVufG9kZHxlcXxndHxsdHxudGh8Zmlyc3R8bGFzdCkoPzpcXCgiK0wrIiooKD86LVxcZCk/XFxkKikiK0wrIipcXCl8KSg/PVteLV18JCkiLCJpIil9LFk9L14oPzppbnB1dHxzZWxlY3R8dGV4dGFyZWF8YnV0dG9uKSQvaSxaPS9eaFxkJC9pLCQ9L15bXntdK1x7XHMqXFtuYXRpdmUgXHcvLF89L14oPzojKFtcdy1dKyl8KFx3Kyl8XC4oW1x3LV0rKSkkLyxhYT0vWyt+XS8sYmE9Lyd8XFwvZyxjYT1uZXcgUmVnRXhwKCJcXFxcKFtcXGRhLWZdezEsNn0iK0wrIj98KCIrTCsiKXwuKSIsImlnIiksZGE9ZnVuY3Rpb24oYSxiLGMpe3ZhciBkPSIweCIrYi02NTUzNjtyZXR1cm4gZCE9PWR8fGM/YjowPmQ/U3RyaW5nLmZyb21DaGFyQ29kZShkKzY1NTM2KTpTdHJpbmcuZnJvbUNoYXJDb2RlKGQ+PjEwfDU1Mjk2LDEwMjMmZHw1NjMyMCl9LGVhPWZ1bmN0aW9uKCl7bSgpfTt0cnl7SC5hcHBseShFPUkuY2FsbCh2LmNoaWxkTm9kZXMpLHYuY2hpbGROb2RlcyksRVt2LmNoaWxkTm9kZXMubGVuZ3RoXS5ub2RlVHlwZX1jYXRjaChmYSl7SD17YXBwbHk6RS5sZW5ndGg/ZnVuY3Rpb24oYSxiKXtHLmFwcGx5KGEsSS5jYWxsKGIpKX06ZnVuY3Rpb24oYSxiKXt2YXIgYz1hLmxlbmd0aCxkPTA7d2hpbGUoYVtjKytdPWJbZCsrXSk7YS5sZW5ndGg9Yy0xfX19ZnVuY3Rpb24gZ2EoYSxiLGQsZSl7dmFyIGYsaCxqLGssbCxvLHIscyx3LHg7aWYoKGI/Yi5vd25lckRvY3VtZW50fHxiOnYpIT09biYmbShiKSxiPWJ8fG4sZD1kfHxbXSxrPWIubm9kZVR5cGUsInN0cmluZyIhPXR5cGVvZiBhfHwhYXx8MSE9PWsmJjkhPT1rJiYxMSE9PWspcmV0dXJuIGQ7aWYoIWUmJnApe2lmKDExIT09ayYmKGY9Xy5leGVjKGEpKSlpZihqPWZbMV0pe2lmKDk9PT1rKXtpZihoPWIuZ2V0RWxlbWVudEJ5SWQoaiksIWh8fCFoLnBhcmVudE5vZGUpcmV0dXJuIGQ7aWYoaC5pZD09PWopcmV0dXJuIGQucHVzaChoKSxkfWVsc2UgaWYoYi5vd25lckRvY3VtZW50JiYoaD1iLm93bmVyRG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoaikpJiZ0KGIsaCkmJmguaWQ9PT1qKXJldHVybiBkLnB1c2goaCksZH1lbHNle2lmKGZbMl0pcmV0dXJuIEguYXBwbHkoZCxiLmdldEVsZW1lbnRzQnlUYWdOYW1lKGEpKSxkO2lmKChqPWZbM10pJiZjLmdldEVsZW1lbnRzQnlDbGFzc05hbWUpcmV0dXJuIEguYXBwbHkoZCxiLmdldEVsZW1lbnRzQnlDbGFzc05hbWUoaikpLGR9aWYoYy5xc2EmJighcXx8IXEudGVzdChhKSkpe2lmKHM9cj11LHc9Yix4PTEhPT1rJiZhLDE9PT1rJiYib2JqZWN0IiE9PWIubm9kZU5hbWUudG9Mb3dlckNhc2UoKSl7bz1nKGEpLChyPWIuZ2V0QXR0cmlidXRlKCJpZCIpKT9zPXIucmVwbGFjZShiYSwiXFwkJiIpOmIuc2V0QXR0cmlidXRlKCJpZCIscykscz0iW2lkPSciK3MrIiddICIsbD1vLmxlbmd0aDt3aGlsZShsLS0pb1tsXT1zK3JhKG9bbF0pO3c9YWEudGVzdChhKSYmcGEoYi5wYXJlbnROb2RlKXx8Yix4PW8uam9pbigiLCIpfWlmKHgpdHJ5e3JldHVybiBILmFwcGx5KGQsdy5xdWVyeVNlbGVjdG9yQWxsKHgpKSxkfWNhdGNoKHkpe31maW5hbGx5e3J8fGIucmVtb3ZlQXR0cmlidXRlKCJpZCIpfX19cmV0dXJuIGkoYS5yZXBsYWNlKFIsIiQxIiksYixkLGUpfWZ1bmN0aW9uIGhhKCl7dmFyIGE9W107ZnVuY3Rpb24gYihjLGUpe3JldHVybiBhLnB1c2goYysiICIpPmQuY2FjaGVMZW5ndGgmJmRlbGV0ZSBiW2Euc2hpZnQoKV0sYltjKyIgIl09ZX1yZXR1cm4gYn1mdW5jdGlvbiBpYShhKXtyZXR1cm4gYVt1XT0hMCxhfWZ1bmN0aW9uIGphKGEpe3ZhciBiPW4uY3JlYXRlRWxlbWVudCgiZGl2Iik7dHJ5e3JldHVybiEhYShiKX1jYXRjaChjKXtyZXR1cm4hMX1maW5hbGx5e2IucGFyZW50Tm9kZSYmYi5wYXJlbnROb2RlLnJlbW92ZUNoaWxkKGIpLGI9bnVsbH19ZnVuY3Rpb24ga2EoYSxiKXt2YXIgYz1hLnNwbGl0KCJ8IiksZT1hLmxlbmd0aDt3aGlsZShlLS0pZC5hdHRySGFuZGxlW2NbZV1dPWJ9ZnVuY3Rpb24gbGEoYSxiKXt2YXIgYz1iJiZhLGQ9YyYmMT09PWEubm9kZVR5cGUmJjE9PT1iLm5vZGVUeXBlJiYofmIuc291cmNlSW5kZXh8fEMpLSh+YS5zb3VyY2VJbmRleHx8Qyk7aWYoZClyZXR1cm4gZDtpZihjKXdoaWxlKGM9Yy5uZXh0U2libGluZylpZihjPT09YilyZXR1cm4tMTtyZXR1cm4gYT8xOi0xfWZ1bmN0aW9uIG1hKGEpe3JldHVybiBmdW5jdGlvbihiKXt2YXIgYz1iLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk7cmV0dXJuImlucHV0Ij09PWMmJmIudHlwZT09PWF9fWZ1bmN0aW9uIG5hKGEpe3JldHVybiBmdW5jdGlvbihiKXt2YXIgYz1iLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk7cmV0dXJuKCJpbnB1dCI9PT1jfHwiYnV0dG9uIj09PWMpJiZiLnR5cGU9PT1hfX1mdW5jdGlvbiBvYShhKXtyZXR1cm4gaWEoZnVuY3Rpb24oYil7cmV0dXJuIGI9K2IsaWEoZnVuY3Rpb24oYyxkKXt2YXIgZSxmPWEoW10sYy5sZW5ndGgsYiksZz1mLmxlbmd0aDt3aGlsZShnLS0pY1tlPWZbZ11dJiYoY1tlXT0hKGRbZV09Y1tlXSkpfSl9KX1mdW5jdGlvbiBwYShhKXtyZXR1cm4gYSYmInVuZGVmaW5lZCIhPXR5cGVvZiBhLmdldEVsZW1lbnRzQnlUYWdOYW1lJiZhfWM9Z2Euc3VwcG9ydD17fSxmPWdhLmlzWE1MPWZ1bmN0aW9uKGEpe3ZhciBiPWEmJihhLm93bmVyRG9jdW1lbnR8fGEpLmRvY3VtZW50RWxlbWVudDtyZXR1cm4gYj8iSFRNTCIhPT1iLm5vZGVOYW1lOiExfSxtPWdhLnNldERvY3VtZW50PWZ1bmN0aW9uKGEpe3ZhciBiLGUsZz1hP2Eub3duZXJEb2N1bWVudHx8YTp2O3JldHVybiBnIT09biYmOT09PWcubm9kZVR5cGUmJmcuZG9jdW1lbnRFbGVtZW50PyhuPWcsbz1nLmRvY3VtZW50RWxlbWVudCxlPWcuZGVmYXVsdFZpZXcsZSYmZSE9PWUudG9wJiYoZS5hZGRFdmVudExpc3RlbmVyP2UuYWRkRXZlbnRMaXN0ZW5lcigidW5sb2FkIixlYSwhMSk6ZS5hdHRhY2hFdmVudCYmZS5hdHRhY2hFdmVudCgib251bmxvYWQiLGVhKSkscD0hZihnKSxjLmF0dHJpYnV0ZXM9amEoZnVuY3Rpb24oYSl7cmV0dXJuIGEuY2xhc3NOYW1lPSJpIiwhYS5nZXRBdHRyaWJ1dGUoImNsYXNzTmFtZSIpfSksYy5nZXRFbGVtZW50c0J5VGFnTmFtZT1qYShmdW5jdGlvbihhKXtyZXR1cm4gYS5hcHBlbmRDaGlsZChnLmNyZWF0ZUNvbW1lbnQoIiIpKSwhYS5nZXRFbGVtZW50c0J5VGFnTmFtZSgiKiIpLmxlbmd0aH0pLGMuZ2V0RWxlbWVudHNCeUNsYXNzTmFtZT0kLnRlc3QoZy5nZXRFbGVtZW50c0J5Q2xhc3NOYW1lKSxjLmdldEJ5SWQ9amEoZnVuY3Rpb24oYSl7cmV0dXJuIG8uYXBwZW5kQ2hpbGQoYSkuaWQ9dSwhZy5nZXRFbGVtZW50c0J5TmFtZXx8IWcuZ2V0RWxlbWVudHNCeU5hbWUodSkubGVuZ3RofSksYy5nZXRCeUlkPyhkLmZpbmQuSUQ9ZnVuY3Rpb24oYSxiKXtpZigidW5kZWZpbmVkIiE9dHlwZW9mIGIuZ2V0RWxlbWVudEJ5SWQmJnApe3ZhciBjPWIuZ2V0RWxlbWVudEJ5SWQoYSk7cmV0dXJuIGMmJmMucGFyZW50Tm9kZT9bY106W119fSxkLmZpbHRlci5JRD1mdW5jdGlvbihhKXt2YXIgYj1hLnJlcGxhY2UoY2EsZGEpO3JldHVybiBmdW5jdGlvbihhKXtyZXR1cm4gYS5nZXRBdHRyaWJ1dGUoImlkIik9PT1ifX0pOihkZWxldGUgZC5maW5kLklELGQuZmlsdGVyLklEPWZ1bmN0aW9uKGEpe3ZhciBiPWEucmVwbGFjZShjYSxkYSk7cmV0dXJuIGZ1bmN0aW9uKGEpe3ZhciBjPSJ1bmRlZmluZWQiIT10eXBlb2YgYS5nZXRBdHRyaWJ1dGVOb2RlJiZhLmdldEF0dHJpYnV0ZU5vZGUoImlkIik7cmV0dXJuIGMmJmMudmFsdWU9PT1ifX0pLGQuZmluZC5UQUc9Yy5nZXRFbGVtZW50c0J5VGFnTmFtZT9mdW5jdGlvbihhLGIpe3JldHVybiJ1bmRlZmluZWQiIT10eXBlb2YgYi5nZXRFbGVtZW50c0J5VGFnTmFtZT9iLmdldEVsZW1lbnRzQnlUYWdOYW1lKGEpOmMucXNhP2IucXVlcnlTZWxlY3RvckFsbChhKTp2b2lkIDB9OmZ1bmN0aW9uKGEsYil7dmFyIGMsZD1bXSxlPTAsZj1iLmdldEVsZW1lbnRzQnlUYWdOYW1lKGEpO2lmKCIqIj09PWEpe3doaWxlKGM9ZltlKytdKTE9PT1jLm5vZGVUeXBlJiZkLnB1c2goYyk7cmV0dXJuIGR9cmV0dXJuIGZ9LGQuZmluZC5DTEFTUz1jLmdldEVsZW1lbnRzQnlDbGFzc05hbWUmJmZ1bmN0aW9uKGEsYil7cmV0dXJuIHA/Yi5nZXRFbGVtZW50c0J5Q2xhc3NOYW1lKGEpOnZvaWQgMH0scj1bXSxxPVtdLChjLnFzYT0kLnRlc3QoZy5xdWVyeVNlbGVjdG9yQWxsKSkmJihqYShmdW5jdGlvbihhKXtvLmFwcGVuZENoaWxkKGEpLmlubmVySFRNTD0iPGEgaWQ9JyIrdSsiJz48L2E+PHNlbGVjdCBpZD0nIit1KyItXGZdJyBtc2FsbG93Y2FwdHVyZT0nJz48b3B0aW9uIHNlbGVjdGVkPScnPjwvb3B0aW9uPjwvc2VsZWN0PiIsYS5xdWVyeVNlbGVjdG9yQWxsKCJbbXNhbGxvd2NhcHR1cmVePScnXSIpLmxlbmd0aCYmcS5wdXNoKCJbKl4kXT0iK0wrIiooPzonJ3xcIlwiKSIpLGEucXVlcnlTZWxlY3RvckFsbCgiW3NlbGVjdGVkXSIpLmxlbmd0aHx8cS5wdXNoKCJcXFsiK0wrIiooPzp2YWx1ZXwiK0srIikiKSxhLnF1ZXJ5U2VsZWN0b3JBbGwoIltpZH49Iit1KyItXSIpLmxlbmd0aHx8cS5wdXNoKCJ+PSIpLGEucXVlcnlTZWxlY3RvckFsbCgiOmNoZWNrZWQiKS5sZW5ndGh8fHEucHVzaCgiOmNoZWNrZWQiKSxhLnF1ZXJ5U2VsZWN0b3JBbGwoImEjIit1KyIrKiIpLmxlbmd0aHx8cS5wdXNoKCIuIy4rWyt+XSIpfSksamEoZnVuY3Rpb24oYSl7dmFyIGI9Zy5jcmVhdGVFbGVtZW50KCJpbnB1dCIpO2Iuc2V0QXR0cmlidXRlKCJ0eXBlIiwiaGlkZGVuIiksYS5hcHBlbmRDaGlsZChiKS5zZXRBdHRyaWJ1dGUoIm5hbWUiLCJEIiksYS5xdWVyeVNlbGVjdG9yQWxsKCJbbmFtZT1kXSIpLmxlbmd0aCYmcS5wdXNoKCJuYW1lIitMKyIqWypeJHwhfl0/PSIpLGEucXVlcnlTZWxlY3RvckFsbCgiOmVuYWJsZWQiKS5sZW5ndGh8fHEucHVzaCgiOmVuYWJsZWQiLCI6ZGlzYWJsZWQiKSxhLnF1ZXJ5U2VsZWN0b3JBbGwoIiosOngiKSxxLnB1c2goIiwuKjoiKX0pKSwoYy5tYXRjaGVzU2VsZWN0b3I9JC50ZXN0KHM9by5tYXRjaGVzfHxvLndlYmtpdE1hdGNoZXNTZWxlY3Rvcnx8by5tb3pNYXRjaGVzU2VsZWN0b3J8fG8ub01hdGNoZXNTZWxlY3Rvcnx8by5tc01hdGNoZXNTZWxlY3RvcikpJiZqYShmdW5jdGlvbihhKXtjLmRpc2Nvbm5lY3RlZE1hdGNoPXMuY2FsbChhLCJkaXYiKSxzLmNhbGwoYSwiW3MhPScnXTp4Iiksci5wdXNoKCIhPSIsUCl9KSxxPXEubGVuZ3RoJiZuZXcgUmVnRXhwKHEuam9pbigifCIpKSxyPXIubGVuZ3RoJiZuZXcgUmVnRXhwKHIuam9pbigifCIpKSxiPSQudGVzdChvLmNvbXBhcmVEb2N1bWVudFBvc2l0aW9uKSx0PWJ8fCQudGVzdChvLmNvbnRhaW5zKT9mdW5jdGlvbihhLGIpe3ZhciBjPTk9PT1hLm5vZGVUeXBlP2EuZG9jdW1lbnRFbGVtZW50OmEsZD1iJiZiLnBhcmVudE5vZGU7cmV0dXJuIGE9PT1kfHwhKCFkfHwxIT09ZC5ub2RlVHlwZXx8IShjLmNvbnRhaW5zP2MuY29udGFpbnMoZCk6YS5jb21wYXJlRG9jdW1lbnRQb3NpdGlvbiYmMTYmYS5jb21wYXJlRG9jdW1lbnRQb3NpdGlvbihkKSkpfTpmdW5jdGlvbihhLGIpe2lmKGIpd2hpbGUoYj1iLnBhcmVudE5vZGUpaWYoYj09PWEpcmV0dXJuITA7cmV0dXJuITF9LEI9Yj9mdW5jdGlvbihhLGIpe2lmKGE9PT1iKXJldHVybiBsPSEwLDA7dmFyIGQ9IWEuY29tcGFyZURvY3VtZW50UG9zaXRpb24tIWIuY29tcGFyZURvY3VtZW50UG9zaXRpb247cmV0dXJuIGQ/ZDooZD0oYS5vd25lckRvY3VtZW50fHxhKT09PShiLm93bmVyRG9jdW1lbnR8fGIpP2EuY29tcGFyZURvY3VtZW50UG9zaXRpb24oYik6MSwxJmR8fCFjLnNvcnREZXRhY2hlZCYmYi5jb21wYXJlRG9jdW1lbnRQb3NpdGlvbihhKT09PWQ/YT09PWd8fGEub3duZXJEb2N1bWVudD09PXYmJnQodixhKT8tMTpiPT09Z3x8Yi5vd25lckRvY3VtZW50PT09diYmdCh2LGIpPzE6az9KKGssYSktSihrLGIpOjA6NCZkPy0xOjEpfTpmdW5jdGlvbihhLGIpe2lmKGE9PT1iKXJldHVybiBsPSEwLDA7dmFyIGMsZD0wLGU9YS5wYXJlbnROb2RlLGY9Yi5wYXJlbnROb2RlLGg9W2FdLGk9W2JdO2lmKCFlfHwhZilyZXR1cm4gYT09PWc/LTE6Yj09PWc/MTplPy0xOmY/MTprP0ooayxhKS1KKGssYik6MDtpZihlPT09ZilyZXR1cm4gbGEoYSxiKTtjPWE7d2hpbGUoYz1jLnBhcmVudE5vZGUpaC51bnNoaWZ0KGMpO2M9Yjt3aGlsZShjPWMucGFyZW50Tm9kZSlpLnVuc2hpZnQoYyk7d2hpbGUoaFtkXT09PWlbZF0pZCsrO3JldHVybiBkP2xhKGhbZF0saVtkXSk6aFtkXT09PXY/LTE6aVtkXT09PXY/MTowfSxnKTpufSxnYS5tYXRjaGVzPWZ1bmN0aW9uKGEsYil7cmV0dXJuIGdhKGEsbnVsbCxudWxsLGIpfSxnYS5tYXRjaGVzU2VsZWN0b3I9ZnVuY3Rpb24oYSxiKXtpZigoYS5vd25lckRvY3VtZW50fHxhKSE9PW4mJm0oYSksYj1iLnJlcGxhY2UoVSwiPSckMSddIiksISghYy5tYXRjaGVzU2VsZWN0b3J8fCFwfHxyJiZyLnRlc3QoYil8fHEmJnEudGVzdChiKSkpdHJ5e3ZhciBkPXMuY2FsbChhLGIpO2lmKGR8fGMuZGlzY29ubmVjdGVkTWF0Y2h8fGEuZG9jdW1lbnQmJjExIT09YS5kb2N1bWVudC5ub2RlVHlwZSlyZXR1cm4gZH1jYXRjaChlKXt9cmV0dXJuIGdhKGIsbixudWxsLFthXSkubGVuZ3RoPjB9LGdhLmNvbnRhaW5zPWZ1bmN0aW9uKGEsYil7cmV0dXJuKGEub3duZXJEb2N1bWVudHx8YSkhPT1uJiZtKGEpLHQoYSxiKX0sZ2EuYXR0cj1mdW5jdGlvbihhLGIpeyhhLm93bmVyRG9jdW1lbnR8fGEpIT09biYmbShhKTt2YXIgZT1kLmF0dHJIYW5kbGVbYi50b0xvd2VyQ2FzZSgpXSxmPWUmJkQuY2FsbChkLmF0dHJIYW5kbGUsYi50b0xvd2VyQ2FzZSgpKT9lKGEsYiwhcCk6dm9pZCAwO3JldHVybiB2b2lkIDAhPT1mP2Y6Yy5hdHRyaWJ1dGVzfHwhcD9hLmdldEF0dHJpYnV0ZShiKTooZj1hLmdldEF0dHJpYnV0ZU5vZGUoYikpJiZmLnNwZWNpZmllZD9mLnZhbHVlOm51bGx9LGdhLmVycm9yPWZ1bmN0aW9uKGEpe3Rocm93IG5ldyBFcnJvcigiU3ludGF4IGVycm9yLCB1bnJlY29nbml6ZWQgZXhwcmVzc2lvbjogIithKX0sZ2EudW5pcXVlU29ydD1mdW5jdGlvbihhKXt2YXIgYixkPVtdLGU9MCxmPTA7aWYobD0hYy5kZXRlY3REdXBsaWNhdGVzLGs9IWMuc29ydFN0YWJsZSYmYS5zbGljZSgwKSxhLnNvcnQoQiksbCl7d2hpbGUoYj1hW2YrK10pYj09PWFbZl0mJihlPWQucHVzaChmKSk7d2hpbGUoZS0tKWEuc3BsaWNlKGRbZV0sMSl9cmV0dXJuIGs9bnVsbCxhfSxlPWdhLmdldFRleHQ9ZnVuY3Rpb24oYSl7dmFyIGIsYz0iIixkPTAsZj1hLm5vZGVUeXBlO2lmKGYpe2lmKDE9PT1mfHw5PT09Znx8MTE9PT1mKXtpZigic3RyaW5nIj09dHlwZW9mIGEudGV4dENvbnRlbnQpcmV0dXJuIGEudGV4dENvbnRlbnQ7Zm9yKGE9YS5maXJzdENoaWxkO2E7YT1hLm5leHRTaWJsaW5nKWMrPWUoYSl9ZWxzZSBpZigzPT09Znx8ND09PWYpcmV0dXJuIGEubm9kZVZhbHVlfWVsc2Ugd2hpbGUoYj1hW2QrK10pYys9ZShiKTtyZXR1cm4gY30sZD1nYS5zZWxlY3RvcnM9e2NhY2hlTGVuZ3RoOjUwLGNyZWF0ZVBzZXVkbzppYSxtYXRjaDpYLGF0dHJIYW5kbGU6e30sZmluZDp7fSxyZWxhdGl2ZTp7Ij4iOntkaXI6InBhcmVudE5vZGUiLGZpcnN0OiEwfSwiICI6e2RpcjoicGFyZW50Tm9kZSJ9LCIrIjp7ZGlyOiJwcmV2aW91c1NpYmxpbmciLGZpcnN0OiEwfSwifiI6e2RpcjoicHJldmlvdXNTaWJsaW5nIn19LHByZUZpbHRlcjp7QVRUUjpmdW5jdGlvbihhKXtyZXR1cm4gYVsxXT1hWzFdLnJlcGxhY2UoY2EsZGEpLGFbM109KGFbM118fGFbNF18fGFbNV18fCIiKS5yZXBsYWNlKGNhLGRhKSwifj0iPT09YVsyXSYmKGFbM109IiAiK2FbM10rIiAiKSxhLnNsaWNlKDAsNCl9LENISUxEOmZ1bmN0aW9uKGEpe3JldHVybiBhWzFdPWFbMV0udG9Mb3dlckNhc2UoKSwibnRoIj09PWFbMV0uc2xpY2UoMCwzKT8oYVszXXx8Z2EuZXJyb3IoYVswXSksYVs0XT0rKGFbNF0/YVs1XSsoYVs2XXx8MSk6MiooImV2ZW4iPT09YVszXXx8Im9kZCI9PT1hWzNdKSksYVs1XT0rKGFbN10rYVs4XXx8Im9kZCI9PT1hWzNdKSk6YVszXSYmZ2EuZXJyb3IoYVswXSksYX0sUFNFVURPOmZ1bmN0aW9uKGEpe3ZhciBiLGM9IWFbNl0mJmFbMl07cmV0dXJuIFguQ0hJTEQudGVzdChhWzBdKT9udWxsOihhWzNdP2FbMl09YVs0XXx8YVs1XXx8IiI6YyYmVi50ZXN0KGMpJiYoYj1nKGMsITApKSYmKGI9Yy5pbmRleE9mKCIpIixjLmxlbmd0aC1iKS1jLmxlbmd0aCkmJihhWzBdPWFbMF0uc2xpY2UoMCxiKSxhWzJdPWMuc2xpY2UoMCxiKSksYS5zbGljZSgwLDMpKX19LGZpbHRlcjp7VEFHOmZ1bmN0aW9uKGEpe3ZhciBiPWEucmVwbGFjZShjYSxkYSkudG9Mb3dlckNhc2UoKTtyZXR1cm4iKiI9PT1hP2Z1bmN0aW9uKCl7cmV0dXJuITB9OmZ1bmN0aW9uKGEpe3JldHVybiBhLm5vZGVOYW1lJiZhLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk9PT1ifX0sQ0xBU1M6ZnVuY3Rpb24oYSl7dmFyIGI9eVthKyIgIl07cmV0dXJuIGJ8fChiPW5ldyBSZWdFeHAoIihefCIrTCsiKSIrYSsiKCIrTCsifCQpIikpJiZ5KGEsZnVuY3Rpb24oYSl7cmV0dXJuIGIudGVzdCgic3RyaW5nIj09dHlwZW9mIGEuY2xhc3NOYW1lJiZhLmNsYXNzTmFtZXx8InVuZGVmaW5lZCIhPXR5cGVvZiBhLmdldEF0dHJpYnV0ZSYmYS5nZXRBdHRyaWJ1dGUoImNsYXNzIil8fCIiKX0pfSxBVFRSOmZ1bmN0aW9uKGEsYixjKXtyZXR1cm4gZnVuY3Rpb24oZCl7dmFyIGU9Z2EuYXR0cihkLGEpO3JldHVybiBudWxsPT1lPyIhPSI9PT1iOmI/KGUrPSIiLCI9Ij09PWI/ZT09PWM6IiE9Ij09PWI/ZSE9PWM6Il49Ij09PWI/YyYmMD09PWUuaW5kZXhPZihjKToiKj0iPT09Yj9jJiZlLmluZGV4T2YoYyk+LTE6IiQ9Ij09PWI/YyYmZS5zbGljZSgtYy5sZW5ndGgpPT09Yzoifj0iPT09Yj8oIiAiK2UucmVwbGFjZShRLCIgIikrIiAiKS5pbmRleE9mKGMpPi0xOiJ8PSI9PT1iP2U9PT1jfHxlLnNsaWNlKDAsYy5sZW5ndGgrMSk9PT1jKyItIjohMSk6ITB9fSxDSElMRDpmdW5jdGlvbihhLGIsYyxkLGUpe3ZhciBmPSJudGgiIT09YS5zbGljZSgwLDMpLGc9Imxhc3QiIT09YS5zbGljZSgtNCksaD0ib2YtdHlwZSI9PT1iO3JldHVybiAxPT09ZCYmMD09PWU/ZnVuY3Rpb24oYSl7cmV0dXJuISFhLnBhcmVudE5vZGV9OmZ1bmN0aW9uKGIsYyxpKXt2YXIgaixrLGwsbSxuLG8scD1mIT09Zz8ibmV4dFNpYmxpbmciOiJwcmV2aW91c1NpYmxpbmciLHE9Yi5wYXJlbnROb2RlLHI9aCYmYi5ub2RlTmFtZS50b0xvd2VyQ2FzZSgpLHM9IWkmJiFoO2lmKHEpe2lmKGYpe3doaWxlKHApe2w9Yjt3aGlsZShsPWxbcF0paWYoaD9sLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk9PT1yOjE9PT1sLm5vZGVUeXBlKXJldHVybiExO289cD0ib25seSI9PT1hJiYhbyYmIm5leHRTaWJsaW5nIn1yZXR1cm4hMH1pZihvPVtnP3EuZmlyc3RDaGlsZDpxLmxhc3RDaGlsZF0sZyYmcyl7az1xW3VdfHwocVt1XT17fSksaj1rW2FdfHxbXSxuPWpbMF09PT13JiZqWzFdLG09alswXT09PXcmJmpbMl0sbD1uJiZxLmNoaWxkTm9kZXNbbl07d2hpbGUobD0rK24mJmwmJmxbcF18fChtPW49MCl8fG8ucG9wKCkpaWYoMT09PWwubm9kZVR5cGUmJisrbSYmbD09PWIpe2tbYV09W3csbixtXTticmVha319ZWxzZSBpZihzJiYoaj0oYlt1XXx8KGJbdV09e30pKVthXSkmJmpbMF09PT13KW09alsxXTtlbHNlIHdoaWxlKGw9KytuJiZsJiZsW3BdfHwobT1uPTApfHxvLnBvcCgpKWlmKChoP2wubm9kZU5hbWUudG9Mb3dlckNhc2UoKT09PXI6MT09PWwubm9kZVR5cGUpJiYrK20mJihzJiYoKGxbdV18fChsW3VdPXt9KSlbYV09W3csbV0pLGw9PT1iKSlicmVhaztyZXR1cm4gbS09ZSxtPT09ZHx8bSVkPT09MCYmbS9kPj0wfX19LFBTRVVETzpmdW5jdGlvbihhLGIpe3ZhciBjLGU9ZC5wc2V1ZG9zW2FdfHxkLnNldEZpbHRlcnNbYS50b0xvd2VyQ2FzZSgpXXx8Z2EuZXJyb3IoInVuc3VwcG9ydGVkIHBzZXVkbzogIithKTtyZXR1cm4gZVt1XT9lKGIpOmUubGVuZ3RoPjE/KGM9W2EsYSwiIixiXSxkLnNldEZpbHRlcnMuaGFzT3duUHJvcGVydHkoYS50b0xvd2VyQ2FzZSgpKT9pYShmdW5jdGlvbihhLGMpe3ZhciBkLGY9ZShhLGIpLGc9Zi5sZW5ndGg7d2hpbGUoZy0tKWQ9SihhLGZbZ10pLGFbZF09IShjW2RdPWZbZ10pfSk6ZnVuY3Rpb24oYSl7cmV0dXJuIGUoYSwwLGMpfSk6ZX19LHBzZXVkb3M6e25vdDppYShmdW5jdGlvbihhKXt2YXIgYj1bXSxjPVtdLGQ9aChhLnJlcGxhY2UoUiwiJDEiKSk7cmV0dXJuIGRbdV0/aWEoZnVuY3Rpb24oYSxiLGMsZSl7dmFyIGYsZz1kKGEsbnVsbCxlLFtdKSxoPWEubGVuZ3RoO3doaWxlKGgtLSkoZj1nW2hdKSYmKGFbaF09IShiW2hdPWYpKX0pOmZ1bmN0aW9uKGEsZSxmKXtyZXR1cm4gYlswXT1hLGQoYixudWxsLGYsYyksYlswXT1udWxsLCFjLnBvcCgpfX0pLGhhczppYShmdW5jdGlvbihhKXtyZXR1cm4gZnVuY3Rpb24oYil7cmV0dXJuIGdhKGEsYikubGVuZ3RoPjB9fSksY29udGFpbnM6aWEoZnVuY3Rpb24oYSl7cmV0dXJuIGE9YS5yZXBsYWNlKGNhLGRhKSxmdW5jdGlvbihiKXtyZXR1cm4oYi50ZXh0Q29udGVudHx8Yi5pbm5lclRleHR8fGUoYikpLmluZGV4T2YoYSk+LTF9fSksbGFuZzppYShmdW5jdGlvbihhKXtyZXR1cm4gVy50ZXN0KGF8fCIiKXx8Z2EuZXJyb3IoInVuc3VwcG9ydGVkIGxhbmc6ICIrYSksYT1hLnJlcGxhY2UoY2EsZGEpLnRvTG93ZXJDYXNlKCksZnVuY3Rpb24oYil7dmFyIGM7ZG8gaWYoYz1wP2IubGFuZzpiLmdldEF0dHJpYnV0ZSgieG1sOmxhbmciKXx8Yi5nZXRBdHRyaWJ1dGUoImxhbmciKSlyZXR1cm4gYz1jLnRvTG93ZXJDYXNlKCksYz09PWF8fDA9PT1jLmluZGV4T2YoYSsiLSIpO3doaWxlKChiPWIucGFyZW50Tm9kZSkmJjE9PT1iLm5vZGVUeXBlKTtyZXR1cm4hMX19KSx0YXJnZXQ6ZnVuY3Rpb24oYil7dmFyIGM9YS5sb2NhdGlvbiYmYS5sb2NhdGlvbi5oYXNoO3JldHVybiBjJiZjLnNsaWNlKDEpPT09Yi5pZH0scm9vdDpmdW5jdGlvbihhKXtyZXR1cm4gYT09PW99LGZvY3VzOmZ1bmN0aW9uKGEpe3JldHVybiBhPT09bi5hY3RpdmVFbGVtZW50JiYoIW4uaGFzRm9jdXN8fG4uaGFzRm9jdXMoKSkmJiEhKGEudHlwZXx8YS5ocmVmfHx+YS50YWJJbmRleCl9LGVuYWJsZWQ6ZnVuY3Rpb24oYSl7cmV0dXJuIGEuZGlzYWJsZWQ9PT0hMX0sZGlzYWJsZWQ6ZnVuY3Rpb24oYSl7cmV0dXJuIGEuZGlzYWJsZWQ9PT0hMH0sY2hlY2tlZDpmdW5jdGlvbihhKXt2YXIgYj1hLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk7cmV0dXJuImlucHV0Ij09PWImJiEhYS5jaGVja2VkfHwib3B0aW9uIj09PWImJiEhYS5zZWxlY3RlZH0sc2VsZWN0ZWQ6ZnVuY3Rpb24oYSl7cmV0dXJuIGEucGFyZW50Tm9kZSYmYS5wYXJlbnROb2RlLnNlbGVjdGVkSW5kZXgsYS5zZWxlY3RlZD09PSEwfSxlbXB0eTpmdW5jdGlvbihhKXtmb3IoYT1hLmZpcnN0Q2hpbGQ7YTthPWEubmV4dFNpYmxpbmcpaWYoYS5ub2RlVHlwZTw2KXJldHVybiExO3JldHVybiEwfSxwYXJlbnQ6ZnVuY3Rpb24oYSl7cmV0dXJuIWQucHNldWRvcy5lbXB0eShhKX0saGVhZGVyOmZ1bmN0aW9uKGEpe3JldHVybiBaLnRlc3QoYS5ub2RlTmFtZSl9LGlucHV0OmZ1bmN0aW9uKGEpe3JldHVybiBZLnRlc3QoYS5ub2RlTmFtZSl9LGJ1dHRvbjpmdW5jdGlvbihhKXt2YXIgYj1hLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk7cmV0dXJuImlucHV0Ij09PWImJiJidXR0b24iPT09YS50eXBlfHwiYnV0dG9uIj09PWJ9LHRleHQ6ZnVuY3Rpb24oYSl7dmFyIGI7cmV0dXJuImlucHV0Ij09PWEubm9kZU5hbWUudG9Mb3dlckNhc2UoKSYmInRleHQiPT09YS50eXBlJiYobnVsbD09KGI9YS5nZXRBdHRyaWJ1dGUoInR5cGUiKSl8fCJ0ZXh0Ij09PWIudG9Mb3dlckNhc2UoKSl9LGZpcnN0Om9hKGZ1bmN0aW9uKCl7cmV0dXJuWzBdfSksbGFzdDpvYShmdW5jdGlvbihhLGIpe3JldHVybltiLTFdfSksZXE6b2EoZnVuY3Rpb24oYSxiLGMpe3JldHVyblswPmM/YytiOmNdfSksZXZlbjpvYShmdW5jdGlvbihhLGIpe2Zvcih2YXIgYz0wO2I+YztjKz0yKWEucHVzaChjKTtyZXR1cm4gYX0pLG9kZDpvYShmdW5jdGlvbihhLGIpe2Zvcih2YXIgYz0xO2I+YztjKz0yKWEucHVzaChjKTtyZXR1cm4gYX0pLGx0Om9hKGZ1bmN0aW9uKGEsYixjKXtmb3IodmFyIGQ9MD5jP2MrYjpjOy0tZD49MDspYS5wdXNoKGQpO3JldHVybiBhfSksZ3Q6b2EoZnVuY3Rpb24oYSxiLGMpe2Zvcih2YXIgZD0wPmM/YytiOmM7KytkPGI7KWEucHVzaChkKTtyZXR1cm4gYX0pfX0sZC5wc2V1ZG9zLm50aD1kLnBzZXVkb3MuZXE7Zm9yKGIgaW57cmFkaW86ITAsY2hlY2tib3g6ITAsZmlsZTohMCxwYXNzd29yZDohMCxpbWFnZTohMH0pZC5wc2V1ZG9zW2JdPW1hKGIpO2ZvcihiIGlue3N1Ym1pdDohMCxyZXNldDohMH0pZC5wc2V1ZG9zW2JdPW5hKGIpO2Z1bmN0aW9uIHFhKCl7fXFhLnByb3RvdHlwZT1kLmZpbHRlcnM9ZC5wc2V1ZG9zLGQuc2V0RmlsdGVycz1uZXcgcWEsZz1nYS50b2tlbml6ZT1mdW5jdGlvbihhLGIpe3ZhciBjLGUsZixnLGgsaSxqLGs9elthKyIgIl07aWYoaylyZXR1cm4gYj8wOmsuc2xpY2UoMCk7aD1hLGk9W10saj1kLnByZUZpbHRlcjt3aGlsZShoKXsoIWN8fChlPVMuZXhlYyhoKSkpJiYoZSYmKGg9aC5zbGljZShlWzBdLmxlbmd0aCl8fGgpLGkucHVzaChmPVtdKSksYz0hMSwoZT1ULmV4ZWMoaCkpJiYoYz1lLnNoaWZ0KCksZi5wdXNoKHt2YWx1ZTpjLHR5cGU6ZVswXS5yZXBsYWNlKFIsIiAiKX0pLGg9aC5zbGljZShjLmxlbmd0aCkpO2ZvcihnIGluIGQuZmlsdGVyKSEoZT1YW2ddLmV4ZWMoaCkpfHxqW2ddJiYhKGU9altnXShlKSl8fChjPWUuc2hpZnQoKSxmLnB1c2goe3ZhbHVlOmMsdHlwZTpnLG1hdGNoZXM6ZX0pLGg9aC5zbGljZShjLmxlbmd0aCkpO2lmKCFjKWJyZWFrfXJldHVybiBiP2gubGVuZ3RoOmg/Z2EuZXJyb3IoYSk6eihhLGkpLnNsaWNlKDApfTtmdW5jdGlvbiByYShhKXtmb3IodmFyIGI9MCxjPWEubGVuZ3RoLGQ9IiI7Yz5iO2IrKylkKz1hW2JdLnZhbHVlO3JldHVybiBkfWZ1bmN0aW9uIHNhKGEsYixjKXt2YXIgZD1iLmRpcixlPWMmJiJwYXJlbnROb2RlIj09PWQsZj14Kys7cmV0dXJuIGIuZmlyc3Q/ZnVuY3Rpb24oYixjLGYpe3doaWxlKGI9YltkXSlpZigxPT09Yi5ub2RlVHlwZXx8ZSlyZXR1cm4gYShiLGMsZil9OmZ1bmN0aW9uKGIsYyxnKXt2YXIgaCxpLGo9W3csZl07aWYoZyl7d2hpbGUoYj1iW2RdKWlmKCgxPT09Yi5ub2RlVHlwZXx8ZSkmJmEoYixjLGcpKXJldHVybiEwfWVsc2Ugd2hpbGUoYj1iW2RdKWlmKDE9PT1iLm5vZGVUeXBlfHxlKXtpZihpPWJbdV18fChiW3VdPXt9KSwoaD1pW2RdKSYmaFswXT09PXcmJmhbMV09PT1mKXJldHVybiBqWzJdPWhbMl07aWYoaVtkXT1qLGpbMl09YShiLGMsZykpcmV0dXJuITB9fX1mdW5jdGlvbiB0YShhKXtyZXR1cm4gYS5sZW5ndGg+MT9mdW5jdGlvbihiLGMsZCl7dmFyIGU9YS5sZW5ndGg7d2hpbGUoZS0tKWlmKCFhW2VdKGIsYyxkKSlyZXR1cm4hMTtyZXR1cm4hMH06YVswXX1mdW5jdGlvbiB1YShhLGIsYyl7Zm9yKHZhciBkPTAsZT1iLmxlbmd0aDtlPmQ7ZCsrKWdhKGEsYltkXSxjKTtyZXR1cm4gY31mdW5jdGlvbiB2YShhLGIsYyxkLGUpe2Zvcih2YXIgZixnPVtdLGg9MCxpPWEubGVuZ3RoLGo9bnVsbCE9YjtpPmg7aCsrKShmPWFbaF0pJiYoIWN8fGMoZixkLGUpKSYmKGcucHVzaChmKSxqJiZiLnB1c2goaCkpO3JldHVybiBnfWZ1bmN0aW9uIHdhKGEsYixjLGQsZSxmKXtyZXR1cm4gZCYmIWRbdV0mJihkPXdhKGQpKSxlJiYhZVt1XSYmKGU9d2EoZSxmKSksaWEoZnVuY3Rpb24oZixnLGgsaSl7dmFyIGosayxsLG09W10sbj1bXSxvPWcubGVuZ3RoLHA9Znx8dWEoYnx8IioiLGgubm9kZVR5cGU/W2hdOmgsW10pLHE9IWF8fCFmJiZiP3A6dmEocCxtLGEsaCxpKSxyPWM/ZXx8KGY/YTpvfHxkKT9bXTpnOnE7aWYoYyYmYyhxLHIsaCxpKSxkKXtqPXZhKHIsbiksZChqLFtdLGgsaSksaz1qLmxlbmd0aDt3aGlsZShrLS0pKGw9altrXSkmJihyW25ba11dPSEocVtuW2tdXT1sKSl9aWYoZil7aWYoZXx8YSl7aWYoZSl7aj1bXSxrPXIubGVuZ3RoO3doaWxlKGstLSkobD1yW2tdKSYmai5wdXNoKHFba109bCk7ZShudWxsLHI9W10saixpKX1rPXIubGVuZ3RoO3doaWxlKGstLSkobD1yW2tdKSYmKGo9ZT9KKGYsbCk6bVtrXSk+LTEmJihmW2pdPSEoZ1tqXT1sKSl9fWVsc2Ugcj12YShyPT09Zz9yLnNwbGljZShvLHIubGVuZ3RoKTpyKSxlP2UobnVsbCxnLHIsaSk6SC5hcHBseShnLHIpfSl9ZnVuY3Rpb24geGEoYSl7Zm9yKHZhciBiLGMsZSxmPWEubGVuZ3RoLGc9ZC5yZWxhdGl2ZVthWzBdLnR5cGVdLGg9Z3x8ZC5yZWxhdGl2ZVsiICJdLGk9Zz8xOjAsaz1zYShmdW5jdGlvbihhKXtyZXR1cm4gYT09PWJ9LGgsITApLGw9c2EoZnVuY3Rpb24oYSl7cmV0dXJuIEooYixhKT4tMX0saCwhMCksbT1bZnVuY3Rpb24oYSxjLGQpe3ZhciBlPSFnJiYoZHx8YyE9PWopfHwoKGI9Yykubm9kZVR5cGU/ayhhLGMsZCk6bChhLGMsZCkpO3JldHVybiBiPW51bGwsZX1dO2Y+aTtpKyspaWYoYz1kLnJlbGF0aXZlW2FbaV0udHlwZV0pbT1bc2EodGEobSksYyldO2Vsc2V7aWYoYz1kLmZpbHRlclthW2ldLnR5cGVdLmFwcGx5KG51bGwsYVtpXS5tYXRjaGVzKSxjW3VdKXtmb3IoZT0rK2k7Zj5lO2UrKylpZihkLnJlbGF0aXZlW2FbZV0udHlwZV0pYnJlYWs7cmV0dXJuIHdhKGk+MSYmdGEobSksaT4xJiZyYShhLnNsaWNlKDAsaS0xKS5jb25jYXQoe3ZhbHVlOiIgIj09PWFbaS0yXS50eXBlPyIqIjoiIn0pKS5yZXBsYWNlKFIsIiQxIiksYyxlPmkmJnhhKGEuc2xpY2UoaSxlKSksZj5lJiZ4YShhPWEuc2xpY2UoZSkpLGY+ZSYmcmEoYSkpfW0ucHVzaChjKX1yZXR1cm4gdGEobSl9ZnVuY3Rpb24geWEoYSxiKXt2YXIgYz1iLmxlbmd0aD4wLGU9YS5sZW5ndGg+MCxmPWZ1bmN0aW9uKGYsZyxoLGksayl7dmFyIGwsbSxvLHA9MCxxPSIwIixyPWYmJltdLHM9W10sdD1qLHU9Znx8ZSYmZC5maW5kLlRBRygiKiIsayksdj13Kz1udWxsPT10PzE6TWF0aC5yYW5kb20oKXx8LjEseD11Lmxlbmd0aDtmb3IoayYmKGo9ZyE9PW4mJmcpO3EhPT14JiZudWxsIT0obD11W3FdKTtxKyspe2lmKGUmJmwpe209MDt3aGlsZShvPWFbbSsrXSlpZihvKGwsZyxoKSl7aS5wdXNoKGwpO2JyZWFrfWsmJih3PXYpfWMmJigobD0hbyYmbCkmJnAtLSxmJiZyLnB1c2gobCkpfWlmKHArPXEsYyYmcSE9PXApe209MDt3aGlsZShvPWJbbSsrXSlvKHIscyxnLGgpO2lmKGYpe2lmKHA+MCl3aGlsZShxLS0pcltxXXx8c1txXXx8KHNbcV09Ri5jYWxsKGkpKTtzPXZhKHMpfUguYXBwbHkoaSxzKSxrJiYhZiYmcy5sZW5ndGg+MCYmcCtiLmxlbmd0aD4xJiZnYS51bmlxdWVTb3J0KGkpfXJldHVybiBrJiYodz12LGo9dCkscn07cmV0dXJuIGM/aWEoZik6Zn1yZXR1cm4gaD1nYS5jb21waWxlPWZ1bmN0aW9uKGEsYil7dmFyIGMsZD1bXSxlPVtdLGY9QVthKyIgIl07aWYoIWYpe2J8fChiPWcoYSkpLGM9Yi5sZW5ndGg7d2hpbGUoYy0tKWY9eGEoYltjXSksZlt1XT9kLnB1c2goZik6ZS5wdXNoKGYpO2Y9QShhLHlhKGUsZCkpLGYuc2VsZWN0b3I9YX1yZXR1cm4gZn0saT1nYS5zZWxlY3Q9ZnVuY3Rpb24oYSxiLGUsZil7dmFyIGksaixrLGwsbSxuPSJmdW5jdGlvbiI9PXR5cGVvZiBhJiZhLG89IWYmJmcoYT1uLnNlbGVjdG9yfHxhKTtpZihlPWV8fFtdLDE9PT1vLmxlbmd0aCl7aWYoaj1vWzBdPW9bMF0uc2xpY2UoMCksai5sZW5ndGg+MiYmIklEIj09PShrPWpbMF0pLnR5cGUmJmMuZ2V0QnlJZCYmOT09PWIubm9kZVR5cGUmJnAmJmQucmVsYXRpdmVbalsxXS50eXBlXSl7aWYoYj0oZC5maW5kLklEKGsubWF0Y2hlc1swXS5yZXBsYWNlKGNhLGRhKSxiKXx8W10pWzBdLCFiKXJldHVybiBlO24mJihiPWIucGFyZW50Tm9kZSksYT1hLnNsaWNlKGouc2hpZnQoKS52YWx1ZS5sZW5ndGgpfWk9WC5uZWVkc0NvbnRleHQudGVzdChhKT8wOmoubGVuZ3RoO3doaWxlKGktLSl7aWYoaz1qW2ldLGQucmVsYXRpdmVbbD1rLnR5cGVdKWJyZWFrO2lmKChtPWQuZmluZFtsXSkmJihmPW0oay5tYXRjaGVzWzBdLnJlcGxhY2UoY2EsZGEpLGFhLnRlc3QoalswXS50eXBlKSYmcGEoYi5wYXJlbnROb2RlKXx8YikpKXtpZihqLnNwbGljZShpLDEpLGE9Zi5sZW5ndGgmJnJhKGopLCFhKXJldHVybiBILmFwcGx5KGUsZiksZTticmVha319fXJldHVybihufHxoKGEsbykpKGYsYiwhcCxlLGFhLnRlc3QoYSkmJnBhKGIucGFyZW50Tm9kZSl8fGIpLGV9LGMuc29ydFN0YWJsZT11LnNwbGl0KCIiKS5zb3J0KEIpLmpvaW4oIiIpPT09dSxjLmRldGVjdER1cGxpY2F0ZXM9ISFsLG0oKSxjLnNvcnREZXRhY2hlZD1qYShmdW5jdGlvbihhKXtyZXR1cm4gMSZhLmNvbXBhcmVEb2N1bWVudFBvc2l0aW9uKG4uY3JlYXRlRWxlbWVudCgiZGl2IikpfSksamEoZnVuY3Rpb24oYSl7cmV0dXJuIGEuaW5uZXJIVE1MPSI8YSBocmVmPScjJz48L2E+IiwiIyI9PT1hLmZpcnN0Q2hpbGQuZ2V0QXR0cmlidXRlKCJocmVmIil9KXx8a2EoInR5cGV8aHJlZnxoZWlnaHR8d2lkdGgiLGZ1bmN0aW9uKGEsYixjKXtyZXR1cm4gYz92b2lkIDA6YS5nZXRBdHRyaWJ1dGUoYiwidHlwZSI9PT1iLnRvTG93ZXJDYXNlKCk/MToyKX0pLGMuYXR0cmlidXRlcyYmamEoZnVuY3Rpb24oYSl7cmV0dXJuIGEuaW5uZXJIVE1MPSI8aW5wdXQvPiIsYS5maXJzdENoaWxkLnNldEF0dHJpYnV0ZSgidmFsdWUiLCIiKSwiIj09PWEuZmlyc3RDaGlsZC5nZXRBdHRyaWJ1dGUoInZhbHVlIil9KXx8a2EoInZhbHVlIixmdW5jdGlvbihhLGIsYyl7cmV0dXJuIGN8fCJpbnB1dCIhPT1hLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk/dm9pZCAwOmEuZGVmYXVsdFZhbHVlfSksamEoZnVuY3Rpb24oYSl7cmV0dXJuIG51bGw9PWEuZ2V0QXR0cmlidXRlKCJkaXNhYmxlZCIpfSl8fGthKEssZnVuY3Rpb24oYSxiLGMpe3ZhciBkO3JldHVybiBjP3ZvaWQgMDphW2JdPT09ITA/Yi50b0xvd2VyQ2FzZSgpOihkPWEuZ2V0QXR0cmlidXRlTm9kZShiKSkmJmQuc3BlY2lmaWVkP2QudmFsdWU6bnVsbH0pLGdhfShhKTttLmZpbmQ9cyxtLmV4cHI9cy5zZWxlY3RvcnMsbS5leHByWyI6Il09bS5leHByLnBzZXVkb3MsbS51bmlxdWU9cy51bmlxdWVTb3J0LG0udGV4dD1zLmdldFRleHQsbS5pc1hNTERvYz1zLmlzWE1MLG0uY29udGFpbnM9cy5jb250YWluczt2YXIgdD1tLmV4cHIubWF0Y2gubmVlZHNDb250ZXh0LHU9L148KFx3KylccypcLz8+KD86PFwvXDE+fCkkLyx2PS9eLlteOiNcW1wuLF0qJC87ZnVuY3Rpb24gdyhhLGIsYyl7aWYobS5pc0Z1bmN0aW9uKGIpKXJldHVybiBtLmdyZXAoYSxmdW5jdGlvbihhLGQpe3JldHVybiEhYi5jYWxsKGEsZCxhKSE9PWN9KTtpZihiLm5vZGVUeXBlKXJldHVybiBtLmdyZXAoYSxmdW5jdGlvbihhKXtyZXR1cm4gYT09PWIhPT1jfSk7aWYoInN0cmluZyI9PXR5cGVvZiBiKXtpZih2LnRlc3QoYikpcmV0dXJuIG0uZmlsdGVyKGIsYSxjKTtiPW0uZmlsdGVyKGIsYSl9cmV0dXJuIG0uZ3JlcChhLGZ1bmN0aW9uKGEpe3JldHVybiBtLmluQXJyYXkoYSxiKT49MCE9PWN9KX1tLmZpbHRlcj1mdW5jdGlvbihhLGIsYyl7dmFyIGQ9YlswXTtyZXR1cm4gYyYmKGE9Ijpub3QoIithKyIpIiksMT09PWIubGVuZ3RoJiYxPT09ZC5ub2RlVHlwZT9tLmZpbmQubWF0Y2hlc1NlbGVjdG9yKGQsYSk/W2RdOltdOm0uZmluZC5tYXRjaGVzKGEsbS5ncmVwKGIsZnVuY3Rpb24oYSl7cmV0dXJuIDE9PT1hLm5vZGVUeXBlfSkpfSxtLmZuLmV4dGVuZCh7ZmluZDpmdW5jdGlvbihhKXt2YXIgYixjPVtdLGQ9dGhpcyxlPWQubGVuZ3RoO2lmKCJzdHJpbmciIT10eXBlb2YgYSlyZXR1cm4gdGhpcy5wdXNoU3RhY2sobShhKS5maWx0ZXIoZnVuY3Rpb24oKXtmb3IoYj0wO2U+YjtiKyspaWYobS5jb250YWlucyhkW2JdLHRoaXMpKXJldHVybiEwfSkpO2ZvcihiPTA7ZT5iO2IrKyltLmZpbmQoYSxkW2JdLGMpO3JldHVybiBjPXRoaXMucHVzaFN0YWNrKGU+MT9tLnVuaXF1ZShjKTpjKSxjLnNlbGVjdG9yPXRoaXMuc2VsZWN0b3I/dGhpcy5zZWxlY3RvcisiICIrYTphLGN9LGZpbHRlcjpmdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5wdXNoU3RhY2sodyh0aGlzLGF8fFtdLCExKSl9LG5vdDpmdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5wdXNoU3RhY2sodyh0aGlzLGF8fFtdLCEwKSl9LGlzOmZ1bmN0aW9uKGEpe3JldHVybiEhdyh0aGlzLCJzdHJpbmciPT10eXBlb2YgYSYmdC50ZXN0KGEpP20oYSk6YXx8W10sITEpLmxlbmd0aH19KTt2YXIgeCx5PWEuZG9jdW1lbnQsej0vXig/OlxzKig8W1x3XFddKz4pW14+XSp8IyhbXHctXSopKSQvLEE9bS5mbi5pbml0PWZ1bmN0aW9uKGEsYil7dmFyIGMsZDtpZighYSlyZXR1cm4gdGhpcztpZigic3RyaW5nIj09dHlwZW9mIGEpe2lmKGM9IjwiPT09YS5jaGFyQXQoMCkmJiI+Ij09PWEuY2hhckF0KGEubGVuZ3RoLTEpJiZhLmxlbmd0aD49Mz9bbnVsbCxhLG51bGxdOnouZXhlYyhhKSwhY3x8IWNbMV0mJmIpcmV0dXJuIWJ8fGIuanF1ZXJ5PyhifHx4KS5maW5kKGEpOnRoaXMuY29uc3RydWN0b3IoYikuZmluZChhKTtpZihjWzFdKXtpZihiPWIgaW5zdGFuY2VvZiBtP2JbMF06YixtLm1lcmdlKHRoaXMsbS5wYXJzZUhUTUwoY1sxXSxiJiZiLm5vZGVUeXBlP2Iub3duZXJEb2N1bWVudHx8Yjp5LCEwKSksdS50ZXN0KGNbMV0pJiZtLmlzUGxhaW5PYmplY3QoYikpZm9yKGMgaW4gYiltLmlzRnVuY3Rpb24odGhpc1tjXSk/dGhpc1tjXShiW2NdKTp0aGlzLmF0dHIoYyxiW2NdKTtyZXR1cm4gdGhpc31pZihkPXkuZ2V0RWxlbWVudEJ5SWQoY1syXSksZCYmZC5wYXJlbnROb2RlKXtpZihkLmlkIT09Y1syXSlyZXR1cm4geC5maW5kKGEpO3RoaXMubGVuZ3RoPTEsdGhpc1swXT1kfXJldHVybiB0aGlzLmNvbnRleHQ9eSx0aGlzLnNlbGVjdG9yPWEsdGhpc31yZXR1cm4gYS5ub2RlVHlwZT8odGhpcy5jb250ZXh0PXRoaXNbMF09YSx0aGlzLmxlbmd0aD0xLHRoaXMpOm0uaXNGdW5jdGlvbihhKT8idW5kZWZpbmVkIiE9dHlwZW9mIHgucmVhZHk/eC5yZWFkeShhKTphKG0pOih2b2lkIDAhPT1hLnNlbGVjdG9yJiYodGhpcy5zZWxlY3Rvcj1hLnNlbGVjdG9yLHRoaXMuY29udGV4dD1hLmNvbnRleHQpLG0ubWFrZUFycmF5KGEsdGhpcykpfTtBLnByb3RvdHlwZT1tLmZuLHg9bSh5KTt2YXIgQj0vXig/OnBhcmVudHN8cHJldig/OlVudGlsfEFsbCkpLyxDPXtjaGlsZHJlbjohMCxjb250ZW50czohMCxuZXh0OiEwLHByZXY6ITB9O20uZXh0ZW5kKHtkaXI6ZnVuY3Rpb24oYSxiLGMpe3ZhciBkPVtdLGU9YVtiXTt3aGlsZShlJiY5IT09ZS5ub2RlVHlwZSYmKHZvaWQgMD09PWN8fDEhPT1lLm5vZGVUeXBlfHwhbShlKS5pcyhjKSkpMT09PWUubm9kZVR5cGUmJmQucHVzaChlKSxlPWVbYl07cmV0dXJuIGR9LHNpYmxpbmc6ZnVuY3Rpb24oYSxiKXtmb3IodmFyIGM9W107YTthPWEubmV4dFNpYmxpbmcpMT09PWEubm9kZVR5cGUmJmEhPT1iJiZjLnB1c2goYSk7cmV0dXJuIGN9fSksbS5mbi5leHRlbmQoe2hhczpmdW5jdGlvbihhKXt2YXIgYixjPW0oYSx0aGlzKSxkPWMubGVuZ3RoO3JldHVybiB0aGlzLmZpbHRlcihmdW5jdGlvbigpe2ZvcihiPTA7ZD5iO2IrKylpZihtLmNvbnRhaW5zKHRoaXMsY1tiXSkpcmV0dXJuITB9KX0sY2xvc2VzdDpmdW5jdGlvbihhLGIpe2Zvcih2YXIgYyxkPTAsZT10aGlzLmxlbmd0aCxmPVtdLGc9dC50ZXN0KGEpfHwic3RyaW5nIiE9dHlwZW9mIGE/bShhLGJ8fHRoaXMuY29udGV4dCk6MDtlPmQ7ZCsrKWZvcihjPXRoaXNbZF07YyYmYyE9PWI7Yz1jLnBhcmVudE5vZGUpaWYoYy5ub2RlVHlwZTwxMSYmKGc/Zy5pbmRleChjKT4tMToxPT09Yy5ub2RlVHlwZSYmbS5maW5kLm1hdGNoZXNTZWxlY3RvcihjLGEpKSl7Zi5wdXNoKGMpO2JyZWFrfXJldHVybiB0aGlzLnB1c2hTdGFjayhmLmxlbmd0aD4xP20udW5pcXVlKGYpOmYpfSxpbmRleDpmdW5jdGlvbihhKXtyZXR1cm4gYT8ic3RyaW5nIj09dHlwZW9mIGE/bS5pbkFycmF5KHRoaXNbMF0sbShhKSk6bS5pbkFycmF5KGEuanF1ZXJ5P2FbMF06YSx0aGlzKTp0aGlzWzBdJiZ0aGlzWzBdLnBhcmVudE5vZGU/dGhpcy5maXJzdCgpLnByZXZBbGwoKS5sZW5ndGg6LTF9LGFkZDpmdW5jdGlvbihhLGIpe3JldHVybiB0aGlzLnB1c2hTdGFjayhtLnVuaXF1ZShtLm1lcmdlKHRoaXMuZ2V0KCksbShhLGIpKSkpfSxhZGRCYWNrOmZ1bmN0aW9uKGEpe3JldHVybiB0aGlzLmFkZChudWxsPT1hP3RoaXMucHJldk9iamVjdDp0aGlzLnByZXZPYmplY3QuZmlsdGVyKGEpKX19KTtmdW5jdGlvbiBEKGEsYil7ZG8gYT1hW2JdO3doaWxlKGEmJjEhPT1hLm5vZGVUeXBlKTtyZXR1cm4gYX1tLmVhY2goe3BhcmVudDpmdW5jdGlvbihhKXt2YXIgYj1hLnBhcmVudE5vZGU7cmV0dXJuIGImJjExIT09Yi5ub2RlVHlwZT9iOm51bGx9LHBhcmVudHM6ZnVuY3Rpb24oYSl7cmV0dXJuIG0uZGlyKGEsInBhcmVudE5vZGUiKX0scGFyZW50c1VudGlsOmZ1bmN0aW9uKGEsYixjKXtyZXR1cm4gbS5kaXIoYSwicGFyZW50Tm9kZSIsYyl9LG5leHQ6ZnVuY3Rpb24oYSl7cmV0dXJuIEQoYSwibmV4dFNpYmxpbmciKX0scHJldjpmdW5jdGlvbihhKXtyZXR1cm4gRChhLCJwcmV2aW91c1NpYmxpbmciKX0sbmV4dEFsbDpmdW5jdGlvbihhKXtyZXR1cm4gbS5kaXIoYSwibmV4dFNpYmxpbmciKX0scHJldkFsbDpmdW5jdGlvbihhKXtyZXR1cm4gbS5kaXIoYSwicHJldmlvdXNTaWJsaW5nIil9LG5leHRVbnRpbDpmdW5jdGlvbihhLGIsYyl7cmV0dXJuIG0uZGlyKGEsIm5leHRTaWJsaW5nIixjKX0scHJldlVudGlsOmZ1bmN0aW9uKGEsYixjKXtyZXR1cm4gbS5kaXIoYSwicHJldmlvdXNTaWJsaW5nIixjKX0sc2libGluZ3M6ZnVuY3Rpb24oYSl7cmV0dXJuIG0uc2libGluZygoYS5wYXJlbnROb2RlfHx7fSkuZmlyc3RDaGlsZCxhKX0sY2hpbGRyZW46ZnVuY3Rpb24oYSl7cmV0dXJuIG0uc2libGluZyhhLmZpcnN0Q2hpbGQpfSxjb250ZW50czpmdW5jdGlvbihhKXtyZXR1cm4gbS5ub2RlTmFtZShhLCJpZnJhbWUiKT9hLmNvbnRlbnREb2N1bWVudHx8YS5jb250ZW50V2luZG93LmRvY3VtZW50Om0ubWVyZ2UoW10sYS5jaGlsZE5vZGVzKX19LGZ1bmN0aW9uKGEsYil7bS5mblthXT1mdW5jdGlvbihjLGQpe3ZhciBlPW0ubWFwKHRoaXMsYixjKTtyZXR1cm4iVW50aWwiIT09YS5zbGljZSgtNSkmJihkPWMpLGQmJiJzdHJpbmciPT10eXBlb2YgZCYmKGU9bS5maWx0ZXIoZCxlKSksdGhpcy5sZW5ndGg+MSYmKENbYV18fChlPW0udW5pcXVlKGUpKSxCLnRlc3QoYSkmJihlPWUucmV2ZXJzZSgpKSksdGhpcy5wdXNoU3RhY2soZSl9fSk7dmFyIEU9L1xTKy9nLEY9e307ZnVuY3Rpb24gRyhhKXt2YXIgYj1GW2FdPXt9O3JldHVybiBtLmVhY2goYS5tYXRjaChFKXx8W10sZnVuY3Rpb24oYSxjKXtiW2NdPSEwfSksYn1tLkNhbGxiYWNrcz1mdW5jdGlvbihhKXthPSJzdHJpbmciPT10eXBlb2YgYT9GW2FdfHxHKGEpOm0uZXh0ZW5kKHt9LGEpO3ZhciBiLGMsZCxlLGYsZyxoPVtdLGk9IWEub25jZSYmW10saj1mdW5jdGlvbihsKXtmb3IoYz1hLm1lbW9yeSYmbCxkPSEwLGY9Z3x8MCxnPTAsZT1oLmxlbmd0aCxiPSEwO2gmJmU+ZjtmKyspaWYoaFtmXS5hcHBseShsWzBdLGxbMV0pPT09ITEmJmEuc3RvcE9uRmFsc2Upe2M9ITE7YnJlYWt9Yj0hMSxoJiYoaT9pLmxlbmd0aCYmaihpLnNoaWZ0KCkpOmM/aD1bXTprLmRpc2FibGUoKSl9LGs9e2FkZDpmdW5jdGlvbigpe2lmKGgpe3ZhciBkPWgubGVuZ3RoOyFmdW5jdGlvbiBmKGIpe20uZWFjaChiLGZ1bmN0aW9uKGIsYyl7dmFyIGQ9bS50eXBlKGMpOyJmdW5jdGlvbiI9PT1kP2EudW5pcXVlJiZrLmhhcyhjKXx8aC5wdXNoKGMpOmMmJmMubGVuZ3RoJiYic3RyaW5nIiE9PWQmJmYoYyl9KX0oYXJndW1lbnRzKSxiP2U9aC5sZW5ndGg6YyYmKGc9ZCxqKGMpKX1yZXR1cm4gdGhpc30scmVtb3ZlOmZ1bmN0aW9uKCl7cmV0dXJuIGgmJm0uZWFjaChhcmd1bWVudHMsZnVuY3Rpb24oYSxjKXt2YXIgZDt3aGlsZSgoZD1tLmluQXJyYXkoYyxoLGQpKT4tMSloLnNwbGljZShkLDEpLGImJihlPj1kJiZlLS0sZj49ZCYmZi0tKX0pLHRoaXN9LGhhczpmdW5jdGlvbihhKXtyZXR1cm4gYT9tLmluQXJyYXkoYSxoKT4tMTohKCFofHwhaC5sZW5ndGgpfSxlbXB0eTpmdW5jdGlvbigpe3JldHVybiBoPVtdLGU9MCx0aGlzfSxkaXNhYmxlOmZ1bmN0aW9uKCl7cmV0dXJuIGg9aT1jPXZvaWQgMCx0aGlzfSxkaXNhYmxlZDpmdW5jdGlvbigpe3JldHVybiFofSxsb2NrOmZ1bmN0aW9uKCl7cmV0dXJuIGk9dm9pZCAwLGN8fGsuZGlzYWJsZSgpLHRoaXN9LGxvY2tlZDpmdW5jdGlvbigpe3JldHVybiFpfSxmaXJlV2l0aDpmdW5jdGlvbihhLGMpe3JldHVybiFofHxkJiYhaXx8KGM9Y3x8W10sYz1bYSxjLnNsaWNlP2Muc2xpY2UoKTpjXSxiP2kucHVzaChjKTpqKGMpKSx0aGlzfSxmaXJlOmZ1bmN0aW9uKCl7cmV0dXJuIGsuZmlyZVdpdGgodGhpcyxhcmd1bWVudHMpLHRoaXN9LGZpcmVkOmZ1bmN0aW9uKCl7cmV0dXJuISFkfX07cmV0dXJuIGt9LG0uZXh0ZW5kKHtEZWZlcnJlZDpmdW5jdGlvbihhKXt2YXIgYj1bWyJyZXNvbHZlIiwiZG9uZSIsbS5DYWxsYmFja3MoIm9uY2UgbWVtb3J5IiksInJlc29sdmVkIl0sWyJyZWplY3QiLCJmYWlsIixtLkNhbGxiYWNrcygib25jZSBtZW1vcnkiKSwicmVqZWN0ZWQiXSxbIm5vdGlmeSIsInByb2dyZXNzIixtLkNhbGxiYWNrcygibWVtb3J5IildXSxjPSJwZW5kaW5nIixkPXtzdGF0ZTpmdW5jdGlvbigpe3JldHVybiBjfSxhbHdheXM6ZnVuY3Rpb24oKXtyZXR1cm4gZS5kb25lKGFyZ3VtZW50cykuZmFpbChhcmd1bWVudHMpLHRoaXN9LHRoZW46ZnVuY3Rpb24oKXt2YXIgYT1hcmd1bWVudHM7cmV0dXJuIG0uRGVmZXJyZWQoZnVuY3Rpb24oYyl7bS5lYWNoKGIsZnVuY3Rpb24oYixmKXt2YXIgZz1tLmlzRnVuY3Rpb24oYVtiXSkmJmFbYl07ZVtmWzFdXShmdW5jdGlvbigpe3ZhciBhPWcmJmcuYXBwbHkodGhpcyxhcmd1bWVudHMpO2EmJm0uaXNGdW5jdGlvbihhLnByb21pc2UpP2EucHJvbWlzZSgpLmRvbmUoYy5yZXNvbHZlKS5mYWlsKGMucmVqZWN0KS5wcm9ncmVzcyhjLm5vdGlmeSk6Y1tmWzBdKyJXaXRoIl0odGhpcz09PWQ/Yy5wcm9taXNlKCk6dGhpcyxnP1thXTphcmd1bWVudHMpfSl9KSxhPW51bGx9KS5wcm9taXNlKCl9LHByb21pc2U6ZnVuY3Rpb24oYSl7cmV0dXJuIG51bGwhPWE/bS5leHRlbmQoYSxkKTpkfX0sZT17fTtyZXR1cm4gZC5waXBlPWQudGhlbixtLmVhY2goYixmdW5jdGlvbihhLGYpe3ZhciBnPWZbMl0saD1mWzNdO2RbZlsxXV09Zy5hZGQsaCYmZy5hZGQoZnVuY3Rpb24oKXtjPWh9LGJbMV5hXVsyXS5kaXNhYmxlLGJbMl1bMl0ubG9jayksZVtmWzBdXT1mdW5jdGlvbigpe3JldHVybiBlW2ZbMF0rIldpdGgiXSh0aGlzPT09ZT9kOnRoaXMsYXJndW1lbnRzKSx0aGlzfSxlW2ZbMF0rIldpdGgiXT1nLmZpcmVXaXRofSksZC5wcm9taXNlKGUpLGEmJmEuY2FsbChlLGUpLGV9LHdoZW46ZnVuY3Rpb24oYSl7dmFyIGI9MCxjPWQuY2FsbChhcmd1bWVudHMpLGU9Yy5sZW5ndGgsZj0xIT09ZXx8YSYmbS5pc0Z1bmN0aW9uKGEucHJvbWlzZSk/ZTowLGc9MT09PWY/YTptLkRlZmVycmVkKCksaD1mdW5jdGlvbihhLGIsYyl7cmV0dXJuIGZ1bmN0aW9uKGUpe2JbYV09dGhpcyxjW2FdPWFyZ3VtZW50cy5sZW5ndGg+MT9kLmNhbGwoYXJndW1lbnRzKTplLGM9PT1pP2cubm90aWZ5V2l0aChiLGMpOi0tZnx8Zy5yZXNvbHZlV2l0aChiLGMpfX0saSxqLGs7aWYoZT4xKWZvcihpPW5ldyBBcnJheShlKSxqPW5ldyBBcnJheShlKSxrPW5ldyBBcnJheShlKTtlPmI7YisrKWNbYl0mJm0uaXNGdW5jdGlvbihjW2JdLnByb21pc2UpP2NbYl0ucHJvbWlzZSgpLmRvbmUoaChiLGssYykpLmZhaWwoZy5yZWplY3QpLnByb2dyZXNzKGgoYixqLGkpKTotLWY7cmV0dXJuIGZ8fGcucmVzb2x2ZVdpdGgoayxjKSxnLnByb21pc2UoKX19KTt2YXIgSDttLmZuLnJlYWR5PWZ1bmN0aW9uKGEpe3JldHVybiBtLnJlYWR5LnByb21pc2UoKS5kb25lKGEpLHRoaXN9LG0uZXh0ZW5kKHtpc1JlYWR5OiExLHJlYWR5V2FpdDoxLGhvbGRSZWFkeTpmdW5jdGlvbihhKXthP20ucmVhZHlXYWl0Kys6bS5yZWFkeSghMCl9LHJlYWR5OmZ1bmN0aW9uKGEpe2lmKGE9PT0hMD8hLS1tLnJlYWR5V2FpdDohbS5pc1JlYWR5KXtpZigheS5ib2R5KXJldHVybiBzZXRUaW1lb3V0KG0ucmVhZHkpO20uaXNSZWFkeT0hMCxhIT09ITAmJi0tbS5yZWFkeVdhaXQ+MHx8KEgucmVzb2x2ZVdpdGgoeSxbbV0pLG0uZm4udHJpZ2dlckhhbmRsZXImJihtKHkpLnRyaWdnZXJIYW5kbGVyKCJyZWFkeSIpLG0oeSkub2ZmKCJyZWFkeSIpKSl9fX0pO2Z1bmN0aW9uIEkoKXt5LmFkZEV2ZW50TGlzdGVuZXI/KHkucmVtb3ZlRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsSiwhMSksYS5yZW1vdmVFdmVudExpc3RlbmVyKCJsb2FkIixKLCExKSk6KHkuZGV0YWNoRXZlbnQoIm9ucmVhZHlzdGF0ZWNoYW5nZSIsSiksYS5kZXRhY2hFdmVudCgib25sb2FkIixKKSl9ZnVuY3Rpb24gSigpeyh5LmFkZEV2ZW50TGlzdGVuZXJ8fCJsb2FkIj09PWV2ZW50LnR5cGV8fCJjb21wbGV0ZSI9PT15LnJlYWR5U3RhdGUpJiYoSSgpLG0ucmVhZHkoKSl9bS5yZWFkeS5wcm9taXNlPWZ1bmN0aW9uKGIpe2lmKCFIKWlmKEg9bS5EZWZlcnJlZCgpLCJjb21wbGV0ZSI9PT15LnJlYWR5U3RhdGUpc2V0VGltZW91dChtLnJlYWR5KTtlbHNlIGlmKHkuYWRkRXZlbnRMaXN0ZW5lcil5LmFkZEV2ZW50TGlzdGVuZXIoIkRPTUNvbnRlbnRMb2FkZWQiLEosITEpLGEuYWRkRXZlbnRMaXN0ZW5lcigibG9hZCIsSiwhMSk7ZWxzZXt5LmF0dGFjaEV2ZW50KCJvbnJlYWR5c3RhdGVjaGFuZ2UiLEopLGEuYXR0YWNoRXZlbnQoIm9ubG9hZCIsSik7dmFyIGM9ITE7dHJ5e2M9bnVsbD09YS5mcmFtZUVsZW1lbnQmJnkuZG9jdW1lbnRFbGVtZW50fWNhdGNoKGQpe31jJiZjLmRvU2Nyb2xsJiYhZnVuY3Rpb24gZSgpe2lmKCFtLmlzUmVhZHkpe3RyeXtjLmRvU2Nyb2xsKCJsZWZ0Iil9Y2F0Y2goYSl7cmV0dXJuIHNldFRpbWVvdXQoZSw1MCl9SSgpLG0ucmVhZHkoKX19KCl9cmV0dXJuIEgucHJvbWlzZShiKX07dmFyIEs9InVuZGVmaW5lZCIsTDtmb3IoTCBpbiBtKGspKWJyZWFrO2sub3duTGFzdD0iMCIhPT1MLGsuaW5saW5lQmxvY2tOZWVkc0xheW91dD0hMSxtKGZ1bmN0aW9uKCl7dmFyIGEsYixjLGQ7Yz15LmdldEVsZW1lbnRzQnlUYWdOYW1lKCJib2R5IilbMF0sYyYmYy5zdHlsZSYmKGI9eS5jcmVhdGVFbGVtZW50KCJkaXYiKSxkPXkuY3JlYXRlRWxlbWVudCgiZGl2IiksZC5zdHlsZS5jc3NUZXh0PSJwb3NpdGlvbjphYnNvbHV0ZTtib3JkZXI6MDt3aWR0aDowO2hlaWdodDowO3RvcDowO2xlZnQ6LTk5OTlweCIsYy5hcHBlbmRDaGlsZChkKS5hcHBlbmRDaGlsZChiKSx0eXBlb2YgYi5zdHlsZS56b29tIT09SyYmKGIuc3R5bGUuY3NzVGV4dD0iZGlzcGxheTppbmxpbmU7bWFyZ2luOjA7Ym9yZGVyOjA7cGFkZGluZzoxcHg7d2lkdGg6MXB4O3pvb206MSIsay5pbmxpbmVCbG9ja05lZWRzTGF5b3V0PWE9Mz09PWIub2Zmc2V0V2lkdGgsYSYmKGMuc3R5bGUuem9vbT0xKSksYy5yZW1vdmVDaGlsZChkKSl9KSxmdW5jdGlvbigpe3ZhciBhPXkuY3JlYXRlRWxlbWVudCgiZGl2Iik7aWYobnVsbD09ay5kZWxldGVFeHBhbmRvKXtrLmRlbGV0ZUV4cGFuZG89ITA7dHJ5e2RlbGV0ZSBhLnRlc3R9Y2F0Y2goYil7ay5kZWxldGVFeHBhbmRvPSExfX1hPW51bGx9KCksbS5hY2NlcHREYXRhPWZ1bmN0aW9uKGEpe3ZhciBiPW0ubm9EYXRhWyhhLm5vZGVOYW1lKyIgIikudG9Mb3dlckNhc2UoKV0sYz0rYS5ub2RlVHlwZXx8MTtyZXR1cm4gMSE9PWMmJjkhPT1jPyExOiFifHxiIT09ITAmJmEuZ2V0QXR0cmlidXRlKCJjbGFzc2lkIik9PT1ifTt2YXIgTT0vXig/Olx7W1x3XFddKlx9fFxbW1x3XFddKlxdKSQvLE49LyhbQS1aXSkvZztmdW5jdGlvbiBPKGEsYixjKXtpZih2b2lkIDA9PT1jJiYxPT09YS5ub2RlVHlwZSl7dmFyIGQ9ImRhdGEtIitiLnJlcGxhY2UoTiwiLSQxIikudG9Mb3dlckNhc2UoKTtpZihjPWEuZ2V0QXR0cmlidXRlKGQpLCJzdHJpbmciPT10eXBlb2YgYyl7dHJ5e2M9InRydWUiPT09Yz8hMDoiZmFsc2UiPT09Yz8hMToibnVsbCI9PT1jP251bGw6K2MrIiI9PT1jPytjOk0udGVzdChjKT9tLnBhcnNlSlNPTihjKTpjfWNhdGNoKGUpe31tLmRhdGEoYSxiLGMpfWVsc2UgYz12b2lkIDB9cmV0dXJuIGN9ZnVuY3Rpb24gUChhKXt2YXIgYjtmb3IoYiBpbiBhKWlmKCgiZGF0YSIhPT1ifHwhbS5pc0VtcHR5T2JqZWN0KGFbYl0pKSYmInRvSlNPTiIhPT1iKXJldHVybiExOwoKcmV0dXJuITB9ZnVuY3Rpb24gUShhLGIsZCxlKXtpZihtLmFjY2VwdERhdGEoYSkpe3ZhciBmLGcsaD1tLmV4cGFuZG8saT1hLm5vZGVUeXBlLGo9aT9tLmNhY2hlOmEsaz1pP2FbaF06YVtoXSYmaDtpZihrJiZqW2tdJiYoZXx8altrXS5kYXRhKXx8dm9pZCAwIT09ZHx8InN0cmluZyIhPXR5cGVvZiBiKXJldHVybiBrfHwoaz1pP2FbaF09Yy5wb3AoKXx8bS5ndWlkKys6aCksaltrXXx8KGpba109aT97fTp7dG9KU09OOm0ubm9vcH0pLCgib2JqZWN0Ij09dHlwZW9mIGJ8fCJmdW5jdGlvbiI9PXR5cGVvZiBiKSYmKGU/altrXT1tLmV4dGVuZChqW2tdLGIpOmpba10uZGF0YT1tLmV4dGVuZChqW2tdLmRhdGEsYikpLGc9altrXSxlfHwoZy5kYXRhfHwoZy5kYXRhPXt9KSxnPWcuZGF0YSksdm9pZCAwIT09ZCYmKGdbbS5jYW1lbENhc2UoYildPWQpLCJzdHJpbmciPT10eXBlb2YgYj8oZj1nW2JdLG51bGw9PWYmJihmPWdbbS5jYW1lbENhc2UoYildKSk6Zj1nLGZ9fWZ1bmN0aW9uIFIoYSxiLGMpe2lmKG0uYWNjZXB0RGF0YShhKSl7dmFyIGQsZSxmPWEubm9kZVR5cGUsZz1mP20uY2FjaGU6YSxoPWY/YVttLmV4cGFuZG9dOm0uZXhwYW5kbztpZihnW2hdKXtpZihiJiYoZD1jP2dbaF06Z1toXS5kYXRhKSl7bS5pc0FycmF5KGIpP2I9Yi5jb25jYXQobS5tYXAoYixtLmNhbWVsQ2FzZSkpOmIgaW4gZD9iPVtiXTooYj1tLmNhbWVsQ2FzZShiKSxiPWIgaW4gZD9bYl06Yi5zcGxpdCgiICIpKSxlPWIubGVuZ3RoO3doaWxlKGUtLSlkZWxldGUgZFtiW2VdXTtpZihjPyFQKGQpOiFtLmlzRW1wdHlPYmplY3QoZCkpcmV0dXJufShjfHwoZGVsZXRlIGdbaF0uZGF0YSxQKGdbaF0pKSkmJihmP20uY2xlYW5EYXRhKFthXSwhMCk6ay5kZWxldGVFeHBhbmRvfHxnIT1nLndpbmRvdz9kZWxldGUgZ1toXTpnW2hdPW51bGwpfX19bS5leHRlbmQoe2NhY2hlOnt9LG5vRGF0YTp7ImFwcGxldCAiOiEwLCJlbWJlZCAiOiEwLCJvYmplY3QgIjoiY2xzaWQ6RDI3Q0RCNkUtQUU2RC0xMWNmLTk2QjgtNDQ0NTUzNTQwMDAwIn0saGFzRGF0YTpmdW5jdGlvbihhKXtyZXR1cm4gYT1hLm5vZGVUeXBlP20uY2FjaGVbYVttLmV4cGFuZG9dXTphW20uZXhwYW5kb10sISFhJiYhUChhKX0sZGF0YTpmdW5jdGlvbihhLGIsYyl7cmV0dXJuIFEoYSxiLGMpfSxyZW1vdmVEYXRhOmZ1bmN0aW9uKGEsYil7cmV0dXJuIFIoYSxiKX0sX2RhdGE6ZnVuY3Rpb24oYSxiLGMpe3JldHVybiBRKGEsYixjLCEwKX0sX3JlbW92ZURhdGE6ZnVuY3Rpb24oYSxiKXtyZXR1cm4gUihhLGIsITApfX0pLG0uZm4uZXh0ZW5kKHtkYXRhOmZ1bmN0aW9uKGEsYil7dmFyIGMsZCxlLGY9dGhpc1swXSxnPWYmJmYuYXR0cmlidXRlcztpZih2b2lkIDA9PT1hKXtpZih0aGlzLmxlbmd0aCYmKGU9bS5kYXRhKGYpLDE9PT1mLm5vZGVUeXBlJiYhbS5fZGF0YShmLCJwYXJzZWRBdHRycyIpKSl7Yz1nLmxlbmd0aDt3aGlsZShjLS0pZ1tjXSYmKGQ9Z1tjXS5uYW1lLDA9PT1kLmluZGV4T2YoImRhdGEtIikmJihkPW0uY2FtZWxDYXNlKGQuc2xpY2UoNSkpLE8oZixkLGVbZF0pKSk7bS5fZGF0YShmLCJwYXJzZWRBdHRycyIsITApfXJldHVybiBlfXJldHVybiJvYmplY3QiPT10eXBlb2YgYT90aGlzLmVhY2goZnVuY3Rpb24oKXttLmRhdGEodGhpcyxhKX0pOmFyZ3VtZW50cy5sZW5ndGg+MT90aGlzLmVhY2goZnVuY3Rpb24oKXttLmRhdGEodGhpcyxhLGIpfSk6Zj9PKGYsYSxtLmRhdGEoZixhKSk6dm9pZCAwfSxyZW1vdmVEYXRhOmZ1bmN0aW9uKGEpe3JldHVybiB0aGlzLmVhY2goZnVuY3Rpb24oKXttLnJlbW92ZURhdGEodGhpcyxhKX0pfX0pLG0uZXh0ZW5kKHtxdWV1ZTpmdW5jdGlvbihhLGIsYyl7dmFyIGQ7cmV0dXJuIGE/KGI9KGJ8fCJmeCIpKyJxdWV1ZSIsZD1tLl9kYXRhKGEsYiksYyYmKCFkfHxtLmlzQXJyYXkoYyk/ZD1tLl9kYXRhKGEsYixtLm1ha2VBcnJheShjKSk6ZC5wdXNoKGMpKSxkfHxbXSk6dm9pZCAwfSxkZXF1ZXVlOmZ1bmN0aW9uKGEsYil7Yj1ifHwiZngiO3ZhciBjPW0ucXVldWUoYSxiKSxkPWMubGVuZ3RoLGU9Yy5zaGlmdCgpLGY9bS5fcXVldWVIb29rcyhhLGIpLGc9ZnVuY3Rpb24oKXttLmRlcXVldWUoYSxiKX07ImlucHJvZ3Jlc3MiPT09ZSYmKGU9Yy5zaGlmdCgpLGQtLSksZSYmKCJmeCI9PT1iJiZjLnVuc2hpZnQoImlucHJvZ3Jlc3MiKSxkZWxldGUgZi5zdG9wLGUuY2FsbChhLGcsZikpLCFkJiZmJiZmLmVtcHR5LmZpcmUoKX0sX3F1ZXVlSG9va3M6ZnVuY3Rpb24oYSxiKXt2YXIgYz1iKyJxdWV1ZUhvb2tzIjtyZXR1cm4gbS5fZGF0YShhLGMpfHxtLl9kYXRhKGEsYyx7ZW1wdHk6bS5DYWxsYmFja3MoIm9uY2UgbWVtb3J5IikuYWRkKGZ1bmN0aW9uKCl7bS5fcmVtb3ZlRGF0YShhLGIrInF1ZXVlIiksbS5fcmVtb3ZlRGF0YShhLGMpfSl9KX19KSxtLmZuLmV4dGVuZCh7cXVldWU6ZnVuY3Rpb24oYSxiKXt2YXIgYz0yO3JldHVybiJzdHJpbmciIT10eXBlb2YgYSYmKGI9YSxhPSJmeCIsYy0tKSxhcmd1bWVudHMubGVuZ3RoPGM/bS5xdWV1ZSh0aGlzWzBdLGEpOnZvaWQgMD09PWI/dGhpczp0aGlzLmVhY2goZnVuY3Rpb24oKXt2YXIgYz1tLnF1ZXVlKHRoaXMsYSxiKTttLl9xdWV1ZUhvb2tzKHRoaXMsYSksImZ4Ij09PWEmJiJpbnByb2dyZXNzIiE9PWNbMF0mJm0uZGVxdWV1ZSh0aGlzLGEpfSl9LGRlcXVldWU6ZnVuY3Rpb24oYSl7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbigpe20uZGVxdWV1ZSh0aGlzLGEpfSl9LGNsZWFyUXVldWU6ZnVuY3Rpb24oYSl7cmV0dXJuIHRoaXMucXVldWUoYXx8ImZ4IixbXSl9LHByb21pc2U6ZnVuY3Rpb24oYSxiKXt2YXIgYyxkPTEsZT1tLkRlZmVycmVkKCksZj10aGlzLGc9dGhpcy5sZW5ndGgsaD1mdW5jdGlvbigpey0tZHx8ZS5yZXNvbHZlV2l0aChmLFtmXSl9OyJzdHJpbmciIT10eXBlb2YgYSYmKGI9YSxhPXZvaWQgMCksYT1hfHwiZngiO3doaWxlKGctLSljPW0uX2RhdGEoZltnXSxhKyJxdWV1ZUhvb2tzIiksYyYmYy5lbXB0eSYmKGQrKyxjLmVtcHR5LmFkZChoKSk7cmV0dXJuIGgoKSxlLnByb21pc2UoYil9fSk7dmFyIFM9L1srLV0/KD86XGQqXC58KVxkKyg/OltlRV1bKy1dP1xkK3wpLy5zb3VyY2UsVD1bIlRvcCIsIlJpZ2h0IiwiQm90dG9tIiwiTGVmdCJdLFU9ZnVuY3Rpb24oYSxiKXtyZXR1cm4gYT1ifHxhLCJub25lIj09PW0uY3NzKGEsImRpc3BsYXkiKXx8IW0uY29udGFpbnMoYS5vd25lckRvY3VtZW50LGEpfSxWPW0uYWNjZXNzPWZ1bmN0aW9uKGEsYixjLGQsZSxmLGcpe3ZhciBoPTAsaT1hLmxlbmd0aCxqPW51bGw9PWM7aWYoIm9iamVjdCI9PT1tLnR5cGUoYykpe2U9ITA7Zm9yKGggaW4gYyltLmFjY2VzcyhhLGIsaCxjW2hdLCEwLGYsZyl9ZWxzZSBpZih2b2lkIDAhPT1kJiYoZT0hMCxtLmlzRnVuY3Rpb24oZCl8fChnPSEwKSxqJiYoZz8oYi5jYWxsKGEsZCksYj1udWxsKTooaj1iLGI9ZnVuY3Rpb24oYSxiLGMpe3JldHVybiBqLmNhbGwobShhKSxjKX0pKSxiKSlmb3IoO2k+aDtoKyspYihhW2hdLGMsZz9kOmQuY2FsbChhW2hdLGgsYihhW2hdLGMpKSk7cmV0dXJuIGU/YTpqP2IuY2FsbChhKTppP2IoYVswXSxjKTpmfSxXPS9eKD86Y2hlY2tib3h8cmFkaW8pJC9pOyFmdW5jdGlvbigpe3ZhciBhPXkuY3JlYXRlRWxlbWVudCgiaW5wdXQiKSxiPXkuY3JlYXRlRWxlbWVudCgiZGl2IiksYz15LmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTtpZihiLmlubmVySFRNTD0iICA8bGluay8+PHRhYmxlPjwvdGFibGU+PGEgaHJlZj0nL2EnPmE8L2E+PGlucHV0IHR5cGU9J2NoZWNrYm94Jy8+IixrLmxlYWRpbmdXaGl0ZXNwYWNlPTM9PT1iLmZpcnN0Q2hpbGQubm9kZVR5cGUsay50Ym9keT0hYi5nZXRFbGVtZW50c0J5VGFnTmFtZSgidGJvZHkiKS5sZW5ndGgsay5odG1sU2VyaWFsaXplPSEhYi5nZXRFbGVtZW50c0J5VGFnTmFtZSgibGluayIpLmxlbmd0aCxrLmh0bWw1Q2xvbmU9Ijw6bmF2PjwvOm5hdj4iIT09eS5jcmVhdGVFbGVtZW50KCJuYXYiKS5jbG9uZU5vZGUoITApLm91dGVySFRNTCxhLnR5cGU9ImNoZWNrYm94IixhLmNoZWNrZWQ9ITAsYy5hcHBlbmRDaGlsZChhKSxrLmFwcGVuZENoZWNrZWQ9YS5jaGVja2VkLGIuaW5uZXJIVE1MPSI8dGV4dGFyZWE+eDwvdGV4dGFyZWE+IixrLm5vQ2xvbmVDaGVja2VkPSEhYi5jbG9uZU5vZGUoITApLmxhc3RDaGlsZC5kZWZhdWx0VmFsdWUsYy5hcHBlbmRDaGlsZChiKSxiLmlubmVySFRNTD0iPGlucHV0IHR5cGU9J3JhZGlvJyBjaGVja2VkPSdjaGVja2VkJyBuYW1lPSd0Jy8+IixrLmNoZWNrQ2xvbmU9Yi5jbG9uZU5vZGUoITApLmNsb25lTm9kZSghMCkubGFzdENoaWxkLmNoZWNrZWQsay5ub0Nsb25lRXZlbnQ9ITAsYi5hdHRhY2hFdmVudCYmKGIuYXR0YWNoRXZlbnQoIm9uY2xpY2siLGZ1bmN0aW9uKCl7ay5ub0Nsb25lRXZlbnQ9ITF9KSxiLmNsb25lTm9kZSghMCkuY2xpY2soKSksbnVsbD09ay5kZWxldGVFeHBhbmRvKXtrLmRlbGV0ZUV4cGFuZG89ITA7dHJ5e2RlbGV0ZSBiLnRlc3R9Y2F0Y2goZCl7ay5kZWxldGVFeHBhbmRvPSExfX19KCksZnVuY3Rpb24oKXt2YXIgYixjLGQ9eS5jcmVhdGVFbGVtZW50KCJkaXYiKTtmb3IoYiBpbntzdWJtaXQ6ITAsY2hhbmdlOiEwLGZvY3VzaW46ITB9KWM9Im9uIitiLChrW2IrIkJ1YmJsZXMiXT1jIGluIGEpfHwoZC5zZXRBdHRyaWJ1dGUoYywidCIpLGtbYisiQnViYmxlcyJdPWQuYXR0cmlidXRlc1tjXS5leHBhbmRvPT09ITEpO2Q9bnVsbH0oKTt2YXIgWD0vXig/OmlucHV0fHNlbGVjdHx0ZXh0YXJlYSkkL2ksWT0vXmtleS8sWj0vXig/Om1vdXNlfHBvaW50ZXJ8Y29udGV4dG1lbnUpfGNsaWNrLywkPS9eKD86Zm9jdXNpbmZvY3VzfGZvY3Vzb3V0Ymx1cikkLyxfPS9eKFteLl0qKSg/OlwuKC4rKXwpJC87ZnVuY3Rpb24gYWEoKXtyZXR1cm4hMH1mdW5jdGlvbiBiYSgpe3JldHVybiExfWZ1bmN0aW9uIGNhKCl7dHJ5e3JldHVybiB5LmFjdGl2ZUVsZW1lbnR9Y2F0Y2goYSl7fX1tLmV2ZW50PXtnbG9iYWw6e30sYWRkOmZ1bmN0aW9uKGEsYixjLGQsZSl7dmFyIGYsZyxoLGksaixrLGwsbixvLHAscSxyPW0uX2RhdGEoYSk7aWYocil7Yy5oYW5kbGVyJiYoaT1jLGM9aS5oYW5kbGVyLGU9aS5zZWxlY3RvciksYy5ndWlkfHwoYy5ndWlkPW0uZ3VpZCsrKSwoZz1yLmV2ZW50cyl8fChnPXIuZXZlbnRzPXt9KSwoaz1yLmhhbmRsZSl8fChrPXIuaGFuZGxlPWZ1bmN0aW9uKGEpe3JldHVybiB0eXBlb2YgbT09PUt8fGEmJm0uZXZlbnQudHJpZ2dlcmVkPT09YS50eXBlP3ZvaWQgMDptLmV2ZW50LmRpc3BhdGNoLmFwcGx5KGsuZWxlbSxhcmd1bWVudHMpfSxrLmVsZW09YSksYj0oYnx8IiIpLm1hdGNoKEUpfHxbIiJdLGg9Yi5sZW5ndGg7d2hpbGUoaC0tKWY9Xy5leGVjKGJbaF0pfHxbXSxvPXE9ZlsxXSxwPShmWzJdfHwiIikuc3BsaXQoIi4iKS5zb3J0KCksbyYmKGo9bS5ldmVudC5zcGVjaWFsW29dfHx7fSxvPShlP2ouZGVsZWdhdGVUeXBlOmouYmluZFR5cGUpfHxvLGo9bS5ldmVudC5zcGVjaWFsW29dfHx7fSxsPW0uZXh0ZW5kKHt0eXBlOm8sb3JpZ1R5cGU6cSxkYXRhOmQsaGFuZGxlcjpjLGd1aWQ6Yy5ndWlkLHNlbGVjdG9yOmUsbmVlZHNDb250ZXh0OmUmJm0uZXhwci5tYXRjaC5uZWVkc0NvbnRleHQudGVzdChlKSxuYW1lc3BhY2U6cC5qb2luKCIuIil9LGkpLChuPWdbb10pfHwobj1nW29dPVtdLG4uZGVsZWdhdGVDb3VudD0wLGouc2V0dXAmJmouc2V0dXAuY2FsbChhLGQscCxrKSE9PSExfHwoYS5hZGRFdmVudExpc3RlbmVyP2EuYWRkRXZlbnRMaXN0ZW5lcihvLGssITEpOmEuYXR0YWNoRXZlbnQmJmEuYXR0YWNoRXZlbnQoIm9uIitvLGspKSksai5hZGQmJihqLmFkZC5jYWxsKGEsbCksbC5oYW5kbGVyLmd1aWR8fChsLmhhbmRsZXIuZ3VpZD1jLmd1aWQpKSxlP24uc3BsaWNlKG4uZGVsZWdhdGVDb3VudCsrLDAsbCk6bi5wdXNoKGwpLG0uZXZlbnQuZ2xvYmFsW29dPSEwKTthPW51bGx9fSxyZW1vdmU6ZnVuY3Rpb24oYSxiLGMsZCxlKXt2YXIgZixnLGgsaSxqLGssbCxuLG8scCxxLHI9bS5oYXNEYXRhKGEpJiZtLl9kYXRhKGEpO2lmKHImJihrPXIuZXZlbnRzKSl7Yj0oYnx8IiIpLm1hdGNoKEUpfHxbIiJdLGo9Yi5sZW5ndGg7d2hpbGUoai0tKWlmKGg9Xy5leGVjKGJbal0pfHxbXSxvPXE9aFsxXSxwPShoWzJdfHwiIikuc3BsaXQoIi4iKS5zb3J0KCksbyl7bD1tLmV2ZW50LnNwZWNpYWxbb118fHt9LG89KGQ/bC5kZWxlZ2F0ZVR5cGU6bC5iaW5kVHlwZSl8fG8sbj1rW29dfHxbXSxoPWhbMl0mJm5ldyBSZWdFeHAoIihefFxcLikiK3Auam9pbigiXFwuKD86LipcXC58KSIpKyIoXFwufCQpIiksaT1mPW4ubGVuZ3RoO3doaWxlKGYtLSlnPW5bZl0sIWUmJnEhPT1nLm9yaWdUeXBlfHxjJiZjLmd1aWQhPT1nLmd1aWR8fGgmJiFoLnRlc3QoZy5uYW1lc3BhY2UpfHxkJiZkIT09Zy5zZWxlY3RvciYmKCIqKiIhPT1kfHwhZy5zZWxlY3Rvcil8fChuLnNwbGljZShmLDEpLGcuc2VsZWN0b3ImJm4uZGVsZWdhdGVDb3VudC0tLGwucmVtb3ZlJiZsLnJlbW92ZS5jYWxsKGEsZykpO2kmJiFuLmxlbmd0aCYmKGwudGVhcmRvd24mJmwudGVhcmRvd24uY2FsbChhLHAsci5oYW5kbGUpIT09ITF8fG0ucmVtb3ZlRXZlbnQoYSxvLHIuaGFuZGxlKSxkZWxldGUga1tvXSl9ZWxzZSBmb3IobyBpbiBrKW0uZXZlbnQucmVtb3ZlKGEsbytiW2pdLGMsZCwhMCk7bS5pc0VtcHR5T2JqZWN0KGspJiYoZGVsZXRlIHIuaGFuZGxlLG0uX3JlbW92ZURhdGEoYSwiZXZlbnRzIikpfX0sdHJpZ2dlcjpmdW5jdGlvbihiLGMsZCxlKXt2YXIgZixnLGgsaSxrLGwsbixvPVtkfHx5XSxwPWouY2FsbChiLCJ0eXBlIik/Yi50eXBlOmIscT1qLmNhbGwoYiwibmFtZXNwYWNlIik/Yi5uYW1lc3BhY2Uuc3BsaXQoIi4iKTpbXTtpZihoPWw9ZD1kfHx5LDMhPT1kLm5vZGVUeXBlJiY4IT09ZC5ub2RlVHlwZSYmISQudGVzdChwK20uZXZlbnQudHJpZ2dlcmVkKSYmKHAuaW5kZXhPZigiLiIpPj0wJiYocT1wLnNwbGl0KCIuIikscD1xLnNoaWZ0KCkscS5zb3J0KCkpLGc9cC5pbmRleE9mKCI6Iik8MCYmIm9uIitwLGI9YlttLmV4cGFuZG9dP2I6bmV3IG0uRXZlbnQocCwib2JqZWN0Ij09dHlwZW9mIGImJmIpLGIuaXNUcmlnZ2VyPWU/MjozLGIubmFtZXNwYWNlPXEuam9pbigiLiIpLGIubmFtZXNwYWNlX3JlPWIubmFtZXNwYWNlP25ldyBSZWdFeHAoIihefFxcLikiK3Euam9pbigiXFwuKD86LipcXC58KSIpKyIoXFwufCQpIik6bnVsbCxiLnJlc3VsdD12b2lkIDAsYi50YXJnZXR8fChiLnRhcmdldD1kKSxjPW51bGw9PWM/W2JdOm0ubWFrZUFycmF5KGMsW2JdKSxrPW0uZXZlbnQuc3BlY2lhbFtwXXx8e30sZXx8IWsudHJpZ2dlcnx8ay50cmlnZ2VyLmFwcGx5KGQsYykhPT0hMSkpe2lmKCFlJiYhay5ub0J1YmJsZSYmIW0uaXNXaW5kb3coZCkpe2ZvcihpPWsuZGVsZWdhdGVUeXBlfHxwLCQudGVzdChpK3ApfHwoaD1oLnBhcmVudE5vZGUpO2g7aD1oLnBhcmVudE5vZGUpby5wdXNoKGgpLGw9aDtsPT09KGQub3duZXJEb2N1bWVudHx8eSkmJm8ucHVzaChsLmRlZmF1bHRWaWV3fHxsLnBhcmVudFdpbmRvd3x8YSl9bj0wO3doaWxlKChoPW9bbisrXSkmJiFiLmlzUHJvcGFnYXRpb25TdG9wcGVkKCkpYi50eXBlPW4+MT9pOmsuYmluZFR5cGV8fHAsZj0obS5fZGF0YShoLCJldmVudHMiKXx8e30pW2IudHlwZV0mJm0uX2RhdGEoaCwiaGFuZGxlIiksZiYmZi5hcHBseShoLGMpLGY9ZyYmaFtnXSxmJiZmLmFwcGx5JiZtLmFjY2VwdERhdGEoaCkmJihiLnJlc3VsdD1mLmFwcGx5KGgsYyksYi5yZXN1bHQ9PT0hMSYmYi5wcmV2ZW50RGVmYXVsdCgpKTtpZihiLnR5cGU9cCwhZSYmIWIuaXNEZWZhdWx0UHJldmVudGVkKCkmJighay5fZGVmYXVsdHx8ay5fZGVmYXVsdC5hcHBseShvLnBvcCgpLGMpPT09ITEpJiZtLmFjY2VwdERhdGEoZCkmJmcmJmRbcF0mJiFtLmlzV2luZG93KGQpKXtsPWRbZ10sbCYmKGRbZ109bnVsbCksbS5ldmVudC50cmlnZ2VyZWQ9cDt0cnl7ZFtwXSgpfWNhdGNoKHIpe31tLmV2ZW50LnRyaWdnZXJlZD12b2lkIDAsbCYmKGRbZ109bCl9cmV0dXJuIGIucmVzdWx0fX0sZGlzcGF0Y2g6ZnVuY3Rpb24oYSl7YT1tLmV2ZW50LmZpeChhKTt2YXIgYixjLGUsZixnLGg9W10saT1kLmNhbGwoYXJndW1lbnRzKSxqPShtLl9kYXRhKHRoaXMsImV2ZW50cyIpfHx7fSlbYS50eXBlXXx8W10saz1tLmV2ZW50LnNwZWNpYWxbYS50eXBlXXx8e307aWYoaVswXT1hLGEuZGVsZWdhdGVUYXJnZXQ9dGhpcywhay5wcmVEaXNwYXRjaHx8ay5wcmVEaXNwYXRjaC5jYWxsKHRoaXMsYSkhPT0hMSl7aD1tLmV2ZW50LmhhbmRsZXJzLmNhbGwodGhpcyxhLGopLGI9MDt3aGlsZSgoZj1oW2IrK10pJiYhYS5pc1Byb3BhZ2F0aW9uU3RvcHBlZCgpKXthLmN1cnJlbnRUYXJnZXQ9Zi5lbGVtLGc9MDt3aGlsZSgoZT1mLmhhbmRsZXJzW2crK10pJiYhYS5pc0ltbWVkaWF0ZVByb3BhZ2F0aW9uU3RvcHBlZCgpKSghYS5uYW1lc3BhY2VfcmV8fGEubmFtZXNwYWNlX3JlLnRlc3QoZS5uYW1lc3BhY2UpKSYmKGEuaGFuZGxlT2JqPWUsYS5kYXRhPWUuZGF0YSxjPSgobS5ldmVudC5zcGVjaWFsW2Uub3JpZ1R5cGVdfHx7fSkuaGFuZGxlfHxlLmhhbmRsZXIpLmFwcGx5KGYuZWxlbSxpKSx2b2lkIDAhPT1jJiYoYS5yZXN1bHQ9Yyk9PT0hMSYmKGEucHJldmVudERlZmF1bHQoKSxhLnN0b3BQcm9wYWdhdGlvbigpKSl9cmV0dXJuIGsucG9zdERpc3BhdGNoJiZrLnBvc3REaXNwYXRjaC5jYWxsKHRoaXMsYSksYS5yZXN1bHR9fSxoYW5kbGVyczpmdW5jdGlvbihhLGIpe3ZhciBjLGQsZSxmLGc9W10saD1iLmRlbGVnYXRlQ291bnQsaT1hLnRhcmdldDtpZihoJiZpLm5vZGVUeXBlJiYoIWEuYnV0dG9ufHwiY2xpY2siIT09YS50eXBlKSlmb3IoO2khPXRoaXM7aT1pLnBhcmVudE5vZGV8fHRoaXMpaWYoMT09PWkubm9kZVR5cGUmJihpLmRpc2FibGVkIT09ITB8fCJjbGljayIhPT1hLnR5cGUpKXtmb3IoZT1bXSxmPTA7aD5mO2YrKylkPWJbZl0sYz1kLnNlbGVjdG9yKyIgIix2b2lkIDA9PT1lW2NdJiYoZVtjXT1kLm5lZWRzQ29udGV4dD9tKGMsdGhpcykuaW5kZXgoaSk+PTA6bS5maW5kKGMsdGhpcyxudWxsLFtpXSkubGVuZ3RoKSxlW2NdJiZlLnB1c2goZCk7ZS5sZW5ndGgmJmcucHVzaCh7ZWxlbTppLGhhbmRsZXJzOmV9KX1yZXR1cm4gaDxiLmxlbmd0aCYmZy5wdXNoKHtlbGVtOnRoaXMsaGFuZGxlcnM6Yi5zbGljZShoKX0pLGd9LGZpeDpmdW5jdGlvbihhKXtpZihhW20uZXhwYW5kb10pcmV0dXJuIGE7dmFyIGIsYyxkLGU9YS50eXBlLGY9YSxnPXRoaXMuZml4SG9va3NbZV07Z3x8KHRoaXMuZml4SG9va3NbZV09Zz1aLnRlc3QoZSk/dGhpcy5tb3VzZUhvb2tzOlkudGVzdChlKT90aGlzLmtleUhvb2tzOnt9KSxkPWcucHJvcHM/dGhpcy5wcm9wcy5jb25jYXQoZy5wcm9wcyk6dGhpcy5wcm9wcyxhPW5ldyBtLkV2ZW50KGYpLGI9ZC5sZW5ndGg7d2hpbGUoYi0tKWM9ZFtiXSxhW2NdPWZbY107cmV0dXJuIGEudGFyZ2V0fHwoYS50YXJnZXQ9Zi5zcmNFbGVtZW50fHx5KSwzPT09YS50YXJnZXQubm9kZVR5cGUmJihhLnRhcmdldD1hLnRhcmdldC5wYXJlbnROb2RlKSxhLm1ldGFLZXk9ISFhLm1ldGFLZXksZy5maWx0ZXI/Zy5maWx0ZXIoYSxmKTphfSxwcm9wczoiYWx0S2V5IGJ1YmJsZXMgY2FuY2VsYWJsZSBjdHJsS2V5IGN1cnJlbnRUYXJnZXQgZXZlbnRQaGFzZSBtZXRhS2V5IHJlbGF0ZWRUYXJnZXQgc2hpZnRLZXkgdGFyZ2V0IHRpbWVTdGFtcCB2aWV3IHdoaWNoIi5zcGxpdCgiICIpLGZpeEhvb2tzOnt9LGtleUhvb2tzOntwcm9wczoiY2hhciBjaGFyQ29kZSBrZXkga2V5Q29kZSIuc3BsaXQoIiAiKSxmaWx0ZXI6ZnVuY3Rpb24oYSxiKXtyZXR1cm4gbnVsbD09YS53aGljaCYmKGEud2hpY2g9bnVsbCE9Yi5jaGFyQ29kZT9iLmNoYXJDb2RlOmIua2V5Q29kZSksYX19LG1vdXNlSG9va3M6e3Byb3BzOiJidXR0b24gYnV0dG9ucyBjbGllbnRYIGNsaWVudFkgZnJvbUVsZW1lbnQgb2Zmc2V0WCBvZmZzZXRZIHBhZ2VYIHBhZ2VZIHNjcmVlblggc2NyZWVuWSB0b0VsZW1lbnQiLnNwbGl0KCIgIiksZmlsdGVyOmZ1bmN0aW9uKGEsYil7dmFyIGMsZCxlLGY9Yi5idXR0b24sZz1iLmZyb21FbGVtZW50O3JldHVybiBudWxsPT1hLnBhZ2VYJiZudWxsIT1iLmNsaWVudFgmJihkPWEudGFyZ2V0Lm93bmVyRG9jdW1lbnR8fHksZT1kLmRvY3VtZW50RWxlbWVudCxjPWQuYm9keSxhLnBhZ2VYPWIuY2xpZW50WCsoZSYmZS5zY3JvbGxMZWZ0fHxjJiZjLnNjcm9sbExlZnR8fDApLShlJiZlLmNsaWVudExlZnR8fGMmJmMuY2xpZW50TGVmdHx8MCksYS5wYWdlWT1iLmNsaWVudFkrKGUmJmUuc2Nyb2xsVG9wfHxjJiZjLnNjcm9sbFRvcHx8MCktKGUmJmUuY2xpZW50VG9wfHxjJiZjLmNsaWVudFRvcHx8MCkpLCFhLnJlbGF0ZWRUYXJnZXQmJmcmJihhLnJlbGF0ZWRUYXJnZXQ9Zz09PWEudGFyZ2V0P2IudG9FbGVtZW50OmcpLGEud2hpY2h8fHZvaWQgMD09PWZ8fChhLndoaWNoPTEmZj8xOjImZj8zOjQmZj8yOjApLGF9fSxzcGVjaWFsOntsb2FkOntub0J1YmJsZTohMH0sZm9jdXM6e3RyaWdnZXI6ZnVuY3Rpb24oKXtpZih0aGlzIT09Y2EoKSYmdGhpcy5mb2N1cyl0cnl7cmV0dXJuIHRoaXMuZm9jdXMoKSwhMX1jYXRjaChhKXt9fSxkZWxlZ2F0ZVR5cGU6ImZvY3VzaW4ifSxibHVyOnt0cmlnZ2VyOmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXM9PT1jYSgpJiZ0aGlzLmJsdXI/KHRoaXMuYmx1cigpLCExKTp2b2lkIDB9LGRlbGVnYXRlVHlwZToiZm9jdXNvdXQifSxjbGljazp7dHJpZ2dlcjpmdW5jdGlvbigpe3JldHVybiBtLm5vZGVOYW1lKHRoaXMsImlucHV0IikmJiJjaGVja2JveCI9PT10aGlzLnR5cGUmJnRoaXMuY2xpY2s/KHRoaXMuY2xpY2soKSwhMSk6dm9pZCAwfSxfZGVmYXVsdDpmdW5jdGlvbihhKXtyZXR1cm4gbS5ub2RlTmFtZShhLnRhcmdldCwiYSIpfX0sYmVmb3JldW5sb2FkOntwb3N0RGlzcGF0Y2g6ZnVuY3Rpb24oYSl7dm9pZCAwIT09YS5yZXN1bHQmJmEub3JpZ2luYWxFdmVudCYmKGEub3JpZ2luYWxFdmVudC5yZXR1cm5WYWx1ZT1hLnJlc3VsdCl9fX0sc2ltdWxhdGU6ZnVuY3Rpb24oYSxiLGMsZCl7dmFyIGU9bS5leHRlbmQobmV3IG0uRXZlbnQsYyx7dHlwZTphLGlzU2ltdWxhdGVkOiEwLG9yaWdpbmFsRXZlbnQ6e319KTtkP20uZXZlbnQudHJpZ2dlcihlLG51bGwsYik6bS5ldmVudC5kaXNwYXRjaC5jYWxsKGIsZSksZS5pc0RlZmF1bHRQcmV2ZW50ZWQoKSYmYy5wcmV2ZW50RGVmYXVsdCgpfX0sbS5yZW1vdmVFdmVudD15LnJlbW92ZUV2ZW50TGlzdGVuZXI/ZnVuY3Rpb24oYSxiLGMpe2EucmVtb3ZlRXZlbnRMaXN0ZW5lciYmYS5yZW1vdmVFdmVudExpc3RlbmVyKGIsYywhMSl9OmZ1bmN0aW9uKGEsYixjKXt2YXIgZD0ib24iK2I7YS5kZXRhY2hFdmVudCYmKHR5cGVvZiBhW2RdPT09SyYmKGFbZF09bnVsbCksYS5kZXRhY2hFdmVudChkLGMpKX0sbS5FdmVudD1mdW5jdGlvbihhLGIpe3JldHVybiB0aGlzIGluc3RhbmNlb2YgbS5FdmVudD8oYSYmYS50eXBlPyh0aGlzLm9yaWdpbmFsRXZlbnQ9YSx0aGlzLnR5cGU9YS50eXBlLHRoaXMuaXNEZWZhdWx0UHJldmVudGVkPWEuZGVmYXVsdFByZXZlbnRlZHx8dm9pZCAwPT09YS5kZWZhdWx0UHJldmVudGVkJiZhLnJldHVyblZhbHVlPT09ITE/YWE6YmEpOnRoaXMudHlwZT1hLGImJm0uZXh0ZW5kKHRoaXMsYiksdGhpcy50aW1lU3RhbXA9YSYmYS50aW1lU3RhbXB8fG0ubm93KCksdm9pZCh0aGlzW20uZXhwYW5kb109ITApKTpuZXcgbS5FdmVudChhLGIpfSxtLkV2ZW50LnByb3RvdHlwZT17aXNEZWZhdWx0UHJldmVudGVkOmJhLGlzUHJvcGFnYXRpb25TdG9wcGVkOmJhLGlzSW1tZWRpYXRlUHJvcGFnYXRpb25TdG9wcGVkOmJhLHByZXZlbnREZWZhdWx0OmZ1bmN0aW9uKCl7dmFyIGE9dGhpcy5vcmlnaW5hbEV2ZW50O3RoaXMuaXNEZWZhdWx0UHJldmVudGVkPWFhLGEmJihhLnByZXZlbnREZWZhdWx0P2EucHJldmVudERlZmF1bHQoKTphLnJldHVyblZhbHVlPSExKX0sc3RvcFByb3BhZ2F0aW9uOmZ1bmN0aW9uKCl7dmFyIGE9dGhpcy5vcmlnaW5hbEV2ZW50O3RoaXMuaXNQcm9wYWdhdGlvblN0b3BwZWQ9YWEsYSYmKGEuc3RvcFByb3BhZ2F0aW9uJiZhLnN0b3BQcm9wYWdhdGlvbigpLGEuY2FuY2VsQnViYmxlPSEwKX0sc3RvcEltbWVkaWF0ZVByb3BhZ2F0aW9uOmZ1bmN0aW9uKCl7dmFyIGE9dGhpcy5vcmlnaW5hbEV2ZW50O3RoaXMuaXNJbW1lZGlhdGVQcm9wYWdhdGlvblN0b3BwZWQ9YWEsYSYmYS5zdG9wSW1tZWRpYXRlUHJvcGFnYXRpb24mJmEuc3RvcEltbWVkaWF0ZVByb3BhZ2F0aW9uKCksdGhpcy5zdG9wUHJvcGFnYXRpb24oKX19LG0uZWFjaCh7bW91c2VlbnRlcjoibW91c2VvdmVyIixtb3VzZWxlYXZlOiJtb3VzZW91dCIscG9pbnRlcmVudGVyOiJwb2ludGVyb3ZlciIscG9pbnRlcmxlYXZlOiJwb2ludGVyb3V0In0sZnVuY3Rpb24oYSxiKXttLmV2ZW50LnNwZWNpYWxbYV09e2RlbGVnYXRlVHlwZTpiLGJpbmRUeXBlOmIsaGFuZGxlOmZ1bmN0aW9uKGEpe3ZhciBjLGQ9dGhpcyxlPWEucmVsYXRlZFRhcmdldCxmPWEuaGFuZGxlT2JqO3JldHVybighZXx8ZSE9PWQmJiFtLmNvbnRhaW5zKGQsZSkpJiYoYS50eXBlPWYub3JpZ1R5cGUsYz1mLmhhbmRsZXIuYXBwbHkodGhpcyxhcmd1bWVudHMpLGEudHlwZT1iKSxjfX19KSxrLnN1Ym1pdEJ1YmJsZXN8fChtLmV2ZW50LnNwZWNpYWwuc3VibWl0PXtzZXR1cDpmdW5jdGlvbigpe3JldHVybiBtLm5vZGVOYW1lKHRoaXMsImZvcm0iKT8hMTp2b2lkIG0uZXZlbnQuYWRkKHRoaXMsImNsaWNrLl9zdWJtaXQga2V5cHJlc3MuX3N1Ym1pdCIsZnVuY3Rpb24oYSl7dmFyIGI9YS50YXJnZXQsYz1tLm5vZGVOYW1lKGIsImlucHV0Iil8fG0ubm9kZU5hbWUoYiwiYnV0dG9uIik/Yi5mb3JtOnZvaWQgMDtjJiYhbS5fZGF0YShjLCJzdWJtaXRCdWJibGVzIikmJihtLmV2ZW50LmFkZChjLCJzdWJtaXQuX3N1Ym1pdCIsZnVuY3Rpb24oYSl7YS5fc3VibWl0X2J1YmJsZT0hMH0pLG0uX2RhdGEoYywic3VibWl0QnViYmxlcyIsITApKX0pfSxwb3N0RGlzcGF0Y2g6ZnVuY3Rpb24oYSl7YS5fc3VibWl0X2J1YmJsZSYmKGRlbGV0ZSBhLl9zdWJtaXRfYnViYmxlLHRoaXMucGFyZW50Tm9kZSYmIWEuaXNUcmlnZ2VyJiZtLmV2ZW50LnNpbXVsYXRlKCJzdWJtaXQiLHRoaXMucGFyZW50Tm9kZSxhLCEwKSl9LHRlYXJkb3duOmZ1bmN0aW9uKCl7cmV0dXJuIG0ubm9kZU5hbWUodGhpcywiZm9ybSIpPyExOnZvaWQgbS5ldmVudC5yZW1vdmUodGhpcywiLl9zdWJtaXQiKX19KSxrLmNoYW5nZUJ1YmJsZXN8fChtLmV2ZW50LnNwZWNpYWwuY2hhbmdlPXtzZXR1cDpmdW5jdGlvbigpe3JldHVybiBYLnRlc3QodGhpcy5ub2RlTmFtZSk/KCgiY2hlY2tib3giPT09dGhpcy50eXBlfHwicmFkaW8iPT09dGhpcy50eXBlKSYmKG0uZXZlbnQuYWRkKHRoaXMsInByb3BlcnR5Y2hhbmdlLl9jaGFuZ2UiLGZ1bmN0aW9uKGEpeyJjaGVja2VkIj09PWEub3JpZ2luYWxFdmVudC5wcm9wZXJ0eU5hbWUmJih0aGlzLl9qdXN0X2NoYW5nZWQ9ITApfSksbS5ldmVudC5hZGQodGhpcywiY2xpY2suX2NoYW5nZSIsZnVuY3Rpb24oYSl7dGhpcy5fanVzdF9jaGFuZ2VkJiYhYS5pc1RyaWdnZXImJih0aGlzLl9qdXN0X2NoYW5nZWQ9ITEpLG0uZXZlbnQuc2ltdWxhdGUoImNoYW5nZSIsdGhpcyxhLCEwKX0pKSwhMSk6dm9pZCBtLmV2ZW50LmFkZCh0aGlzLCJiZWZvcmVhY3RpdmF0ZS5fY2hhbmdlIixmdW5jdGlvbihhKXt2YXIgYj1hLnRhcmdldDtYLnRlc3QoYi5ub2RlTmFtZSkmJiFtLl9kYXRhKGIsImNoYW5nZUJ1YmJsZXMiKSYmKG0uZXZlbnQuYWRkKGIsImNoYW5nZS5fY2hhbmdlIixmdW5jdGlvbihhKXshdGhpcy5wYXJlbnROb2RlfHxhLmlzU2ltdWxhdGVkfHxhLmlzVHJpZ2dlcnx8bS5ldmVudC5zaW11bGF0ZSgiY2hhbmdlIix0aGlzLnBhcmVudE5vZGUsYSwhMCl9KSxtLl9kYXRhKGIsImNoYW5nZUJ1YmJsZXMiLCEwKSl9KX0saGFuZGxlOmZ1bmN0aW9uKGEpe3ZhciBiPWEudGFyZ2V0O3JldHVybiB0aGlzIT09Ynx8YS5pc1NpbXVsYXRlZHx8YS5pc1RyaWdnZXJ8fCJyYWRpbyIhPT1iLnR5cGUmJiJjaGVja2JveCIhPT1iLnR5cGU/YS5oYW5kbGVPYmouaGFuZGxlci5hcHBseSh0aGlzLGFyZ3VtZW50cyk6dm9pZCAwfSx0ZWFyZG93bjpmdW5jdGlvbigpe3JldHVybiBtLmV2ZW50LnJlbW92ZSh0aGlzLCIuX2NoYW5nZSIpLCFYLnRlc3QodGhpcy5ub2RlTmFtZSl9fSksay5mb2N1c2luQnViYmxlc3x8bS5lYWNoKHtmb2N1czoiZm9jdXNpbiIsYmx1cjoiZm9jdXNvdXQifSxmdW5jdGlvbihhLGIpe3ZhciBjPWZ1bmN0aW9uKGEpe20uZXZlbnQuc2ltdWxhdGUoYixhLnRhcmdldCxtLmV2ZW50LmZpeChhKSwhMCl9O20uZXZlbnQuc3BlY2lhbFtiXT17c2V0dXA6ZnVuY3Rpb24oKXt2YXIgZD10aGlzLm93bmVyRG9jdW1lbnR8fHRoaXMsZT1tLl9kYXRhKGQsYik7ZXx8ZC5hZGRFdmVudExpc3RlbmVyKGEsYywhMCksbS5fZGF0YShkLGIsKGV8fDApKzEpfSx0ZWFyZG93bjpmdW5jdGlvbigpe3ZhciBkPXRoaXMub3duZXJEb2N1bWVudHx8dGhpcyxlPW0uX2RhdGEoZCxiKS0xO2U/bS5fZGF0YShkLGIsZSk6KGQucmVtb3ZlRXZlbnRMaXN0ZW5lcihhLGMsITApLG0uX3JlbW92ZURhdGEoZCxiKSl9fX0pLG0uZm4uZXh0ZW5kKHtvbjpmdW5jdGlvbihhLGIsYyxkLGUpe3ZhciBmLGc7aWYoIm9iamVjdCI9PXR5cGVvZiBhKXsic3RyaW5nIiE9dHlwZW9mIGImJihjPWN8fGIsYj12b2lkIDApO2ZvcihmIGluIGEpdGhpcy5vbihmLGIsYyxhW2ZdLGUpO3JldHVybiB0aGlzfWlmKG51bGw9PWMmJm51bGw9PWQ/KGQ9YixjPWI9dm9pZCAwKTpudWxsPT1kJiYoInN0cmluZyI9PXR5cGVvZiBiPyhkPWMsYz12b2lkIDApOihkPWMsYz1iLGI9dm9pZCAwKSksZD09PSExKWQ9YmE7ZWxzZSBpZighZClyZXR1cm4gdGhpcztyZXR1cm4gMT09PWUmJihnPWQsZD1mdW5jdGlvbihhKXtyZXR1cm4gbSgpLm9mZihhKSxnLmFwcGx5KHRoaXMsYXJndW1lbnRzKX0sZC5ndWlkPWcuZ3VpZHx8KGcuZ3VpZD1tLmd1aWQrKykpLHRoaXMuZWFjaChmdW5jdGlvbigpe20uZXZlbnQuYWRkKHRoaXMsYSxkLGMsYil9KX0sb25lOmZ1bmN0aW9uKGEsYixjLGQpe3JldHVybiB0aGlzLm9uKGEsYixjLGQsMSl9LG9mZjpmdW5jdGlvbihhLGIsYyl7dmFyIGQsZTtpZihhJiZhLnByZXZlbnREZWZhdWx0JiZhLmhhbmRsZU9iailyZXR1cm4gZD1hLmhhbmRsZU9iaixtKGEuZGVsZWdhdGVUYXJnZXQpLm9mZihkLm5hbWVzcGFjZT9kLm9yaWdUeXBlKyIuIitkLm5hbWVzcGFjZTpkLm9yaWdUeXBlLGQuc2VsZWN0b3IsZC5oYW5kbGVyKSx0aGlzO2lmKCJvYmplY3QiPT10eXBlb2YgYSl7Zm9yKGUgaW4gYSl0aGlzLm9mZihlLGIsYVtlXSk7cmV0dXJuIHRoaXN9cmV0dXJuKGI9PT0hMXx8ImZ1bmN0aW9uIj09dHlwZW9mIGIpJiYoYz1iLGI9dm9pZCAwKSxjPT09ITEmJihjPWJhKSx0aGlzLmVhY2goZnVuY3Rpb24oKXttLmV2ZW50LnJlbW92ZSh0aGlzLGEsYyxiKX0pfSx0cmlnZ2VyOmZ1bmN0aW9uKGEsYil7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbigpe20uZXZlbnQudHJpZ2dlcihhLGIsdGhpcyl9KX0sdHJpZ2dlckhhbmRsZXI6ZnVuY3Rpb24oYSxiKXt2YXIgYz10aGlzWzBdO3JldHVybiBjP20uZXZlbnQudHJpZ2dlcihhLGIsYywhMCk6dm9pZCAwfX0pO2Z1bmN0aW9uIGRhKGEpe3ZhciBiPWVhLnNwbGl0KCJ8IiksYz1hLmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTtpZihjLmNyZWF0ZUVsZW1lbnQpd2hpbGUoYi5sZW5ndGgpYy5jcmVhdGVFbGVtZW50KGIucG9wKCkpO3JldHVybiBjfXZhciBlYT0iYWJicnxhcnRpY2xlfGFzaWRlfGF1ZGlvfGJkaXxjYW52YXN8ZGF0YXxkYXRhbGlzdHxkZXRhaWxzfGZpZ2NhcHRpb258ZmlndXJlfGZvb3RlcnxoZWFkZXJ8aGdyb3VwfG1hcmt8bWV0ZXJ8bmF2fG91dHB1dHxwcm9ncmVzc3xzZWN0aW9ufHN1bW1hcnl8dGltZXx2aWRlbyIsZmE9LyBqUXVlcnlcZCs9Iig/Om51bGx8XGQrKSIvZyxnYT1uZXcgUmVnRXhwKCI8KD86IitlYSsiKVtcXHMvPl0iLCJpIiksaGE9L15ccysvLGlhPS88KD8hYXJlYXxicnxjb2x8ZW1iZWR8aHJ8aW1nfGlucHV0fGxpbmt8bWV0YXxwYXJhbSkoKFtcdzpdKylbXj5dKilcLz4vZ2ksamE9LzwoW1x3Ol0rKS8sa2E9Lzx0Ym9keS9pLGxhPS88fCYjP1x3KzsvLG1hPS88KD86c2NyaXB0fHN0eWxlfGxpbmspL2ksbmE9L2NoZWNrZWRccyooPzpbXj1dfD1ccyouY2hlY2tlZC4pL2ksb2E9L14kfFwvKD86amF2YXxlY21hKXNjcmlwdC9pLHBhPS9edHJ1ZVwvKC4qKS8scWE9L15ccyo8ISg/OlxbQ0RBVEFcW3wtLSl8KD86XF1cXXwtLSk+XHMqJC9nLHJhPXtvcHRpb246WzEsIjxzZWxlY3QgbXVsdGlwbGU9J211bHRpcGxlJz4iLCI8L3NlbGVjdD4iXSxsZWdlbmQ6WzEsIjxmaWVsZHNldD4iLCI8L2ZpZWxkc2V0PiJdLGFyZWE6WzEsIjxtYXA+IiwiPC9tYXA+Il0scGFyYW06WzEsIjxvYmplY3Q+IiwiPC9vYmplY3Q+Il0sdGhlYWQ6WzEsIjx0YWJsZT4iLCI8L3RhYmxlPiJdLHRyOlsyLCI8dGFibGU+PHRib2R5PiIsIjwvdGJvZHk+PC90YWJsZT4iXSxjb2w6WzIsIjx0YWJsZT48dGJvZHk+PC90Ym9keT48Y29sZ3JvdXA+IiwiPC9jb2xncm91cD48L3RhYmxlPiJdLHRkOlszLCI8dGFibGU+PHRib2R5Pjx0cj4iLCI8L3RyPjwvdGJvZHk+PC90YWJsZT4iXSxfZGVmYXVsdDprLmh0bWxTZXJpYWxpemU/WzAsIiIsIiJdOlsxLCJYPGRpdj4iLCI8L2Rpdj4iXX0sc2E9ZGEoeSksdGE9c2EuYXBwZW5kQ2hpbGQoeS5jcmVhdGVFbGVtZW50KCJkaXYiKSk7cmEub3B0Z3JvdXA9cmEub3B0aW9uLHJhLnRib2R5PXJhLnRmb290PXJhLmNvbGdyb3VwPXJhLmNhcHRpb249cmEudGhlYWQscmEudGg9cmEudGQ7ZnVuY3Rpb24gdWEoYSxiKXt2YXIgYyxkLGU9MCxmPXR5cGVvZiBhLmdldEVsZW1lbnRzQnlUYWdOYW1lIT09Sz9hLmdldEVsZW1lbnRzQnlUYWdOYW1lKGJ8fCIqIik6dHlwZW9mIGEucXVlcnlTZWxlY3RvckFsbCE9PUs/YS5xdWVyeVNlbGVjdG9yQWxsKGJ8fCIqIik6dm9pZCAwO2lmKCFmKWZvcihmPVtdLGM9YS5jaGlsZE5vZGVzfHxhO251bGwhPShkPWNbZV0pO2UrKykhYnx8bS5ub2RlTmFtZShkLGIpP2YucHVzaChkKTptLm1lcmdlKGYsdWEoZCxiKSk7cmV0dXJuIHZvaWQgMD09PWJ8fGImJm0ubm9kZU5hbWUoYSxiKT9tLm1lcmdlKFthXSxmKTpmfWZ1bmN0aW9uIHZhKGEpe1cudGVzdChhLnR5cGUpJiYoYS5kZWZhdWx0Q2hlY2tlZD1hLmNoZWNrZWQpfWZ1bmN0aW9uIHdhKGEsYil7cmV0dXJuIG0ubm9kZU5hbWUoYSwidGFibGUiKSYmbS5ub2RlTmFtZSgxMSE9PWIubm9kZVR5cGU/YjpiLmZpcnN0Q2hpbGQsInRyIik/YS5nZXRFbGVtZW50c0J5VGFnTmFtZSgidGJvZHkiKVswXXx8YS5hcHBlbmRDaGlsZChhLm93bmVyRG9jdW1lbnQuY3JlYXRlRWxlbWVudCgidGJvZHkiKSk6YX1mdW5jdGlvbiB4YShhKXtyZXR1cm4gYS50eXBlPShudWxsIT09bS5maW5kLmF0dHIoYSwidHlwZSIpKSsiLyIrYS50eXBlLGF9ZnVuY3Rpb24geWEoYSl7dmFyIGI9cGEuZXhlYyhhLnR5cGUpO3JldHVybiBiP2EudHlwZT1iWzFdOmEucmVtb3ZlQXR0cmlidXRlKCJ0eXBlIiksYX1mdW5jdGlvbiB6YShhLGIpe2Zvcih2YXIgYyxkPTA7bnVsbCE9KGM9YVtkXSk7ZCsrKW0uX2RhdGEoYywiZ2xvYmFsRXZhbCIsIWJ8fG0uX2RhdGEoYltkXSwiZ2xvYmFsRXZhbCIpKX1mdW5jdGlvbiBBYShhLGIpe2lmKDE9PT1iLm5vZGVUeXBlJiZtLmhhc0RhdGEoYSkpe3ZhciBjLGQsZSxmPW0uX2RhdGEoYSksZz1tLl9kYXRhKGIsZiksaD1mLmV2ZW50cztpZihoKXtkZWxldGUgZy5oYW5kbGUsZy5ldmVudHM9e307Zm9yKGMgaW4gaClmb3IoZD0wLGU9aFtjXS5sZW5ndGg7ZT5kO2QrKyltLmV2ZW50LmFkZChiLGMsaFtjXVtkXSl9Zy5kYXRhJiYoZy5kYXRhPW0uZXh0ZW5kKHt9LGcuZGF0YSkpfX1mdW5jdGlvbiBCYShhLGIpe3ZhciBjLGQsZTtpZigxPT09Yi5ub2RlVHlwZSl7aWYoYz1iLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCksIWsubm9DbG9uZUV2ZW50JiZiW20uZXhwYW5kb10pe2U9bS5fZGF0YShiKTtmb3IoZCBpbiBlLmV2ZW50cyltLnJlbW92ZUV2ZW50KGIsZCxlLmhhbmRsZSk7Yi5yZW1vdmVBdHRyaWJ1dGUobS5leHBhbmRvKX0ic2NyaXB0Ij09PWMmJmIudGV4dCE9PWEudGV4dD8oeGEoYikudGV4dD1hLnRleHQseWEoYikpOiJvYmplY3QiPT09Yz8oYi5wYXJlbnROb2RlJiYoYi5vdXRlckhUTUw9YS5vdXRlckhUTUwpLGsuaHRtbDVDbG9uZSYmYS5pbm5lckhUTUwmJiFtLnRyaW0oYi5pbm5lckhUTUwpJiYoYi5pbm5lckhUTUw9YS5pbm5lckhUTUwpKToiaW5wdXQiPT09YyYmVy50ZXN0KGEudHlwZSk/KGIuZGVmYXVsdENoZWNrZWQ9Yi5jaGVja2VkPWEuY2hlY2tlZCxiLnZhbHVlIT09YS52YWx1ZSYmKGIudmFsdWU9YS52YWx1ZSkpOiJvcHRpb24iPT09Yz9iLmRlZmF1bHRTZWxlY3RlZD1iLnNlbGVjdGVkPWEuZGVmYXVsdFNlbGVjdGVkOigiaW5wdXQiPT09Y3x8InRleHRhcmVhIj09PWMpJiYoYi5kZWZhdWx0VmFsdWU9YS5kZWZhdWx0VmFsdWUpfX1tLmV4dGVuZCh7Y2xvbmU6ZnVuY3Rpb24oYSxiLGMpe3ZhciBkLGUsZixnLGgsaT1tLmNvbnRhaW5zKGEub3duZXJEb2N1bWVudCxhKTtpZihrLmh0bWw1Q2xvbmV8fG0uaXNYTUxEb2MoYSl8fCFnYS50ZXN0KCI8IithLm5vZGVOYW1lKyI+Iik/Zj1hLmNsb25lTm9kZSghMCk6KHRhLmlubmVySFRNTD1hLm91dGVySFRNTCx0YS5yZW1vdmVDaGlsZChmPXRhLmZpcnN0Q2hpbGQpKSwhKGsubm9DbG9uZUV2ZW50JiZrLm5vQ2xvbmVDaGVja2VkfHwxIT09YS5ub2RlVHlwZSYmMTEhPT1hLm5vZGVUeXBlfHxtLmlzWE1MRG9jKGEpKSlmb3IoZD11YShmKSxoPXVhKGEpLGc9MDtudWxsIT0oZT1oW2ddKTsrK2cpZFtnXSYmQmEoZSxkW2ddKTtpZihiKWlmKGMpZm9yKGg9aHx8dWEoYSksZD1kfHx1YShmKSxnPTA7bnVsbCE9KGU9aFtnXSk7ZysrKUFhKGUsZFtnXSk7ZWxzZSBBYShhLGYpO3JldHVybiBkPXVhKGYsInNjcmlwdCIpLGQubGVuZ3RoPjAmJnphKGQsIWkmJnVhKGEsInNjcmlwdCIpKSxkPWg9ZT1udWxsLGZ9LGJ1aWxkRnJhZ21lbnQ6ZnVuY3Rpb24oYSxiLGMsZCl7Zm9yKHZhciBlLGYsZyxoLGksaixsLG49YS5sZW5ndGgsbz1kYShiKSxwPVtdLHE9MDtuPnE7cSsrKWlmKGY9YVtxXSxmfHwwPT09ZilpZigib2JqZWN0Ij09PW0udHlwZShmKSltLm1lcmdlKHAsZi5ub2RlVHlwZT9bZl06Zik7ZWxzZSBpZihsYS50ZXN0KGYpKXtoPWh8fG8uYXBwZW5kQ2hpbGQoYi5jcmVhdGVFbGVtZW50KCJkaXYiKSksaT0oamEuZXhlYyhmKXx8WyIiLCIiXSlbMV0udG9Mb3dlckNhc2UoKSxsPXJhW2ldfHxyYS5fZGVmYXVsdCxoLmlubmVySFRNTD1sWzFdK2YucmVwbGFjZShpYSwiPCQxPjwvJDI+IikrbFsyXSxlPWxbMF07d2hpbGUoZS0tKWg9aC5sYXN0Q2hpbGQ7aWYoIWsubGVhZGluZ1doaXRlc3BhY2UmJmhhLnRlc3QoZikmJnAucHVzaChiLmNyZWF0ZVRleHROb2RlKGhhLmV4ZWMoZilbMF0pKSwhay50Ym9keSl7Zj0idGFibGUiIT09aXx8a2EudGVzdChmKT8iPHRhYmxlPiIhPT1sWzFdfHxrYS50ZXN0KGYpPzA6aDpoLmZpcnN0Q2hpbGQsZT1mJiZmLmNoaWxkTm9kZXMubGVuZ3RoO3doaWxlKGUtLSltLm5vZGVOYW1lKGo9Zi5jaGlsZE5vZGVzW2VdLCJ0Ym9keSIpJiYhai5jaGlsZE5vZGVzLmxlbmd0aCYmZi5yZW1vdmVDaGlsZChqKX1tLm1lcmdlKHAsaC5jaGlsZE5vZGVzKSxoLnRleHRDb250ZW50PSIiO3doaWxlKGguZmlyc3RDaGlsZCloLnJlbW92ZUNoaWxkKGguZmlyc3RDaGlsZCk7aD1vLmxhc3RDaGlsZH1lbHNlIHAucHVzaChiLmNyZWF0ZVRleHROb2RlKGYpKTtoJiZvLnJlbW92ZUNoaWxkKGgpLGsuYXBwZW5kQ2hlY2tlZHx8bS5ncmVwKHVhKHAsImlucHV0IiksdmEpLHE9MDt3aGlsZShmPXBbcSsrXSlpZigoIWR8fC0xPT09bS5pbkFycmF5KGYsZCkpJiYoZz1tLmNvbnRhaW5zKGYub3duZXJEb2N1bWVudCxmKSxoPXVhKG8uYXBwZW5kQ2hpbGQoZiksInNjcmlwdCIpLGcmJnphKGgpLGMpKXtlPTA7d2hpbGUoZj1oW2UrK10pb2EudGVzdChmLnR5cGV8fCIiKSYmYy5wdXNoKGYpfXJldHVybiBoPW51bGwsb30sY2xlYW5EYXRhOmZ1bmN0aW9uKGEsYil7Zm9yKHZhciBkLGUsZixnLGg9MCxpPW0uZXhwYW5kbyxqPW0uY2FjaGUsbD1rLmRlbGV0ZUV4cGFuZG8sbj1tLmV2ZW50LnNwZWNpYWw7bnVsbCE9KGQ9YVtoXSk7aCsrKWlmKChifHxtLmFjY2VwdERhdGEoZCkpJiYoZj1kW2ldLGc9ZiYmaltmXSkpe2lmKGcuZXZlbnRzKWZvcihlIGluIGcuZXZlbnRzKW5bZV0/bS5ldmVudC5yZW1vdmUoZCxlKTptLnJlbW92ZUV2ZW50KGQsZSxnLmhhbmRsZSk7altmXSYmKGRlbGV0ZSBqW2ZdLGw/ZGVsZXRlIGRbaV06dHlwZW9mIGQucmVtb3ZlQXR0cmlidXRlIT09Sz9kLnJlbW92ZUF0dHJpYnV0ZShpKTpkW2ldPW51bGwsYy5wdXNoKGYpKX19fSksbS5mbi5leHRlbmQoe3RleHQ6ZnVuY3Rpb24oYSl7cmV0dXJuIFYodGhpcyxmdW5jdGlvbihhKXtyZXR1cm4gdm9pZCAwPT09YT9tLnRleHQodGhpcyk6dGhpcy5lbXB0eSgpLmFwcGVuZCgodGhpc1swXSYmdGhpc1swXS5vd25lckRvY3VtZW50fHx5KS5jcmVhdGVUZXh0Tm9kZShhKSl9LG51bGwsYSxhcmd1bWVudHMubGVuZ3RoKX0sYXBwZW5kOmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuZG9tTWFuaXAoYXJndW1lbnRzLGZ1bmN0aW9uKGEpe2lmKDE9PT10aGlzLm5vZGVUeXBlfHwxMT09PXRoaXMubm9kZVR5cGV8fDk9PT10aGlzLm5vZGVUeXBlKXt2YXIgYj13YSh0aGlzLGEpO2IuYXBwZW5kQ2hpbGQoYSl9fSl9LHByZXBlbmQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5kb21NYW5pcChhcmd1bWVudHMsZnVuY3Rpb24oYSl7aWYoMT09PXRoaXMubm9kZVR5cGV8fDExPT09dGhpcy5ub2RlVHlwZXx8OT09PXRoaXMubm9kZVR5cGUpe3ZhciBiPXdhKHRoaXMsYSk7Yi5pbnNlcnRCZWZvcmUoYSxiLmZpcnN0Q2hpbGQpfX0pfSxiZWZvcmU6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5kb21NYW5pcChhcmd1bWVudHMsZnVuY3Rpb24oYSl7dGhpcy5wYXJlbnROb2RlJiZ0aGlzLnBhcmVudE5vZGUuaW5zZXJ0QmVmb3JlKGEsdGhpcyl9KX0sYWZ0ZXI6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5kb21NYW5pcChhcmd1bWVudHMsZnVuY3Rpb24oYSl7dGhpcy5wYXJlbnROb2RlJiZ0aGlzLnBhcmVudE5vZGUuaW5zZXJ0QmVmb3JlKGEsdGhpcy5uZXh0U2libGluZyl9KX0scmVtb3ZlOmZ1bmN0aW9uKGEsYil7Zm9yKHZhciBjLGQ9YT9tLmZpbHRlcihhLHRoaXMpOnRoaXMsZT0wO251bGwhPShjPWRbZV0pO2UrKylifHwxIT09Yy5ub2RlVHlwZXx8bS5jbGVhbkRhdGEodWEoYykpLGMucGFyZW50Tm9kZSYmKGImJm0uY29udGFpbnMoYy5vd25lckRvY3VtZW50LGMpJiZ6YSh1YShjLCJzY3JpcHQiKSksYy5wYXJlbnROb2RlLnJlbW92ZUNoaWxkKGMpKTtyZXR1cm4gdGhpc30sZW1wdHk6ZnVuY3Rpb24oKXtmb3IodmFyIGEsYj0wO251bGwhPShhPXRoaXNbYl0pO2IrKyl7MT09PWEubm9kZVR5cGUmJm0uY2xlYW5EYXRhKHVhKGEsITEpKTt3aGlsZShhLmZpcnN0Q2hpbGQpYS5yZW1vdmVDaGlsZChhLmZpcnN0Q2hpbGQpO2Eub3B0aW9ucyYmbS5ub2RlTmFtZShhLCJzZWxlY3QiKSYmKGEub3B0aW9ucy5sZW5ndGg9MCl9cmV0dXJuIHRoaXN9LGNsb25lOmZ1bmN0aW9uKGEsYil7cmV0dXJuIGE9bnVsbD09YT8hMTphLGI9bnVsbD09Yj9hOmIsdGhpcy5tYXAoZnVuY3Rpb24oKXtyZXR1cm4gbS5jbG9uZSh0aGlzLGEsYil9KX0saHRtbDpmdW5jdGlvbihhKXtyZXR1cm4gVih0aGlzLGZ1bmN0aW9uKGEpe3ZhciBiPXRoaXNbMF18fHt9LGM9MCxkPXRoaXMubGVuZ3RoO2lmKHZvaWQgMD09PWEpcmV0dXJuIDE9PT1iLm5vZGVUeXBlP2IuaW5uZXJIVE1MLnJlcGxhY2UoZmEsIiIpOnZvaWQgMDtpZighKCJzdHJpbmciIT10eXBlb2YgYXx8bWEudGVzdChhKXx8IWsuaHRtbFNlcmlhbGl6ZSYmZ2EudGVzdChhKXx8IWsubGVhZGluZ1doaXRlc3BhY2UmJmhhLnRlc3QoYSl8fHJhWyhqYS5leGVjKGEpfHxbIiIsIiJdKVsxXS50b0xvd2VyQ2FzZSgpXSkpe2E9YS5yZXBsYWNlKGlhLCI8JDE+PC8kMj4iKTt0cnl7Zm9yKDtkPmM7YysrKWI9dGhpc1tjXXx8e30sMT09PWIubm9kZVR5cGUmJihtLmNsZWFuRGF0YSh1YShiLCExKSksYi5pbm5lckhUTUw9YSk7Yj0wfWNhdGNoKGUpe319YiYmdGhpcy5lbXB0eSgpLmFwcGVuZChhKX0sbnVsbCxhLGFyZ3VtZW50cy5sZW5ndGgpfSxyZXBsYWNlV2l0aDpmdW5jdGlvbigpe3ZhciBhPWFyZ3VtZW50c1swXTtyZXR1cm4gdGhpcy5kb21NYW5pcChhcmd1bWVudHMsZnVuY3Rpb24oYil7YT10aGlzLnBhcmVudE5vZGUsbS5jbGVhbkRhdGEodWEodGhpcykpLGEmJmEucmVwbGFjZUNoaWxkKGIsdGhpcyl9KSxhJiYoYS5sZW5ndGh8fGEubm9kZVR5cGUpP3RoaXM6dGhpcy5yZW1vdmUoKX0sZGV0YWNoOmZ1bmN0aW9uKGEpe3JldHVybiB0aGlzLnJlbW92ZShhLCEwKX0sZG9tTWFuaXA6ZnVuY3Rpb24oYSxiKXthPWUuYXBwbHkoW10sYSk7dmFyIGMsZCxmLGcsaCxpLGo9MCxsPXRoaXMubGVuZ3RoLG49dGhpcyxvPWwtMSxwPWFbMF0scT1tLmlzRnVuY3Rpb24ocCk7aWYocXx8bD4xJiYic3RyaW5nIj09dHlwZW9mIHAmJiFrLmNoZWNrQ2xvbmUmJm5hLnRlc3QocCkpcmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbihjKXt2YXIgZD1uLmVxKGMpO3EmJihhWzBdPXAuY2FsbCh0aGlzLGMsZC5odG1sKCkpKSxkLmRvbU1hbmlwKGEsYil9KTtpZihsJiYoaT1tLmJ1aWxkRnJhZ21lbnQoYSx0aGlzWzBdLm93bmVyRG9jdW1lbnQsITEsdGhpcyksYz1pLmZpcnN0Q2hpbGQsMT09PWkuY2hpbGROb2Rlcy5sZW5ndGgmJihpPWMpLGMpKXtmb3IoZz1tLm1hcCh1YShpLCJzY3JpcHQiKSx4YSksZj1nLmxlbmd0aDtsPmo7aisrKWQ9aSxqIT09byYmKGQ9bS5jbG9uZShkLCEwLCEwKSxmJiZtLm1lcmdlKGcsdWEoZCwic2NyaXB0IikpKSxiLmNhbGwodGhpc1tqXSxkLGopO2lmKGYpZm9yKGg9Z1tnLmxlbmd0aC0xXS5vd25lckRvY3VtZW50LG0ubWFwKGcseWEpLGo9MDtmPmo7aisrKWQ9Z1tqXSxvYS50ZXN0KGQudHlwZXx8IiIpJiYhbS5fZGF0YShkLCJnbG9iYWxFdmFsIikmJm0uY29udGFpbnMoaCxkKSYmKGQuc3JjP20uX2V2YWxVcmwmJm0uX2V2YWxVcmwoZC5zcmMpOm0uZ2xvYmFsRXZhbCgoZC50ZXh0fHxkLnRleHRDb250ZW50fHxkLmlubmVySFRNTHx8IiIpLnJlcGxhY2UocWEsIiIpKSk7aT1jPW51bGx9cmV0dXJuIHRoaXN9fSksbS5lYWNoKHthcHBlbmRUbzoiYXBwZW5kIixwcmVwZW5kVG86InByZXBlbmQiLGluc2VydEJlZm9yZToiYmVmb3JlIixpbnNlcnRBZnRlcjoiYWZ0ZXIiLHJlcGxhY2VBbGw6InJlcGxhY2VXaXRoIn0sZnVuY3Rpb24oYSxiKXttLmZuW2FdPWZ1bmN0aW9uKGEpe2Zvcih2YXIgYyxkPTAsZT1bXSxnPW0oYSksaD1nLmxlbmd0aC0xO2g+PWQ7ZCsrKWM9ZD09PWg/dGhpczp0aGlzLmNsb25lKCEwKSxtKGdbZF0pW2JdKGMpLGYuYXBwbHkoZSxjLmdldCgpKTtyZXR1cm4gdGhpcy5wdXNoU3RhY2soZSl9fSk7dmFyIENhLERhPXt9O2Z1bmN0aW9uIEVhKGIsYyl7dmFyIGQsZT1tKGMuY3JlYXRlRWxlbWVudChiKSkuYXBwZW5kVG8oYy5ib2R5KSxmPWEuZ2V0RGVmYXVsdENvbXB1dGVkU3R5bGUmJihkPWEuZ2V0RGVmYXVsdENvbXB1dGVkU3R5bGUoZVswXSkpP2QuZGlzcGxheTptLmNzcyhlWzBdLCJkaXNwbGF5Iik7cmV0dXJuIGUuZGV0YWNoKCksZn1mdW5jdGlvbiBGYShhKXt2YXIgYj15LGM9RGFbYV07cmV0dXJuIGN8fChjPUVhKGEsYiksIm5vbmUiIT09YyYmY3x8KENhPShDYXx8bSgiPGlmcmFtZSBmcmFtZWJvcmRlcj0nMCcgd2lkdGg9JzAnIGhlaWdodD0nMCcvPiIpKS5hcHBlbmRUbyhiLmRvY3VtZW50RWxlbWVudCksYj0oQ2FbMF0uY29udGVudFdpbmRvd3x8Q2FbMF0uY29udGVudERvY3VtZW50KS5kb2N1bWVudCxiLndyaXRlKCksYi5jbG9zZSgpLGM9RWEoYSxiKSxDYS5kZXRhY2goKSksRGFbYV09YyksY30hZnVuY3Rpb24oKXt2YXIgYTtrLnNocmlua1dyYXBCbG9ja3M9ZnVuY3Rpb24oKXtpZihudWxsIT1hKXJldHVybiBhO2E9ITE7dmFyIGIsYyxkO3JldHVybiBjPXkuZ2V0RWxlbWVudHNCeVRhZ05hbWUoImJvZHkiKVswXSxjJiZjLnN0eWxlPyhiPXkuY3JlYXRlRWxlbWVudCgiZGl2IiksZD15LmNyZWF0ZUVsZW1lbnQoImRpdiIpLGQuc3R5bGUuY3NzVGV4dD0icG9zaXRpb246YWJzb2x1dGU7Ym9yZGVyOjA7d2lkdGg6MDtoZWlnaHQ6MDt0b3A6MDtsZWZ0Oi05OTk5cHgiLGMuYXBwZW5kQ2hpbGQoZCkuYXBwZW5kQ2hpbGQoYiksdHlwZW9mIGIuc3R5bGUuem9vbSE9PUsmJihiLnN0eWxlLmNzc1RleHQ9Ii13ZWJraXQtYm94LXNpemluZzpjb250ZW50LWJveDstbW96LWJveC1zaXppbmc6Y29udGVudC1ib3g7Ym94LXNpemluZzpjb250ZW50LWJveDtkaXNwbGF5OmJsb2NrO21hcmdpbjowO2JvcmRlcjowO3BhZGRpbmc6MXB4O3dpZHRoOjFweDt6b29tOjEiLGIuYXBwZW5kQ2hpbGQoeS5jcmVhdGVFbGVtZW50KCJkaXYiKSkuc3R5bGUud2lkdGg9IjVweCIsYT0zIT09Yi5vZmZzZXRXaWR0aCksYy5yZW1vdmVDaGlsZChkKSxhKTp2b2lkIDB9fSgpO3ZhciBHYT0vXm1hcmdpbi8sSGE9bmV3IFJlZ0V4cCgiXigiK1MrIikoPyFweClbYS16JV0rJCIsImkiKSxJYSxKYSxLYT0vXih0b3B8cmlnaHR8Ym90dG9tfGxlZnQpJC87YS5nZXRDb21wdXRlZFN0eWxlPyhJYT1mdW5jdGlvbihiKXtyZXR1cm4gYi5vd25lckRvY3VtZW50LmRlZmF1bHRWaWV3Lm9wZW5lcj9iLm93bmVyRG9jdW1lbnQuZGVmYXVsdFZpZXcuZ2V0Q29tcHV0ZWRTdHlsZShiLG51bGwpOmEuZ2V0Q29tcHV0ZWRTdHlsZShiLG51bGwpfSxKYT1mdW5jdGlvbihhLGIsYyl7dmFyIGQsZSxmLGcsaD1hLnN0eWxlO3JldHVybiBjPWN8fElhKGEpLGc9Yz9jLmdldFByb3BlcnR5VmFsdWUoYil8fGNbYl06dm9pZCAwLGMmJigiIiE9PWd8fG0uY29udGFpbnMoYS5vd25lckRvY3VtZW50LGEpfHwoZz1tLnN0eWxlKGEsYikpLEhhLnRlc3QoZykmJkdhLnRlc3QoYikmJihkPWgud2lkdGgsZT1oLm1pbldpZHRoLGY9aC5tYXhXaWR0aCxoLm1pbldpZHRoPWgubWF4V2lkdGg9aC53aWR0aD1nLGc9Yy53aWR0aCxoLndpZHRoPWQsaC5taW5XaWR0aD1lLGgubWF4V2lkdGg9ZikpLHZvaWQgMD09PWc/ZzpnKyIifSk6eS5kb2N1bWVudEVsZW1lbnQuY3VycmVudFN0eWxlJiYoSWE9ZnVuY3Rpb24oYSl7cmV0dXJuIGEuY3VycmVudFN0eWxlfSxKYT1mdW5jdGlvbihhLGIsYyl7dmFyIGQsZSxmLGcsaD1hLnN0eWxlO3JldHVybiBjPWN8fElhKGEpLGc9Yz9jW2JdOnZvaWQgMCxudWxsPT1nJiZoJiZoW2JdJiYoZz1oW2JdKSxIYS50ZXN0KGcpJiYhS2EudGVzdChiKSYmKGQ9aC5sZWZ0LGU9YS5ydW50aW1lU3R5bGUsZj1lJiZlLmxlZnQsZiYmKGUubGVmdD1hLmN1cnJlbnRTdHlsZS5sZWZ0KSxoLmxlZnQ9ImZvbnRTaXplIj09PWI/IjFlbSI6ZyxnPWgucGl4ZWxMZWZ0KyJweCIsaC5sZWZ0PWQsZiYmKGUubGVmdD1mKSksdm9pZCAwPT09Zz9nOmcrIiJ8fCJhdXRvIn0pO2Z1bmN0aW9uIExhKGEsYil7cmV0dXJue2dldDpmdW5jdGlvbigpe3ZhciBjPWEoKTtpZihudWxsIT1jKXJldHVybiBjP3ZvaWQgZGVsZXRlIHRoaXMuZ2V0Oih0aGlzLmdldD1iKS5hcHBseSh0aGlzLGFyZ3VtZW50cyl9fX0hZnVuY3Rpb24oKXt2YXIgYixjLGQsZSxmLGcsaDtpZihiPXkuY3JlYXRlRWxlbWVudCgiZGl2IiksYi5pbm5lckhUTUw9IiAgPGxpbmsvPjx0YWJsZT48L3RhYmxlPjxhIGhyZWY9Jy9hJz5hPC9hPjxpbnB1dCB0eXBlPSdjaGVja2JveCcvPiIsZD1iLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJhIilbMF0sYz1kJiZkLnN0eWxlKXtjLmNzc1RleHQ9ImZsb2F0OmxlZnQ7b3BhY2l0eTouNSIsay5vcGFjaXR5PSIwLjUiPT09Yy5vcGFjaXR5LGsuY3NzRmxvYXQ9ISFjLmNzc0Zsb2F0LGIuc3R5bGUuYmFja2dyb3VuZENsaXA9ImNvbnRlbnQtYm94IixiLmNsb25lTm9kZSghMCkuc3R5bGUuYmFja2dyb3VuZENsaXA9IiIsay5jbGVhckNsb25lU3R5bGU9ImNvbnRlbnQtYm94Ij09PWIuc3R5bGUuYmFja2dyb3VuZENsaXAsay5ib3hTaXppbmc9IiI9PT1jLmJveFNpemluZ3x8IiI9PT1jLk1vekJveFNpemluZ3x8IiI9PT1jLldlYmtpdEJveFNpemluZyxtLmV4dGVuZChrLHtyZWxpYWJsZUhpZGRlbk9mZnNldHM6ZnVuY3Rpb24oKXtyZXR1cm4gbnVsbD09ZyYmaSgpLGd9LGJveFNpemluZ1JlbGlhYmxlOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGw9PWYmJmkoKSxmfSxwaXhlbFBvc2l0aW9uOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGw9PWUmJmkoKSxlfSxyZWxpYWJsZU1hcmdpblJpZ2h0OmZ1bmN0aW9uKCl7cmV0dXJuIG51bGw9PWgmJmkoKSxofX0pO2Z1bmN0aW9uIGkoKXt2YXIgYixjLGQsaTtjPXkuZ2V0RWxlbWVudHNCeVRhZ05hbWUoImJvZHkiKVswXSxjJiZjLnN0eWxlJiYoYj15LmNyZWF0ZUVsZW1lbnQoImRpdiIpLGQ9eS5jcmVhdGVFbGVtZW50KCJkaXYiKSxkLnN0eWxlLmNzc1RleHQ9InBvc2l0aW9uOmFic29sdXRlO2JvcmRlcjowO3dpZHRoOjA7aGVpZ2h0OjA7dG9wOjA7bGVmdDotOTk5OXB4IixjLmFwcGVuZENoaWxkKGQpLmFwcGVuZENoaWxkKGIpLGIuc3R5bGUuY3NzVGV4dD0iLXdlYmtpdC1ib3gtc2l6aW5nOmJvcmRlci1ib3g7LW1vei1ib3gtc2l6aW5nOmJvcmRlci1ib3g7Ym94LXNpemluZzpib3JkZXItYm94O2Rpc3BsYXk6YmxvY2s7bWFyZ2luLXRvcDoxJTt0b3A6MSU7Ym9yZGVyOjFweDtwYWRkaW5nOjFweDt3aWR0aDo0cHg7cG9zaXRpb246YWJzb2x1dGUiLGU9Zj0hMSxoPSEwLGEuZ2V0Q29tcHV0ZWRTdHlsZSYmKGU9IjElIiE9PShhLmdldENvbXB1dGVkU3R5bGUoYixudWxsKXx8e30pLnRvcCxmPSI0cHgiPT09KGEuZ2V0Q29tcHV0ZWRTdHlsZShiLG51bGwpfHx7d2lkdGg6IjRweCJ9KS53aWR0aCxpPWIuYXBwZW5kQ2hpbGQoeS5jcmVhdGVFbGVtZW50KCJkaXYiKSksaS5zdHlsZS5jc3NUZXh0PWIuc3R5bGUuY3NzVGV4dD0iLXdlYmtpdC1ib3gtc2l6aW5nOmNvbnRlbnQtYm94Oy1tb3otYm94LXNpemluZzpjb250ZW50LWJveDtib3gtc2l6aW5nOmNvbnRlbnQtYm94O2Rpc3BsYXk6YmxvY2s7bWFyZ2luOjA7Ym9yZGVyOjA7cGFkZGluZzowIixpLnN0eWxlLm1hcmdpblJpZ2h0PWkuc3R5bGUud2lkdGg9IjAiLGIuc3R5bGUud2lkdGg9IjFweCIsaD0hcGFyc2VGbG9hdCgoYS5nZXRDb21wdXRlZFN0eWxlKGksbnVsbCl8fHt9KS5tYXJnaW5SaWdodCksYi5yZW1vdmVDaGlsZChpKSksYi5pbm5lckhUTUw9Ijx0YWJsZT48dHI+PHRkPjwvdGQ+PHRkPnQ8L3RkPjwvdHI+PC90YWJsZT4iLGk9Yi5nZXRFbGVtZW50c0J5VGFnTmFtZSgidGQiKSxpWzBdLnN0eWxlLmNzc1RleHQ9Im1hcmdpbjowO2JvcmRlcjowO3BhZGRpbmc6MDtkaXNwbGF5Om5vbmUiLGc9MD09PWlbMF0ub2Zmc2V0SGVpZ2h0LGcmJihpWzBdLnN0eWxlLmRpc3BsYXk9IiIsaVsxXS5zdHlsZS5kaXNwbGF5PSJub25lIixnPTA9PT1pWzBdLm9mZnNldEhlaWdodCksYy5yZW1vdmVDaGlsZChkKSl9fX0oKSxtLnN3YXA9ZnVuY3Rpb24oYSxiLGMsZCl7dmFyIGUsZixnPXt9O2ZvcihmIGluIGIpZ1tmXT1hLnN0eWxlW2ZdLGEuc3R5bGVbZl09YltmXTtlPWMuYXBwbHkoYSxkfHxbXSk7Zm9yKGYgaW4gYilhLnN0eWxlW2ZdPWdbZl07cmV0dXJuIGV9O3ZhciBNYT0vYWxwaGFcKFteKV0qXCkvaSxOYT0vb3BhY2l0eVxzKj1ccyooW14pXSopLyxPYT0vXihub25lfHRhYmxlKD8hLWNbZWFdKS4rKS8sUGE9bmV3IFJlZ0V4cCgiXigiK1MrIikoLiopJCIsImkiKSxRYT1uZXcgUmVnRXhwKCJeKFsrLV0pPSgiK1MrIikiLCJpIiksUmE9e3Bvc2l0aW9uOiJhYnNvbHV0ZSIsdmlzaWJpbGl0eToiaGlkZGVuIixkaXNwbGF5OiJibG9jayJ9LFNhPXtsZXR0ZXJTcGFjaW5nOiIwIixmb250V2VpZ2h0OiI0MDAifSxUYT1bIldlYmtpdCIsIk8iLCJNb3oiLCJtcyJdO2Z1bmN0aW9uIFVhKGEsYil7aWYoYiBpbiBhKXJldHVybiBiO3ZhciBjPWIuY2hhckF0KDApLnRvVXBwZXJDYXNlKCkrYi5zbGljZSgxKSxkPWIsZT1UYS5sZW5ndGg7d2hpbGUoZS0tKWlmKGI9VGFbZV0rYyxiIGluIGEpcmV0dXJuIGI7cmV0dXJuIGR9ZnVuY3Rpb24gVmEoYSxiKXtmb3IodmFyIGMsZCxlLGY9W10sZz0wLGg9YS5sZW5ndGg7aD5nO2crKylkPWFbZ10sZC5zdHlsZSYmKGZbZ109bS5fZGF0YShkLCJvbGRkaXNwbGF5IiksYz1kLnN0eWxlLmRpc3BsYXksYj8oZltnXXx8Im5vbmUiIT09Y3x8KGQuc3R5bGUuZGlzcGxheT0iIiksIiI9PT1kLnN0eWxlLmRpc3BsYXkmJlUoZCkmJihmW2ddPW0uX2RhdGEoZCwib2xkZGlzcGxheSIsRmEoZC5ub2RlTmFtZSkpKSk6KGU9VShkKSwoYyYmIm5vbmUiIT09Y3x8IWUpJiZtLl9kYXRhKGQsIm9sZGRpc3BsYXkiLGU/YzptLmNzcyhkLCJkaXNwbGF5IikpKSk7Zm9yKGc9MDtoPmc7ZysrKWQ9YVtnXSxkLnN0eWxlJiYoYiYmIm5vbmUiIT09ZC5zdHlsZS5kaXNwbGF5JiYiIiE9PWQuc3R5bGUuZGlzcGxheXx8KGQuc3R5bGUuZGlzcGxheT1iP2ZbZ118fCIiOiJub25lIikpO3JldHVybiBhfWZ1bmN0aW9uIFdhKGEsYixjKXt2YXIgZD1QYS5leGVjKGIpO3JldHVybiBkP01hdGgubWF4KDAsZFsxXS0oY3x8MCkpKyhkWzJdfHwicHgiKTpifWZ1bmN0aW9uIFhhKGEsYixjLGQsZSl7Zm9yKHZhciBmPWM9PT0oZD8iYm9yZGVyIjoiY29udGVudCIpPzQ6IndpZHRoIj09PWI/MTowLGc9MDs0PmY7Zis9MikibWFyZ2luIj09PWMmJihnKz1tLmNzcyhhLGMrVFtmXSwhMCxlKSksZD8oImNvbnRlbnQiPT09YyYmKGctPW0uY3NzKGEsInBhZGRpbmciK1RbZl0sITAsZSkpLCJtYXJnaW4iIT09YyYmKGctPW0uY3NzKGEsImJvcmRlciIrVFtmXSsiV2lkdGgiLCEwLGUpKSk6KGcrPW0uY3NzKGEsInBhZGRpbmciK1RbZl0sITAsZSksInBhZGRpbmciIT09YyYmKGcrPW0uY3NzKGEsImJvcmRlciIrVFtmXSsiV2lkdGgiLCEwLGUpKSk7cmV0dXJuIGd9ZnVuY3Rpb24gWWEoYSxiLGMpe3ZhciBkPSEwLGU9IndpZHRoIj09PWI/YS5vZmZzZXRXaWR0aDphLm9mZnNldEhlaWdodCxmPUlhKGEpLGc9ay5ib3hTaXppbmcmJiJib3JkZXItYm94Ij09PW0uY3NzKGEsImJveFNpemluZyIsITEsZik7aWYoMD49ZXx8bnVsbD09ZSl7aWYoZT1KYShhLGIsZiksKDA+ZXx8bnVsbD09ZSkmJihlPWEuc3R5bGVbYl0pLEhhLnRlc3QoZSkpcmV0dXJuIGU7ZD1nJiYoay5ib3hTaXppbmdSZWxpYWJsZSgpfHxlPT09YS5zdHlsZVtiXSksZT1wYXJzZUZsb2F0KGUpfHwwfXJldHVybiBlK1hhKGEsYixjfHwoZz8iYm9yZGVyIjoiY29udGVudCIpLGQsZikrInB4In1tLmV4dGVuZCh7Y3NzSG9va3M6e29wYWNpdHk6e2dldDpmdW5jdGlvbihhLGIpe2lmKGIpe3ZhciBjPUphKGEsIm9wYWNpdHkiKTtyZXR1cm4iIj09PWM/IjEiOmN9fX19LGNzc051bWJlcjp7Y29sdW1uQ291bnQ6ITAsZmlsbE9wYWNpdHk6ITAsZmxleEdyb3c6ITAsZmxleFNocmluazohMCxmb250V2VpZ2h0OiEwLGxpbmVIZWlnaHQ6ITAsb3BhY2l0eTohMCxvcmRlcjohMCxvcnBoYW5zOiEwLHdpZG93czohMCx6SW5kZXg6ITAsem9vbTohMH0sY3NzUHJvcHM6eyJmbG9hdCI6ay5jc3NGbG9hdD8iY3NzRmxvYXQiOiJzdHlsZUZsb2F0In0sc3R5bGU6ZnVuY3Rpb24oYSxiLGMsZCl7aWYoYSYmMyE9PWEubm9kZVR5cGUmJjghPT1hLm5vZGVUeXBlJiZhLnN0eWxlKXt2YXIgZSxmLGcsaD1tLmNhbWVsQ2FzZShiKSxpPWEuc3R5bGU7aWYoYj1tLmNzc1Byb3BzW2hdfHwobS5jc3NQcm9wc1toXT1VYShpLGgpKSxnPW0uY3NzSG9va3NbYl18fG0uY3NzSG9va3NbaF0sdm9pZCAwPT09YylyZXR1cm4gZyYmImdldCJpbiBnJiZ2b2lkIDAhPT0oZT1nLmdldChhLCExLGQpKT9lOmlbYl07aWYoZj10eXBlb2YgYywic3RyaW5nIj09PWYmJihlPVFhLmV4ZWMoYykpJiYoYz0oZVsxXSsxKSplWzJdK3BhcnNlRmxvYXQobS5jc3MoYSxiKSksZj0ibnVtYmVyIiksbnVsbCE9YyYmYz09PWMmJigibnVtYmVyIiE9PWZ8fG0uY3NzTnVtYmVyW2hdfHwoYys9InB4Iiksay5jbGVhckNsb25lU3R5bGV8fCIiIT09Y3x8MCE9PWIuaW5kZXhPZigiYmFja2dyb3VuZCIpfHwoaVtiXT0iaW5oZXJpdCIpLCEoZyYmInNldCJpbiBnJiZ2b2lkIDA9PT0oYz1nLnNldChhLGMsZCkpKSkpdHJ5e2lbYl09Y31jYXRjaChqKXt9fX0sY3NzOmZ1bmN0aW9uKGEsYixjLGQpe3ZhciBlLGYsZyxoPW0uY2FtZWxDYXNlKGIpO3JldHVybiBiPW0uY3NzUHJvcHNbaF18fChtLmNzc1Byb3BzW2hdPVVhKGEuc3R5bGUsaCkpLGc9bS5jc3NIb29rc1tiXXx8bS5jc3NIb29rc1toXSxnJiYiZ2V0ImluIGcmJihmPWcuZ2V0KGEsITAsYykpLHZvaWQgMD09PWYmJihmPUphKGEsYixkKSksIm5vcm1hbCI9PT1mJiZiIGluIFNhJiYoZj1TYVtiXSksIiI9PT1jfHxjPyhlPXBhcnNlRmxvYXQoZiksYz09PSEwfHxtLmlzTnVtZXJpYyhlKT9lfHwwOmYpOmZ9fSksbS5lYWNoKFsiaGVpZ2h0Iiwid2lkdGgiXSxmdW5jdGlvbihhLGIpe20uY3NzSG9va3NbYl09e2dldDpmdW5jdGlvbihhLGMsZCl7cmV0dXJuIGM/T2EudGVzdChtLmNzcyhhLCJkaXNwbGF5IikpJiYwPT09YS5vZmZzZXRXaWR0aD9tLnN3YXAoYSxSYSxmdW5jdGlvbigpe3JldHVybiBZYShhLGIsZCl9KTpZYShhLGIsZCk6dm9pZCAwfSxzZXQ6ZnVuY3Rpb24oYSxjLGQpe3ZhciBlPWQmJklhKGEpO3JldHVybiBXYShhLGMsZD9YYShhLGIsZCxrLmJveFNpemluZyYmImJvcmRlci1ib3giPT09bS5jc3MoYSwiYm94U2l6aW5nIiwhMSxlKSxlKTowKX19fSksay5vcGFjaXR5fHwobS5jc3NIb29rcy5vcGFjaXR5PXtnZXQ6ZnVuY3Rpb24oYSxiKXtyZXR1cm4gTmEudGVzdCgoYiYmYS5jdXJyZW50U3R5bGU/YS5jdXJyZW50U3R5bGUuZmlsdGVyOmEuc3R5bGUuZmlsdGVyKXx8IiIpPy4wMSpwYXJzZUZsb2F0KFJlZ0V4cC4kMSkrIiI6Yj8iMSI6IiJ9LHNldDpmdW5jdGlvbihhLGIpe3ZhciBjPWEuc3R5bGUsZD1hLmN1cnJlbnRTdHlsZSxlPW0uaXNOdW1lcmljKGIpPyJhbHBoYShvcGFjaXR5PSIrMTAwKmIrIikiOiIiLGY9ZCYmZC5maWx0ZXJ8fGMuZmlsdGVyfHwiIjtjLnpvb209MSwoYj49MXx8IiI9PT1iKSYmIiI9PT1tLnRyaW0oZi5yZXBsYWNlKE1hLCIiKSkmJmMucmVtb3ZlQXR0cmlidXRlJiYoYy5yZW1vdmVBdHRyaWJ1dGUoImZpbHRlciIpLCIiPT09Ynx8ZCYmIWQuZmlsdGVyKXx8KGMuZmlsdGVyPU1hLnRlc3QoZik/Zi5yZXBsYWNlKE1hLGUpOmYrIiAiK2UpfX0pLG0uY3NzSG9va3MubWFyZ2luUmlnaHQ9TGEoay5yZWxpYWJsZU1hcmdpblJpZ2h0LGZ1bmN0aW9uKGEsYil7cmV0dXJuIGI/bS5zd2FwKGEse2Rpc3BsYXk6ImlubGluZS1ibG9jayJ9LEphLFthLCJtYXJnaW5SaWdodCJdKTp2b2lkIDB9KSxtLmVhY2goe21hcmdpbjoiIixwYWRkaW5nOiIiLGJvcmRlcjoiV2lkdGgifSxmdW5jdGlvbihhLGIpe20uY3NzSG9va3NbYStiXT17ZXhwYW5kOmZ1bmN0aW9uKGMpe2Zvcih2YXIgZD0wLGU9e30sZj0ic3RyaW5nIj09dHlwZW9mIGM/Yy5zcGxpdCgiICIpOltjXTs0PmQ7ZCsrKWVbYStUW2RdK2JdPWZbZF18fGZbZC0yXXx8ZlswXTtyZXR1cm4gZX19LEdhLnRlc3QoYSl8fChtLmNzc0hvb2tzW2ErYl0uc2V0PVdhKX0pLG0uZm4uZXh0ZW5kKHtjc3M6ZnVuY3Rpb24oYSxiKXtyZXR1cm4gVih0aGlzLGZ1bmN0aW9uKGEsYixjKXt2YXIgZCxlLGY9e30sZz0wO2lmKG0uaXNBcnJheShiKSl7Zm9yKGQ9SWEoYSksZT1iLmxlbmd0aDtlPmc7ZysrKWZbYltnXV09bS5jc3MoYSxiW2ddLCExLGQpO3JldHVybiBmfXJldHVybiB2b2lkIDAhPT1jP20uc3R5bGUoYSxiLGMpOm0uY3NzKGEsYil9LGEsYixhcmd1bWVudHMubGVuZ3RoPjEpfSxzaG93OmZ1bmN0aW9uKCl7cmV0dXJuIFZhKHRoaXMsITApfSxoaWRlOmZ1bmN0aW9uKCl7cmV0dXJuIFZhKHRoaXMpfSx0b2dnbGU6ZnVuY3Rpb24oYSl7cmV0dXJuImJvb2xlYW4iPT10eXBlb2YgYT9hP3RoaXMuc2hvdygpOnRoaXMuaGlkZSgpOnRoaXMuZWFjaChmdW5jdGlvbigpe1UodGhpcyk/bSh0aGlzKS5zaG93KCk6bSh0aGlzKS5oaWRlKCl9KX19KTtmdW5jdGlvbiBaYShhLGIsYyxkLGUpewpyZXR1cm4gbmV3IFphLnByb3RvdHlwZS5pbml0KGEsYixjLGQsZSl9bS5Ud2Vlbj1aYSxaYS5wcm90b3R5cGU9e2NvbnN0cnVjdG9yOlphLGluaXQ6ZnVuY3Rpb24oYSxiLGMsZCxlLGYpe3RoaXMuZWxlbT1hLHRoaXMucHJvcD1jLHRoaXMuZWFzaW5nPWV8fCJzd2luZyIsdGhpcy5vcHRpb25zPWIsdGhpcy5zdGFydD10aGlzLm5vdz10aGlzLmN1cigpLHRoaXMuZW5kPWQsdGhpcy51bml0PWZ8fChtLmNzc051bWJlcltjXT8iIjoicHgiKX0sY3VyOmZ1bmN0aW9uKCl7dmFyIGE9WmEucHJvcEhvb2tzW3RoaXMucHJvcF07cmV0dXJuIGEmJmEuZ2V0P2EuZ2V0KHRoaXMpOlphLnByb3BIb29rcy5fZGVmYXVsdC5nZXQodGhpcyl9LHJ1bjpmdW5jdGlvbihhKXt2YXIgYixjPVphLnByb3BIb29rc1t0aGlzLnByb3BdO3JldHVybiB0aGlzLm9wdGlvbnMuZHVyYXRpb24/dGhpcy5wb3M9Yj1tLmVhc2luZ1t0aGlzLmVhc2luZ10oYSx0aGlzLm9wdGlvbnMuZHVyYXRpb24qYSwwLDEsdGhpcy5vcHRpb25zLmR1cmF0aW9uKTp0aGlzLnBvcz1iPWEsdGhpcy5ub3c9KHRoaXMuZW5kLXRoaXMuc3RhcnQpKmIrdGhpcy5zdGFydCx0aGlzLm9wdGlvbnMuc3RlcCYmdGhpcy5vcHRpb25zLnN0ZXAuY2FsbCh0aGlzLmVsZW0sdGhpcy5ub3csdGhpcyksYyYmYy5zZXQ/Yy5zZXQodGhpcyk6WmEucHJvcEhvb2tzLl9kZWZhdWx0LnNldCh0aGlzKSx0aGlzfX0sWmEucHJvdG90eXBlLmluaXQucHJvdG90eXBlPVphLnByb3RvdHlwZSxaYS5wcm9wSG9va3M9e19kZWZhdWx0OntnZXQ6ZnVuY3Rpb24oYSl7dmFyIGI7cmV0dXJuIG51bGw9PWEuZWxlbVthLnByb3BdfHxhLmVsZW0uc3R5bGUmJm51bGwhPWEuZWxlbS5zdHlsZVthLnByb3BdPyhiPW0uY3NzKGEuZWxlbSxhLnByb3AsIiIpLGImJiJhdXRvIiE9PWI/YjowKTphLmVsZW1bYS5wcm9wXX0sc2V0OmZ1bmN0aW9uKGEpe20uZnguc3RlcFthLnByb3BdP20uZnguc3RlcFthLnByb3BdKGEpOmEuZWxlbS5zdHlsZSYmKG51bGwhPWEuZWxlbS5zdHlsZVttLmNzc1Byb3BzW2EucHJvcF1dfHxtLmNzc0hvb2tzW2EucHJvcF0pP20uc3R5bGUoYS5lbGVtLGEucHJvcCxhLm5vdythLnVuaXQpOmEuZWxlbVthLnByb3BdPWEubm93fX19LFphLnByb3BIb29rcy5zY3JvbGxUb3A9WmEucHJvcEhvb2tzLnNjcm9sbExlZnQ9e3NldDpmdW5jdGlvbihhKXthLmVsZW0ubm9kZVR5cGUmJmEuZWxlbS5wYXJlbnROb2RlJiYoYS5lbGVtW2EucHJvcF09YS5ub3cpfX0sbS5lYXNpbmc9e2xpbmVhcjpmdW5jdGlvbihhKXtyZXR1cm4gYX0sc3dpbmc6ZnVuY3Rpb24oYSl7cmV0dXJuLjUtTWF0aC5jb3MoYSpNYXRoLlBJKS8yfX0sbS5meD1aYS5wcm90b3R5cGUuaW5pdCxtLmZ4LnN0ZXA9e307dmFyICRhLF9hLGFiPS9eKD86dG9nZ2xlfHNob3d8aGlkZSkkLyxiYj1uZXcgUmVnRXhwKCJeKD86KFsrLV0pPXwpKCIrUysiKShbYS16JV0qKSQiLCJpIiksY2I9L3F1ZXVlSG9va3MkLyxkYj1baWJdLGViPXsiKiI6W2Z1bmN0aW9uKGEsYil7dmFyIGM9dGhpcy5jcmVhdGVUd2VlbihhLGIpLGQ9Yy5jdXIoKSxlPWJiLmV4ZWMoYiksZj1lJiZlWzNdfHwobS5jc3NOdW1iZXJbYV0/IiI6InB4IiksZz0obS5jc3NOdW1iZXJbYV18fCJweCIhPT1mJiYrZCkmJmJiLmV4ZWMobS5jc3MoYy5lbGVtLGEpKSxoPTEsaT0yMDtpZihnJiZnWzNdIT09Zil7Zj1mfHxnWzNdLGU9ZXx8W10sZz0rZHx8MTtkbyBoPWh8fCIuNSIsZy89aCxtLnN0eWxlKGMuZWxlbSxhLGcrZik7d2hpbGUoaCE9PShoPWMuY3VyKCkvZCkmJjEhPT1oJiYtLWkpfXJldHVybiBlJiYoZz1jLnN0YXJ0PStnfHwrZHx8MCxjLnVuaXQ9ZixjLmVuZD1lWzFdP2crKGVbMV0rMSkqZVsyXTorZVsyXSksY31dfTtmdW5jdGlvbiBmYigpe3JldHVybiBzZXRUaW1lb3V0KGZ1bmN0aW9uKCl7JGE9dm9pZCAwfSksJGE9bS5ub3coKX1mdW5jdGlvbiBnYihhLGIpe3ZhciBjLGQ9e2hlaWdodDphfSxlPTA7Zm9yKGI9Yj8xOjA7ND5lO2UrPTItYiljPVRbZV0sZFsibWFyZ2luIitjXT1kWyJwYWRkaW5nIitjXT1hO3JldHVybiBiJiYoZC5vcGFjaXR5PWQud2lkdGg9YSksZH1mdW5jdGlvbiBoYihhLGIsYyl7Zm9yKHZhciBkLGU9KGViW2JdfHxbXSkuY29uY2F0KGViWyIqIl0pLGY9MCxnPWUubGVuZ3RoO2c+ZjtmKyspaWYoZD1lW2ZdLmNhbGwoYyxiLGEpKXJldHVybiBkfWZ1bmN0aW9uIGliKGEsYixjKXt2YXIgZCxlLGYsZyxoLGksaixsLG49dGhpcyxvPXt9LHA9YS5zdHlsZSxxPWEubm9kZVR5cGUmJlUoYSkscj1tLl9kYXRhKGEsImZ4c2hvdyIpO2MucXVldWV8fChoPW0uX3F1ZXVlSG9va3MoYSwiZngiKSxudWxsPT1oLnVucXVldWVkJiYoaC51bnF1ZXVlZD0wLGk9aC5lbXB0eS5maXJlLGguZW1wdHkuZmlyZT1mdW5jdGlvbigpe2gudW5xdWV1ZWR8fGkoKX0pLGgudW5xdWV1ZWQrKyxuLmFsd2F5cyhmdW5jdGlvbigpe24uYWx3YXlzKGZ1bmN0aW9uKCl7aC51bnF1ZXVlZC0tLG0ucXVldWUoYSwiZngiKS5sZW5ndGh8fGguZW1wdHkuZmlyZSgpfSl9KSksMT09PWEubm9kZVR5cGUmJigiaGVpZ2h0ImluIGJ8fCJ3aWR0aCJpbiBiKSYmKGMub3ZlcmZsb3c9W3Aub3ZlcmZsb3cscC5vdmVyZmxvd1gscC5vdmVyZmxvd1ldLGo9bS5jc3MoYSwiZGlzcGxheSIpLGw9Im5vbmUiPT09aj9tLl9kYXRhKGEsIm9sZGRpc3BsYXkiKXx8RmEoYS5ub2RlTmFtZSk6aiwiaW5saW5lIj09PWwmJiJub25lIj09PW0uY3NzKGEsImZsb2F0IikmJihrLmlubGluZUJsb2NrTmVlZHNMYXlvdXQmJiJpbmxpbmUiIT09RmEoYS5ub2RlTmFtZSk/cC56b29tPTE6cC5kaXNwbGF5PSJpbmxpbmUtYmxvY2siKSksYy5vdmVyZmxvdyYmKHAub3ZlcmZsb3c9ImhpZGRlbiIsay5zaHJpbmtXcmFwQmxvY2tzKCl8fG4uYWx3YXlzKGZ1bmN0aW9uKCl7cC5vdmVyZmxvdz1jLm92ZXJmbG93WzBdLHAub3ZlcmZsb3dYPWMub3ZlcmZsb3dbMV0scC5vdmVyZmxvd1k9Yy5vdmVyZmxvd1syXX0pKTtmb3IoZCBpbiBiKWlmKGU9YltkXSxhYi5leGVjKGUpKXtpZihkZWxldGUgYltkXSxmPWZ8fCJ0b2dnbGUiPT09ZSxlPT09KHE/ImhpZGUiOiJzaG93Iikpe2lmKCJzaG93IiE9PWV8fCFyfHx2b2lkIDA9PT1yW2RdKWNvbnRpbnVlO3E9ITB9b1tkXT1yJiZyW2RdfHxtLnN0eWxlKGEsZCl9ZWxzZSBqPXZvaWQgMDtpZihtLmlzRW1wdHlPYmplY3QobykpImlubGluZSI9PT0oIm5vbmUiPT09aj9GYShhLm5vZGVOYW1lKTpqKSYmKHAuZGlzcGxheT1qKTtlbHNle3I/ImhpZGRlbiJpbiByJiYocT1yLmhpZGRlbik6cj1tLl9kYXRhKGEsImZ4c2hvdyIse30pLGYmJihyLmhpZGRlbj0hcSkscT9tKGEpLnNob3coKTpuLmRvbmUoZnVuY3Rpb24oKXttKGEpLmhpZGUoKX0pLG4uZG9uZShmdW5jdGlvbigpe3ZhciBiO20uX3JlbW92ZURhdGEoYSwiZnhzaG93Iik7Zm9yKGIgaW4gbyltLnN0eWxlKGEsYixvW2JdKX0pO2ZvcihkIGluIG8pZz1oYihxP3JbZF06MCxkLG4pLGQgaW4gcnx8KHJbZF09Zy5zdGFydCxxJiYoZy5lbmQ9Zy5zdGFydCxnLnN0YXJ0PSJ3aWR0aCI9PT1kfHwiaGVpZ2h0Ij09PWQ/MTowKSl9fWZ1bmN0aW9uIGpiKGEsYil7dmFyIGMsZCxlLGYsZztmb3IoYyBpbiBhKWlmKGQ9bS5jYW1lbENhc2UoYyksZT1iW2RdLGY9YVtjXSxtLmlzQXJyYXkoZikmJihlPWZbMV0sZj1hW2NdPWZbMF0pLGMhPT1kJiYoYVtkXT1mLGRlbGV0ZSBhW2NdKSxnPW0uY3NzSG9va3NbZF0sZyYmImV4cGFuZCJpbiBnKXtmPWcuZXhwYW5kKGYpLGRlbGV0ZSBhW2RdO2ZvcihjIGluIGYpYyBpbiBhfHwoYVtjXT1mW2NdLGJbY109ZSl9ZWxzZSBiW2RdPWV9ZnVuY3Rpb24ga2IoYSxiLGMpe3ZhciBkLGUsZj0wLGc9ZGIubGVuZ3RoLGg9bS5EZWZlcnJlZCgpLmFsd2F5cyhmdW5jdGlvbigpe2RlbGV0ZSBpLmVsZW19KSxpPWZ1bmN0aW9uKCl7aWYoZSlyZXR1cm4hMTtmb3IodmFyIGI9JGF8fGZiKCksYz1NYXRoLm1heCgwLGouc3RhcnRUaW1lK2ouZHVyYXRpb24tYiksZD1jL2ouZHVyYXRpb258fDAsZj0xLWQsZz0wLGk9ai50d2VlbnMubGVuZ3RoO2k+ZztnKyspai50d2VlbnNbZ10ucnVuKGYpO3JldHVybiBoLm5vdGlmeVdpdGgoYSxbaixmLGNdKSwxPmYmJmk/YzooaC5yZXNvbHZlV2l0aChhLFtqXSksITEpfSxqPWgucHJvbWlzZSh7ZWxlbTphLHByb3BzOm0uZXh0ZW5kKHt9LGIpLG9wdHM6bS5leHRlbmQoITAse3NwZWNpYWxFYXNpbmc6e319LGMpLG9yaWdpbmFsUHJvcGVydGllczpiLG9yaWdpbmFsT3B0aW9uczpjLHN0YXJ0VGltZTokYXx8ZmIoKSxkdXJhdGlvbjpjLmR1cmF0aW9uLHR3ZWVuczpbXSxjcmVhdGVUd2VlbjpmdW5jdGlvbihiLGMpe3ZhciBkPW0uVHdlZW4oYSxqLm9wdHMsYixjLGoub3B0cy5zcGVjaWFsRWFzaW5nW2JdfHxqLm9wdHMuZWFzaW5nKTtyZXR1cm4gai50d2VlbnMucHVzaChkKSxkfSxzdG9wOmZ1bmN0aW9uKGIpe3ZhciBjPTAsZD1iP2oudHdlZW5zLmxlbmd0aDowO2lmKGUpcmV0dXJuIHRoaXM7Zm9yKGU9ITA7ZD5jO2MrKylqLnR3ZWVuc1tjXS5ydW4oMSk7cmV0dXJuIGI/aC5yZXNvbHZlV2l0aChhLFtqLGJdKTpoLnJlamVjdFdpdGgoYSxbaixiXSksdGhpc319KSxrPWoucHJvcHM7Zm9yKGpiKGssai5vcHRzLnNwZWNpYWxFYXNpbmcpO2c+ZjtmKyspaWYoZD1kYltmXS5jYWxsKGosYSxrLGoub3B0cykpcmV0dXJuIGQ7cmV0dXJuIG0ubWFwKGssaGIsaiksbS5pc0Z1bmN0aW9uKGoub3B0cy5zdGFydCkmJmoub3B0cy5zdGFydC5jYWxsKGEsaiksbS5meC50aW1lcihtLmV4dGVuZChpLHtlbGVtOmEsYW5pbTpqLHF1ZXVlOmoub3B0cy5xdWV1ZX0pKSxqLnByb2dyZXNzKGoub3B0cy5wcm9ncmVzcykuZG9uZShqLm9wdHMuZG9uZSxqLm9wdHMuY29tcGxldGUpLmZhaWwoai5vcHRzLmZhaWwpLmFsd2F5cyhqLm9wdHMuYWx3YXlzKX1tLkFuaW1hdGlvbj1tLmV4dGVuZChrYix7dHdlZW5lcjpmdW5jdGlvbihhLGIpe20uaXNGdW5jdGlvbihhKT8oYj1hLGE9WyIqIl0pOmE9YS5zcGxpdCgiICIpO2Zvcih2YXIgYyxkPTAsZT1hLmxlbmd0aDtlPmQ7ZCsrKWM9YVtkXSxlYltjXT1lYltjXXx8W10sZWJbY10udW5zaGlmdChiKX0scHJlZmlsdGVyOmZ1bmN0aW9uKGEsYil7Yj9kYi51bnNoaWZ0KGEpOmRiLnB1c2goYSl9fSksbS5zcGVlZD1mdW5jdGlvbihhLGIsYyl7dmFyIGQ9YSYmIm9iamVjdCI9PXR5cGVvZiBhP20uZXh0ZW5kKHt9LGEpOntjb21wbGV0ZTpjfHwhYyYmYnx8bS5pc0Z1bmN0aW9uKGEpJiZhLGR1cmF0aW9uOmEsZWFzaW5nOmMmJmJ8fGImJiFtLmlzRnVuY3Rpb24oYikmJmJ9O3JldHVybiBkLmR1cmF0aW9uPW0uZngub2ZmPzA6Im51bWJlciI9PXR5cGVvZiBkLmR1cmF0aW9uP2QuZHVyYXRpb246ZC5kdXJhdGlvbiBpbiBtLmZ4LnNwZWVkcz9tLmZ4LnNwZWVkc1tkLmR1cmF0aW9uXTptLmZ4LnNwZWVkcy5fZGVmYXVsdCwobnVsbD09ZC5xdWV1ZXx8ZC5xdWV1ZT09PSEwKSYmKGQucXVldWU9ImZ4IiksZC5vbGQ9ZC5jb21wbGV0ZSxkLmNvbXBsZXRlPWZ1bmN0aW9uKCl7bS5pc0Z1bmN0aW9uKGQub2xkKSYmZC5vbGQuY2FsbCh0aGlzKSxkLnF1ZXVlJiZtLmRlcXVldWUodGhpcyxkLnF1ZXVlKX0sZH0sbS5mbi5leHRlbmQoe2ZhZGVUbzpmdW5jdGlvbihhLGIsYyxkKXtyZXR1cm4gdGhpcy5maWx0ZXIoVSkuY3NzKCJvcGFjaXR5IiwwKS5zaG93KCkuZW5kKCkuYW5pbWF0ZSh7b3BhY2l0eTpifSxhLGMsZCl9LGFuaW1hdGU6ZnVuY3Rpb24oYSxiLGMsZCl7dmFyIGU9bS5pc0VtcHR5T2JqZWN0KGEpLGY9bS5zcGVlZChiLGMsZCksZz1mdW5jdGlvbigpe3ZhciBiPWtiKHRoaXMsbS5leHRlbmQoe30sYSksZik7KGV8fG0uX2RhdGEodGhpcywiZmluaXNoIikpJiZiLnN0b3AoITApfTtyZXR1cm4gZy5maW5pc2g9ZyxlfHxmLnF1ZXVlPT09ITE/dGhpcy5lYWNoKGcpOnRoaXMucXVldWUoZi5xdWV1ZSxnKX0sc3RvcDpmdW5jdGlvbihhLGIsYyl7dmFyIGQ9ZnVuY3Rpb24oYSl7dmFyIGI9YS5zdG9wO2RlbGV0ZSBhLnN0b3AsYihjKX07cmV0dXJuInN0cmluZyIhPXR5cGVvZiBhJiYoYz1iLGI9YSxhPXZvaWQgMCksYiYmYSE9PSExJiZ0aGlzLnF1ZXVlKGF8fCJmeCIsW10pLHRoaXMuZWFjaChmdW5jdGlvbigpe3ZhciBiPSEwLGU9bnVsbCE9YSYmYSsicXVldWVIb29rcyIsZj1tLnRpbWVycyxnPW0uX2RhdGEodGhpcyk7aWYoZSlnW2VdJiZnW2VdLnN0b3AmJmQoZ1tlXSk7ZWxzZSBmb3IoZSBpbiBnKWdbZV0mJmdbZV0uc3RvcCYmY2IudGVzdChlKSYmZChnW2VdKTtmb3IoZT1mLmxlbmd0aDtlLS07KWZbZV0uZWxlbSE9PXRoaXN8fG51bGwhPWEmJmZbZV0ucXVldWUhPT1hfHwoZltlXS5hbmltLnN0b3AoYyksYj0hMSxmLnNwbGljZShlLDEpKTsoYnx8IWMpJiZtLmRlcXVldWUodGhpcyxhKX0pfSxmaW5pc2g6ZnVuY3Rpb24oYSl7cmV0dXJuIGEhPT0hMSYmKGE9YXx8ImZ4IiksdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGIsYz1tLl9kYXRhKHRoaXMpLGQ9Y1thKyJxdWV1ZSJdLGU9Y1thKyJxdWV1ZUhvb2tzIl0sZj1tLnRpbWVycyxnPWQ/ZC5sZW5ndGg6MDtmb3IoYy5maW5pc2g9ITAsbS5xdWV1ZSh0aGlzLGEsW10pLGUmJmUuc3RvcCYmZS5zdG9wLmNhbGwodGhpcywhMCksYj1mLmxlbmd0aDtiLS07KWZbYl0uZWxlbT09PXRoaXMmJmZbYl0ucXVldWU9PT1hJiYoZltiXS5hbmltLnN0b3AoITApLGYuc3BsaWNlKGIsMSkpO2ZvcihiPTA7Zz5iO2IrKylkW2JdJiZkW2JdLmZpbmlzaCYmZFtiXS5maW5pc2guY2FsbCh0aGlzKTtkZWxldGUgYy5maW5pc2h9KX19KSxtLmVhY2goWyJ0b2dnbGUiLCJzaG93IiwiaGlkZSJdLGZ1bmN0aW9uKGEsYil7dmFyIGM9bS5mbltiXTttLmZuW2JdPWZ1bmN0aW9uKGEsZCxlKXtyZXR1cm4gbnVsbD09YXx8ImJvb2xlYW4iPT10eXBlb2YgYT9jLmFwcGx5KHRoaXMsYXJndW1lbnRzKTp0aGlzLmFuaW1hdGUoZ2IoYiwhMCksYSxkLGUpfX0pLG0uZWFjaCh7c2xpZGVEb3duOmdiKCJzaG93Iiksc2xpZGVVcDpnYigiaGlkZSIpLHNsaWRlVG9nZ2xlOmdiKCJ0b2dnbGUiKSxmYWRlSW46e29wYWNpdHk6InNob3cifSxmYWRlT3V0OntvcGFjaXR5OiJoaWRlIn0sZmFkZVRvZ2dsZTp7b3BhY2l0eToidG9nZ2xlIn19LGZ1bmN0aW9uKGEsYil7bS5mblthXT1mdW5jdGlvbihhLGMsZCl7cmV0dXJuIHRoaXMuYW5pbWF0ZShiLGEsYyxkKX19KSxtLnRpbWVycz1bXSxtLmZ4LnRpY2s9ZnVuY3Rpb24oKXt2YXIgYSxiPW0udGltZXJzLGM9MDtmb3IoJGE9bS5ub3coKTtjPGIubGVuZ3RoO2MrKylhPWJbY10sYSgpfHxiW2NdIT09YXx8Yi5zcGxpY2UoYy0tLDEpO2IubGVuZ3RofHxtLmZ4LnN0b3AoKSwkYT12b2lkIDB9LG0uZngudGltZXI9ZnVuY3Rpb24oYSl7bS50aW1lcnMucHVzaChhKSxhKCk/bS5meC5zdGFydCgpOm0udGltZXJzLnBvcCgpfSxtLmZ4LmludGVydmFsPTEzLG0uZnguc3RhcnQ9ZnVuY3Rpb24oKXtfYXx8KF9hPXNldEludGVydmFsKG0uZngudGljayxtLmZ4LmludGVydmFsKSl9LG0uZnguc3RvcD1mdW5jdGlvbigpe2NsZWFySW50ZXJ2YWwoX2EpLF9hPW51bGx9LG0uZnguc3BlZWRzPXtzbG93OjYwMCxmYXN0OjIwMCxfZGVmYXVsdDo0MDB9LG0uZm4uZGVsYXk9ZnVuY3Rpb24oYSxiKXtyZXR1cm4gYT1tLmZ4P20uZnguc3BlZWRzW2FdfHxhOmEsYj1ifHwiZngiLHRoaXMucXVldWUoYixmdW5jdGlvbihiLGMpe3ZhciBkPXNldFRpbWVvdXQoYixhKTtjLnN0b3A9ZnVuY3Rpb24oKXtjbGVhclRpbWVvdXQoZCl9fSl9LGZ1bmN0aW9uKCl7dmFyIGEsYixjLGQsZTtiPXkuY3JlYXRlRWxlbWVudCgiZGl2IiksYi5zZXRBdHRyaWJ1dGUoImNsYXNzTmFtZSIsInQiKSxiLmlubmVySFRNTD0iICA8bGluay8+PHRhYmxlPjwvdGFibGU+PGEgaHJlZj0nL2EnPmE8L2E+PGlucHV0IHR5cGU9J2NoZWNrYm94Jy8+IixkPWIuZ2V0RWxlbWVudHNCeVRhZ05hbWUoImEiKVswXSxjPXkuY3JlYXRlRWxlbWVudCgic2VsZWN0IiksZT1jLmFwcGVuZENoaWxkKHkuY3JlYXRlRWxlbWVudCgib3B0aW9uIikpLGE9Yi5nZXRFbGVtZW50c0J5VGFnTmFtZSgiaW5wdXQiKVswXSxkLnN0eWxlLmNzc1RleHQ9InRvcDoxcHgiLGsuZ2V0U2V0QXR0cmlidXRlPSJ0IiE9PWIuY2xhc3NOYW1lLGsuc3R5bGU9L3RvcC8udGVzdChkLmdldEF0dHJpYnV0ZSgic3R5bGUiKSksay5ocmVmTm9ybWFsaXplZD0iL2EiPT09ZC5nZXRBdHRyaWJ1dGUoImhyZWYiKSxrLmNoZWNrT249ISFhLnZhbHVlLGsub3B0U2VsZWN0ZWQ9ZS5zZWxlY3RlZCxrLmVuY3R5cGU9ISF5LmNyZWF0ZUVsZW1lbnQoImZvcm0iKS5lbmN0eXBlLGMuZGlzYWJsZWQ9ITAsay5vcHREaXNhYmxlZD0hZS5kaXNhYmxlZCxhPXkuY3JlYXRlRWxlbWVudCgiaW5wdXQiKSxhLnNldEF0dHJpYnV0ZSgidmFsdWUiLCIiKSxrLmlucHV0PSIiPT09YS5nZXRBdHRyaWJ1dGUoInZhbHVlIiksYS52YWx1ZT0idCIsYS5zZXRBdHRyaWJ1dGUoInR5cGUiLCJyYWRpbyIpLGsucmFkaW9WYWx1ZT0idCI9PT1hLnZhbHVlfSgpO3ZhciBsYj0vXHIvZzttLmZuLmV4dGVuZCh7dmFsOmZ1bmN0aW9uKGEpe3ZhciBiLGMsZCxlPXRoaXNbMF07e2lmKGFyZ3VtZW50cy5sZW5ndGgpcmV0dXJuIGQ9bS5pc0Z1bmN0aW9uKGEpLHRoaXMuZWFjaChmdW5jdGlvbihjKXt2YXIgZTsxPT09dGhpcy5ub2RlVHlwZSYmKGU9ZD9hLmNhbGwodGhpcyxjLG0odGhpcykudmFsKCkpOmEsbnVsbD09ZT9lPSIiOiJudW1iZXIiPT10eXBlb2YgZT9lKz0iIjptLmlzQXJyYXkoZSkmJihlPW0ubWFwKGUsZnVuY3Rpb24oYSl7cmV0dXJuIG51bGw9PWE/IiI6YSsiIn0pKSxiPW0udmFsSG9va3NbdGhpcy50eXBlXXx8bS52YWxIb29rc1t0aGlzLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCldLGImJiJzZXQiaW4gYiYmdm9pZCAwIT09Yi5zZXQodGhpcyxlLCJ2YWx1ZSIpfHwodGhpcy52YWx1ZT1lKSl9KTtpZihlKXJldHVybiBiPW0udmFsSG9va3NbZS50eXBlXXx8bS52YWxIb29rc1tlLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCldLGImJiJnZXQiaW4gYiYmdm9pZCAwIT09KGM9Yi5nZXQoZSwidmFsdWUiKSk/YzooYz1lLnZhbHVlLCJzdHJpbmciPT10eXBlb2YgYz9jLnJlcGxhY2UobGIsIiIpOm51bGw9PWM/IiI6Yyl9fX0pLG0uZXh0ZW5kKHt2YWxIb29rczp7b3B0aW9uOntnZXQ6ZnVuY3Rpb24oYSl7dmFyIGI9bS5maW5kLmF0dHIoYSwidmFsdWUiKTtyZXR1cm4gbnVsbCE9Yj9iOm0udHJpbShtLnRleHQoYSkpfX0sc2VsZWN0OntnZXQ6ZnVuY3Rpb24oYSl7Zm9yKHZhciBiLGMsZD1hLm9wdGlvbnMsZT1hLnNlbGVjdGVkSW5kZXgsZj0ic2VsZWN0LW9uZSI9PT1hLnR5cGV8fDA+ZSxnPWY/bnVsbDpbXSxoPWY/ZSsxOmQubGVuZ3RoLGk9MD5lP2g6Zj9lOjA7aD5pO2krKylpZihjPWRbaV0sISghYy5zZWxlY3RlZCYmaSE9PWV8fChrLm9wdERpc2FibGVkP2MuZGlzYWJsZWQ6bnVsbCE9PWMuZ2V0QXR0cmlidXRlKCJkaXNhYmxlZCIpKXx8Yy5wYXJlbnROb2RlLmRpc2FibGVkJiZtLm5vZGVOYW1lKGMucGFyZW50Tm9kZSwib3B0Z3JvdXAiKSkpe2lmKGI9bShjKS52YWwoKSxmKXJldHVybiBiO2cucHVzaChiKX1yZXR1cm4gZ30sc2V0OmZ1bmN0aW9uKGEsYil7dmFyIGMsZCxlPWEub3B0aW9ucyxmPW0ubWFrZUFycmF5KGIpLGc9ZS5sZW5ndGg7d2hpbGUoZy0tKWlmKGQ9ZVtnXSxtLmluQXJyYXkobS52YWxIb29rcy5vcHRpb24uZ2V0KGQpLGYpPj0wKXRyeXtkLnNlbGVjdGVkPWM9ITB9Y2F0Y2goaCl7ZC5zY3JvbGxIZWlnaHR9ZWxzZSBkLnNlbGVjdGVkPSExO3JldHVybiBjfHwoYS5zZWxlY3RlZEluZGV4PS0xKSxlfX19fSksbS5lYWNoKFsicmFkaW8iLCJjaGVja2JveCJdLGZ1bmN0aW9uKCl7bS52YWxIb29rc1t0aGlzXT17c2V0OmZ1bmN0aW9uKGEsYil7cmV0dXJuIG0uaXNBcnJheShiKT9hLmNoZWNrZWQ9bS5pbkFycmF5KG0oYSkudmFsKCksYik+PTA6dm9pZCAwfX0say5jaGVja09ufHwobS52YWxIb29rc1t0aGlzXS5nZXQ9ZnVuY3Rpb24oYSl7cmV0dXJuIG51bGw9PT1hLmdldEF0dHJpYnV0ZSgidmFsdWUiKT8ib24iOmEudmFsdWV9KX0pO3ZhciBtYixuYixvYj1tLmV4cHIuYXR0ckhhbmRsZSxwYj0vXig/OmNoZWNrZWR8c2VsZWN0ZWQpJC9pLHFiPWsuZ2V0U2V0QXR0cmlidXRlLHJiPWsuaW5wdXQ7bS5mbi5leHRlbmQoe2F0dHI6ZnVuY3Rpb24oYSxiKXtyZXR1cm4gVih0aGlzLG0uYXR0cixhLGIsYXJndW1lbnRzLmxlbmd0aD4xKX0scmVtb3ZlQXR0cjpmdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7bS5yZW1vdmVBdHRyKHRoaXMsYSl9KX19KSxtLmV4dGVuZCh7YXR0cjpmdW5jdGlvbihhLGIsYyl7dmFyIGQsZSxmPWEubm9kZVR5cGU7aWYoYSYmMyE9PWYmJjghPT1mJiYyIT09ZilyZXR1cm4gdHlwZW9mIGEuZ2V0QXR0cmlidXRlPT09Sz9tLnByb3AoYSxiLGMpOigxPT09ZiYmbS5pc1hNTERvYyhhKXx8KGI9Yi50b0xvd2VyQ2FzZSgpLGQ9bS5hdHRySG9va3NbYl18fChtLmV4cHIubWF0Y2guYm9vbC50ZXN0KGIpP25iOm1iKSksdm9pZCAwPT09Yz9kJiYiZ2V0ImluIGQmJm51bGwhPT0oZT1kLmdldChhLGIpKT9lOihlPW0uZmluZC5hdHRyKGEsYiksbnVsbD09ZT92b2lkIDA6ZSk6bnVsbCE9PWM/ZCYmInNldCJpbiBkJiZ2b2lkIDAhPT0oZT1kLnNldChhLGMsYikpP2U6KGEuc2V0QXR0cmlidXRlKGIsYysiIiksYyk6dm9pZCBtLnJlbW92ZUF0dHIoYSxiKSl9LHJlbW92ZUF0dHI6ZnVuY3Rpb24oYSxiKXt2YXIgYyxkLGU9MCxmPWImJmIubWF0Y2goRSk7aWYoZiYmMT09PWEubm9kZVR5cGUpd2hpbGUoYz1mW2UrK10pZD1tLnByb3BGaXhbY118fGMsbS5leHByLm1hdGNoLmJvb2wudGVzdChjKT9yYiYmcWJ8fCFwYi50ZXN0KGMpP2FbZF09ITE6YVttLmNhbWVsQ2FzZSgiZGVmYXVsdC0iK2MpXT1hW2RdPSExOm0uYXR0cihhLGMsIiIpLGEucmVtb3ZlQXR0cmlidXRlKHFiP2M6ZCl9LGF0dHJIb29rczp7dHlwZTp7c2V0OmZ1bmN0aW9uKGEsYil7aWYoIWsucmFkaW9WYWx1ZSYmInJhZGlvIj09PWImJm0ubm9kZU5hbWUoYSwiaW5wdXQiKSl7dmFyIGM9YS52YWx1ZTtyZXR1cm4gYS5zZXRBdHRyaWJ1dGUoInR5cGUiLGIpLGMmJihhLnZhbHVlPWMpLGJ9fX19fSksbmI9e3NldDpmdW5jdGlvbihhLGIsYyl7cmV0dXJuIGI9PT0hMT9tLnJlbW92ZUF0dHIoYSxjKTpyYiYmcWJ8fCFwYi50ZXN0KGMpP2Euc2V0QXR0cmlidXRlKCFxYiYmbS5wcm9wRml4W2NdfHxjLGMpOmFbbS5jYW1lbENhc2UoImRlZmF1bHQtIitjKV09YVtjXT0hMCxjfX0sbS5lYWNoKG0uZXhwci5tYXRjaC5ib29sLnNvdXJjZS5tYXRjaCgvXHcrL2cpLGZ1bmN0aW9uKGEsYil7dmFyIGM9b2JbYl18fG0uZmluZC5hdHRyO29iW2JdPXJiJiZxYnx8IXBiLnRlc3QoYik/ZnVuY3Rpb24oYSxiLGQpe3ZhciBlLGY7cmV0dXJuIGR8fChmPW9iW2JdLG9iW2JdPWUsZT1udWxsIT1jKGEsYixkKT9iLnRvTG93ZXJDYXNlKCk6bnVsbCxvYltiXT1mKSxlfTpmdW5jdGlvbihhLGIsYyl7cmV0dXJuIGM/dm9pZCAwOmFbbS5jYW1lbENhc2UoImRlZmF1bHQtIitiKV0/Yi50b0xvd2VyQ2FzZSgpOm51bGx9fSkscmImJnFifHwobS5hdHRySG9va3MudmFsdWU9e3NldDpmdW5jdGlvbihhLGIsYyl7cmV0dXJuIG0ubm9kZU5hbWUoYSwiaW5wdXQiKT92b2lkKGEuZGVmYXVsdFZhbHVlPWIpOm1iJiZtYi5zZXQoYSxiLGMpfX0pLHFifHwobWI9e3NldDpmdW5jdGlvbihhLGIsYyl7dmFyIGQ9YS5nZXRBdHRyaWJ1dGVOb2RlKGMpO3JldHVybiBkfHxhLnNldEF0dHJpYnV0ZU5vZGUoZD1hLm93bmVyRG9jdW1lbnQuY3JlYXRlQXR0cmlidXRlKGMpKSxkLnZhbHVlPWIrPSIiLCJ2YWx1ZSI9PT1jfHxiPT09YS5nZXRBdHRyaWJ1dGUoYyk/Yjp2b2lkIDB9fSxvYi5pZD1vYi5uYW1lPW9iLmNvb3Jkcz1mdW5jdGlvbihhLGIsYyl7dmFyIGQ7cmV0dXJuIGM/dm9pZCAwOihkPWEuZ2V0QXR0cmlidXRlTm9kZShiKSkmJiIiIT09ZC52YWx1ZT9kLnZhbHVlOm51bGx9LG0udmFsSG9va3MuYnV0dG9uPXtnZXQ6ZnVuY3Rpb24oYSxiKXt2YXIgYz1hLmdldEF0dHJpYnV0ZU5vZGUoYik7cmV0dXJuIGMmJmMuc3BlY2lmaWVkP2MudmFsdWU6dm9pZCAwfSxzZXQ6bWIuc2V0fSxtLmF0dHJIb29rcy5jb250ZW50ZWRpdGFibGU9e3NldDpmdW5jdGlvbihhLGIsYyl7bWIuc2V0KGEsIiI9PT1iPyExOmIsYyl9fSxtLmVhY2goWyJ3aWR0aCIsImhlaWdodCJdLGZ1bmN0aW9uKGEsYil7bS5hdHRySG9va3NbYl09e3NldDpmdW5jdGlvbihhLGMpe3JldHVybiIiPT09Yz8oYS5zZXRBdHRyaWJ1dGUoYiwiYXV0byIpLGMpOnZvaWQgMH19fSkpLGsuc3R5bGV8fChtLmF0dHJIb29rcy5zdHlsZT17Z2V0OmZ1bmN0aW9uKGEpe3JldHVybiBhLnN0eWxlLmNzc1RleHR8fHZvaWQgMH0sc2V0OmZ1bmN0aW9uKGEsYil7cmV0dXJuIGEuc3R5bGUuY3NzVGV4dD1iKyIifX0pO3ZhciBzYj0vXig/OmlucHV0fHNlbGVjdHx0ZXh0YXJlYXxidXR0b258b2JqZWN0KSQvaSx0Yj0vXig/OmF8YXJlYSkkL2k7bS5mbi5leHRlbmQoe3Byb3A6ZnVuY3Rpb24oYSxiKXtyZXR1cm4gVih0aGlzLG0ucHJvcCxhLGIsYXJndW1lbnRzLmxlbmd0aD4xKX0scmVtb3ZlUHJvcDpmdW5jdGlvbihhKXtyZXR1cm4gYT1tLnByb3BGaXhbYV18fGEsdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dHJ5e3RoaXNbYV09dm9pZCAwLGRlbGV0ZSB0aGlzW2FdfWNhdGNoKGIpe319KX19KSxtLmV4dGVuZCh7cHJvcEZpeDp7ImZvciI6Imh0bWxGb3IiLCJjbGFzcyI6ImNsYXNzTmFtZSJ9LHByb3A6ZnVuY3Rpb24oYSxiLGMpe3ZhciBkLGUsZixnPWEubm9kZVR5cGU7aWYoYSYmMyE9PWcmJjghPT1nJiYyIT09ZylyZXR1cm4gZj0xIT09Z3x8IW0uaXNYTUxEb2MoYSksZiYmKGI9bS5wcm9wRml4W2JdfHxiLGU9bS5wcm9wSG9va3NbYl0pLHZvaWQgMCE9PWM/ZSYmInNldCJpbiBlJiZ2b2lkIDAhPT0oZD1lLnNldChhLGMsYikpP2Q6YVtiXT1jOmUmJiJnZXQiaW4gZSYmbnVsbCE9PShkPWUuZ2V0KGEsYikpP2Q6YVtiXX0scHJvcEhvb2tzOnt0YWJJbmRleDp7Z2V0OmZ1bmN0aW9uKGEpe3ZhciBiPW0uZmluZC5hdHRyKGEsInRhYmluZGV4Iik7cmV0dXJuIGI/cGFyc2VJbnQoYiwxMCk6c2IudGVzdChhLm5vZGVOYW1lKXx8dGIudGVzdChhLm5vZGVOYW1lKSYmYS5ocmVmPzA6LTF9fX19KSxrLmhyZWZOb3JtYWxpemVkfHxtLmVhY2goWyJocmVmIiwic3JjIl0sZnVuY3Rpb24oYSxiKXttLnByb3BIb29rc1tiXT17Z2V0OmZ1bmN0aW9uKGEpe3JldHVybiBhLmdldEF0dHJpYnV0ZShiLDQpfX19KSxrLm9wdFNlbGVjdGVkfHwobS5wcm9wSG9va3Muc2VsZWN0ZWQ9e2dldDpmdW5jdGlvbihhKXt2YXIgYj1hLnBhcmVudE5vZGU7cmV0dXJuIGImJihiLnNlbGVjdGVkSW5kZXgsYi5wYXJlbnROb2RlJiZiLnBhcmVudE5vZGUuc2VsZWN0ZWRJbmRleCksbnVsbH19KSxtLmVhY2goWyJ0YWJJbmRleCIsInJlYWRPbmx5IiwibWF4TGVuZ3RoIiwiY2VsbFNwYWNpbmciLCJjZWxsUGFkZGluZyIsInJvd1NwYW4iLCJjb2xTcGFuIiwidXNlTWFwIiwiZnJhbWVCb3JkZXIiLCJjb250ZW50RWRpdGFibGUiXSxmdW5jdGlvbigpe20ucHJvcEZpeFt0aGlzLnRvTG93ZXJDYXNlKCldPXRoaXN9KSxrLmVuY3R5cGV8fChtLnByb3BGaXguZW5jdHlwZT0iZW5jb2RpbmciKTt2YXIgdWI9L1tcdFxyXG5cZl0vZzttLmZuLmV4dGVuZCh7YWRkQ2xhc3M6ZnVuY3Rpb24oYSl7dmFyIGIsYyxkLGUsZixnLGg9MCxpPXRoaXMubGVuZ3RoLGo9InN0cmluZyI9PXR5cGVvZiBhJiZhO2lmKG0uaXNGdW5jdGlvbihhKSlyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKGIpe20odGhpcykuYWRkQ2xhc3MoYS5jYWxsKHRoaXMsYix0aGlzLmNsYXNzTmFtZSkpfSk7aWYoailmb3IoYj0oYXx8IiIpLm1hdGNoKEUpfHxbXTtpPmg7aCsrKWlmKGM9dGhpc1toXSxkPTE9PT1jLm5vZGVUeXBlJiYoYy5jbGFzc05hbWU/KCIgIitjLmNsYXNzTmFtZSsiICIpLnJlcGxhY2UodWIsIiAiKToiICIpKXtmPTA7d2hpbGUoZT1iW2YrK10pZC5pbmRleE9mKCIgIitlKyIgIik8MCYmKGQrPWUrIiAiKTtnPW0udHJpbShkKSxjLmNsYXNzTmFtZSE9PWcmJihjLmNsYXNzTmFtZT1nKX1yZXR1cm4gdGhpc30scmVtb3ZlQ2xhc3M6ZnVuY3Rpb24oYSl7dmFyIGIsYyxkLGUsZixnLGg9MCxpPXRoaXMubGVuZ3RoLGo9MD09PWFyZ3VtZW50cy5sZW5ndGh8fCJzdHJpbmciPT10eXBlb2YgYSYmYTtpZihtLmlzRnVuY3Rpb24oYSkpcmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbihiKXttKHRoaXMpLnJlbW92ZUNsYXNzKGEuY2FsbCh0aGlzLGIsdGhpcy5jbGFzc05hbWUpKX0pO2lmKGopZm9yKGI9KGF8fCIiKS5tYXRjaChFKXx8W107aT5oO2grKylpZihjPXRoaXNbaF0sZD0xPT09Yy5ub2RlVHlwZSYmKGMuY2xhc3NOYW1lPygiICIrYy5jbGFzc05hbWUrIiAiKS5yZXBsYWNlKHViLCIgIik6IiIpKXtmPTA7d2hpbGUoZT1iW2YrK10pd2hpbGUoZC5pbmRleE9mKCIgIitlKyIgIik+PTApZD1kLnJlcGxhY2UoIiAiK2UrIiAiLCIgIik7Zz1hP20udHJpbShkKToiIixjLmNsYXNzTmFtZSE9PWcmJihjLmNsYXNzTmFtZT1nKX1yZXR1cm4gdGhpc30sdG9nZ2xlQ2xhc3M6ZnVuY3Rpb24oYSxiKXt2YXIgYz10eXBlb2YgYTtyZXR1cm4iYm9vbGVhbiI9PXR5cGVvZiBiJiYic3RyaW5nIj09PWM/Yj90aGlzLmFkZENsYXNzKGEpOnRoaXMucmVtb3ZlQ2xhc3MoYSk6dGhpcy5lYWNoKG0uaXNGdW5jdGlvbihhKT9mdW5jdGlvbihjKXttKHRoaXMpLnRvZ2dsZUNsYXNzKGEuY2FsbCh0aGlzLGMsdGhpcy5jbGFzc05hbWUsYiksYil9OmZ1bmN0aW9uKCl7aWYoInN0cmluZyI9PT1jKXt2YXIgYixkPTAsZT1tKHRoaXMpLGY9YS5tYXRjaChFKXx8W107d2hpbGUoYj1mW2QrK10pZS5oYXNDbGFzcyhiKT9lLnJlbW92ZUNsYXNzKGIpOmUuYWRkQ2xhc3MoYil9ZWxzZShjPT09S3x8ImJvb2xlYW4iPT09YykmJih0aGlzLmNsYXNzTmFtZSYmbS5fZGF0YSh0aGlzLCJfX2NsYXNzTmFtZV9fIix0aGlzLmNsYXNzTmFtZSksdGhpcy5jbGFzc05hbWU9dGhpcy5jbGFzc05hbWV8fGE9PT0hMT8iIjptLl9kYXRhKHRoaXMsIl9fY2xhc3NOYW1lX18iKXx8IiIpfSl9LGhhc0NsYXNzOmZ1bmN0aW9uKGEpe2Zvcih2YXIgYj0iICIrYSsiICIsYz0wLGQ9dGhpcy5sZW5ndGg7ZD5jO2MrKylpZigxPT09dGhpc1tjXS5ub2RlVHlwZSYmKCIgIit0aGlzW2NdLmNsYXNzTmFtZSsiICIpLnJlcGxhY2UodWIsIiAiKS5pbmRleE9mKGIpPj0wKXJldHVybiEwO3JldHVybiExfX0pLG0uZWFjaCgiYmx1ciBmb2N1cyBmb2N1c2luIGZvY3Vzb3V0IGxvYWQgcmVzaXplIHNjcm9sbCB1bmxvYWQgY2xpY2sgZGJsY2xpY2sgbW91c2Vkb3duIG1vdXNldXAgbW91c2Vtb3ZlIG1vdXNlb3ZlciBtb3VzZW91dCBtb3VzZWVudGVyIG1vdXNlbGVhdmUgY2hhbmdlIHNlbGVjdCBzdWJtaXQga2V5ZG93biBrZXlwcmVzcyBrZXl1cCBlcnJvciBjb250ZXh0bWVudSIuc3BsaXQoIiAiKSxmdW5jdGlvbihhLGIpe20uZm5bYl09ZnVuY3Rpb24oYSxjKXtyZXR1cm4gYXJndW1lbnRzLmxlbmd0aD4wP3RoaXMub24oYixudWxsLGEsYyk6dGhpcy50cmlnZ2VyKGIpfX0pLG0uZm4uZXh0ZW5kKHtob3ZlcjpmdW5jdGlvbihhLGIpe3JldHVybiB0aGlzLm1vdXNlZW50ZXIoYSkubW91c2VsZWF2ZShifHxhKX0sYmluZDpmdW5jdGlvbihhLGIsYyl7cmV0dXJuIHRoaXMub24oYSxudWxsLGIsYyl9LHVuYmluZDpmdW5jdGlvbihhLGIpe3JldHVybiB0aGlzLm9mZihhLG51bGwsYil9LGRlbGVnYXRlOmZ1bmN0aW9uKGEsYixjLGQpe3JldHVybiB0aGlzLm9uKGIsYSxjLGQpfSx1bmRlbGVnYXRlOmZ1bmN0aW9uKGEsYixjKXtyZXR1cm4gMT09PWFyZ3VtZW50cy5sZW5ndGg/dGhpcy5vZmYoYSwiKioiKTp0aGlzLm9mZihiLGF8fCIqKiIsYyl9fSk7dmFyIHZiPW0ubm93KCksd2I9L1w/Lyx4Yj0vKCwpfChcW3x7KXwofXxdKXwiKD86W14iXFxcclxuXXxcXFsiXFxcL2JmbnJ0XXxcXHVbXGRhLWZBLUZdezR9KSoiXHMqOj98dHJ1ZXxmYWxzZXxudWxsfC0/KD8hMFxkKVxkKyg/OlwuXGQrfCkoPzpbZUVdWystXT9cZCt8KS9nO20ucGFyc2VKU09OPWZ1bmN0aW9uKGIpe2lmKGEuSlNPTiYmYS5KU09OLnBhcnNlKXJldHVybiBhLkpTT04ucGFyc2UoYisiIik7dmFyIGMsZD1udWxsLGU9bS50cmltKGIrIiIpO3JldHVybiBlJiYhbS50cmltKGUucmVwbGFjZSh4YixmdW5jdGlvbihhLGIsZSxmKXtyZXR1cm4gYyYmYiYmKGQ9MCksMD09PWQ/YTooYz1lfHxiLGQrPSFmLSFlLCIiKX0pKT9GdW5jdGlvbigicmV0dXJuICIrZSkoKTptLmVycm9yKCJJbnZhbGlkIEpTT046ICIrYil9LG0ucGFyc2VYTUw9ZnVuY3Rpb24oYil7dmFyIGMsZDtpZighYnx8InN0cmluZyIhPXR5cGVvZiBiKXJldHVybiBudWxsO3RyeXthLkRPTVBhcnNlcj8oZD1uZXcgRE9NUGFyc2VyLGM9ZC5wYXJzZUZyb21TdHJpbmcoYiwidGV4dC94bWwiKSk6KGM9bmV3IEFjdGl2ZVhPYmplY3QoIk1pY3Jvc29mdC5YTUxET00iKSxjLmFzeW5jPSJmYWxzZSIsYy5sb2FkWE1MKGIpKX1jYXRjaChlKXtjPXZvaWQgMH1yZXR1cm4gYyYmYy5kb2N1bWVudEVsZW1lbnQmJiFjLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJwYXJzZXJlcnJvciIpLmxlbmd0aHx8bS5lcnJvcigiSW52YWxpZCBYTUw6ICIrYiksY307dmFyIHliLHpiLEFiPS8jLiokLyxCYj0vKFs/Jl0pXz1bXiZdKi8sQ2I9L14oLio/KTpbIFx0XSooW15cclxuXSopXHI/JC9nbSxEYj0vXig/OmFib3V0fGFwcHxhcHAtc3RvcmFnZXwuKy1leHRlbnNpb258ZmlsZXxyZXN8d2lkZ2V0KTokLyxFYj0vXig/OkdFVHxIRUFEKSQvLEZiPS9eXC9cLy8sR2I9L14oW1x3ListXSs6KSg/OlwvXC8oPzpbXlwvPyNdKkB8KShbXlwvPyM6XSopKD86OihcZCspfCl8KS8sSGI9e30sSWI9e30sSmI9IiovIi5jb25jYXQoIioiKTt0cnl7emI9bG9jYXRpb24uaHJlZn1jYXRjaChLYil7emI9eS5jcmVhdGVFbGVtZW50KCJhIiksemIuaHJlZj0iIix6Yj16Yi5ocmVmfXliPUdiLmV4ZWMoemIudG9Mb3dlckNhc2UoKSl8fFtdO2Z1bmN0aW9uIExiKGEpe3JldHVybiBmdW5jdGlvbihiLGMpeyJzdHJpbmciIT10eXBlb2YgYiYmKGM9YixiPSIqIik7dmFyIGQsZT0wLGY9Yi50b0xvd2VyQ2FzZSgpLm1hdGNoKEUpfHxbXTtpZihtLmlzRnVuY3Rpb24oYykpd2hpbGUoZD1mW2UrK10pIisiPT09ZC5jaGFyQXQoMCk/KGQ9ZC5zbGljZSgxKXx8IioiLChhW2RdPWFbZF18fFtdKS51bnNoaWZ0KGMpKTooYVtkXT1hW2RdfHxbXSkucHVzaChjKX19ZnVuY3Rpb24gTWIoYSxiLGMsZCl7dmFyIGU9e30sZj1hPT09SWI7ZnVuY3Rpb24gZyhoKXt2YXIgaTtyZXR1cm4gZVtoXT0hMCxtLmVhY2goYVtoXXx8W10sZnVuY3Rpb24oYSxoKXt2YXIgaj1oKGIsYyxkKTtyZXR1cm4ic3RyaW5nIiE9dHlwZW9mIGp8fGZ8fGVbal0/Zj8hKGk9aik6dm9pZCAwOihiLmRhdGFUeXBlcy51bnNoaWZ0KGopLGcoaiksITEpfSksaX1yZXR1cm4gZyhiLmRhdGFUeXBlc1swXSl8fCFlWyIqIl0mJmcoIioiKX1mdW5jdGlvbiBOYihhLGIpe3ZhciBjLGQsZT1tLmFqYXhTZXR0aW5ncy5mbGF0T3B0aW9uc3x8e307Zm9yKGQgaW4gYil2b2lkIDAhPT1iW2RdJiYoKGVbZF0/YTpjfHwoYz17fSkpW2RdPWJbZF0pO3JldHVybiBjJiZtLmV4dGVuZCghMCxhLGMpLGF9ZnVuY3Rpb24gT2IoYSxiLGMpe3ZhciBkLGUsZixnLGg9YS5jb250ZW50cyxpPWEuZGF0YVR5cGVzO3doaWxlKCIqIj09PWlbMF0paS5zaGlmdCgpLHZvaWQgMD09PWUmJihlPWEubWltZVR5cGV8fGIuZ2V0UmVzcG9uc2VIZWFkZXIoIkNvbnRlbnQtVHlwZSIpKTtpZihlKWZvcihnIGluIGgpaWYoaFtnXSYmaFtnXS50ZXN0KGUpKXtpLnVuc2hpZnQoZyk7YnJlYWt9aWYoaVswXWluIGMpZj1pWzBdO2Vsc2V7Zm9yKGcgaW4gYyl7aWYoIWlbMF18fGEuY29udmVydGVyc1tnKyIgIitpWzBdXSl7Zj1nO2JyZWFrfWR8fChkPWcpfWY9Znx8ZH1yZXR1cm4gZj8oZiE9PWlbMF0mJmkudW5zaGlmdChmKSxjW2ZdKTp2b2lkIDB9ZnVuY3Rpb24gUGIoYSxiLGMsZCl7dmFyIGUsZixnLGgsaSxqPXt9LGs9YS5kYXRhVHlwZXMuc2xpY2UoKTtpZihrWzFdKWZvcihnIGluIGEuY29udmVydGVycylqW2cudG9Mb3dlckNhc2UoKV09YS5jb252ZXJ0ZXJzW2ddO2Y9ay5zaGlmdCgpO3doaWxlKGYpaWYoYS5yZXNwb25zZUZpZWxkc1tmXSYmKGNbYS5yZXNwb25zZUZpZWxkc1tmXV09YiksIWkmJmQmJmEuZGF0YUZpbHRlciYmKGI9YS5kYXRhRmlsdGVyKGIsYS5kYXRhVHlwZSkpLGk9ZixmPWsuc2hpZnQoKSlpZigiKiI9PT1mKWY9aTtlbHNlIGlmKCIqIiE9PWkmJmkhPT1mKXtpZihnPWpbaSsiICIrZl18fGpbIiogIitmXSwhZylmb3IoZSBpbiBqKWlmKGg9ZS5zcGxpdCgiICIpLGhbMV09PT1mJiYoZz1qW2krIiAiK2hbMF1dfHxqWyIqICIraFswXV0pKXtnPT09ITA/Zz1qW2VdOmpbZV0hPT0hMCYmKGY9aFswXSxrLnVuc2hpZnQoaFsxXSkpO2JyZWFrfWlmKGchPT0hMClpZihnJiZhWyJ0aHJvd3MiXSliPWcoYik7ZWxzZSB0cnl7Yj1nKGIpfWNhdGNoKGwpe3JldHVybntzdGF0ZToicGFyc2VyZXJyb3IiLGVycm9yOmc/bDoiTm8gY29udmVyc2lvbiBmcm9tICIraSsiIHRvICIrZn19fXJldHVybntzdGF0ZToic3VjY2VzcyIsZGF0YTpifX1tLmV4dGVuZCh7YWN0aXZlOjAsbGFzdE1vZGlmaWVkOnt9LGV0YWc6e30sYWpheFNldHRpbmdzOnt1cmw6emIsdHlwZToiR0VUIixpc0xvY2FsOkRiLnRlc3QoeWJbMV0pLGdsb2JhbDohMCxwcm9jZXNzRGF0YTohMCxhc3luYzohMCxjb250ZW50VHlwZToiYXBwbGljYXRpb24veC13d3ctZm9ybS11cmxlbmNvZGVkOyBjaGFyc2V0PVVURi04IixhY2NlcHRzOnsiKiI6SmIsdGV4dDoidGV4dC9wbGFpbiIsaHRtbDoidGV4dC9odG1sIix4bWw6ImFwcGxpY2F0aW9uL3htbCwgdGV4dC94bWwiLGpzb246ImFwcGxpY2F0aW9uL2pzb24sIHRleHQvamF2YXNjcmlwdCJ9LGNvbnRlbnRzOnt4bWw6L3htbC8saHRtbDovaHRtbC8sanNvbjovanNvbi99LHJlc3BvbnNlRmllbGRzOnt4bWw6InJlc3BvbnNlWE1MIix0ZXh0OiJyZXNwb25zZVRleHQiLGpzb246InJlc3BvbnNlSlNPTiJ9LGNvbnZlcnRlcnM6eyIqIHRleHQiOlN0cmluZywidGV4dCBodG1sIjohMCwidGV4dCBqc29uIjptLnBhcnNlSlNPTiwidGV4dCB4bWwiOm0ucGFyc2VYTUx9LGZsYXRPcHRpb25zOnt1cmw6ITAsY29udGV4dDohMH19LGFqYXhTZXR1cDpmdW5jdGlvbihhLGIpe3JldHVybiBiP05iKE5iKGEsbS5hamF4U2V0dGluZ3MpLGIpOk5iKG0uYWpheFNldHRpbmdzLGEpfSxhamF4UHJlZmlsdGVyOkxiKEhiKSxhamF4VHJhbnNwb3J0OkxiKEliKSxhamF4OmZ1bmN0aW9uKGEsYil7Im9iamVjdCI9PXR5cGVvZiBhJiYoYj1hLGE9dm9pZCAwKSxiPWJ8fHt9O3ZhciBjLGQsZSxmLGcsaCxpLGosaz1tLmFqYXhTZXR1cCh7fSxiKSxsPWsuY29udGV4dHx8ayxuPWsuY29udGV4dCYmKGwubm9kZVR5cGV8fGwuanF1ZXJ5KT9tKGwpOm0uZXZlbnQsbz1tLkRlZmVycmVkKCkscD1tLkNhbGxiYWNrcygib25jZSBtZW1vcnkiKSxxPWsuc3RhdHVzQ29kZXx8e30scj17fSxzPXt9LHQ9MCx1PSJjYW5jZWxlZCIsdj17cmVhZHlTdGF0ZTowLGdldFJlc3BvbnNlSGVhZGVyOmZ1bmN0aW9uKGEpe3ZhciBiO2lmKDI9PT10KXtpZighail7aj17fTt3aGlsZShiPUNiLmV4ZWMoZikpaltiWzFdLnRvTG93ZXJDYXNlKCldPWJbMl19Yj1qW2EudG9Mb3dlckNhc2UoKV19cmV0dXJuIG51bGw9PWI/bnVsbDpifSxnZXRBbGxSZXNwb25zZUhlYWRlcnM6ZnVuY3Rpb24oKXtyZXR1cm4gMj09PXQ/ZjpudWxsfSxzZXRSZXF1ZXN0SGVhZGVyOmZ1bmN0aW9uKGEsYil7dmFyIGM9YS50b0xvd2VyQ2FzZSgpO3JldHVybiB0fHwoYT1zW2NdPXNbY118fGEsclthXT1iKSx0aGlzfSxvdmVycmlkZU1pbWVUeXBlOmZ1bmN0aW9uKGEpe3JldHVybiB0fHwoay5taW1lVHlwZT1hKSx0aGlzfSxzdGF0dXNDb2RlOmZ1bmN0aW9uKGEpe3ZhciBiO2lmKGEpaWYoMj50KWZvcihiIGluIGEpcVtiXT1bcVtiXSxhW2JdXTtlbHNlIHYuYWx3YXlzKGFbdi5zdGF0dXNdKTtyZXR1cm4gdGhpc30sYWJvcnQ6ZnVuY3Rpb24oYSl7dmFyIGI9YXx8dTtyZXR1cm4gaSYmaS5hYm9ydChiKSx4KDAsYiksdGhpc319O2lmKG8ucHJvbWlzZSh2KS5jb21wbGV0ZT1wLmFkZCx2LnN1Y2Nlc3M9di5kb25lLHYuZXJyb3I9di5mYWlsLGsudXJsPSgoYXx8ay51cmx8fHpiKSsiIikucmVwbGFjZShBYiwiIikucmVwbGFjZShGYix5YlsxXSsiLy8iKSxrLnR5cGU9Yi5tZXRob2R8fGIudHlwZXx8ay5tZXRob2R8fGsudHlwZSxrLmRhdGFUeXBlcz1tLnRyaW0oay5kYXRhVHlwZXx8IioiKS50b0xvd2VyQ2FzZSgpLm1hdGNoKEUpfHxbIiJdLG51bGw9PWsuY3Jvc3NEb21haW4mJihjPUdiLmV4ZWMoay51cmwudG9Mb3dlckNhc2UoKSksay5jcm9zc0RvbWFpbj0hKCFjfHxjWzFdPT09eWJbMV0mJmNbMl09PT15YlsyXSYmKGNbM118fCgiaHR0cDoiPT09Y1sxXT8iODAiOiI0NDMiKSk9PT0oeWJbM118fCgiaHR0cDoiPT09eWJbMV0/IjgwIjoiNDQzIikpKSksay5kYXRhJiZrLnByb2Nlc3NEYXRhJiYic3RyaW5nIiE9dHlwZW9mIGsuZGF0YSYmKGsuZGF0YT1tLnBhcmFtKGsuZGF0YSxrLnRyYWRpdGlvbmFsKSksTWIoSGIsayxiLHYpLDI9PT10KXJldHVybiB2O2g9bS5ldmVudCYmay5nbG9iYWwsaCYmMD09PW0uYWN0aXZlKysmJm0uZXZlbnQudHJpZ2dlcigiYWpheFN0YXJ0Iiksay50eXBlPWsudHlwZS50b1VwcGVyQ2FzZSgpLGsuaGFzQ29udGVudD0hRWIudGVzdChrLnR5cGUpLGU9ay51cmwsay5oYXNDb250ZW50fHwoay5kYXRhJiYoZT1rLnVybCs9KHdiLnRlc3QoZSk/IiYiOiI/Iikray5kYXRhLGRlbGV0ZSBrLmRhdGEpLGsuY2FjaGU9PT0hMSYmKGsudXJsPUJiLnRlc3QoZSk/ZS5yZXBsYWNlKEJiLCIkMV89Iit2YisrKTplKyh3Yi50ZXN0KGUpPyImIjoiPyIpKyJfPSIrdmIrKykpLGsuaWZNb2RpZmllZCYmKG0ubGFzdE1vZGlmaWVkW2VdJiZ2LnNldFJlcXVlc3RIZWFkZXIoIklmLU1vZGlmaWVkLVNpbmNlIixtLmxhc3RNb2RpZmllZFtlXSksbS5ldGFnW2VdJiZ2LnNldFJlcXVlc3RIZWFkZXIoIklmLU5vbmUtTWF0Y2giLG0uZXRhZ1tlXSkpLChrLmRhdGEmJmsuaGFzQ29udGVudCYmay5jb250ZW50VHlwZSE9PSExfHxiLmNvbnRlbnRUeXBlKSYmdi5zZXRSZXF1ZXN0SGVhZGVyKCJDb250ZW50LVR5cGUiLGsuY29udGVudFR5cGUpLHYuc2V0UmVxdWVzdEhlYWRlcigiQWNjZXB0IixrLmRhdGFUeXBlc1swXSYmay5hY2NlcHRzW2suZGF0YVR5cGVzWzBdXT9rLmFjY2VwdHNbay5kYXRhVHlwZXNbMF1dKygiKiIhPT1rLmRhdGFUeXBlc1swXT8iLCAiK0piKyI7IHE9MC4wMSI6IiIpOmsuYWNjZXB0c1siKiJdKTtmb3IoZCBpbiBrLmhlYWRlcnMpdi5zZXRSZXF1ZXN0SGVhZGVyKGQsay5oZWFkZXJzW2RdKTtpZihrLmJlZm9yZVNlbmQmJihrLmJlZm9yZVNlbmQuY2FsbChsLHYsayk9PT0hMXx8Mj09PXQpKXJldHVybiB2LmFib3J0KCk7dT0iYWJvcnQiO2ZvcihkIGlue3N1Y2Nlc3M6MSxlcnJvcjoxLGNvbXBsZXRlOjF9KXZbZF0oa1tkXSk7aWYoaT1NYihJYixrLGIsdikpe3YucmVhZHlTdGF0ZT0xLGgmJm4udHJpZ2dlcigiYWpheFNlbmQiLFt2LGtdKSxrLmFzeW5jJiZrLnRpbWVvdXQ+MCYmKGc9c2V0VGltZW91dChmdW5jdGlvbigpe3YuYWJvcnQoInRpbWVvdXQiKX0say50aW1lb3V0KSk7dHJ5e3Q9MSxpLnNlbmQocix4KX1jYXRjaCh3KXtpZighKDI+dCkpdGhyb3cgdzt4KC0xLHcpfX1lbHNlIHgoLTEsIk5vIFRyYW5zcG9ydCIpO2Z1bmN0aW9uIHgoYSxiLGMsZCl7dmFyIGoscixzLHUsdyx4PWI7MiE9PXQmJih0PTIsZyYmY2xlYXJUaW1lb3V0KGcpLGk9dm9pZCAwLGY9ZHx8IiIsdi5yZWFkeVN0YXRlPWE+MD80OjAsaj1hPj0yMDAmJjMwMD5hfHwzMDQ9PT1hLGMmJih1PU9iKGssdixjKSksdT1QYihrLHUsdixqKSxqPyhrLmlmTW9kaWZpZWQmJih3PXYuZ2V0UmVzcG9uc2VIZWFkZXIoIkxhc3QtTW9kaWZpZWQiKSx3JiYobS5sYXN0TW9kaWZpZWRbZV09dyksdz12LmdldFJlc3BvbnNlSGVhZGVyKCJldGFnIiksdyYmKG0uZXRhZ1tlXT13KSksMjA0PT09YXx8IkhFQUQiPT09ay50eXBlP3g9Im5vY29udGVudCI6MzA0PT09YT94PSJub3Rtb2RpZmllZCI6KHg9dS5zdGF0ZSxyPXUuZGF0YSxzPXUuZXJyb3Isaj0hcykpOihzPXgsKGF8fCF4KSYmKHg9ImVycm9yIiwwPmEmJihhPTApKSksdi5zdGF0dXM9YSx2LnN0YXR1c1RleHQ9KGJ8fHgpKyIiLGo/by5yZXNvbHZlV2l0aChsLFtyLHgsdl0pOm8ucmVqZWN0V2l0aChsLFt2LHgsc10pLHYuc3RhdHVzQ29kZShxKSxxPXZvaWQgMCxoJiZuLnRyaWdnZXIoaj8iYWpheFN1Y2Nlc3MiOiJhamF4RXJyb3IiLFt2LGssaj9yOnNdKSxwLmZpcmVXaXRoKGwsW3YseF0pLGgmJihuLnRyaWdnZXIoImFqYXhDb21wbGV0ZSIsW3Ysa10pLC0tbS5hY3RpdmV8fG0uZXZlbnQudHJpZ2dlcigiYWpheFN0b3AiKSkpfXJldHVybiB2fSxnZXRKU09OOmZ1bmN0aW9uKGEsYixjKXtyZXR1cm4gbS5nZXQoYSxiLGMsImpzb24iKX0sZ2V0U2NyaXB0OmZ1bmN0aW9uKGEsYil7cmV0dXJuIG0uZ2V0KGEsdm9pZCAwLGIsInNjcmlwdCIpfX0pLG0uZWFjaChbImdldCIsInBvc3QiXSxmdW5jdGlvbihhLGIpe21bYl09ZnVuY3Rpb24oYSxjLGQsZSl7cmV0dXJuIG0uaXNGdW5jdGlvbihjKSYmKGU9ZXx8ZCxkPWMsYz12b2lkIDApLG0uYWpheCh7dXJsOmEsdHlwZTpiLGRhdGFUeXBlOmUsZGF0YTpjLHN1Y2Nlc3M6ZH0pfX0pLG0uX2V2YWxVcmw9ZnVuY3Rpb24oYSl7cmV0dXJuIG0uYWpheCh7dXJsOmEsdHlwZToiR0VUIixkYXRhVHlwZToic2NyaXB0Iixhc3luYzohMSxnbG9iYWw6ITEsInRocm93cyI6ITB9KX0sbS5mbi5leHRlbmQoe3dyYXBBbGw6ZnVuY3Rpb24oYSl7aWYobS5pc0Z1bmN0aW9uKGEpKXJldHVybiB0aGlzLmVhY2goZnVuY3Rpb24oYil7bSh0aGlzKS53cmFwQWxsKGEuY2FsbCh0aGlzLGIpKX0pO2lmKHRoaXNbMF0pe3ZhciBiPW0oYSx0aGlzWzBdLm93bmVyRG9jdW1lbnQpLmVxKDApLmNsb25lKCEwKTt0aGlzWzBdLnBhcmVudE5vZGUmJmIuaW5zZXJ0QmVmb3JlKHRoaXNbMF0pLGIubWFwKGZ1bmN0aW9uKCl7dmFyIGE9dGhpczt3aGlsZShhLmZpcnN0Q2hpbGQmJjE9PT1hLmZpcnN0Q2hpbGQubm9kZVR5cGUpYT1hLmZpcnN0Q2hpbGQ7cmV0dXJuIGF9KS5hcHBlbmQodGhpcyl9cmV0dXJuIHRoaXN9LHdyYXBJbm5lcjpmdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5lYWNoKG0uaXNGdW5jdGlvbihhKT9mdW5jdGlvbihiKXttKHRoaXMpLndyYXBJbm5lcihhLmNhbGwodGhpcyxiKSl9OmZ1bmN0aW9uKCl7dmFyIGI9bSh0aGlzKSxjPWIuY29udGVudHMoKTtjLmxlbmd0aD9jLndyYXBBbGwoYSk6Yi5hcHBlbmQoYSl9KX0sd3JhcDpmdW5jdGlvbihhKXt2YXIgYj1tLmlzRnVuY3Rpb24oYSk7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbihjKXttKHRoaXMpLndyYXBBbGwoYj9hLmNhbGwodGhpcyxjKTphKX0pfSx1bndyYXA6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5wYXJlbnQoKS5lYWNoKGZ1bmN0aW9uKCl7bS5ub2RlTmFtZSh0aGlzLCJib2R5Iil8fG0odGhpcykucmVwbGFjZVdpdGgodGhpcy5jaGlsZE5vZGVzKX0pLmVuZCgpfX0pLG0uZXhwci5maWx0ZXJzLmhpZGRlbj1mdW5jdGlvbihhKXtyZXR1cm4gYS5vZmZzZXRXaWR0aDw9MCYmYS5vZmZzZXRIZWlnaHQ8PTB8fCFrLnJlbGlhYmxlSGlkZGVuT2Zmc2V0cygpJiYibm9uZSI9PT0oYS5zdHlsZSYmYS5zdHlsZS5kaXNwbGF5fHxtLmNzcyhhLCJkaXNwbGF5IikpfSxtLmV4cHIuZmlsdGVycy52aXNpYmxlPWZ1bmN0aW9uKGEpe3JldHVybiFtLmV4cHIuZmlsdGVycy5oaWRkZW4oYSl9O3ZhciBRYj0vJTIwL2csUmI9L1xbXF0kLyxTYj0vXHI/XG4vZyxUYj0vXig/OnN1Ym1pdHxidXR0b258aW1hZ2V8cmVzZXR8ZmlsZSkkL2ksVWI9L14oPzppbnB1dHxzZWxlY3R8dGV4dGFyZWF8a2V5Z2VuKS9pO2Z1bmN0aW9uIFZiKGEsYixjLGQpe3ZhciBlO2lmKG0uaXNBcnJheShiKSltLmVhY2goYixmdW5jdGlvbihiLGUpe2N8fFJiLnRlc3QoYSk/ZChhLGUpOlZiKGErIlsiKygib2JqZWN0Ij09dHlwZW9mIGU/YjoiIikrIl0iLGUsYyxkKX0pO2Vsc2UgaWYoY3x8Im9iamVjdCIhPT1tLnR5cGUoYikpZChhLGIpO2Vsc2UgZm9yKGUgaW4gYilWYihhKyJbIitlKyJdIixiW2VdLGMsZCl9bS5wYXJhbT1mdW5jdGlvbihhLGIpe3ZhciBjLGQ9W10sZT1mdW5jdGlvbihhLGIpe2I9bS5pc0Z1bmN0aW9uKGIpP2IoKTpudWxsPT1iPyIiOmIsZFtkLmxlbmd0aF09ZW5jb2RlVVJJQ29tcG9uZW50KGEpKyI9IitlbmNvZGVVUklDb21wb25lbnQoYil9O2lmKHZvaWQgMD09PWImJihiPW0uYWpheFNldHRpbmdzJiZtLmFqYXhTZXR0aW5ncy50cmFkaXRpb25hbCksbS5pc0FycmF5KGEpfHxhLmpxdWVyeSYmIW0uaXNQbGFpbk9iamVjdChhKSltLmVhY2goYSxmdW5jdGlvbigpe2UodGhpcy5uYW1lLHRoaXMudmFsdWUpfSk7ZWxzZSBmb3IoYyBpbiBhKVZiKGMsYVtjXSxiLGUpO3JldHVybiBkLmpvaW4oIiYiKS5yZXBsYWNlKFFiLCIrIil9LG0uZm4uZXh0ZW5kKHtzZXJpYWxpemU6ZnVuY3Rpb24oKXtyZXR1cm4gbS5wYXJhbSh0aGlzLnNlcmlhbGl6ZUFycmF5KCkpfSxzZXJpYWxpemVBcnJheTpmdW5jdGlvbigpe3JldHVybiB0aGlzLm1hcChmdW5jdGlvbigpe3ZhciBhPW0ucHJvcCh0aGlzLCJlbGVtZW50cyIpO3JldHVybiBhP20ubWFrZUFycmF5KGEpOnRoaXN9KS5maWx0ZXIoZnVuY3Rpb24oKXt2YXIgYT10aGlzLnR5cGU7cmV0dXJuIHRoaXMubmFtZSYmIW0odGhpcykuaXMoIjpkaXNhYmxlZCIpJiZVYi50ZXN0KHRoaXMubm9kZU5hbWUpJiYhVGIudGVzdChhKSYmKHRoaXMuY2hlY2tlZHx8IVcudGVzdChhKSl9KS5tYXAoZnVuY3Rpb24oYSxiKXt2YXIgYz1tKHRoaXMpLnZhbCgpO3JldHVybiBudWxsPT1jP251bGw6bS5pc0FycmF5KGMpP20ubWFwKGMsZnVuY3Rpb24oYSl7cmV0dXJue25hbWU6Yi5uYW1lLHZhbHVlOmEucmVwbGFjZShTYiwiXHJcbiIpfX0pOntuYW1lOmIubmFtZSx2YWx1ZTpjLnJlcGxhY2UoU2IsIlxyXG4iKX19KS5nZXQoKX19KSxtLmFqYXhTZXR0aW5ncy54aHI9dm9pZCAwIT09YS5BY3RpdmVYT2JqZWN0P2Z1bmN0aW9uKCl7cmV0dXJuIXRoaXMuaXNMb2NhbCYmL14oZ2V0fHBvc3R8aGVhZHxwdXR8ZGVsZXRlfG9wdGlvbnMpJC9pLnRlc3QodGhpcy50eXBlKSYmWmIoKXx8JGIoKX06WmI7dmFyIFdiPTAsWGI9e30sWWI9bS5hamF4U2V0dGluZ3MueGhyKCk7YS5hdHRhY2hFdmVudCYmYS5hdHRhY2hFdmVudCgib251bmxvYWQiLGZ1bmN0aW9uKCl7Zm9yKHZhciBhIGluIFhiKVhiW2FdKHZvaWQgMCwhMCl9KSxrLmNvcnM9ISFZYiYmIndpdGhDcmVkZW50aWFscyJpbiBZYixZYj1rLmFqYXg9ISFZYixZYiYmbS5hamF4VHJhbnNwb3J0KGZ1bmN0aW9uKGEpe2lmKCFhLmNyb3NzRG9tYWlufHxrLmNvcnMpe3ZhciBiO3JldHVybntzZW5kOmZ1bmN0aW9uKGMsZCl7dmFyIGUsZj1hLnhocigpLGc9KytXYjtpZihmLm9wZW4oYS50eXBlLGEudXJsLGEuYXN5bmMsYS51c2VybmFtZSxhLnBhc3N3b3JkKSxhLnhockZpZWxkcylmb3IoZSBpbiBhLnhockZpZWxkcylmW2VdPWEueGhyRmllbGRzW2VdO2EubWltZVR5cGUmJmYub3ZlcnJpZGVNaW1lVHlwZSYmZi5vdmVycmlkZU1pbWVUeXBlKGEubWltZVR5cGUpLGEuY3Jvc3NEb21haW58fGNbIlgtUmVxdWVzdGVkLVdpdGgiXXx8KGNbIlgtUmVxdWVzdGVkLVdpdGgiXT0iWE1MSHR0cFJlcXVlc3QiKTtmb3IoZSBpbiBjKXZvaWQgMCE9PWNbZV0mJmYuc2V0UmVxdWVzdEhlYWRlcihlLGNbZV0rIiIpO2Yuc2VuZChhLmhhc0NvbnRlbnQmJmEuZGF0YXx8bnVsbCksYj1mdW5jdGlvbihjLGUpe3ZhciBoLGksajtpZihiJiYoZXx8ND09PWYucmVhZHlTdGF0ZSkpaWYoZGVsZXRlIFhiW2ddLGI9dm9pZCAwLGYub25yZWFkeXN0YXRlY2hhbmdlPW0ubm9vcCxlKTQhPT1mLnJlYWR5U3RhdGUmJmYuYWJvcnQoKTtlbHNle2o9e30saD1mLnN0YXR1cywic3RyaW5nIj09dHlwZW9mIGYucmVzcG9uc2VUZXh0JiYoai50ZXh0PWYucmVzcG9uc2VUZXh0KTt0cnl7aT1mLnN0YXR1c1RleHR9Y2F0Y2goayl7aT0iIn1ofHwhYS5pc0xvY2FsfHxhLmNyb3NzRG9tYWluPzEyMjM9PT1oJiYoaD0yMDQpOmg9ai50ZXh0PzIwMDo0MDR9aiYmZChoLGksaixmLmdldEFsbFJlc3BvbnNlSGVhZGVycygpKX0sYS5hc3luYz80PT09Zi5yZWFkeVN0YXRlP3NldFRpbWVvdXQoYik6Zi5vbnJlYWR5c3RhdGVjaGFuZ2U9WGJbZ109YjpiKCl9LGFib3J0OmZ1bmN0aW9uKCl7YiYmYih2b2lkIDAsITApfX19fSk7ZnVuY3Rpb24gWmIoKXt0cnl7cmV0dXJuIG5ldyBhLlhNTEh0dHBSZXF1ZXN0fWNhdGNoKGIpe319ZnVuY3Rpb24gJGIoKXt0cnl7cmV0dXJuIG5ldyBhLkFjdGl2ZVhPYmplY3QoIk1pY3Jvc29mdC5YTUxIVFRQIil9Y2F0Y2goYil7fX1tLmFqYXhTZXR1cCh7YWNjZXB0czp7c2NyaXB0OiJ0ZXh0L2phdmFzY3JpcHQsIGFwcGxpY2F0aW9uL2phdmFzY3JpcHQsIGFwcGxpY2F0aW9uL2VjbWFzY3JpcHQsIGFwcGxpY2F0aW9uL3gtZWNtYXNjcmlwdCJ9LGNvbnRlbnRzOntzY3JpcHQ6Lyg/OmphdmF8ZWNtYSlzY3JpcHQvfSxjb252ZXJ0ZXJzOnsidGV4dCBzY3JpcHQiOmZ1bmN0aW9uKGEpe3JldHVybiBtLmdsb2JhbEV2YWwoYSksYX19fSksbS5hamF4UHJlZmlsdGVyKCJzY3JpcHQiLGZ1bmN0aW9uKGEpe3ZvaWQgMD09PWEuY2FjaGUmJihhLmNhY2hlPSExKSxhLmNyb3NzRG9tYWluJiYoYS50eXBlPSJHRVQiLGEuZ2xvYmFsPSExKX0pLG0uYWpheFRyYW5zcG9ydCgic2NyaXB0IixmdW5jdGlvbihhKXtpZihhLmNyb3NzRG9tYWluKXt2YXIgYixjPXkuaGVhZHx8bSgiaGVhZCIpWzBdfHx5LmRvY3VtZW50RWxlbWVudDtyZXR1cm57c2VuZDpmdW5jdGlvbihkLGUpe2I9eS5jcmVhdGVFbGVtZW50KCJzY3JpcHQiKSxiLmFzeW5jPSEwLGEuc2NyaXB0Q2hhcnNldCYmKGIuY2hhcnNldD1hLnNjcmlwdENoYXJzZXQpLGIuc3JjPWEudXJsLGIub25sb2FkPWIub25yZWFkeXN0YXRlY2hhbmdlPWZ1bmN0aW9uKGEsYyl7KGN8fCFiLnJlYWR5U3RhdGV8fC9sb2FkZWR8Y29tcGxldGUvLnRlc3QoYi5yZWFkeVN0YXRlKSkmJihiLm9ubG9hZD1iLm9ucmVhZHlzdGF0ZWNoYW5nZT1udWxsLGIucGFyZW50Tm9kZSYmYi5wYXJlbnROb2RlLnJlbW92ZUNoaWxkKGIpLGI9bnVsbCxjfHxlKDIwMCwic3VjY2VzcyIpKX0sYy5pbnNlcnRCZWZvcmUoYixjLmZpcnN0Q2hpbGQpfSxhYm9ydDpmdW5jdGlvbigpe2ImJmIub25sb2FkKHZvaWQgMCwhMCl9fX19KTt2YXIgX2I9W10sYWM9Lyg9KVw/KD89JnwkKXxcP1w/LzttLmFqYXhTZXR1cCh7anNvbnA6ImNhbGxiYWNrIixqc29ucENhbGxiYWNrOmZ1bmN0aW9uKCl7dmFyIGE9X2IucG9wKCl8fG0uZXhwYW5kbysiXyIrdmIrKztyZXR1cm4gdGhpc1thXT0hMCxhfX0pLG0uYWpheFByZWZpbHRlcigianNvbiBqc29ucCIsZnVuY3Rpb24oYixjLGQpe3ZhciBlLGYsZyxoPWIuanNvbnAhPT0hMSYmKGFjLnRlc3QoYi51cmwpPyJ1cmwiOiJzdHJpbmciPT10eXBlb2YgYi5kYXRhJiYhKGIuY29udGVudFR5cGV8fCIiKS5pbmRleE9mKCJhcHBsaWNhdGlvbi94LXd3dy1mb3JtLXVybGVuY29kZWQiKSYmYWMudGVzdChiLmRhdGEpJiYiZGF0YSIpO3JldHVybiBofHwianNvbnAiPT09Yi5kYXRhVHlwZXNbMF0/KGU9Yi5qc29ucENhbGxiYWNrPW0uaXNGdW5jdGlvbihiLmpzb25wQ2FsbGJhY2spP2IuanNvbnBDYWxsYmFjaygpOmIuanNvbnBDYWxsYmFjayxoP2JbaF09YltoXS5yZXBsYWNlKGFjLCIkMSIrZSk6Yi5qc29ucCE9PSExJiYoYi51cmwrPSh3Yi50ZXN0KGIudXJsKT8iJiI6Ij8iKStiLmpzb25wKyI9IitlKSxiLmNvbnZlcnRlcnNbInNjcmlwdCBqc29uIl09ZnVuY3Rpb24oKXtyZXR1cm4gZ3x8bS5lcnJvcihlKyIgd2FzIG5vdCBjYWxsZWQiKSxnWzBdfSxiLmRhdGFUeXBlc1swXT0ianNvbiIsZj1hW2VdLGFbZV09ZnVuY3Rpb24oKXtnPWFyZ3VtZW50c30sZC5hbHdheXMoZnVuY3Rpb24oKXthW2VdPWYsYltlXSYmKGIuanNvbnBDYWxsYmFjaz1jLmpzb25wQ2FsbGJhY2ssX2IucHVzaChlKSksZyYmbS5pc0Z1bmN0aW9uKGYpJiZmKGdbMF0pLGc9Zj12b2lkIDB9KSwic2NyaXB0Iik6dm9pZCAwfSksbS5wYXJzZUhUTUw9ZnVuY3Rpb24oYSxiLGMpe2lmKCFhfHwic3RyaW5nIiE9dHlwZW9mIGEpcmV0dXJuIG51bGw7ImJvb2xlYW4iPT10eXBlb2YgYiYmKGM9YixiPSExKSxiPWJ8fHk7dmFyIGQ9dS5leGVjKGEpLGU9IWMmJltdO3JldHVybiBkP1tiLmNyZWF0ZUVsZW1lbnQoZFsxXSldOihkPW0uYnVpbGRGcmFnbWVudChbYV0sYixlKSxlJiZlLmxlbmd0aCYmbShlKS5yZW1vdmUoKSxtLm1lcmdlKFtdLGQuY2hpbGROb2RlcykpfTt2YXIgYmM9bS5mbi5sb2FkO20uZm4ubG9hZD1mdW5jdGlvbihhLGIsYyl7aWYoInN0cmluZyIhPXR5cGVvZiBhJiZiYylyZXR1cm4gYmMuYXBwbHkodGhpcyxhcmd1bWVudHMpO3ZhciBkLGUsZixnPXRoaXMsaD1hLmluZGV4T2YoIiAiKTtyZXR1cm4gaD49MCYmKGQ9bS50cmltKGEuc2xpY2UoaCxhLmxlbmd0aCkpLGE9YS5zbGljZSgwLGgpKSxtLmlzRnVuY3Rpb24oYik/KGM9YixiPXZvaWQgMCk6YiYmIm9iamVjdCI9PXR5cGVvZiBiJiYoZj0iUE9TVCIpLGcubGVuZ3RoPjAmJm0uYWpheCh7dXJsOmEsdHlwZTpmLGRhdGFUeXBlOiJodG1sIixkYXRhOmJ9KS5kb25lKGZ1bmN0aW9uKGEpe2U9YXJndW1lbnRzLGcuaHRtbChkP20oIjxkaXY+IikuYXBwZW5kKG0ucGFyc2VIVE1MKGEpKS5maW5kKGQpOmEpfSkuY29tcGxldGUoYyYmZnVuY3Rpb24oYSxiKXtnLmVhY2goYyxlfHxbYS5yZXNwb25zZVRleHQsYixhXSl9KSx0aGlzfSxtLmVhY2goWyJhamF4U3RhcnQiLCJhamF4U3RvcCIsImFqYXhDb21wbGV0ZSIsImFqYXhFcnJvciIsImFqYXhTdWNjZXNzIiwiYWpheFNlbmQiXSxmdW5jdGlvbihhLGIpe20uZm5bYl09ZnVuY3Rpb24oYSl7cmV0dXJuIHRoaXMub24oYixhKX19KSxtLmV4cHIuZmlsdGVycy5hbmltYXRlZD1mdW5jdGlvbihhKXtyZXR1cm4gbS5ncmVwKG0udGltZXJzLGZ1bmN0aW9uKGIpe3JldHVybiBhPT09Yi5lbGVtfSkubGVuZ3RofTt2YXIgY2M9YS5kb2N1bWVudC5kb2N1bWVudEVsZW1lbnQ7ZnVuY3Rpb24gZGMoYSl7cmV0dXJuIG0uaXNXaW5kb3coYSk/YTo5PT09YS5ub2RlVHlwZT9hLmRlZmF1bHRWaWV3fHxhLnBhcmVudFdpbmRvdzohMX1tLm9mZnNldD17c2V0T2Zmc2V0OmZ1bmN0aW9uKGEsYixjKXt2YXIgZCxlLGYsZyxoLGksaixrPW0uY3NzKGEsInBvc2l0aW9uIiksbD1tKGEpLG49e307InN0YXRpYyI9PT1rJiYoYS5zdHlsZS5wb3NpdGlvbj0icmVsYXRpdmUiKSxoPWwub2Zmc2V0KCksZj1tLmNzcyhhLCJ0b3AiKSxpPW0uY3NzKGEsImxlZnQiKSxqPSgiYWJzb2x1dGUiPT09a3x8ImZpeGVkIj09PWspJiZtLmluQXJyYXkoImF1dG8iLFtmLGldKT4tMSxqPyhkPWwucG9zaXRpb24oKSxnPWQudG9wLGU9ZC5sZWZ0KTooZz1wYXJzZUZsb2F0KGYpfHwwLGU9cGFyc2VGbG9hdChpKXx8MCksbS5pc0Z1bmN0aW9uKGIpJiYoYj1iLmNhbGwoYSxjLGgpKSxudWxsIT1iLnRvcCYmKG4udG9wPWIudG9wLWgudG9wK2cpLG51bGwhPWIubGVmdCYmKG4ubGVmdD1iLmxlZnQtaC5sZWZ0K2UpLCJ1c2luZyJpbiBiP2IudXNpbmcuY2FsbChhLG4pOmwuY3NzKG4pfX0sbS5mbi5leHRlbmQoe29mZnNldDpmdW5jdGlvbihhKXtpZihhcmd1bWVudHMubGVuZ3RoKXJldHVybiB2b2lkIDA9PT1hP3RoaXM6dGhpcy5lYWNoKGZ1bmN0aW9uKGIpe20ub2Zmc2V0LnNldE9mZnNldCh0aGlzLGEsYil9KTt2YXIgYixjLGQ9e3RvcDowLGxlZnQ6MH0sZT10aGlzWzBdLGY9ZSYmZS5vd25lckRvY3VtZW50O2lmKGYpcmV0dXJuIGI9Zi5kb2N1bWVudEVsZW1lbnQsbS5jb250YWlucyhiLGUpPyh0eXBlb2YgZS5nZXRCb3VuZGluZ0NsaWVudFJlY3QhPT1LJiYoZD1lLmdldEJvdW5kaW5nQ2xpZW50UmVjdCgpKSxjPWRjKGYpLHt0b3A6ZC50b3ArKGMucGFnZVlPZmZzZXR8fGIuc2Nyb2xsVG9wKS0oYi5jbGllbnRUb3B8fDApLGxlZnQ6ZC5sZWZ0KyhjLnBhZ2VYT2Zmc2V0fHxiLnNjcm9sbExlZnQpLShiLmNsaWVudExlZnR8fDApfSk6ZH0scG9zaXRpb246ZnVuY3Rpb24oKXtpZih0aGlzWzBdKXt2YXIgYSxiLGM9e3RvcDowLGxlZnQ6MH0sZD10aGlzWzBdO3JldHVybiJmaXhlZCI9PT1tLmNzcyhkLCJwb3NpdGlvbiIpP2I9ZC5nZXRCb3VuZGluZ0NsaWVudFJlY3QoKTooYT10aGlzLm9mZnNldFBhcmVudCgpLGI9dGhpcy5vZmZzZXQoKSxtLm5vZGVOYW1lKGFbMF0sImh0bWwiKXx8KGM9YS5vZmZzZXQoKSksYy50b3ArPW0uY3NzKGFbMF0sImJvcmRlclRvcFdpZHRoIiwhMCksYy5sZWZ0Kz1tLmNzcyhhWzBdLCJib3JkZXJMZWZ0V2lkdGgiLCEwKSkse3RvcDpiLnRvcC1jLnRvcC1tLmNzcyhkLCJtYXJnaW5Ub3AiLCEwKSxsZWZ0OmIubGVmdC1jLmxlZnQtbS5jc3MoZCwibWFyZ2luTGVmdCIsITApfX19LG9mZnNldFBhcmVudDpmdW5jdGlvbigpe3JldHVybiB0aGlzLm1hcChmdW5jdGlvbigpe3ZhciBhPXRoaXMub2Zmc2V0UGFyZW50fHxjYzt3aGlsZShhJiYhbS5ub2RlTmFtZShhLCJodG1sIikmJiJzdGF0aWMiPT09bS5jc3MoYSwicG9zaXRpb24iKSlhPWEub2Zmc2V0UGFyZW50O3JldHVybiBhfHxjY30pfX0pLG0uZWFjaCh7c2Nyb2xsTGVmdDoicGFnZVhPZmZzZXQiLHNjcm9sbFRvcDoicGFnZVlPZmZzZXQifSxmdW5jdGlvbihhLGIpe3ZhciBjPS9ZLy50ZXN0KGIpO20uZm5bYV09ZnVuY3Rpb24oZCl7cmV0dXJuIFYodGhpcyxmdW5jdGlvbihhLGQsZSl7dmFyIGY9ZGMoYSk7cmV0dXJuIHZvaWQgMD09PWU/Zj9iIGluIGY/ZltiXTpmLmRvY3VtZW50LmRvY3VtZW50RWxlbWVudFtkXTphW2RdOnZvaWQoZj9mLnNjcm9sbFRvKGM/bShmKS5zY3JvbGxMZWZ0KCk6ZSxjP2U6bShmKS5zY3JvbGxUb3AoKSk6YVtkXT1lKX0sYSxkLGFyZ3VtZW50cy5sZW5ndGgsbnVsbCl9fSksbS5lYWNoKFsidG9wIiwibGVmdCJdLGZ1bmN0aW9uKGEsYil7bS5jc3NIb29rc1tiXT1MYShrLnBpeGVsUG9zaXRpb24sZnVuY3Rpb24oYSxjKXtyZXR1cm4gYz8oYz1KYShhLGIpLEhhLnRlc3QoYyk/bShhKS5wb3NpdGlvbigpW2JdKyJweCI6Yyk6dm9pZCAwfSl9KSxtLmVhY2goe0hlaWdodDoiaGVpZ2h0IixXaWR0aDoid2lkdGgifSxmdW5jdGlvbihhLGIpe20uZWFjaCh7cGFkZGluZzoiaW5uZXIiK2EsY29udGVudDpiLCIiOiJvdXRlciIrYX0sZnVuY3Rpb24oYyxkKXttLmZuW2RdPWZ1bmN0aW9uKGQsZSl7dmFyIGY9YXJndW1lbnRzLmxlbmd0aCYmKGN8fCJib29sZWFuIiE9dHlwZW9mIGQpLGc9Y3x8KGQ9PT0hMHx8ZT09PSEwPyJtYXJnaW4iOiJib3JkZXIiKTtyZXR1cm4gVih0aGlzLGZ1bmN0aW9uKGIsYyxkKXt2YXIgZTtyZXR1cm4gbS5pc1dpbmRvdyhiKT9iLmRvY3VtZW50LmRvY3VtZW50RWxlbWVudFsiY2xpZW50IithXTo5PT09Yi5ub2RlVHlwZT8oZT1iLmRvY3VtZW50RWxlbWVudCxNYXRoLm1heChiLmJvZHlbInNjcm9sbCIrYV0sZVsic2Nyb2xsIithXSxiLmJvZHlbIm9mZnNldCIrYV0sZVsib2Zmc2V0IithXSxlWyJjbGllbnQiK2FdKSk6dm9pZCAwPT09ZD9tLmNzcyhiLGMsZyk6bS5zdHlsZShiLGMsZCxnKX0sYixmP2Q6dm9pZCAwLGYsbnVsbCl9fSl9KSxtLmZuLnNpemU9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5sZW5ndGh9LG0uZm4uYW5kU2VsZj1tLmZuLmFkZEJhY2ssImZ1bmN0aW9uIj09dHlwZW9mIGRlZmluZSYmZGVmaW5lLmFtZCYmZGVmaW5lKCJqcXVlcnkiLFtdLGZ1bmN0aW9uKCl7cmV0dXJuIG19KTt2YXIgZWM9YS5qUXVlcnksZmM9YS4kO3JldHVybiBtLm5vQ29uZmxpY3Q9ZnVuY3Rpb24oYil7cmV0dXJuIGEuJD09PW0mJihhLiQ9ZmMpLGImJmEualF1ZXJ5PT09bSYmKGEualF1ZXJ5PWVjKSxtfSx0eXBlb2YgYj09PUsmJihhLmpRdWVyeT1hLiQ9bSksbX0pOwo="></script> +<meta name="viewport" content="width=device-width, initial-scale=1" /> +<link href="data:text/css;charset=utf-8,%40font%2Dface%20%7B%0Afont%2Dfamily%3A%20%27News%20Cycle%27%3B%0Afont%2Dstyle%3A%20normal%3B%0Afont%2Dweight%3A%20400%3B%0Asrc%3A%20url%28data%3Aapplication%2Fx%2Dfont%2Dtruetype%3Bbase64%2CAAEAAAARAQAABAAQR0RFRgQsBFIAAElEAAAAPEdQT1O3B5rQAABJgAAAJjZHU1VC3ebepgAAb7gAAAB0T1MvMmiOrlIAAEEoAAAAVmNtYXCkB54CAABBgAAAAMxjdnQgEGkOKgAARVgAAABeZnBnbQ%2B0L6cAAEJMAAACZWdhc3AAAAAQAABJPAAAAAhnbHlmQGCSZAAAARwAADpgaGVhZP8gX3UAAD1YAAAANmhoZWETpwnVAABBBAAAACRobXR4Iko%2BeQAAPZAAAAN0bG9jYa%2FcvsoAADucAAABvG1heHACEwDUAAA7fAAAACBuYW1lEfsunQAARbgAAAEgcG9zdCrpc1AAAEbYAAACYXByZXCIwunjAABEtAAAAKIAAgBEAAACZAVVAAMABwAAMxEhESUhESFEAiD%2BJAGY%2FmgFVfqrRATNAAIAXAAAAPIFpgADAAcAADM1MxUDMwMjXJaWlhdolpYFpvuG%2F%2F8ARgQWAfsFphAnAA8BCQUQEAcADwAABRAAAAACAJMAAASYBe0AGwAfAAATNTMRIzUzETMRIREzETMVIxEzFSMRIxEhESMRNyERIZPt7e2EARqE9vb29oT%2B5oSEARr%2B5gHofAE%2FfAHO%2FjIBzv4yfP7BfP4YAej%2BGAHofAE%2FAAAAAwCd%2FysELwYcAC8ANwA%2BAAATND4BNzUzFRYXHgEXByYnJicRFxYXFhUUDgIjFSM1JicmLwE3Mh4BFxYXESYnJgAGFBYXFhcREz4BNCYvAZ1SommU02EIEgJ4ECRDYVCNWWtRWZhflKx0Gw0NdgENHhc3ZchORwEAbB8gMFqUhodXbUkEfkyddhAvLReqDSMDQDMoSRL91RoxV2q5XZdaPcvYI3scEhJOGyoXNxoCYk5kWwFrgqJZHSkiAfj7AwKW3YEtHAAAAAAFAEMAAAP%2BBesABwAPABcAHwAjAAASNDYyFhQGIgIUFjI2NCYiEjQ2MhYUBiICFBYyNjQmIgkBFwFRldSVldQ1XYJdXYLyldSVldQ1XYJdXYL9hgNFcvy8BHDUlZXUlQFAgl1dgl37KdSVldSVAUCCXV2CXf6ZBalC%2BlcAAwBu%2F%2FUFEQYAACMALwA5AAATNjcmEDYgFhUUBwYHFhc%2BATUzFAYHFhcWMxUjIiYnBiMiJBAXFBYzMjcCJwcGBwYABhQXPgE3NjQm6kJ5Za4BBqOBWnCJ4U8shF1DZUUhMVIxamSn8rj%2B%2F4S5gKSR8I9NVBk1ATZkTI5LDyhgAstCWcoBE723hZVpST3k8m2eU43TYWEPB5A7ZKr1AWOtf7CTAQjtO0IsWQOXf8SdUDoWOZJ1AAAA%2F%2F8ARgQWAPIFphAHAA8AAAUQAAAAAQBc%2FuACFwZ1ABcAABM0PgI3Nj8BFw4CAhASFxYfAQcmJwJcJDpGIkcoEnQscEw%2FPCpZRR50YmF%2FArlq4LerP4E3GU4%2F18P%2B6P78%2FuZs4mwwToz0AT8AAAEAXP7gAhcGdQAVAAATNxYXEhEUAgcGDwEnPgISEAImJyZcdGdfgUIvYk4hdChvTD8%2FTDI%2BBidOhOH%2B0f7UjP7OdfF9NE4838oBHwEEARjDYXYAAAEAPwGoAnADvgAOAAATNxc1MxU3FwcXBycHJzc%2FHc5czR3Nf0t%2Ff0t%2FAtFYQ9jYQ1hDrzevrzevAAAAAAEASwFoA0IEYAALAAATNSERMxEhFSERIxFLATqEATn%2Bx4QCooQBOv7GhP7GAToAAAEARv8GAPIAlgAIAAAXNyM1MxUOAQdGV0GWG2ID%2BvqWljm%2BAwAAAP%2F%2FAAACCwIAAnsQBgDHAAAAAQBcAAAA8gCWAAMAADM1MxVclpaWAAAAAQBG%2F8EDmgYrAAMAABcBFwFGAuhs%2FRkMBjcz%2BckAAAACAFD%2F9QQfBfIAEgAkAAASJjQ%2BAzIeARcWFRAFBiIuARMQFxYzMjc2NzY0LgInJiMgbR0cSG2x3KhpIz3%2B5VXbr28ualShsUovDBIKGTEjSIn%2BoQGozOPT0ZhfXphou%2Fb905QtWpECA%2F6hmHuIVmGR%2FJacdi9iAAABAGoAAAL3BesACgAAEyUzETMVITUzEQdqAUdq3P2c9O0FeHP6o46OBLpFAAEAWgAABBoF9wAoAAAzND4DNzY%2FAT4CNzY1NCYjIgcGFSM0PgEyHgEVFAcOAQ8BABUhFVoaIC9HL3NQuEg3LAsckpa7Wy%2BUi%2BDyxHQyN24fU%2F4rAwmHTFBBWStrO4YzOjgbQkaBnpdQVH3Mbmy%2BcXFRWmAZP%2F6jnY4AAAABAEb%2F9QQRBfcAKAAAPwEWFxYyNhAmKwE1MzI2NCYjIgcGByc%2BASAeARUUBwYHFhcWFRQEIyBGZTJxav3IrI7V1YOGpYCgixwRYEnmAQfEd2MsLXs5Of703v7i7VdLR0GfARmwfaP0jn0YFV1UdWavZZ91NB1KXFt20NwAAgCAAAAEqQXrAAoADQAAEzUBMxEzFSMRIxElIRGAApCy5%2BeU%2FekCFwGGeAPt%2FBd8%2FnoBhnwDOgABAFf%2F9QPUBesAIwAAEzcWFxYzMj4BNzY1NCcmIgYHIxEhFSERNjc2MzIAEAAjIicmV2ISO3J9PnBGGzyXSbCaB4gC%2Bv2aPWIqK8UBAP740ryNSAEUSzg%2BeDpAKmCf8lQpgDEDGXz%2BNDoYCv7w%2FjX%2B0ZNK%2F%2F8Aaf%2F1BBcF6hAPABwEgAXfwAAAAQBUAAADvQXrAAYAABM1IRUBIwFUA2n9r6QCXwVgi436ogVgAAAAAAMAZv%2F1BE4F9QAdAC0AOQAAEzQ3NjcuATQ%2BATMyBBUUBwYHFxYXFhQGBwYjIi4BAAYUFxYzMjY3NjU0JyYvAh4BFzY3NjQmIgYUZqRQXHmafct3tQEAvzM6RLY9LFFDkLyG65cBX8s2aNNTgyVUWUt8TKI2ZgSaNGmy7K4BkLKBPyMqsOmwXdadrH4hGh9UcE63mzRxYL8BsMDPQ4E%2BIEp6dk1AMx%2FNJTACPyNH6IqS4wAAAAIAaf%2F1BBcF6gAgAC8AABM0NzY3NjMyABEQACEiJic3FjMyEhMOBQcGIyIkNhYzMjc2NwInJiIOAQcGaUlRjUxa4AEB%2FsT%2B6kakHjp2a7f0DQEXESUkNx1GT8v%2B%2F5SqjptdNxsWxjRkVFMgRwQBjn2JNx7%2Blf66%2FnL%2BSkAla1QBUgE0ASIWKB0iCxn9NLVzRHYBMkwUGDgoWgAAAAIAXAAAAPIEHwADAAcAADM1MxUDNTMVXJaWlpaWA4mWlgAAAAIARv8GAPIEHwAIAAwAABc3IzUzFQ4BBwM1MxVGV0GWG2IDFpb6%2BpaWOb4DBIOWlgAAAAABAEAAvQO6BRMABQAAEwEXCQEHQAM%2BPP0uAtI8AugCK1r%2BL%2F4vWgAAAgBLAfIDWgOwAAMABwAAEzUhFQE1IRVLAw%2F88QMPAfKEhAE6hIQAAAEAQAC9A7oFEwAFAAAJAScJATcDuvzCPALS%2FS48Auj91VoB0QHRWgACAF0AAAMEBesAGAAcAAATPgEyHgEUBg8BBh0BIzU0PwE2NCYiDgEHEzUzFV01luahVUkzaHyEe2Z7io1TLyJQlgUiZGVusLafPnqNXpWVfJF5keiWHzQ5%2ByKWlgAAAAACAFD%2FkQX5BTYAQgBLAAASJjQ%2BATc2IAQSFRAHBiMiJjUiDgEHBiIuAScmND4BMhc3MxEUFjI2NzYQAiQjIgcGBwYUHgIzMjY%2FARcUDgEiJCYABhQWMzI3ESaGNluUYbYBlQFIxrc5TGxvARQlHECvajwTIWyvuEwVbktURBQonv7xoqugy0AYWJ3wjEp5GBg8O4rt%2FvmvAd6WYUxze0sBNcn89aM5a7T%2Bxrj%2BiWEek2omKxc2LUMtS77Edj9M%2FZEzOkg7dgErAQqYVWzvW9zWqWchEBFaBCguVpAC66%2FMfo8BMjgAAAAAAgAZAAAEUQXrAAcACgAAMwEzASMDIQMTIQMZAbDYAbCagv4DhacBuN0F6%2FoVAd7%2BIgJaAxMAAAADAIcAAAQoBesAEAAbACYAADMRITIWFRQHBgcWFxYVFAYjJSEyNz4BNTQmIyE1ITI3PgE1NCYjIYcB2bfush8upFIs6t7%2BuwFFo0sgLq6O%2FrsBRYxIHi2TjP67BevRmv9HDQ0qm1Vsu998RB1wTY6uf0cddlF1egABAFD%2F7wRSBfwALgAAEiY0PgMyHgIXFh8BFQcuAicmIyAREBcWMzI3NjUXDgUHBiIuA2ERI1J6ucCHXEwWLgsGmBAxMR5HY%2F56Ul3XsGJEkgQdFC0tSypl1JFsVzoCCpzD18uWWzFOXzBjMxgBKXJpQxc1%2FXf%2B6rDFimF4FwtWNl0%2BSxY1MFN1hwAAAAIAhwAABHoF6wALABcAADMRISATFhAOAQcGISczIBM2NRAnLgErAYcBaQH2cCQqYUmh%2FuvV1QFHdTqKNrl91QXr%2FkKQ%2FtTUwUWXfAEXjMoBZ5k7SwAAAAABAIcAAAPiBesACwAAMxEhFSERIRUhESEVhwM1%2FV8B4%2F4dAscF63z963z9p4UAAAABAIcAAAO8BesACQAAMxEhFSERIRUhEYcDNf1fAeP%2BHQXrfP3rfP0iAAAAAAEAUP%2FwBF4F%2FAAtAAASJjQ%2BAjc2MzIXFhcHLgQnJiIGBwYREBcWMyATNjUhNSERIzUGBwYiLgF1JRw4XTuAwI18kUKRAQMTGjUhTOikLVdQaeIBGSwJ%2Fq8B4nhxfji4v34BsdrTtqyRN3RVY%2FkkBxlIQU8dRGxetP7%2B%2FsyYyAFERll8%2FTXAnCQQXJgAAQCHAAAEXwXrAAsAADMRMxEhETMRIxEhEYeUArCUlP1QBev9bwKR%2BhUC3v0iAAAAAQCHAAABGwXrAAMAADMRMxGHlAXr%2BhUAAQAZ%2F%2FAC%2BQXrABQAAD8BFhceATMyNjURMxEQBwYiLgEnJhlnGEAbXDN6aZTZRaiEShwo9DVAOxkpp5oEPvvC%2FrpbHDVDKz0AAQCHAAAEWwXrAAsAADMRMxEBMwkBIwEDEYeVAmmf%2Fk4B6ab%2BX%2FgF6%2FzIAzj9x%2FxOAzb%2Buf4RAAABAIcAAAO7BesABQAAMxEzESEVh5QCoAXr%2BqOOAAAAAAEAgAAABSoF6wAPAAAzESEBMwEhESMRIwEjASMRgAEMAUQKAUQBDJQK%2FoJy%2FoIKBev7dQSL%2BhUFXvqiBV76ogABAIAAAARjBesACQAAMxEzAREzESMBEYDsAmOUf%2F0wBev7fgSC%2BhUFWPqoAAIAUP%2FwBJ8F%2FAATACYAABImND4DMh4BFxYVEAcGIyIuARIGFB4CMj4BNzY1ECcuASIOAXoqJlZ%2FwOe5eypP43vAb7yBKRovX6PFjVYcMnkrjLSPXQGl2ebazJdbXZlmwPD%2BSdV0WZUDN7vu4bZpT35XmsYBSbVBUUh5AAACAIcAAAQsBesADAAUAAAzESEyFxYUDgIjIRkBITI2ECYjIYcCEetvOixbomv%2BgwEYosPEof7oBeu6YsORfUr9TAMwjgEkjQACAFD%2B8QSfBfwAIQA0AAASJjQ%2BAzIeARcWFRAHDgEHFBcWMyEVIyIuAicmNS4BAgYUHgIyPgE3NjUQJy4BIg4BkUEmVn%2FA57l7Kk9rNbJzIBtCAQiB1mExGAoOeMQMGi9fo8WNVhwyeSuMtI9dAW3%2B%2BdrMl1tdmWbA8P7112uVF1wZFXwbHSMcK2ERkgN%2Bu%2B7htmlPfleaxgFJtUFRSHkAAgCHAAAELAXrAA8AGgAAMxEhMhcWFRQHBgcBIwEhGQEhMjc2NTQnJiMhhwH%2B73dBQEaeAR6i%2Fuz%2BqwF4aUpS3kJO%2FvEF67plb4ZveiL9NAK0%2FUwDMEJJm846EQABACj%2F8APcBfwARQAAEzcyHgMXFiA2NCYnJi8BJicmNTQ3PgEyHgIfARYXBy4FJyYjIgYVFBceAx8BFhcWFRQHBgcGIi4CJyYnKIkBBxMgOydWARqKV20gNF%2F3VTtwNaS1i1VEDx0NA4ICDwsbHS8bQlN7mkQlM0UgL1ToVzs%2BTZ07nZhnUxkuEwFwMCI2QkIbPZrhgS0NEiFSgFl3jXo4RjFIXiVKIwYyBTUiPCkxDySReIM1HRoZDQ4aR4xfh2JriCwQKkRSKUs3AAABABkAAAQNBesABwAAEzUhFSERIxEZA%2FT%2BUJQFb3x8%2BpEFbwABAIf%2F8AQ9BesAFQAAExEzERQXFjMgNzY1ETMRFAcGISAnJoeUQlOxAQgxDJdZeP71%2FsFuLQHHBCT73Ihddu43NgQk%2B9ykgbL%2BagAAAQAZAAAENwXrAAYAABMzCQEzASMZmgF1AXWa%2Fj6aBev7GATo%2BhUAAAEAGQAABjUF6wAPAAATMwEzATMBMwEzASMBIwEjGZoBAwoBEqoBEgoBA5r%2BoZj%2B7gr%2B7pgF6%2FtSBK77UgSu%2BhUErvtSAAAAAAEAGQAABCIF6wALAAAzCQEzCQEzCQEjCQEZAbX%2BXZoBZwFcmv5UAamc%2Fpn%2BmQMFAub9hgJ6%2FQP9EgJ8%2FYQAAAABABkAAARJBesACAAAEzMJATMBESMRGZoBfgF%2Bmv4ylAXr%2FTcCyfyp%2FWwClAAAAAABAEQAAAQyBesACQAAMzUBITUhFQEhFUQDOfz9A7j85gMUawUAgHv7Ho4AAAEAZP7jAhkGZgAHAAATESEVIREhFWQBtf7fASH%2B4weDXPk1XAAAAAABAFH%2FwQOlBisAAwAAEzcBB1FsAuhtBfgz%2BckzAAAAAAEAZP7jAhkGZgAHAAAXIREhNSERIWQBIf7fAbX%2BS8EGy1z4fQAAAAABAFoEbAIWBYsABQAAEzcXBycHWt7eQpydBK3e3kCcnQAAAAABAFwAAAP8AHAAAwAAMzUhFVwDoHBwAAABALMERwIxBa8AAwAAEzcBB7NXASdCBVhX%2FtlBAAAAAAIASP%2FzA0wEKAAhAC4AABI%2BAjc2NzQnJiMiBwYHJzYhMhcWFREUFhcjJjUGIyInJjcGFBYyNjc2NxEGBwZIJE1iSYXAPTZnflsnD19wAQ3xQxsWCYUejaq8SSWdGWh%2FYShJJL4jsAFJa1NAGi8mnjUvYCcfP9e5S2v92x1kEw%2BZtYRDui6UTyYeNysBPTELOQAAAAACAF7%2F9QOXBesAFwAkAAA3FAcjNjURMxE%2BATMyEhUUBwYHBiImJyYnFhcWMjY3NjUQISIH%2FBmFGoQToFy02DdAdkKKZiM7HmVNJnZrHz%2F%2B1oNqppoMN1sFWf2qKWz%2By%2FeTg5Y8ISggNqOLGQ0%2FOHGxAbyXAAEAS%2F%2F1A00EKgAgAAATECEyFxYXFhcHLgMjIBEUFjMyNzY%2FARcGBw4BIyICSwGpaUhHFygPagInLFM0%2Ftubil8%2FNxMJaCNQJHxG2s8CCAIiMjIoRC0wFE4yKf5Xzt5JPzEWMmFPIzoBFwAAAAIAS%2F%2F1A4QF6wAVACIAACUGIyImJyY1ND4BMhYXETMRFBYXIyYBFBcWMzI3NjcRJiMgAuZmtluWLmBfuNGgE4QRCYUZ%2Fek%2FQo9fPTE6aoP%2B1qaxW0udxpP8nWwpAlb6px5hEwwB8rFxdzYrUAINlwACAEv%2F9ANMBCoAGwAkAAA2JjQ%2BAzc2Mh4BFxYRIRAXFjMyNxcGBwYiJgMhNCcmIyIHBn4zHC5CRilHgFpnJVb9hodDUppsWyc%2FeOqkCwHwRTprrzsc3bTGo3JZNhEeF0c6iP73%2FvVhML8%2FSDpuVgImlWJSokwAAAABAA0AAAItBfQAEwAAARUjIh0BMxUjESMRIzUzNTQ3NjICLVmW7%2B%2BEra2NQpsF629%2B33D8UQOvcN%2BjORoAAAAAAwAq%2FkMDzQQsADoATgBWAAASJjQ%2BAzcuATQ2Nz4BNy4BND4BMhYXNjc2NxUjIhUeARUUBiMiJwYHBhUUFx4CFxYXHgEVECEiLwEUFxYyPgM3NjQuAycGBwYSFBYyNjQmIntRHj0tTghSVBsbLDoDPFttt6xpPEwwPjQCqzMZz6VXWwgcPCogXycucJphe%2F4hqYQQalufNFI0PhIqUHt4bQtrIFJAjPF9e%2Br%2Bn29sPDAdJwURVkc6GSckAjOlxa5iKik%2BCQ0BeB9eWS2h3yYHFCoqLhENDgUBASUXimD%2B4j3XYiMfAQcNGhIqeEceDQUDKBMwA4Hqm57imQAAAQCBAAADZQXrABMAADMRMxE2NzYzMhYVESMRNCYjIgcRgYSUXzE1c5SEaz6UnwXr%2FYeNHQ6MjPzuAxJLXa388wAAAAACAHgAAAEOBToAAwAHAAATNTMVAxEzEXiWjYQEpJaW%2B1wEH%2FvhAAAAAv%2FB%2Fq8BBQU6AAMAFAAAEzUzFQEyNjURMxEUBw4DBwYrAW%2BW%2FrxhVoQqEBoxIB8qISQEpJaW%2BntEgAQ8%2B%2BGrQxkhFwsDBAAAAQCCAAADdgXrAAsAADMRMxEBMwkBIwEHEYKEAZSe%2FuwBUpL%2B5sQF6%2FwqAgr%2Bmf1IAkbz%2Fq0AAAABAIH%2F%2FgEFBesAAwAAFxEzEYGEAgXt%2BhMAAAAAAQB4AAAFuwQqACEAADMRMxU2NzYyFhc2NzYzMhYVESMRNCYjIgcRIxE0JiMiBxF4hIppMZSJFpFoMTdzlIRrPpOfhGs%2BlJ8EH66KIA9gYZEgEIyM%2FO4DEktdrfzzAxJLXa388wAAAAABAHgAAANcBCoAEQAAMxEzFT4BMhYVESMRNCYjIgcReIRYntaUhGs%2BlJ8EH61XYYyM%2FO4DEktdrfzzAAACAEv%2F9AOBBCoACQAVAAAaASASEAIjIicmNxAXFjI%2BATc2NRAgS9kBhtfZwcVtaoSlMoJlPBMh%2FdIDCAEi%2Ftz%2BGP7Wmpfr%2FsNVGjRSOmWGAasAAAACAIH%2BZgOsBCoAEwAkAAATETMVNjc2MzIXFhUQBwYjIiYnGQEeATI%2BATc2NTQnJiMiBwYHgYQYN2hx0m4%2Fh2KjXKwTLoR3UU8cPnQ%2BXn5eGB%2F%2BZgW5pC0tVeaEnf7so3dvKP3aAphCVxc9MWzN%2BmY3ahsqAAIAS%2F5mA3YEKgAVACQAABImND4BNzYzMhcWFzczESMRDgEiLgESBhQeARcWMzI3ESYnJiJnHB9ALGKSj3UYDBFzhBOsrYdaXzUiOCdGVZxrPCxMvQEznZ6ThjNwfxoWpPpHAiYob0BtAqqy36BiHzWZAg1SITwAAAEAeAAAAmYEKgARAAAzMBEzETY3NjMyFxUOAQcGBxF4hC8ZYpwMGERaK0tWBB%2F%2B5GgnmAJwCSEkPrn9jQAAAAABAFD%2F9QMeBCoAMgAAPwEeATMyNzY0JicuAycmNDYzMhcWFwcuAS8BJi8BJiIGFBYXHgUXFhUUBiAmUGM1gl5iPTMsKEORU1ggSbuRq3YWD1sHKgYaEgwiIJhuJCQ6mDFTLzwQJ8r%2B9rXIQFJRNSyATBgmIx0yH0fpmXsXFkQHLQYVEAUMDFdoPxckLhAhHjEbRFCFqmUAAAEAJP%2FzAkwFoAAYAAATNTMRMxEzFSMRFBYzMjY1FQYiLgEnJjURJLKE8vI%2BRx1QQn0uQhUyA69wAYH%2Bf3D9Y2VKCgFjGAYgHUaWAp0AAAAAAQCB%2F%2FUDZQQfABMAABMRMxEUFjMyNxEzESM1BgcGIyImgYRrPpSfhISOZTE1c5QBDQMS%2FO5LXa0DDfvhrosfD4wAAAABABkAAANsBB8ABwAAEzMBMwEzASMZigEWEwEWiv68ywQf%2FHMDjfvhAAAAAAEAGQAABQsEHwAMAAATMxsBMxsBMwEjCwEjGXvo0Hji3of%2B03bgyYcEH%2FzlAxv84AMg%2B%2BEDKfzXAAAAAAEAGQAAA00EHwALAAAzCQEzEwEzCQEjCQEZAUr%2BwJT1AQCU%2FrQBWZT%2B9f7%2FAiAB%2F%2F56AYb%2BB%2F3aAan%2BVwAAAAABABn%2BdwNwBB8AFAAAEiInNxYyPgI3NjcBMwkBMwEGBwbVfjwKJHhOMikMFQn%2BhY4BKwEYhv6QOTk%2F%2FncIeREfMTseODUEIvylA1v7oas9QgAAAAABABkAAALyBB8ACQAAMzUBITUhFQEhFRkCMP4FAqT9yAI4VQNacEr8o3gAAAEAUP7gAlIGZgAnAAATNTI1NCcmNTQ2MxUiBgcGFRQWFAYHHgEUBhQeAjMVIiY1NDc2NTRQwQ8ttsdCax8%2FPFRgYFQ8IT1rQse2LQ8CZnr1JCVvZa%2FFaTInUFEVzdOJIiKJ0808VE0yacWvZW8lJPUAAAAAAQBk%2F3wA%2BAYbAAMAABcRMxFklIQGn%2FlhAAAAAAEAUP7gAlIGZgAnAAAXMjY3NjU0JjQ2Ny4BNDY0LgIjNTIWFRQHBhUUMxUiFRQXFhUUBiNQQmsfPzxUYGBUPCE9a0LHti0PwcEPLbbHtzInUFEVzdOJIiKJ0808VE0yacWvZW8lJPV69SQlb2WvxQABAFoEWAK7BSMAFwAAAQ4BIi4BKwEOAQcnNjc2MhYXFjsBPgE3ArsZYW5TSSIKIDIMUxktNGVFFjkzCiAyDAT0SFQuLQMuIyhIJy0cES4DLiMAAAACAFz%2FWADyBP4AAwAHAAAXEzMTAzUzFVwXaBeWlqgEevuGBRCWlgAAAgBu%2FxQDcAUBABwAIgAABSQQJTUzFR4BFxYfAQcmJyYnETY3Fw4DBxUjAxQWFxEGAcL%2BrAFUhD5nHTwSB2oQUyEpf0NoCD0%2FajyE0G1j0AU3A78z3doIOSNINxcwYDkXCPy2IagyGmRDQAnkAv2r1SADPjUAAAAAAQAqAAAD6AX1ACgAACUGKQE1PgE9ASM1MzUQNzY3NjMyFxUnIg4CHQEhFSEVFAYHITI3NjcD6D3%2Buf4tDROHh09LgEk%2BmQNnZYBJHAFF%2FrsRDwFH6UMHA4WFiiLxXn6HbwFEh34nFgpwAjmFvJRvh35h9BxCCAkAAgBLAbECuQQgABcAHwAAEzcmNDcnNxc2Mhc3FwcWFAcXBycGIicHEhQWMjY0JiJLZC0sY0FiQac%2FY0FkLCxkQWJCo0NiWliFWFiDAfJkQKRCY0FiMDFjQWRDn0NkQWIwMGIBeYJgYYBgAAAAAQAZAAAESQXrABYAABMzCQEzATMVIxUzFSMRIxEjNTM1IzUzGZoBfgF%2Bmv4y8PDw8JTl5eXlBev9NwLJ%2FKlcrlz%2B0gEuXK5cAAAAAAIAZP98APgGGwADAAcAABcRMxEDETMRZJSUlIQDCvz2A44DEfzvAAACAFD%2F9QMeBVAAOQBHAAA%2FAR4BMzI3NjQmJy4DJyY0NyY1NDYzMhcWFwcuAS8BJi8BJiIGFBYXHgUXFhQHFhUUBiAmEwYUFhceARc2NCYnLgFQYzWCXmI9MywoQ5FTWCBJLS27kat2Fg9bByoGGhIMIiCYbiQkOpgxUy88ECcoKMr%2B9rVTCiQkOvg%2BBCwoQ9DIQFJRNSyATBgmIx0yH0e%2BQz9OgZl7FxZEBy0GFRAFDAxXaD8XJC4QIR4xG0SfQz9VhaplAvwZQj8XJEslGENMGCYyAAIAXASzAjEFSQADAAcAABM1MxUzNTMVXJaplgSzlpaWlgAAAAMASwESA%2FcEvgAHAA8AMAAAEhAAIAAQACACEBYgNhAmIBImNDY3NjMyFxYXByYnJiIOAQcGFBYXFjMyNxcGBwYjIksBFAGEART%2B7P580%2B4BTu3t%2FrIFJxgYNWZgOQ0KQhESIksyHAgMDA4cTmMTQgIeOV9FAiYBhAEU%2Fuz%2BfP7sAn3%2Bsu3tAU7t%2FaJ%2BfmQqXG0ZIw1CEB0ZJx8tfkofP28IHDFgAAAAAAIAZAQZAbYF7AAXACIAAAEGIiY1NDY3NCYiBwYHJzYzMh0BFBcjJicyNjc1BwYPAQYUAWc8izx8hyVYGicOLDBymA1CDXwkRRMpGw0iTgRmTVEuUEwbNS8PFB0eW5zpLhoHLC8XfgoGBAsZjAAAAAACAGQEHgKPBdoABQALAAATNxcHFwc%2FARcHFwdk3kCcnUEu3kCcnUEE%2FN5CnJ1B3t5CnJ1BAAAAAAEAXAFuA%2FwDJgAFAAATNSERIxFcA6BwArZw%2FkgBSAAAAQBcArYD%2FAMSAAMAABM1IRVcA6ACtlxcAAAAAAQASwEaA%2FkEtgANABUAIgAqAAATNAAzMhceARQOASIuARIQFiA2ECYgExEzMhYUBgcXIycjFREzMjU0JisBSwEUw8WIP0t%2F2f7Zf0TuAUvt7P6yBtRBSC0xXUxab3pWPjlZAui%2FAQ%2BGPqve1Xp81QEg%2Frro5wFJ5v2BAexZYVMK1crKAQlZLB8AAAAAAQBaBM8CaQUrAAMAABM1IRVaAg8Ez1xcAAAAAAIASwPbAkkF2QAHAA8AABI0NjIWFAYiAhQWMjY0JiJLldSVldQ1XYJdXYIEcNSVldSVAUCCXV2CXQAA%2F%2F8ASwD7A0IE8RAnANQAAP5ZEAcADgAAAJEAAAABAGQEHwGaBeoAHgAAEzQ3Nj8BNjc2NTQjIgYVIzQ2MhYVFAcGBwYHBhUzFWQ8Hx0wMwgRTicwQlmAUCgZGhwqTukEH1I8HhUjJA8eG0UxHTpKRjU2KRgUFh43IDoAAAABAGQEEAGdBfAAHgAAABYUBxYUBiInNx4BMjY0JisBNTMyNTQmIgYHJz4CATtUOUdZoEAoCkJRMiopS0tEKUU7DSYSGUEF8Ep6JCqJRVEkDy4nTTA3UBsqJxEoFRccAAABAHoERwH4Ba8AAwAAEwEXAXoBJ1f%2BxASIASdX%2Fu8AAAEAgf5lA2UEHwATAAATETMRFBYzMjcRMxEjNQYHBiInEYGEaz6Un4SEjmUxezn%2BZQW6%2FO5LXa0DDfvhrosfDxr%2BVgAAAwBEAAAD1AXrABEAFwAbAAASJjQ%2BATc2MyERIxEjESMRIiYSBhQWFxETMxEjbiobPy1lqAH8lNqUa6CXhoV1lNraA3uRhWtqKVz6FQK0%2FUwCtEoCVInwjBQCLf3KAj8AAQBcAxIA8gOoAAMAABM1MxVclgMSlpYAAQAW%2FscBBwAAAAsAABMnNTI2NTQnMxYVFDokWTtOYkn%2BxwFeIA9LYGZgcwABAGQEHwE%2BBewACgAAEzczETMVIzUzEQdkYjZCzklHBckj%2Fm06OgFTFQAAAAIAZAQhAcEF6wAHAA8AABImNDYyFhQGJxQyNTQmIgbBXVymW1y70S9yMAQhgM97fM9%2F5aamU1NSAAAAAAIAZAQeAo8F2gAFAAsAABM3JzcXBz8BJzcXB2SdnEDe3sudnEDe3gRfnZxC3t5BnZxC3t4AAAAABAA5%2F9cEQAYPAAoADQAYABwAACU1ATMRMxUjFSM1JzMRATczETMVITUzEQcTATMBAhcBSG5zc1%2F29vzLo0pu%2Frp6d0MC6Gz9GbhOAfL%2BEFC%2Fv1ABewMxOv1VUFACVCL6YgY4%2BcgAAAADADn%2F2gRUBhIACgAsADAAABM3MxEzFSE1MxEHATQ3Nj8BNjc2NTQjIgYVIzQ2MhYVFA8BBg8BBg8BBhUhFQUBMwE5o0pu%2Frp6dwIONT5%2BUi4LGopPSV%2BdvIdwYAMbSBgLGhwBhPwwAuhs%2FRkFtDr9VVBQAlQi%2Bn5yR1FdPCMULiuJXzhfhHxZbVdJAhY8FQ4gIh1QGQY4%2BcgAAAAEADb%2F2gSLBhIACgANADAANAAAJTUBMxEzFSMVIzUnMxElNx4BMjY0JisBNTMyNjQmIgYHJz4BMhYVFAcGBxcWFAYjIhMBMwECYgFIbnNzX%2Fb2%2FH04EHWGW007f384OEt4ZRY0JIKiiRMcLx5Zjl6vVwLobP0ZuE4B8v4QUL%2B%2FUAF77zAYS01%2BV1FPbEY8GjkqQ3RTLyk6IBQ823D86wY4%2BcgAAAIAXQAAAwQF2QAXABsAABM3Nj0BMxUUDwEGFBYzMjY3Fw4BIyImEAE1MxXaZn2Ee2Z7fEhncydaMrZzlrYBXZYCoHiOXpWVdZN6lemRQU45XWzaAS4DO5aWAAD%2F%2FwAZAAAEUQevECcAQwASAgASBgAkAAD%2F%2FwAZAAAEUQevECcAdQGtAgASBgAkAAD%2F%2FwAZAAAEUQeVECcAQQD9AgoSBgAkAAD%2F%2FwAZAAAEUQc%2BECcAYQCqAhsSBgAkAAD%2F%2FwAZAAAEUQcMECcAaQDuAcMSBgAkAAAAAwAZAAAEUQfSAAcAGgAdAAAAFBYyNjQmIgI0NjIWFAcGBzMBIwMhAyMBJicDIQMBllyDXV2DvJXTlkshKAEBsJqC%2FgOFmgGwJyImAbjdBxSCXV2CXf741JWV1EshEvoVAd7%2BIgXrEiH8PAMTAAAAAAIAGQAABfwF6wAPABMAADMBIRUhESEVIREhFSERIQMTIREjGQGwBA39XwHj%2Fh0Cx%2Fyl%2FpeFpwFHbAXrfP3rfP2nhQHe%2FiICWgMTAAABAFD%2BwQRSBfwAOwAAASc1MjY1NCcmJy4FND4DMh4CFxYfARUHLgInJiMgERAXFjMyNzY1Fw4FBwYHFhUUAhckWTtIQTJIbFc6JhEjUnq5wIdcTBYuCwaYEDExHkdj%2FnpSXdewYkSSBB0ULS1LKlVYQ%2F7BAV4gD0hbBhAYU3WHm5zD18uWWzFOXzBjMxgBKXJpQxc1%2FXf%2B6rDFimF4FwtWNl0%2BSxYsCGFccwD%2F%2FwCHAAAD4gevECcAQ%2F%2F%2BAgASBgAoAAD%2F%2FwCHAAAD4gevECcAdQGaAgASBgAoAAD%2F%2FwCHAAAD4geVECcAQQDqAgoSBgAoAAD%2F%2FwCHAAAD4gcMECcAaQDbAcMSBgAoAAD%2F%2F%2F9hAAABGwevECcAQ%2F6uAgASBgAsAAD%2F%2FwCHAAACQQevECcAdQBJAgASBgAsAAD%2F%2F%2F%2FzAAABrweVECcAQf%2BZAgoSBgAsAAD%2F%2F%2F%2FmAAABuwcMECcAaf%2BKAcMSBgAsAAAAAgAJAAAEhAXrABAAHwAAEzUzESEyHgEXFhEQBwYpARETMyA3NhEQJyYrAREhFSEJgAFpm%2ByQLU7aof7p%2FpeU1QEAgnzccbHVAUT%2BvAKkiAK%2FVo1msv75%2FnbJlgKk%2FdispQEcAbKMSP29iAD%2F%2FwCAAAAEYwc%2BECcAYQDnAhsSBgAxAAD%2F%2FwBQ%2F%2FAEnwevECcAQwBeAgASBgAyAAD%2F%2FwBQ%2F%2FAEnwevECcAdQH5AgASBgAyAAD%2F%2FwBQ%2F%2FAEnweVECcAQQFJAgoSBgAyAAD%2F%2FwBQ%2F%2FAEnwc%2BECcAYQD2AhsSBgAyAAD%2F%2FwBQ%2F%2FAEnwcMECcAaQE6AcMSBgAyAAAAAQBLAW8DNQRaAAsAABMJATcJARcJAQcJAUsBGP7oXQEYARdd%2FukBGF3%2B6P7oAcwBGAEZXf7nARhd%2Fuj%2B6F0BGP7oAAADAFD%2F2gSnBg0AGQAhACsAABICED4DMzIXNxcHFhIQDgMjIicHJz8BASYjIAMGEBMWMzI%2BATc2ECehUSZWf8B2roRKcmFLTiZWfbtyr4VMc2FKAjhhj%2F7%2FZDipZY9ZjlkdNVEBMQElAQ7azJdbcIFCp2%2F%2B1f7y2MiUWG6EQqh%2BA9hm%2Fuqd%2Fh%2F%2B4GBPflaZAcewAAD%2F%2FwCH%2F%2FAEPQevECcAQwA%2BAgASBgA4AAD%2F%2FwCH%2F%2FAEPQevECcAdQHYAgASBgA4AAD%2F%2FwCH%2F%2FAEPQeVECcAQQEoAgoSBgA4AAD%2F%2FwCH%2F%2FAEPQcMECcAaQEaAcMSBgA4AAD%2F%2FwAZAAAESQevECcAdQGpAgASBgA8AAAAAgCHAAAELAXrAA4AFgAAMxEzESEyFxYUDgIjIRkBITI2ECYjIYeUAX3rbzosW6Jr%2FoMBGKLDxKH%2B6AXr%2FrG6YsORfUr%2BmwHhjgEkjQAAAAABAIf%2F9QRNBfUARQAAMxEQNzY3NiAWFAYHDgQHBhQWFx4FFxYVFAYgJic3HgEzMjc2NCYnLgMnJjU0NzY3Njc2NTQmIg4BBwYVEYclL0poATe7bFARPRgoDwoPJCU5mDFTLzwQJ8r%2B%2FpxCYzReX2I9MywpQpFTWCBJRD93XRQKf55hQBIfA28BMmWBLkCq35QfBxYKEw8MFVQ%2FFyQuECEeMRtEUIWqTmpAUTc1LIBMGCYjHTIfR2h%2FPTkgGkIfLVNdJ0tCd%2BP8kQAAAP%2F%2FAEj%2F8wNMBd0QJgBDuy4SBgBEAAAAAP%2F%2FAEj%2F8wNOBd0QJwB1AVYALhIGAEQAAP%2F%2FAEj%2F8wNMBcMQJwBBAKYAOBIGAEQAAP%2F%2FAEj%2F8wNMBWwQJgBhVEkSBgBEAAAAAP%2F%2FAEj%2F8wNMBToQJwBpAJj%2F8RIGAEQAAP%2F%2FAEj%2F8wNMBoQQJwBxAIIAqxIGAEQAAAADAEj%2F9AWmBCoALgBAAEkAABI%2BAjc2NzQnJiMiBwYHJzYhMhc2MzIXFhEhEBcWMjY3NjcXBgcGICYnBiMiJyY3BhQWMj4BNzY3JjU0NjUGBwYlITQnJiMiBwZIJE1iSYXAPTZnflsnD19wAQ3dS2jHuGBW%2FYaHQ4hhID4SWiVAd%2F7%2BujSjxbxJJZ0ZaHpYQyMwJBoDviOwAhcB8EU6a687HAFLa1NAGi8mnjUvYCcfP9ednZiI%2Fvf%2B9WEwLSJDLT9KOmyBcvOEQ7oulE8hLB4sKkVvEkkTMQs5npViUqJMAAEAS%2F7GA00EKgAtAAABJzUyNjU0JyYnJjUQITIXFhcWFwcuAyMgERQWMzI3Nj8BFwYHBgcGBxYVFAGhJFk7R7peZwGpaUhHFygPagInLFM0%2Ftubil8%2FNxMJaCNQJD4mKUX%2BxgFeIA9IWg19jPwCIjIyKEQtMBROMin%2BV87eST8xFjJhTyMdEgdiXnP%2F%2FwBL%2F%2FUDTAXdECYAQ7guEgYASAAAAAD%2F%2FwBL%2F%2FUDTAXdECcAdQFTAC4SBgBIAAD%2F%2FwBL%2F%2FUDTAXDECcAQQCjADgSBgBIAAD%2F%2FwBL%2F%2FUDTAU6ECcAaQCU%2F%2FESBgBIAAD%2F%2F%2F9TAAABBQXdECcAQ%2F6gAC4SBgDBAAD%2F%2FwCBAAACMwXdECYAdTsuEgYAwQAAAAD%2F%2F%2F%2FlAAABoQXDECYAQYs4EgYAwQAAAAD%2F%2F%2F%2FYAAABrQU6ECcAaf98%2F%2FESBgDBAAAAAgBL%2F%2FUDgQXrABsAJwAAARYXNxcHEhEQBwYjIgIQEjMyFyYvAQcnNy4BJwMQFxYyPgE3NjUQIAIUMkuiLpu7u16BwtrZw5NVTwwRyy7HOW0CuqUygmU8EyH90gXrH1xeUFr%2B0%2F4Y%2FreMRQEtAeYBIkbOFiJ0UHJNZAL8Jf7EVRo0UjlkhwGr%2F%2F8AeAAAA1wFbBAmAGFgSRIGAFEAAAAA%2F%2F8AS%2F%2F0A4EF3RAmAEPELhIGAFIAAAAA%2F%2F8AS%2F%2F0A4EF3RAnAHUBXwAuEgYAUgAA%2F%2F8AS%2F%2F0A4EFwxAnAEEArwA4EgYAUgAA%2F%2F8AS%2F%2F0A4EFbBAmAGFcSRIGAFIAAAAA%2F%2F8AS%2F%2F0A4EFOhAnAGkAoP%2FxEgYAUgAAAAMASwE%2FAzwEiQADAAcACwAAEzUhFQE1MxUDNTMVSwLx%2Fj2WlpYCooSE%2Fp2WlgK0lpYAAAADAEv%2F3AOBBE4AEQAYACEAADcmEBIzMhc3FwcWEAIjIicHJxMUFwEmIyATFjI%2BATc2ECexZtnDa1Ywcjxz2cF3XjJzYikBdzpO%2Fuh9QZtlPBMhMpSUAeABIjBUQmqU%2FhD%2B1j9XQgHymGkCiSL83jQ0UjplATxqAP%2F%2FAIH%2F9QNlBd0QJgBD0C4SBgBYAAAAAP%2F%2FAIH%2F9QNlBd0QJwB1AWsALhIGAFgAAP%2F%2FAIH%2F9QNlBcMQJwBBALsAOBIGAFgAAP%2F%2FAIH%2F9QNlBToQJwBpAKz%2F8RIGAFgAAP%2F%2FABn%2BdwNwBd0QJwB1ATwALhIGAFwAAAACAIH%2BZgOsBesAEwAkAAATETMRNjc2MzIXFhUQBwYjIiYnGQEeATI%2BATc2NTQnJiMiBwYHgYQYN2hx0m4%2Fh2KjXKwTLoR3UU8cPnQ%2BXn5eGB%2F%2BZgeF%2FZAtLVXmhJ3%2B7KN3byj92gKYQlcXPTFszfpmN2obKgAAAP%2F%2FABn%2BdwNwBT8QJgBpfvYSBgBcAAAAAAABAIEAAAEFBB8AAwAAMxEzEYGEBB%2F74QACAFAAAAZyBesAFQAjAAASJjQ%2BAzMhFSERIRUhESEVISIuATcWFx4BNhYzESIHBgIQeiomVn%2FAdgPL%2FV8B4%2F4dAsf8D2%2B8gWkrVy6WTDwLmz2yqQGq1uPVx5RYfP3rfP2nhVaSUUw1GxoEAgTqCh7%2B1f25AAMAS%2F%2F0Bf4EKgAiAC4ANwAAGgEzMhYXNjc2Mh4BFxYRIRAXFjMyNxcGBwYjIicOASImJyY3EBcWMj4BNzY1ECABITQnJiMiBwZL2cN1sTJOqSteWmclVv2Gh0NSmmxbJz94g%2BxyNK%2FXnTNqhKUygmU8EyH90gK4AfBFOmuvOxwDCAEicGalJwoXRzqI%2Fvf%2B9WEwvz9IOm7YZ3JSSJfr%2FsNVGjRSOmWGAav%2Bt5ViUqJMAAAA%2F%2F8AWgRsAhYFixIGAEEAAAAC%2FwIAgQEAAn8ABwAPAAACNDYyFhQGIgIUFjI2NCYi%2FpXTlpbTNVyDXV2DARbUlZXUlQFAgl1dgl0AAP%2F%2F%2FtAAdwExAUIQBwBh%2Fnb8HwAAAAEAAAILAgACewADAAARNSEVAgACC3BwAAEAAAILBAACewADAAARIRUhBAD8AAJ7cAAAAAABAAACCwgAAnsAAwAAESEVIQgA%2BAACe3AAAAD%2F%2FwBGBBYA8gWmEgYACgAAAAIARgQWAfsFpgAIABEAABM1MxUjFyMuATc1MxUjFyMuAUaWQVcsA2LulkFXLANiBRCWlvoDvjmWlvoDvgAAAP%2F%2FAEYEFgH7BaYSBgAFAAD%2F%2FwBG%2F%2F8B%2BwGPEAcAzAAA%2B%2BkAAAABAFwCAQGfA0QABwAAEiY0NjIWFAa4XF2FYWECAWKBYGJ%2BY%2F%2F%2FAEAAvQO6BRMSBgAfAAD%2F%2FwBAAL0DugUTEgYAIQAAAAEARv%2FaA5oGEgADAAAXATMBRgLobP0ZJgY4%2BcgAAAAAAgBkBB8BvAXrAAoADQAAEzUTMxEzFSMVIzUnMzVky0tCQkKNjQSGNwEu%2FtM4Z2c42AAAAAEAKP%2FwBJsF%2FAA1AAATNTMmNDcjNTM2Nz4BMh4CFxYfARUHJyYnJiMgAyEVIQYUFyEVIRIhMhM2NxcGBwYjICcmJyh0AwJzfCF4PsDGh11LFi8LBpYIIFdIdv6zMQF%2B%2FnsBAwGD%2FoQ3AUXlWhAIkSVqhdT%2B6o1QGwI8Zi44NGb5p1djMU5eL2A2GAErJqJYSv4iZhpSLmb%2BMAEIMSoXqICg%2BIzIAAAAAAEASwKiA0IDJgADAAATNSEVSwL3AqKEhAAAAP%2F%2FAEb%2FygOaBjQSBgASAAkABwBc%2F%2FwFCgIUAAoADQAdACgALAA7AEYAACU1EzMRMxUjFSM1JzMRACY0Njc2MzIXFhUUBwYiJhMiEDMyNzY0JicmEzUzFSQmNDY3NjMyFxYUDgEiJhMiEDMyNzY0JicmAhTmPlFRNLu7%2FWoSERMqYT0nQlUiX0d3e3tKFhMJCxh3NAHJERESKWJ%2BIQgbTm5Hd3t7ShYTCQsYiSoBYP6hK4mJKwEh%2FqRYZFwpWixJnbc5Fi4Bv%2F4%2BQTiTSiNJ%2Fhc0NHlXZlspWrAueW9SLgG%2F%2Fj5BOJNKI0kADgBJAAADhwK1AAMABwALAA8AEwAXABsAHwAjACcAKwAvADMANwAANxEzEQMRMxkBNSEVATUhFQE1IRUZATMRAxEzERMRMxEDETMZATUhFQE1IRUBNSEVGQEzEQMRMxFJHR0dATX%2BywE1%2FssBNR0dHWEdHR0BNP7MATT%2BzAE0HR0dHwEq%2FtYBTAEq%2Ftb%2BlR0dAUwdHQFMHR39hwEq%2FtYBTAEq%2Ftb%2BtAEq%2FtYBTAEq%2Ftb%2BlR0dAUwdHQFMHR39hwEq%2FtYBTAEq%2FtYAAAAAAgANAAADoAX0ABsAJAAAATYyFxUjIh0BMxUjESMRIxEjESM1MzU0NzYzMgEzNTQ3JiMiFQKVUrAJWZbv74TvhK2tj0ZIfP7r7xVELpIFxy0JcH3fcPxRA6%2F8UQOvcN%2BnNRr%2BK982ORB%2FAAAAAQAN%2F%2F4CwwX0ABsAAAEnIgcGBwYdASERIxEjESMRIzUzNTQ3NjMXFSMCLUdYHx0GDgGAhPyEra2NQlLolgV7ARUTECMj3%2FvfA7H8UQOvcN%2BjORoJlgAAAAIADf%2F%2BAtIF9AARABcAABM1MzU0NzYzMh8BESMRIREjEQEiHQEhEQ2tokpBelEghP7whAE7twEQA69w36E7GgYD%2BhMDsfxRA68BzX7fAV0AAgAN%2F%2F4ENgX0ACAAKQAAATYzMhYXFSM1IyIdASERIxEjESMRIxEjESM1MzU0ITIWATM1NDcmIyIVApVXYiTDAZZZlgGAhPyE74StrQE0S1j%2Bre8VRC6SBcctCAGWJ37f%2B98DsfxRA6%2F8UQOvcN%2F2Kf5U3zY5EH8AAwAN%2F%2F4EJAX1AB0AJgAsAAABNjIXESMRIxEjESMRIxEjNTM1NDc2MhYfAR4DATM1NDcmIyIVBTMRIyIVApVNxX2E74TvhK2toEllHgwXGh8GDP6q7xVELpIBc%2B9hjgXHLgr6EwOx%2FFEDr%2FxRA69w36I6GgICBQUTAwn%2BWN82ORB%2F3wFdfgAAAAEAAADdAGoADgBhAAgAAgABAAIAFgAAAQAAAAAIAAUAAAAUABQAFAAUACYANABmAMoBCAFkAW4BmgHEAeIB%2BgIOAhYCIgIyAm4ChALCAwADHANWA2ADdAPOBBwELgRIBFwEcASEBLQFKAVEBYAFxgXyBgoGIAZmBn4GigauBsoG2gb6BxAHTgdyB8IH8AhWCGgIjgiiCMYI5gj%2BCRQJKAk4CUwJXglqCXoJxAn%2BCjQKbAqoCsgLRgtoC3wLoAu8C8oL%2FgwcDEYMgAy8DNwNKA1QDXINiA2mDcYN8A4GDkAOTg6GDrAOxA8ADzwPcg%2BYD6wQFhAoEHwQtBDQEOAQ7hE0EUIRYBFuEZ4RzhHeEgASMBI8ElISaBKGEqIS1hMkE3YTpBOwE7wTyBPUE%2BAUGBQ%2BFJQUoBSsFLgUxBTQFNwU6BT0FSoVNhVCFU4VWhVmFXIVlBXeFeoV9hYCFg4WGhZCFqgWtBbAFswW2BbkFvAXYBemF7IXvhfKF9YX4hfuF%2FoYBhhKGFYYYhhuGHoYhhiSGKwY6Bj0GQAZDBkYGSQZYBlsGXgZshoMGhQaMho8GkgaVhpkGmwajBqUGp4asBq4GsAa0BrqGz4bTBtUG8AcJhxcHIgcsBzsHTAAAQAAAABmZsg6KOdfDzz1AB8IAAAAAADLC9avAAAAAMsL1q%2F96fzmC%2B0JzgAAAAgAAgAAAAAAAALsAEQAAAAACAAAAAIAAAABTgBcAkEARgUwAJMEsQCdBDMAQwV%2FAG4BTgBGAiIAXAIiAFwCsAA%2FA40ASwFOAEYCAAAAAU4AXAPrAEYEbwBQA3cAagScAFoEkwBGBPkAgAQYAFcEiwBpA9YAVAS0AGYEiwBpAU4AXAFOAEYD%2BgBAA6UASwP6AEADXwBdBkkAUARqABkEbACHBJYAUAS%2BAIcEJgCHBAAAhwTeAFAE5gCHAaIAhwOAABkEdACHA9QAhwWxAIAE4wCABO8AUARwAIcE7wBQBEUAhwQJACgEJgAZBL0AhwRQABkGTgAZBDsAGQRiABkEdgBEAl8AZAPrAFECXwBkAnAAWgRYAFwCqwCzA6AASAPiAF4DngBLA9gASwOdAEsCOgANA%2B0AKgPTAIEBoQB4AWr%2FwQOPAIIBoQCBBikAeAPKAHgDzABLA%2FcAgQPkAEsCfwB4A24AUAJeACQD0wCBA4UAGQUkABkDZgAZA4kAGQMLABkDBABQAVwAZAMEAFADFQBaAU4AXAPKAG4EAQAqAwQASwRiABkBXABkA24AUAKNAFwEQgBLAhAAZALzAGQEWABcBFgAXAREAEsCwwBaApQASwONAEsB%2FgBkAgEAZAKrAHoD0wCBBFsARAFOAFwBXgAWAaIAZAIlAGQC8wBkBHIAOQSfADkEvQA2A18AXQRqABkEagAZBGoAGQRqABkEagAZBGoAGQZAABkElgBQBCYAhwQmAIcEJgCHBCYAhwGi%2F2EBogCHAaL%2F8wGi%2F%2BYEyAAJBOMAgATvAFAE7wBQBO8AUATvAFAE7wBQA4AASwT3AFAEvQCHBL0AhwS9AIcEvQCHBGIAGQTUAIcEegCHA6AASAOgAEgDoABIA6AASAOgAEgDoABIBfcASAOeAEsDnQBLA50ASwOdAEsDnQBLAaH%2FUwGhAIEBof%2FlAaH%2F2APVAEsDygB4A8wASwPMAEsDzABLA8wASwPMAEsDhwBLA8wASwPTAIED0wCBA9MAgQPTAIEDiQAZA%2FcAgQOJABkBoQCBBrYAUAZPAEsCcABaAdv%2FAgHb%2FtACAAAABAAAAAgAAAABTgBGAkEARgJBAEYCQQBGAfsAXAP6AEAD%2BgBAA%2BsARgIgAGQE3wAoA40ASwPrAEYFZgBcA9EASQOyAA0DVgANA24ADQTSAA0EwAANAAEAAAnO%2FeYAAAw3%2Fen%2B2gvtAAEAAAAAAAAAAAAAAAAAAADdAAEDGAH0AAUAAAUzBZkAAAEeBTMFmQAAA9cAZgISCAYCAAUDAAAAAAAAoAAAYwAAAAIAAAAAAAAAAFBmRWQAQAAN%2BwYJzv3mAAAJzgIaoAAAnwAAAAAAAAAAAAIAAAADAAAAFAADAAEAAAAUAAQAuAAAACoAIAAEAAoADQB%2BAP8BMQFTAsYC2gLcIBQgGSAeICIgOiBEIHQgrCISIhXv%2FfAA%2F%2F8AAAANACAAoQExAVICxgLaAtwgEyAZIBwgIiA5IEQgdCCsIhIiFe%2F98AD%2F%2F%2F%2F1%2F%2BP%2Fwf%2BQ%2F3D9%2Fv3r%2FergteCx4K%2FgrOCW4I3gXuAn3sLewBDZENcAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAALLAAE0uwKlBYsEp2WbAAIz8YsAYrWD1ZS7AqUFh9WSDUsAETLhgtsAEsINqwDCstsAIsS1JYRSNZIS2wAyxpGCCwQFBYIbBAWS2wBCywBitYISMheljdG81ZG0tSWFj9G%2B1ZGyMhsAUrWLBGdllY3RvNWVlZGC2wBSwNXFotsAYssSIBiFBYsCCIXFwbsABZLbAHLLEkAYhQWLBAiFxcG7AAWS2wCCwSESA5Ly2wCSwgfbAGK1jEG81ZILADJUkjILAEJkqwAFBYimWKYSCwAFBYOBshIVkbiophILAAUlg4GyEhWVkYLbAKLLAGK1ghEBsQIVktsAssINKwDCstsAwsIC%2BwBytcWCAgRyNGYWogWCBkYjgbISFZGyFZLbANLBIRICA5LyCKIEeKRmEjiiCKI0qwAFBYI7AAUliwQDgbIVkbI7AAUFiwQGU4GyFZWS2wDiywBitYPdYYISEbINaKS1JYIIojSSCwAFVYOBshIVkbISFZWS2wDywjINYgL7AHK1xYIyBYS1MbIbABWViKsAQmSSOKIyCKSYojYTgbISEhIVkbISEhISFZLbAQLCDasBIrLbARLCDSsBIrLbASLCAvsAcrXFggIEcjRmFqiiBHI0YjYWpgIFggZGI4GyEhWRshIVktsBMsIIogiocgsAMlSmQjigewIFBYPBvAWS2wFCyzAEABQEJCAUu4EABjAEu4EABjIIogilVYIIogilJYI2IgsAAjQhtiILABI0JZILBAUliyACAAQ2NCsgEgAUNjQrAgY7AZZRwhWRshIVktsBUssAFDYyOwAENjIy0AAAC4Af%2BFsAGNAEuwCFBYsQEBjlmxRgYrWCGwEFlLsBRSWCGwgFkdsAYrXFgAsAQgRbADK0SwByBFsgRbAiuwAytEsAYgRbIHKgIrsAMrRLAFIEWyBhkCK7ADK0SwCCBFsgSLAiuwAytEsAkgRbIIKQIrsAMrRAGwCiBFsAMrRLALIEWyCkwCK7EDRnYrRLAMIEW6AAp%2F%2FwACK7EDRnYrRFmwFCsAAP5lAAAEHwXrAHwAFABcAHAAhQCWAJQAhACUAI4AgQBtAIoAdgCMAJAAkgCHAJ8AfwBzAEcAOABiAE8AVQB6AGYAeAA2ADoAPwA9AEwAKQBrADIAmwBgACsAaQBEBREAAAAAAAcAWgADAAEECQABABQAAAADAAEECQACAA4AFAADAAEECQADAEYAIgADAAEECQAEABQAAAADAAEECQAFABgAaAADAAEECQAGABIAgAADAAEECQAOADQAkgBOAGUAdwBzACAAQwB5AGMAbABlAFIAZQBnAHUAbABhAHIARgBvAG4AdABGAG8AcgBnAGUAIAA6ACAATgBlAHcAcwAgAEMAeQBjAGwAZQAgADoAIAAxADIALQAxADIALQAyADAAMQAxAFYAZQByAHMAaQBvAG4AIAAwAC4ANAAgAE4AZQB3AHMAQwB5AGMAbABlAGgAdAB0AHAAOgAvAC8AcwBjAHIAaQBwAHQAcwAuAHMAaQBsAC4AbwByAGcALwBPAEYATAACAAAAAAAA%2FwEAZgAAAAAAAAAAAAAAAAAAAAAAAAAAAN0AAAABAAIAAwAEAAUABgAHAAgACQAKAAsADAANAA4ADwAQABEAEgATABQAFQAWABcAGAAZABoAGwAcAB0AHgAfACAAIQAiACMAJAAlACYAJwAoACkAKgArACwALQAuAC8AMAAxADIAMwA0ADUANgA3ADgAOQA6ADsAPAA9AD4APwBAAEEAQgBDAEQARQBGAEcASABJAEoASwBMAE0ATgBPAFAAUQBSAFMAVABVAFYAVwBYAFkAWgBbAFwAXQBeAF8AYABhAKMAhACFAL0AlgDoAIYAjgCLAJ0AqQCkAQIAigDaAIMAkwEDAQQAjQEFAIgAwwDeAQYAngCqAPUA9AD2AKIArQDJAMcArgBiAGMAkABkAMsAZQDIAMoAzwDMAM0AzgDpAGYA0wDQANEArwBnAPAAkQDWANQA1QBoAOsA7QCJAGoAaQBrAG0AbABuAKAAbwBxAHAAcgBzAHUAdAB2AHcA6gB4AHoAeQB7AH0AfAC4AKEAfwB%2BAIAAgQDsAO4AugDXALAAsQDYAN0A2QEHALIAswC3ALQAtQDFAIcAvgC%2FALwBCAEJAO8BCgELAQwBDQDAAMEBDgEPB3VuaTAwQUQMdHdvLnN1cGVyaW9yDnRocmVlLnN1cGVyaW9yBW1pY3JvDG9uZS5zdXBlcmlvcgloeXBoZW50d28NZm91ci5zdXBlcmlvcgRFdXJvCXNsYXNobWF0aA12ZXJzaW9ubnVtYmVyDUhwaXhlbHNfcGVyZW0CZmYDZmZpA2ZmbAAAAAABAAH%2F%2FwAPAAEAAAAMAAAAAAA0AAIABgACAAIAAQDEAMQAAQDPANAAAQDSANIAAQDVANUAAQDYANwAAQABAAAAAQAAAAEAAAAKAB4ALAABbGF0bgAIAAQAAAAA%2F%2F8AAQAAAAFrZXJuAAgAAAABAAAAAQAEAAIAAAACAAoGxgABAKwABAAAAFEBUgFoAXIBgAGOAagBsgHEAc4B5AH2AggCFgIoAjICOAJSAogCjgKcAqoCtAK6AsAC7gLuAzIC2gLgAu4C7gL0AwYDEAMyAzgDYgNsA4IDqAOyA%2BAD7gQABBoEJARCBEwEWgRsBHYEmASuBLgE8gUYBS4FUAVeBXQFegWABYYFjAWaBcgF%2BgZABkYGVAZiBmgGegaMBpIGmAaqBrAGtgawBrYAAQBRAAUABgAJAAoACwANAA4ADwAQABEAEgATABQAFQAWABcAGgAbABwAIAAjACUAKAApACsALAAtAC4ALwAwADEAMwA1ADcAOAA5ADoAOwA8AD0APgA%2FAEQARgBHAEgASQBKAE4ATwBVAFYAVwBZAFoAWwBcAF0AXgBfAGwAbwBxAHwAnwCgAK4ArwCwALEAywDMAM0A0ADRANQA2ADZANoA2wDcAAUAD%2F9IABH%2FSACtAJoAsAAYAM3%2B%2FgACABT%2F7AAa%2F%2BQAAwA5%2F98AOwAmAFsAGAADAK0AmgCwABgAzf9YAAYAE%2F%2FsABf%2F5QAZ%2F%2BkATQBSAFn%2F5wCtAHYAAgA5%2F%2BcAO%2F%2FPAAQAFP%2FQABX%2FzwAW%2F8YAGv%2BYAAIABf9IAMz%2FSAAFABT%2FwgAV%2F9IAFv%2B9ABr%2FpAAc%2F%2BsABAAF%2F0gAOf%2BPAFn%2F0QDM%2F0gABAAS%2FkoAF%2F%2BvABn%2F7ACtAI0AAwAM%2F%2BwAN%2F%2FsAED%2F3wAEAA7%2F6QAQ%2F%2BEAN%2F%2FsANT%2F5gACABD%2FsgAX%2F%2BwAAQBA%2F%2BIABgAO%2F%2BkAN%2F%2FqAD%2F%2F7ABA%2F%2BoAcf%2FrANT%2F6gANAA7%2F4wAQ%2F7wAEv%2BTABf%2FzQAk%2F88ALf%2BeAET%2F3gBH%2F9AASv%2FRAFb%2F5ABj%2F%2BQA0f%2BaANT%2F3wABAED%2F5AADAAz%2F7ABA%2F94AYP%2FsAAMAFP%2FWABb%2F4QAa%2F7IAAgA3%2F60APP%2FUAAEArQAWAAEArQCHAAYAF%2F%2FQAKH%2FpgCp%2F6EArQC8ALP%2FlgC6%2F5gAAQCtAHAAAwAF%2F00AF%2F%2FaAMz%2FTQABAK0ATwAEABf%2F4QCtAE8ArwAXALAALgACAK0AMgCwABUACAAX%2F6sAGf%2FhACP%2FrACh%2F6oAqf%2BlAK0AwACz%2F5kAuv%2BcAAEArQBWAAoADf%2FnABL%2FuwAX%2F%2BMAQAAQAFn%2F8ABb%2F%2B0AYAATAK0AugCwACAAzf%2BqAAIArQCqALAAFwAFAA3%2FzQBZ%2F68Ab%2F%2FeAK0AoADP%2F8wACQAX%2F7QAGf%2FrACP%2F1ACh%2F6IAqf%2BdAK0AuQCwAAoAs%2F%2BRALr%2FlQACABf%2F6wCtAKEACwAT%2F94AFf%2FoABb%2F6gAX%2F9sAGf%2FbABv%2F4wAc%2F%2BcATQBPAFn%2F1gBb%2F98ArQBYAAMAOf%2B7ADsADgBZ%2F%2BIABAA2%2F%2FQAN%2F89ADn%2FoAA6%2F7kABgAa%2F%2BgANv%2FuADf%2FKwA5%2F6wAOv%2FKADv%2F3AACADf%2F9wCtAEsABwAa%2F%2BAANv%2FxADf%2FSwA5%2F6AAOv%2B2ADv%2F4QA9%2F%2B8AAgAt%2F6wArQCqAAMALf%2FbADf%2FYABNAFAABAA2%2F%2BwAN%2F9IADn%2F1gA6%2F%2BMAAgA3%2F%2FcArQBFAAgAFP%2FeABb%2F2QAX%2F%2BUAGv%2BSAC3%2FUQA3%2F0sAO%2F%2BcAD3%2FdgAFABr%2F5gA3%2F0sAOf%2BgADr%2FvQA7%2F%2B8AAgA3%2F44AOf%2F3AA4ADP%2FnABL%2F4gAU%2F%2BAAFv%2FnABr%2FpQAi%2F%2BcALf%2BmADf%2FWwA5%2F%2FAAO%2F%2BpAD3%2FlgBA%2F9YAYP%2FrAM3%2F4gAJABT%2F4gAW%2F%2BoAGv%2BqAC3%2FsgA3%2F1kAOf%2FuADr%2F9gA7%2F6sAPf%2BXAAUANv%2FsADf%2FTAA5%2F%2B0AOv%2F3AED%2F4QAIABT%2F3gAW%2F%2BYAGv%2BfAC3%2FoQA3%2F1sAOf%2FxADv%2FpQA9%2F5QAAwA3%2F1IAOf%2FiADr%2F7gAFABP%2F7AAZ%2F%2BsATQBHAFn%2F6wCtAFoAAQCtAF8AAQCtAJQAAQA7%2F94AAQAX%2F68AAwCtAD4ArwAiALAAKQALAAz%2F5AAS%2F%2BYAOf%2FqADv%2FjAA%2F%2F%2BkAQP%2FcAFv%2F7ABd%2F%2FIAYP%2FrAGz%2F7gDN%2F%2BEADAA%2F%2F90AQP%2FZAFf%2F0wBZ%2F8cAWv%2FTAFv%2F7gBc%2F7cAYP%2FqAGz%2F7gB8%2F%2BgAy%2F%2FrAM%2F%2F6QARAAQAXwAFAHEACgBxAAwAfgAiAH0APwCMAEAAYABFAEoASwBMAE4ATABPAEQAXwBfAGAAYgBsAEAAfACTAMsAmQDMAHEAAQBsACEAAwAiACUAbAAoAMsAGAADAED%2F6ABb%2F%2BYAXf%2FwAAEArQByAAQAD%2F9IABH%2FSACtAJoAsAAYAAQABf8XAAr%2FWAA5%2F7AAWf%2FnAAEAO%2F%2FMAAEAF%2F%2B1AAQAFP%2FIABX%2FwAAW%2F74AGv%2BLAAEArQCpAAEArQBKAAEArQBFAAIbSAAEAAAb0B2KAEMANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2BoAAAAA%2F2f%2F7P%2Bk%2F7gAAP96AAAAAAAAAAAAAP%2B%2FAAD%2F5v%2FyAAAAAP%2FzAAAAAAAA%2F90AAAAA%2F8b%2FywAAAAAAAAAA%2F80AAP%2FDAAAAAAAAAAAAAP%2FHAAD%2FyP%2FOAAD%2FvQAAAAAAAAAAAAD%2F0AAA%2F%2B0AAAAAAAAAAAAAAAAAAP%2F1AAD%2F1QAAAAAAAAAA%2F84AAAAA%2F88AAP%2BvAAD%2FzwAA%2F%2B8AAAAA%2F%2BkAAAAAAAAAAAAAAAD%2F5f%2FwAAAAAAAA%2F7%2F%2F6v%2BT%2F6AAAP%2BBAAAAAAAAAAAAAAAAAAAAAP%2FHAAAAAAAA%2F9f%2F5v%2FzAAAAAAAAAAAAAAAA%2F98AAAAAAAAAAAAAAAAAAP%2F0AAD%2F8QAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2FMAAAAAAAD%2F9AAA%2F%2Ff%2F9%2F%2Fg%2F%2Ff%2F7AAAAAAAAAAAAAAAAAAA%2F%2BMAAAAAAAD%2Fzv%2FtAAAAAAAAAAAAAAAAAAD%2F5wAAAAAAAAAAAAAAAAAAAAAAAP%2FmAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F6wAAAAAAAAAAAAAAAAAA%2F%2BgAAP%2FyAAAAAP%2FqAAAAAP%2FpAAD%2FtAAA%2F%2B3%2F8%2F%2FA%2F8n%2F1v%2F3AAAAAAAAAAD%2F6%2F%2FcAAAAAP%2FWAAAAAAAAAAAAAAAA%2F%2FQAAAAAAAAAAP%2FqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F6wAA%2F%2FAAAAAAAAAAAP%2FXAAAAAAAAAAAAAAAAAAAAAAAA%2F%2FMAAP%2BtAAAAAAAAAAD%2FwwAAAAD%2FxAAA%2F4v%2F7v%2FYAAD%2F6QAAAAD%2FxAAAAAAAAAAAAAAAAP%2FT%2F%2BwAAAAAAAD%2F2P%2Ff%2F7D%2FsgAA%2F64AAAAAAAAAAAAA%2F%2FYAAAAAAAD%2F8QAAAAAAAP%2BaAAAAAAAAAAAAAP%2Fq%2F%2Br%2F2P%2FrAAAAAP%2FqAAD%2FxwAAAAAAAP%2F4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2F2AAAAAP%2F2AAAAAAAA%2F%2FIAAAAA%2F%2FH%2F9gAA%2F%2FYAAAAA%2F%2B0AAAAAAAD%2F9QAAAAAAAAAAAAAAAP%2F2AAAAAAAAAAD%2F9AAAAAAAAAAAAAAAAAAA%2F%2BwAAAAA%2F%2B8AAP%2B4AAD%2F6%2F%2Fz%2F8b%2Fyf%2FaAAAAAAAAAAAAAP%2Fs%2F94AAAAA%2F90AAAAAAAAAAAAAAAD%2F9AAAAAAAAAAA%2F%2BsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FqAAD%2F8QAAAAD%2FZQAA%2F9D%2B8f%2FlAAAAAAAAAAAAAAAAAAD%2FX%2F%2Fq%2F%2BMAAAAAAAAAAP9w%2F9H%2FSP9w%2F%2BD%2Fr%2F94%2F7wAAP9uAAAAAAAAAAAAAAAAAAD%2FYgAA%2F%2Bz%2Fhv%2FIAAD%2Fiv%2FI%2F3v%2Fl%2F%2BZ%2F0L%2Fk%2F87AAAAAAAAAAAAAAAAAAD%2F0AAA%2F%2FEAAAAA%2F9sAAAAAAAAAAAAAAAAAAP%2FmAAAAAAAAAAAAAAAAAAD%2F8gAA%2F%2FUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2FUAAAAAAAAAAAAAAAAAAAAA%2F%2FMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2FMAAAAA%2F%2FcAAAAAAAD%2F8gAA%2F%2FD%2F8v%2F2AAD%2F8gAAAAD%2F6AAAAAAAAP%2F2AAAAAAAAAAAAAAAA%2F%2FMAAAAAAAAAAP%2FzAAAAAAAAAAD%2F7gAAAAAAAAAA%2F70AAP%2FXAAAAAAAAAAAAAAAAAAAAAAAA%2F9sAAAAAAAAAAP%2FUAAAAAP%2FWAAD%2F2gAA%2F9UAAP%2FuAAAAAP%2FYAAAAAAAAAAAAAAAA%2F%2BP%2F9AAAAAAAJv%2B9%2F%2FL%2Fov%2BoAAD%2FmQAAAAAAAAAAAAD%2FvAAA%2F%2FL%2FGv%2Fa%2Fzr%2FgAAA%2FyEAAAAAAAD%2FZwAA%2F2oAAP%2Fi%2F%2BYAAAAA%2F%2BgAAP9jAAD%2F2QAAAAD%2FTv9O%2F10AAAAAAAD%2FWAAA%2F07%2FbwAAAAAAAAAA%2F7%2F%2F9%2F9%2B%2F5oAAP9nAAAAAAAA%2F5cAAAAA%2FxkAAAAAAAAAAAAA%2F9YAAP%2Fy%2F%2BUAAAAAAAAAAAAA%2F%2Bv%2FywAA%2F0j%2FxAAA%2F7T%2F9wAAAAD%2FygAAAAAAAAAAAAAAAAAA%2F0AAAAAA%2F%2B8AAAAA%2F6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F8wAA%2F9cAAAAAAAD%2F7f%2FzAAD%2F7gAAAAAAAAAAAAD%2F5P%2FbAAAAAP%2FZAAAAAP%2F1AAAAAP%2FhAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F8AAAAAAAAAAA%2F%2FEAAAAA%2F%2FUAAAAAAAAAAAAAAAAAAAAAAAD%2F3wAA%2F%2FUAAP%2Fg%2F%2BUAAAAAAAAAAAAAAAAAAP%2FlAAAAAAAAAAAAAAAAAAD%2F4wAA%2F%2FMAAAAAAAAAAAAAAAAAAAAAAAAAAP%2F1AAAAAAAA%2F98AAP%2Fj%2F%2Bf%2F2%2F%2Fh%2F%2BwAAAAA%2F2cAAP%2B4%2Fyf%2F7gAAAAAAAAAAAAAADQAA%2F03%2F4v%2BEAAAAAAAAAAD%2FQv%2Bc%2F3%2F%2FQP%2FX%2F3v%2FQ%2F%2B0AAD%2FNgAAAAD%2Fov%2F3AAAAAAAA%2F4MAAP%2BU%2F03%2FkAAA%2F6P%2Fwv9D%2F1v%2FWf9Q%2F13%2FVgAAAAD%2F5wAAAAD%2FagAA%2F0QAAAAA%2F%2FUAAP%2Bg%2F6IAAAAAAAAAAAAAAAAAAAAAAAD%2FiQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FsAAAAAP%2F2AAAAAAAAAAAAAAAAAAAAAP%2FxAAAAAAAAAAAAAAAA%2F%2FIAAP%2Fq%2F%2FH%2F9wAA%2F%2FEAAAAA%2F%2BcAAAAAAAD%2F9gAAAAAAAAAAAAAAAP%2FxAAAAAAAAAAD%2F8gAAAAD%2F9wAA%2F%2B0AAAAA%2F6QAAP%2Fr%2F2MAAAAAAAAAAAAAAAAAAAAA%2F6EAAAAAAAAAAAAAAAD%2FmQAA%2F4%2F%2FlAAA%2F87%2Fvf%2FwAAD%2FjwAAAAAAAAAAAAAAAAAAAAAAAAAA%2F6wAAAAAAAD%2F8v%2FCAAD%2F7gAA%2F%2FL%2F2AAAAAD%2FuAAA%2F%2FP%2FlwAAAAAAAAAAAAAAAAAAAAD%2FvwAAAAAAAAAAAAAAAP%2BvAAD%2Ftv%2BtAAD%2F4P%2FRAAAAAP%2BoAAAAAAAAAAAAAAAAAAD%2FyQAAAAD%2FygAAAAD%2F1v%2F2%2F9UAAP%2F1%2F%2FcAAP%2FmAAAAAAAAAAD%2FxQAA%2F%2BAAAAAAAAAAAAAAAAAAAP%2FtAAAAAAAAAAAAAAAA%2F74AAAAA%2F8EAAP%2FFAAD%2F2QAA%2F%2BEAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FnAAAAAAAA%2F9P%2F3wAA%2F7MAAP%2BtAAAAAAAA%2F3oAAP%2FJ%2F0T%2F8wANAAAAAAAAAAAAAAAA%2F3H%2F5v%2BuAAAAIwAiAB%2F%2FTP%2Fn%2F4b%2FRf%2Fs%2F4f%2FdP%2FUAAD%2FSAAAAAD%2FyAAAABwAAAAA%2F4kAAP%2FP%2F2v%2F4AAA%2F6n%2F1v92%2F7L%2FrP%2Br%2F7b%2FlwAAAAAAAP%2Fy%2F%2FYAAAAAAAD%2F6QAAAAAAAP9TAAAAAAAAAAAAAP%2B6%2F%2BP%2FzwAAAAAAAAAAAAAAAAAA%2F%2FEAAAAA%2F9f%2F7AAAAAAAAAAAAAAAAP%2FiAAAAAAAAAAAAAP%2FwAAD%2F8%2F%2F1AAD%2F8AAAAAAAAAAA%2F%2FYAAAAAAAAAAP%2FyAAAAAAAA%2F2YAAAAAAAAAAAAA%2F7v%2F3%2F%2FNAAAAAAAAAAAAAAAAAAD%2F8wAAAAD%2F0%2F%2FoAAAAAP%2Fk%2F%2Br%2F7wAA%2F94AAAAAAAAAAAAA%2F%2FIAAP%2F3AAD%2F6P%2F0%2F%2FgAAAAAACcAAAAAAAAAAP%2B%2BAAAAAP%2FsAAD%2FwwATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2BsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2FkQAA%2F4QAAAAAAAAAAP%2Bt%2F8cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FrAAAAAP%2Fy%2F%2FEAAAAA%2F%2Ff%2FQf%2Fx%2F5j%2Frv%2FG%2F0v%2F2QAAAAAAAAAA%2F7X%2F3%2F%2FKAAAAAAAAAAAAAAAAAAD%2F7AAAAAD%2FzP%2FjAAAAAP%2Fc%2F%2Br%2F7AAA%2F9gAAAAAAAD%2F0QAA%2F%2BsAAP%2F0%2F%2Fb%2F2P%2Fx%2F%2BsAAAAAAAAAAAAAAAAAAP%2BjAAAAAP%2FWAAD%2FqQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP98AAAAAAAAAAAAAAAAAAAAAAAAAAD%2F6AAA%2F9kAAAAAAAAAAAAA%2F%2BwAAAAAAAAAAAAAAAAAAAAeAAD%2F5QAAAAAAAAAAAAAAAP%2FfAAAAAP%2FgAAAAAP%2FmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F4QAAAAAAAAAA%2F%2BQAAP%2FrAAAAAP%2FpAAAAAP%2FmAAD%2F3f%2Fe%2F%2BYAAAAAAAAAAAAAABsAAP%2FOAAAAAAAAAAAAAAAA%2F8oAAAAA%2F8r%2F2gAA%2F9H%2F4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FOAAAAAAAA%2F97%2FzwAA%2F9UAAAAA%2F9kAAAAAAAAAAP%2FxAAAAAAAA%2F%2FQAAAAAAAD%2FOwAAAAAAAAAAAAD%2Fzf%2Fl%2F9H%2F9wAAAAD%2F9gAA%2F%2BMAAAAAAAD%2F%2BP%2FhAAAAAAAA%2F%2Bv%2F6wAAAAD%2F6wAAAAAAAAAAAAAAAAAAAAAAAP%2FkAAAAAAAAAAAAAAAA%2F9gAAAAA%2F3%2F%2F6gAA%2F7YAAP%2BGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F2wAAAAAAAAAAAAAAAAAA%2F1gAAP9IAAAAAAAAAAAAAP%2FnAAAAAP%2FaAAD%2FvwAA%2F%2BwAAAAA%2F%2FUAAAAAAAAAAP%2F3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F9gAAAAAAAP%2FY%2F%2FcAAAAAAAD%2F7f%2F2AAAAAAAAAAAAAAAA%2F9oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2Fhf%2Fn%2F3sAAP%2FO%2F%2BD%2Fyf%2BH%2F8D%2F8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2BgAAAAAAAAAAAAAAAAAAAAA%2F7AAAAAAAAAAAAAAAAAAAP%2FkAAAAAAAA%2F80AAP%2B9AAAAAAAA%2F%2FMAAAAA%2F%2Fb%2FP%2F%2Ft%2F6P%2FvAAA%2F2cAAAAAAAAAAAAA%2F8P%2F4%2F%2FOAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F4AAAAAAAAAAAAAAAAAAA%2F%2BoAAAAAAAD%2F6gAAAAAAAAAAAAAAAP%2F4AAAAAAAAAAAAAAAAAAAAAP%2FPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2FvwAAAAAAAAAAAAAAAAAAAAAAAAAbAAD%2F9wAA%2F%2BwAAAAAAAAAAP%2FkAAD%2F3%2F%2FeAAD%2F0gAAAAAAAP%2FiAAAAAAAAAAAAAAAAAAD%2F4AAAAAAAAAAAAAD%2F7AAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2FUAAAAAAAAAAP%2F2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FMAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F2wAAAAAAAAAAAAAAAAAAAAD%2F5wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F8sAAAAA%2F2kAAAAAAAAAAAAAAAAAAAAA%2F%2BsAAAAAAAAAAAAAAAD%2F4wAAAAD%2FyQAAAAAAAAAAAAD%2F4gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2FxgAAAAD%2FaQAAAAAAAAAAAAAAAAAAAAD%2F2AAAAAAAAAAAAAAAAP%2FMAAAAAP%2BuAAAAAAAAAAAAAP%2FLAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F4gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F38AAP%2BiAAAAAAAAAAD%2FyP%2FLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2BAAAAAAAAD%2F6gAAAAAAAP%2BJAAD%2F%2BAAA%2F%2B0AAP%2FnAAD%2F4f%2FeAAAAAP%2FfAAD%2F1AAAAAAAAP%2FvAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F9gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F84AAAAAAAAAAAAAAAAAAP%2Fn%2F%2FgAAAAA%2F%2FYAAP%2FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2BEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2BsAAAAAAAAAAAAAAAAAAAAPAAD%2F6wAAAAAAAAAAAAAAAP%2FcAAAAAP%2FdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F6QAAAAAAAAAA%2F%2BcAAP%2FnAAAAAAAAAAAAAAAA%2F%2FYAAAAAAAD%2FQ%2F%2Fw%2F73%2F0QAA%2F3T%2F9gAAAAAAAAAA%2F9r%2F5v%2FRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F6gAAAAAAAAAAAAAAAAAAAAAAAAAA%2F8MAAAAA%2F2kAAAAAAAAAAAAAAAAAAAAA%2F%2BL%2F6AAAAAAAAAAAAAD%2F2QAA%2F1j%2FugAA%2F5EAAAAA%2F5z%2F1wAAAAD%2FsAAAAAAAAAAAAAAAAAAA%2F%2BwAAAAA%2F3EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F4IAAAAA%2F80AAP%2BJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FtAAAAAP%2FsAAD%2F3QAAAAAAAP%2FNAAAAAP9oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2BsAAP9I%2F9IAAAAAAAAAAAAA%2F%2BsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F6MAAAAAAAAAAAAAAAAAAAAAAAD%2FyQAA%2F%2FMAAP%2FrAAAAAP%2Fr%2F9X%2F2QAA%2F6z%2F0QAA%2F6IAAAAAAAD%2F2gAAAAAAAAAA%2F%2Bb%2F5AAA%2F60AAAAAAAAAAAAA%2F8oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F1QAA%2F5MAAAAAAAAAAP%2FP%2F9UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2Fb%2F9QAAAAAAAP%2FxAAAAAAAA%2F2wAAAAAAAAAAAAA%2F8T%2F5f%2FOAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F2%2F%2FuAAAAAP%2FqAAAAAAAA%2F%2BUAAAAAAAAAAAAAAAAAAAAAAAD%2F8QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F0wAA%2F3EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2FvwAAAAD%2FfQAAAAAAAAAAAAAAAAAjAAD%2FwwAAAAAAAAAAAAAAAP%2B2AAAAAP%2BzAAAAAP%2FaAAAAAP%2BzAAAAAAAAAAAAAAAAAAAAAAAAAAD%2FzAAAAAAAAAAA%2F94AAAAAAAAAAP%2FlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F8gAAAAAAAAAAAAAAAAAAAAAAAD%2FsgAAAAAAAAAAAAAAAAAAAAD%2F9QAA%2F9H%2F8gAAAAAAAAAAAAD%2F8QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2FywAAAAAAAAAAAAAAAAAAAAAAAP%2BuAAAAAAAAAAAAAAAA%2F%2Bv%2F1f%2F2AAD%2F1%2F%2F0AAAAAAAAAAAAAP%2FyAAAAAAAAAAD%2F5v%2FnAAD%2F5wAAAAAAAAAAAAD%2F5gAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F5gAAAAAAAAAAAAAAAAAA%2F6wAAP%2FuAAAAAAAAAAAAAAAA%2F9IAAAAA%2F9EAAP%2FKAAAAAAAA%2F%2BMAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F8MAAAAAAAAAAAAAAAAAAAAAAAD%2FtAAAAAAAAAAAAAAAAAAA%2F9r%2F8wAA%2F8n%2F8AAAAAAAAAAAAAD%2F8AAAAAAAAAAA%2F%2Bn%2F5gAA%2F94AAAAAAAAAAAAA%2F94AAAAAAAAAAAAAAAAAAAAAAAIAFgADAAMAAAAFAAUAAQAJAAsAAgANAA0ABQAPABIABgAXABcACgAaABoACwAcABwADAAkAD8ADQBEAF4AKQBiAGIARABsAGwARQBuAG8ARgB8AHwASACBAJcASQCZALAAYACyALcAeAC5AMMAfgDIAMkAiQDLAM0AiwDPANAAjgDYANwAkAABAAMA2gA%2BAAAANgAAAAAAAAAbADYANAAAABwAAAAiACUAIgA9AAAAAAAAAAAAKgAAAAAAPAAAADMAAAAAAAAAAAAAAAAAAAABAAMABAAFAAIACgALAAgACAAMAA0ADgAIAAgACQAPAAkAEAARABIAFAAVABYAFwAYAAYAIAAeAAAAAAAAAAAAGQAdACEAIwAaACgAKwAmACQAJAAxACkAJgAmAB0AHQA1ADkAOwAyADUAPwBAAEEAQgAHAB8AAAAAAAAAJwAAAAAAAAAAAAAAAAAAAAAAAAAtAAAAJQA6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4AAAAAAAAAAAABAAEAAQABAAEAAQACAAQAAgACAAIAAgAIAAgACAAIAAUACAAJAAkACQAJAAkAAAAJABQAFAAUABQAGAATACwAGQAZABkAGQAZABkAGgAhABoAGgAaABoAJAAkACQAJAAAACYAHQAdAB0AHQAdAAAAHQA1ADUANQA1AEIAHQBCACQAAgAaAAAAAAAAAAAAJQAlAAAAOAA2ADcAAAAvADAAAAAAAAAAAAAAAAAAAAAoACQAKQAkACkAAQAFANgAJAAAAAAAAAAOACQAAAAiAA8AAAAWABkAFgArADMAAAAAAAAAHAAAAAAAKgAAAAAAFQApAAAAAAAAACMAAAABAAIAAwACAAIAAgADAAIAAgAEAAIAAgACAAIAAwACAAMAAgAFAAYABwAIAAkACgALAAwAAAARABMAAAAAAAAADQAQABQAFwAUABsAHQAQABgAGAAQACEAGgAaABQAGgAUABoAKAAsAC0ALgAvADAAMQAyAAAAAAASAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeAAAAGQAnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8AAAAAAAAAAAABAAEAAQABAAEAAQABAAMAAgACAAIAAgACAAIAAgACAAIAAgADAAMAAwADAAMAAAADAAcABwAHAAcACwACABAADQANAA0ADQANAA0ADQAUABQAFAAUABQAGAAYABgAGAAUABoAFAAUABQAFAAUAAAAFAAtAC0ALQAtADEAEAAxABgAAwAUAAAAAAAAAAAAGQAZAAAAJgAkACUAAAAgAAAAAAAAAAAAAAAAAAAAAAAbABsAGwAbABsAAAABAAAACgAeACwAAWxhdG4ACAAEAAAAAP%2F%2FAAEAAAABbGlnYQAIAAAAAQAAAAEABAAEAAAAAQAIAAEANgABAAgABQAMABQAHAAiACgA3AADAEkATwDbAAMASQBMANgAAgBJANoAAgBPANkAAgBMAAEAAQBJ%29%20format%28%27truetype%27%29%3B%0A%7D%0A%40font%2Dface%20%7B%0Afont%2Dfamily%3A%20%27News%20Cycle%27%3B%0Afont%2Dstyle%3A%20normal%3B%0Afont%2Dweight%3A%20700%3B%0Asrc%3A%20url%28data%3Aapplication%2Fx%2Dfont%2Dtruetype%3Bbase64%2CAAEAAAAQAQAABAAAR0RFRgJ%2BApoAAEdEAAAAMEdQT1PyEySqAABHdAAAKExHU1VC3ebepgAAb8AAAAB0T1MvMmlKkTsAAEKcAAAAVmNtYXCA55%2FUAABC9AAAAMRjdnQgAEQFEQAAQ8AAAAAEZ2FzcP%2F%2FAAQAAEc8AAAACGdseWZszVY%2FAAABDAAAO%2BRoZWFk%2FffhfwAAPswAAAA2aGhlYRF3BwcAAEJ4AAAAJGhtdHg5djASAAA%2FBAAAA3Rsb2Nh2RrodgAAPRAAAAG8bWF4cAE4AM8AADzwAAAAIG5hbWURcy2HAABDxAAAARhwb3N0rSEcCAAARNwAAAJdcHJlcGgGjIUAAEO4AAAABwACAEQAAAJkBVUAAwAHAAAzESERJSERIUQCIP4kAZj%2BaAVV%2BqtEBM0AAgAwAAABJwWmAAMABwAAEzMDIwM1MxUw8yWoJPQFpvu0%2Fqbz8wAA%2F%2F8AFgPoAkgF1RAnAA8BIgUQEAcAD%2F%2FrBRAAAAACAIoAAAS5Be4AAwAfAAABMzUjATUzNSM1MxEzETMRMxEzFSMVMxUjESMRIxEjEQJPnp7%2BPO7u7tae1vb29vbWntYCjPL%2BRMryygGm%2FloBpv5ayvLK%2Fj4Bwv4%2BAcIAAAADAJX%2FJQRSBh0ABQALADsAACU2NTQmJwEUFhcRBgImND4BNzUzFRYXFh8BByYnERcWFxYXFhQOAQcGBxUjNSYnLgExNzAeARcWFxEuAQLPkzxX%2FqksO2eyMEqXaPCaWiIPEKshaTeYRzcTIxo9K2Oe8KdqGReiCxcRKERSf7kWv2VoIQHrQlgZAW4s%2Fp6Fo517Gi8sIXUtHR9aWDX%2BPxU8UEAyYpRrbytkAsvgK4AeJWkZKBUzFgIPEl4AAAUAD%2F%2B1BEMGMAAHAA8AFwAfACMAABIUFjI2NCYiAjQ2MhYUBiIAFBYyNjQmIgY0NjIWFAYiJQEXAcZQclBQcuap7aio7QGcUHJQUHLmqe2oqO39hwN4u%2FxyBRJyUFByUP8A7qio7qj9iXJQUHJQ%2F%2BypqeypKAYdafnuAAADAGP%2F7gUvBgsACAATADsAAAEUFzY1NCYiBgMGFBYyNjcmJwEGBRAlLgE0PgEyHgEUDgIPARYSFzYnMxAHFjc2MxUiJicmJw4BIi4BAgsdzT1tQJs3hs9yPCQ1%2FwBb%2FtsBJiEzVJSxmE8kNVsnYkDdK0QH1phAhSEOnkIdMzlOxfnYfwS0kkZqfDZbWv1tQM6nKDInRQFZTucBD8g%2B0ZaUYF2QjWtMTxk8Zv7uJofA%2FvrLKgQB6RUMFTlMNXTGAP%2F%2FACwD6AEmBdUQBwAPAAAFEAAAAAEAT%2F7DAmAGnwAaAAAAFBcSExcHIicuBDQ%2BARI%2FARcHDgQBPRA6xhK0BUAfSUs9Jyg6gWUUtBIMPDdBMAMQvmT%2Bnf7SHH5qM4m1v%2Bbc57sBMZEcfhwRaW6kogAAAQAA%2FsMCEAafABcAAAAQAi4BLwE3Fx4CEhACBwYPASc3PgIBIj1MYxQitCYXeFxLSDNpVCS0IhRjTAIvAQQBF8PAITN%2BNSPc4P69%2FtL%2Bwnj1eTN%2BMyHAwwAAAAABABgBfgKbA9oADgAAEzcXNTMVNxcHFwcnByc3GDHHlcYvxXV2ent6fAK6lD%2FLy0CTPqZarq1apwAAAAABAB8BPwNpBIoACwAAEzUhETMRIRUhESMRIAE61gE5%2FsfWAnnXATr%2Bxtf%2BxgE6AAABACz%2B2AEmAMUABgAAEzcjNTMVAyxQSvSY%2Ftj688X%2B2AAAAAABAAAB6AIAAp0AAwAAETUhFQIAAei1tQABADIAAAEnAPMAAwAAMzUzFTP08%2FMAAAABABL%2FlgPOBlAAAwAAFwEXARIC%2BsL9BA4GXlr5oAAAAAIAPv%2F0BDwF%2FQATACcAAAEQISIDBhQeAhcWMzI3PgI3NiU0PgM3NjMyFxYREAcGIyInJgNN%2Fv3ZNQ4LGCweQG94OSgZCgME%2FPINIjRTNXSu5YOI4myi64mZAuoCSv6Pab6BgGQoUlQ7cEgyS15LkKCNgi5m1d3%2Bnf4XtVa3zQAAAQBRAAADIwXrAAoAABMlMxEzFSE1MxEHUQFHrtz9QfTCBXhz%2Bvvm5gQlOQABAEkAAAQ4Bf8AJwAAMzQ%2BAzc%2BAjc2NTQnJiMiBwYVIzQ%2BATIWFxYVFAcGDwEOAQchFUogJjZRNHboUxwxOj51nj0d73%2Fp%2B605elxLfEp89ggC0oluXFBlL22WRSpHgUU9Q4VCTYvZeUY6e5%2BTeGNfN1rtNOYAAAABADT%2F7gQtBf8ALgAAPwEWFxYzMjY1NCcmKwE1MzI3NjU0JiMiByc2JDMyFhcWFRQHBgcWFxYVFAcGIyA1n2aPOTp2jEhLcNPTlTANfGSxk41GAQ6rVp42d4IgGlVKTqh2tv6Y%2BYGBLxN8dFxTWMyaKSxUeZ6EYoFHN3qIr4shDBxscYPVf1oAAgBzAAAEwwXrAAIADQAAASERATUBMxEzFSMRIxEBdgF2%2FYgCePDm5vACKAJC%2FPXDA8n8Pcn%2BoQFfAAAAAQBF%2F%2B4D8gXrACQAABM3FhcWMzI3NjU0JyYiBgcGByMRIRUhET4BMh4CEA4BIyInJkWfJExJX2ZMVGo4cVQbOQbLAyj9xwd6laiBTXvgkdOQSQEjclpEQFFcrbtMKCEYMyYDPcn%2Bvw4bSYC%2B%2FvL8i5tOAP%2F%2FAFL%2F9gQuBfEQDwAcBIgF38AAAAEAQwAAA9sF6wAGAAATNSEVASMBQwOX%2Fc%2F7AjIFCuHj%2BvgFCgAAAAADAFb%2F7gRtBfsACgAXADUAAAE2NTQuASIOARQWAgYUFxYzMjc%2BATU0JQE0NzY3LgE0PgEyFhcWFRQHBgcXFhcWFAYHBiAuAQJT9EdqYGZNeRSiMWOkU1QmM%2F7Y%2FgGUSlt4hHrX5q48gbIuNDypPCpTRJT%2Bp%2F2VA4twhS9ULzFZfXz%2B4LOMM2Y8HFQvq3%2F%2BzqmFQSw1stixZkE1cpGbiSUcHldyT7KZN3dlvgAAAgBa%2F%2B4ENwXpAA4AKQAAABYzMjc2NzYxLgEjIgcGAQYjIiYnJjU0NzYhMhIREAAhIiYnNxYzMjc2AUmRcGVHNR4EDI9nYE5UAgd%2BnmWyPoVKhgEa9f3%2Bvv7ZXp8sZFd%2BmmpTA4CgTDpkDaKnTVH%2BCnZNQYzFlH3j%2Fpn%2Bs%2F5v%2FkpMLLBflHQAAAIAMgAAAScEHwADAAcAABM1MxUDNTMVM%2FT09AMs8%2FP81PPzAAIALP7YASYEHwADAAoAABM1MxUDNyM1MxUDMvT6UEr0mAMs8%2FP7rPrzxf7YAAAAAAEAMABYA9AFeAAFAAAJAQcJARcBOgKVavzLAzVqAuj98IACkAKQgAACADsBuAN0A%2BsAAwAHAAATNSEVATUhFTsDOPzIAzgDFNfX%2FqTX1wAAAQAwAFgD0AV4AAUAAAkBNwkBJwLF%2FWtqAzX8y2oC6AIQgP1w%2FXCAAAIASgAAAyIF9gADACEAADM1MxUBNjc2Mh4BFA4DBwYdASM1NDc2PwE%2BATQmIyIH6vP%2BbkZZUdepZyY7SUgeQ9JBHSNGVC5fQnhF8%2FMFCYwzLmKvpXhhXlMmVj%2Bkl2dkLCxWZHF5fJEAAgBC%2F3wGFAVKAAoASwAAAAYVFDMyNjcRJiMTBiMiJyY1NBIzMhc3MxEUFhcWMzI2EC4BIyIHBgcGFB4CMzI%2FARcUBgcGIC4BJyY1NBI2NzYgBBIVFAcOASImAvpwhjRqCCYuXkqgrU4n66VMMBCyIw4VFzBHgvijopO1OBVPjtlotkoYY1InYP7h%2Fq4%2Bd12XZLsBrAFPxEokecGhAyd9WrRYHAEBFv4aW6JQWrQBAiA0%2FZktHwYJuwEh%2FJJYathQyceZWzIQhwsxEShalmK73ZwA%2F6Y5ar%2F%2Brc7Di0VRYAACAAIAAARoBesAAgAKAAABIQMJASEBIwMhAwGwARuN%2FcQBsAEGAbDnff5zfQKAAen7lwXr%2BhUBt%2F5JAAADAHsAAARFBesACAATACYAAAEzMjc2NTQrAREhMjc2NTQnJiMhAxEhMhcWFRAHBgcWFxYVFAcGIwFq9mVKOun2AQCMOjFDR23%2FAO8B59Z3c7ogK35SV5Zz0QN4TjxjvfunQjdsWU9U%2FVYF62llnP7%2FRw0KGGFnp%2B5jSgAAAQA%2F%2F%2BYEeAYHACwAABMmND4CNzYzMhcWFxUHLgInJiIOAQcGFRAXFjI%2BAzc2NRcGBwYjICcmUBAeO189gsH1jkUY0BAsLBo%2BnXBIGCzgMGxVOi0bCA%2FfLXCO1%2F74oVsCOl7AurGVOHf1d34BOGtjQxYzR3NNjrL%2BKFwUHC0%2BPyE6Mh%2FAjbD7jQAAAAACAHsAAASbBesACgAWAAAlMzI3NjUQJSYrAQMRISATFhAOAQcGIQFqkNFxb%2F7VPUmQ7wFlAiRyJCtoTqv%2B0smXlvUB01MR%2Bt4F6%2F5Hjf7I1sBEkwABAHsAAAQFBesACwAAMxEhFSERIRUhESEVewNj%2FYwBtf5LApoF68n%2BXcr%2BItcAAAABAHsAAAPfBesACQAAMxEhFSERIRUhEXsDY%2F2MAbX%2BSwXryf5dyv1LAAAAAAEAPv%2FmBHgGBwArAAABAiMiBwYVEBcWMj4DNzY3ITUhESM1BgcGIi4BJyY1NDc2NzYyHgEXFhcDokHP21gxvzh%2BVzssGAcLAv7dAg7CQExS1rKCMF9bZbJhs2tvLWM%2FBAsBM%2FmLu%2F4%2BbiAZJz4%2BK0Fcyv0DeE4hI1eYZcn%2B88HVUSwZQTRx2AABAHsAAASCBesACwAAMxEzESERMxEjESERe%2B8CKO%2Fv%2FdgF6%2F2VAmv6FQK3%2FUkAAAABAGMAAAFSBesAAwAAMxEzEWPvBev6FQABAAL%2F5gMSBesAGwAAEzcWFxYyPgU3NjURMxEQBQYiLgMnJgKNJm4sTSofGBALBgIC7%2F7vPIlvSj0gDQ8BI0h1MxQMESAfLyYdKTsECvu7%2FpRFDyIxSTckJwAAAAEAewAABH4F6wALAAAzETMRATMJASEBBxF78QH5%2FP4%2FAd3%2B%2Bf6RmwXr%2FV4Cov2x%2FGQC08z9%2BQAAAQB7AAAD3QXrAAUAADMRMxEhFXvvAnIF6%2Fr75gAAAAABAHQAAAVMBesADwAAAREjESEBMwEhESMRIwEjAQFe6gFEASMKASMBROsJ%2FuS4%2FuQEAvv%2BBev76QQX%2BhUEAvv%2BBAIAAAEAcwAABIUF6wAJAAABETMRIwERIxEhA5buvv2c7gE0AkkDovoVBIr7dgXrAAAAAAIAP%2F%2FmBLsGBwATACgAAAAGFB4DFxYzIBEQJyYiDgMBJjQ%2BAzc2MzIXFhEQBwYhIicmATcICBUgNyJNdQFF3DB1Y0U3IP7%2BChIqPl87f7b6lqKckv78956GA45obWp2ZF0hSAJCAddhFSpFYmj%2BVEyWmJ2MfS1hzuD%2Bl%2F6Q1MbHqAAAAAIAewAABE0F6wAHABQAAAE0ISMRMzI2AREhIBcWFRQHBiMhEQNd%2FrKlpZq0%2FR4CBQEacUGSa6%2F%2BygRbx%2F45hfwgBeuiXofwhF%2F9bwACAD%2F%2B5QS7BgcAEwA8AAAABhQeAxcWMyARECcmIg4DASY0PgM3NjMyFxYREAcGBxYXHgIXFjsBFSMiLgQnJicmJyYBNwgIFSA3Ik11AUXcMHVjRTcg%2Fv4KEio%2BXzt%2FtvqWopxzuQIEBhIVExhH5o3NUEEcJQ0ICQK8goYDjmhtanZkXSFIAkIB12EVKkViaP5UTJaYnYx9LWHO4P6X%2FpDUmyInCAwSBAMEsg0QFSIqHiNJHaOoAAAAAgB7AAAEUAXrAAgAGAAAATMyNzY1NCEjAxEhIBcWFAYHBgcBIwEjEQFq%2FWlGSv6xp%2B8B%2FQFfXRsjIkuSARj1%2FvrgA1s5PX7T%2Bt4F6%2FtJnIA3eB%2F9QwKR%2FW8AAAABABj%2F5gPzBgcAQQAAEzcyHgMXFjI2NCYnJickJyY1NDc2MzIXFh8BFhcHJicmIyIVFBcWHwEWHwEWFxYXFhUUBwYHBiIuBxjAAQYPGzQjTuhtIChDpf7dUytLg%2FG%2FelcrEwkDw0KMIybQOjBOMCkELKs8WBs2Ok6pQZqHYlI4KhkQBwGEPx4xOzsYN3KdYSQ8MFWyXX5qZadzUXs1GAdF0jEM1mI0LRoQDgEPPC5EOXWCZmmNLBEcMD5FRT4wHAABAAIAAAQkBesABwAAEzUhFSERIxECBCH%2BZ%2B8FIsnJ%2Bt4FIgABAHv%2F5gRgBesAGAAAExEzERQXFjI%2BAzc2NREzERQHBiMgAyZ776MqaFQ0JhIGBvSXfd%2F%2BrW8vAcAEK%2FwO%2FT0QHCpBNiUwOAPy%2B9Xlhm8BAWoAAAABAAIAAARPBesABgAACQEzASMBMwIoASn9%2Fj7I%2Fj79AgQD5%2FoVBesAAQACAAAGTAXrAA8AABMzEzMTMxMzEzMBIwMjAyMC994J2uLWDN7w%2FqHf3gri4wXr%2FAcD%2BfwHA%2Fn6FQQh%2B98AAAEAAgAABFEF6wALAAAhIwkBIwkBMwkBMwEEUPb%2B0v7R9wGq%2FlL0AS4BJPX%2BXwIY%2FegC8gL5%2FewCFP0XAAEAAgAABGEF6wAIAAABESMRATMJATMCqO7%2BSPwBMwEz%2FAK9%2FUMCvQMu%2FcMCPQAAAAEALAAABFkF6wAJAAAzNQEhNSEVASEVLALd%2FVkD5v1LAsaIBJTPofuc5gAAAQBY%2FtICNgZuAAcAABMRIRUjETMVWAHe8PD%2B0geclvmQlgAAAQAT%2F6ED0AZQAAMAAAUHATcD0Kv878IOUQZVWgAAAAABADX%2B0gIUBm4ABwAAASE1MxEjNSECFP4i8PAB3v7SlgZwlgABAEUETwI3BaYABQAAEzcXBycHRfj5XpmbBK74%2BVyZmwAAAAABAE8AAAQYALUAAwAAMzUhFU8DyLW1AAABAJoERgJVBe4AAwAAEzcBB5p0AUdXBXN7%2Fq5WAAAAAAIARv%2FrA3MELgAQADsAAAEUFjI2PwE2PwE2PwE1BgcGASY1BwYjIicmNDY3NiU0LgMnJiIOAQcGByc%2BAjc2Mh4BFxYVERQWFwEcOlYrFSUQFB0IEhLgRT0BgB4TVqDCSCU%2FR4EBMQkLEBgQJ19TMRQaC4wsQD4jVK5nXR5AFQkBEDs1CgoTCRAXBxAR9zQ8Nv6QEksWXIlEsos1YD1HIBwPEgQKHSQYIBhWWz0sDR8TMSlZq%2F3YHGYTAAAAAgA%2F%2F%2B4DvgXrABIAKwAAASIHER4CFxYyPgE3NjQuAScmAQYrATY1ETMRPgEyHgMXFhQOAQcGIyICCnVjARoeFzKFVDIPGhopHzL%2B3ggI4hzWEnKcgltFKA0VHkMxbLCSA3xn%2FggBIx4RJyU8Lk%2FdjVEYKPzTT0BPBVz97hs9IzpXXjxk0JOJNHEAAAABADv%2F7gNqBDEAGwAAExA3NiAXFhcHJicmIyIRFBYzMjc2NxcGBwYjIDuJbAGFbiQOtQg7KDvpenVSMywUpBdLaaT%2BQQIIATqFaqQ1LlBSMCD%2BlbO7PDQ7SFlQbwAAAAACADv%2F7gO6BesADgAkAAABJiMiBwYVFBcWMzI3NjcXFBcjJi8BBiMiJyY1EDc2MzIWFxEzAsdjdXo1L0I4bnRMDQHWHOIDAwpMkvxyQLxknE1xEtYDFWdpXLjLTkNnEgGORkkFCUFh6YKjAX14QD0bAhIAAAIAO%2F%2FuA20EMQAJACYAAAEhNCcmIyIGBwYCJjQ%2BATc2MzIXFgMhFBcWMj4BNzY3FwYHBiIuAQEbAXIbNFw3UxUoxxk0Ujpjhn5esAj9qWs3eVAwFBsKiEpUXd%2BdYwKMTjlpMSdJ%2FjaR3dB7JkFLjv5%2FykYkHiYZIxlYgTc%2BOmAAAQACAAACSwX6ABQAAAEyFxUjBgcGHQEzFSMRIxEjNTM1NAH7SgVEURks2trWmJgF%2Bg%2BzARIhMbS1%2FJYDarXi%2BQAAAAADABT%2BPAPhBDQAOQBFAFwAAAAGIicGBwYVFBceBBcWFxYVECEiJyY1NDcuATU0Ny4BND4BMzIWFzY3PgEzFSMmBwYeARcWFAYABhQWMzI3NjQmJyYABhQeAxcWMj4DNzY0LgMnBgLdnaAzCRgvlxwOOiBHIKwwZP4UzYSNwDxSmjRYc8R5OHcZVmIOQA4EYSEKARYGETn%2BVnFnZYEnChQULf6oEhIaLSYdKFspRCw0DiREaGhdDGkBZDwUCRAgIy8SBAEBAQgHJytbfv7eREiVhEkIWT2AQxu3zKxcKxY%2BBAEBtAoRBQo%2BETiFkAGuaMVxjCNHRB9F%2FB8qLyEVEAcCAwEECRAMHFI2GQ4IBSoAAAEAdwAAA4YF6wASAAABESMRNCYiBgcRIxEzETYzMhcWA4bWV3h2HdbWgox%2BU1kDF%2FzpAt9IVUcj%2FO4F6%2F3EgkJHAAAAAgBbAAABTwVuAAMABwAAMxEzEQM1MxVq1uXzBB%2F74QR78%2FMAAv%2FD%2FqYBZQVuAA8AEwAABzI2NREzERQHDgMHBiMTNTMVPGRY1jcVI0AsKTVRpvKlQXoECfvaqkQaIRcMAwQF1fPzAAABAHwAAAOZBesACwAAMxEzEQEhCQEjAwcRfNYBMAEE%2Fs4BRPLmbgXr%2FKsBif56%2FWcB3Iv%2BrwAAAAEAfP%2F9AVMF6wADAAAXETMRfNYDBe76EgAAAAABAG4AAAXbBDEAHwAAATYzMhYXNjMyFxYVESMRNCYiBgcRIxE0JiIGBxEjETMBRIKfXpAilZN%2FXGPWaHt2HdZXeYob1tYDr4JKS5VCR5H86QLfR1ZHI%2FzuAt9IVUkh%2FO4EHwAAAQBuAAADfAQxABIAAAERIxE0JiIGBxEjETMVPgEzMhYDfNZXeHYd1tY6f1WCqAMX%2FOkC30hVRyP87gQfcDpIjQAAAAACADv%2F7QOcBDEADgAeAAABBhQeARcWMzIRNCcmIyIDNBIzMhcWERAFBiIuAScmARcGDB8YNmLZQDRlufjnyoZix%2F74SbuUYiE9Aok1emJiJFABbdZTRP6U%2BgEnRIv%2Brf5ZYBs2YEaCAAIAdv5mA9kEMQAOACAAAAEWMzI3NjU0JyYjIgcGBzU2MzIXFhUQBwYjIiYnESMRMwFNY3V6NS9COG5zTQ0BTJL8ckC8ZJxMchLW1gEKZ2lcuMtOQ2cSAc5h6YKj%2FoN4QD0b%2FiAFuQAAAgA7%2FmYDngQxAA8AIQAAATARJicmIyIHBhUUFxYzMhM3MxEjEQ4BIyInJhE0NzYzMgLHAQ1MdG44Qi81enVjEMbWEnFNnGS8QHL8kgEKAfgBEmdDTsu4XGkDLU%2F6RwHgGz1AeAF9o4LpAAAAAQBuAAAChgQxABAAADMRMxU2PwE2MzIXFQYHBgcRbtYEDhhKqhIStlAkGAQfkQUVJGUDswNiLEX9WwAAAQBD%2F%2B4DOAQxADAAAD8BFhcWMzI3NjU0JyYvASYnJjU0NzYzMhcWFwcmJyYiBhUUFxYfARYXFhQOASImJyZDlCMeR2xXJSIxLCteo0hJW2CzoXQyDXxGRiR1Uzs0NVrUMxVjoqVrMmHUWjIeRiQhQ0wmIQwbLk5Pgm9LUG4vIGJVFAs8OkMlIRAZPI86n4RIFBkxAAEAEf%2FrAmIFoAAbAAATNTMRMxEzFSMRFBYzMjY1FQ4BIi4DJyY1ERKd1t3dPUgdOzY7VSk7Ky4PIQNqtQGB%2Fn%2B1%2FcpVPwgBlxkOAgwVKBxAZgJyAAEAdv%2FuA4UEHwASAAATETMRFBYyNjcRMxEjNQYjIicmd9ZXd3cd1taCjH5TWQEIAxf9IUhVRyMDEvvhcIJCRwABAAUAAAOBBB8ABgAAEzMbATMBIwbi2d3i%2Frz4BB%2F9GALo%2B%2BEAAAAAAQAGAAAFIgQfAAwAACEjATMbATMbATMBIwMB%2Ftr%2B4t64nLict9%2F%2B4NqUBB%2F9VAKs%2FVYCqvvhAowAAAAAAQACAAADfwQfAAsAABMzGwEzCQEjCwEjAQLmw8zl%2Fr8BY%2Bbc0%2BcBRgQf%2FskBN%2F4W%2FcsBXv6iAhgAAAAAAQAC%2FmkDgwQfABcAABMzGwEzAQYHDgEHBicmMTcWMj4CNzY3Au7exu7%2BoDUjIzkhac0JCiV5SS0gCA8BBB%2F9hwJ5%2B8GkNDQ8EjsfAccQIDI9Hz0zAAAAAAEAAgAAAxcEHwAJAAAzNQEhNSEVASEVAgHa%2FlwCzP4qAeiJAuG1eP0bwgAAAQB7%2FsAC1AaGAC4AABMwNT4BNTQnLgE0NzYhFSIHDgEUFxYVFAYHHgEUBwYUFxYzFSInLgI0NzY1NCZ7cmAnDhkPQAGFl0cfHxQ6gGRkgDoUEDzQzXE1RB0zG2ACRbwBeXsyQBdbfTf4q0siSjwvi1B2shMTssaLLzwlkqtDIF5usFMsMnt5AAEAQP9zATAGGwADAAAXETMRQe%2BNBqj5WAAAAAABAEL%2BwAKaBoYALAAAAQ4BFRQXFhQGBwYhNTI3NjQnJjQ2Ny4BNTQ3NjQmJyYjNSAXFhQGBwYVFBYXAppxYRszLzVt%2Fv3PPRAUOoBkZIA6FB8fRpgBbk4YGA8nYXECRQF5ezQrUMOEMmirkiU8LozGshMTsnZQjC48SiJLq9xCjlsXPjR7eQEAAQAvBFgC8AViABMAAAEGIyImIgYHJz4BMhYXFjMyNzY3Au9HmFSDTygRgheFbk4YQDAmERYNBSDIWiopPFtsHREuFx8iAAAAAgAw%2F1cBJwT9AAMABwAABSMTMxMVIzUBJvMlqCT0qQRMAVrz8wAAAAIAY%2F8PA5AFBgAFAC0AAAAGEBYXEQA%2BAjc2NzUzFR4BFxYfAQc0JyYnET4BPwEXBwYHBgcVIzUmJyYnJgFhKCdD%2FsAKGDAiSYPWPmMaOAsFrC4RGCk9CQqeCC1zMzzWhElIFhUDTar%2B0aQZArP%2B0WZ6ai9jEN%2FaDUYqVzwbKEM3FQz9ORJVIiE5HI1RJQzk6RBnZHBuAAAAAQAYAAAEMgX7ADIAAAEUByEyNzY3FxQOBAcGIyE1PgE9ASM1MzUQNzY3NjMyFhcVJyIHDgIHBh0BIRUhAYIeATqeUBMLhwYKHyZFKWOJ%2FegQJIaGLzNacLIiawFmoTkiFQoCBQEW%2FuoB6OwdTREZlgEOEiogKA0ghCfcS3jcfAEObHQvPAwEtQM%2BJkc1JkBfbtwAAAIALQGPAuAEQgAHACMAAAAUFjI2NCYiAyY1NDcnNxc2MzIXNxcHFhUUBxcHJwYjIicHJwEAUHJQUHK9KSlmXWVEVlNBY19iKy1iXWNCUlRDZl8DInJQUHJQ%2FuJCU1JCZl1lLSljX2JDVVdEYl1jKCtmXwAAAQAEAAAEXwXrABYAABMzCQEzATMVIxUzFSMRIxEjNTM1IzUzBP4BLwEv%2Fv5B9fDw8Obc3NzhBev9ywI1%2FMWVdZX%2B7wERlXWVAAAAAAIAQP9zATAGGwADAAcAABMRMxEDETMRQe%2Fv7wMaAwH8%2F%2FxZAvn9BwACAET%2F7gM5BVkAOgBOAAABFhcWFA4BIiYnJic3FhcWMzI3NjU0JyYvASYnJjU0NyY1NDc2MzIXFhcHJicmIgYVFBcWHwEWFxYVFAEGFRQXFh8BFhcmJy4ELwEmAxUIBhVjoqRsMmFMlCMeR2xXJSIxLCteo0hJJydbYLOhdDINfEZGI3ZTOzQ1WtQzFf3oAjs0NVoqJAEFBxIlHDQQQjcBtBAROp%2BESBQZMYhaMh5GJCFDTCYhDBsuTk%2BCTDhEYG9LUG4vIGJVFAs8OkMlIRAZPI86TUYBNwoLQyUhEBkMDyISFh8cEBMFEg8AAAIAEASzAn8FpgADAAcAAAE1MxUhNTMVAYzy%2FZLyBLPz8%2FPzAAMAOwD8BBAE0AAcACwAOAAAAQYjIicmNTQ3NjMyFxYXByYnJiIHBhUUMzI3NjcEND4CMh4CFA4CIi4BEhQeATI%2BATQuASIGAvUymEgzYzY5b3I1EQZZDC4VPRkvcEIhBwH9pE6Etce1hE1NhLXHtYQbZ7LRsmdnstGyAn%2B9Kk%2BrdVRaciYeFUgfDh44d85TEg4IxraDTk6Dtsa2g05OgwGE0rJnZ7LSsmdnAAACAGQEFAHHBe8ABwAmAAATMjc1DgEVFBcGIiYnJjU0Njc0JyYiDgEHBgcnNjc2MhYdARQXIyb2Jz9QS5sxaTcNGnCIHhAuJBYIDAQ9GyYrjFANXQ0EYzdsEi8rNx4xGBQlK1VUGj4KBQ0QCg4KJjkWGUVc8CcaCAACAG4D0gNuBiYABQALAAATARcHFwcTARcHFwduAShmvL5qSgEoZry%2BagT8ASpsvsBqASoBKmy%2BwGoAAAABAE8BUwQgA1EABQAAEzUhESMRTwPQtAKbtv4CAUgAAAEAZQKaBAYDLwADAAATNSEVZQOgApqVlQAAAAAEADsA%2FAQQBNAABwAVACUAMQAAATI1NCYrARUDETMyFxYUBgcXIycjFSQ0PgIyHgIUDgIiLgESFB4BMj4BNC4BIgYCOEYxNjVn2XEiCC0sWnRdPf5ZToS1x7WETU2Etce1hBtnstGyZ2ey0bIDE0EgF3j%2B2QH%2BaBg%2BYBDQy8uXxraDTk6Dtsa2g05OgwGE0rJnZ7LSsmdnAAEAYwSzAsQFSAADAAATNSEVYwJhBLOVlQAAAAACAHADugKvBfgABwAPAAAAFBYyNjQmIgI0NjIWFAYiAQZQclBQcuap7aio7QUSclBQclD%2FAO6oqO6oAP%2F%2FACIAvQNsBTAQJwDUAAP%2BRBAHAA4AAwCmAAAAAQBeBB8BkQXyABgAABM0Nz4CNCYiBhUjNDYyFhQGBw4CBzMVXyQpgBwmSyJJVYJOExMcVEoC2wQfTTI3Uyo9JjQgQFFMSy8UHz1HEEYAAAABAGUEFgGaBe0AHwAAEzYzMhYUBgceARQGIyInNxYzMjU0JisBNTMyNjQmIgdxMWo0SicSGy1LQ2w6MDMvWi0iQEAfISVVLQWoRUpOQQgJRFxNUSc7SR0yPiw2JTAAAAABAG8ERwIrBe8AAwAACQEnAQIq%2FpxXAUcFdP7TVgFSAAEAdv5mA4UEHwASAAABIxEzERQWMjY3ETMRIzUGIyInAU3W1ld3dx3W1oKMLCj%2BZgW5%2FSFIVUcjAxL74XCCCAADADQAAAQBBesAAwANACEAAAEzESMFBhQeARcWFxEGBzQ%2BAzc2MyERIxEjESMRIicmApOKiv6SAgYTDiNCfvwKGylCKluJAi7kiuTMbz8DLQH1uBk4OEYcQQIB1wziMk5YT0oaO%2FoVAmP9nQJj0XcAAQAyAugBJwPbAAMAABM1MxUz9ALo8%2FMAAQAG%2FqUBIwAAAAsAADMWFRQHBic1MjU0J8NgcEJqfThgd1MiFAWYLlBFAAABAHQEHwFQBesACgAAEzczETMVIzUzEQd1YzVD1Uo7Bcgj%2FnlFRQFCEQAAAAIAXwQYAdgF9AAHAA8AABIyNTQmIgYVBCA1NDYyFhW9vilrKgEb%2FohjsGUEZ59NUlJN7u5tgYJsAAAAAAIAbgPSA24GJgAFAAsAAAkBJzcnNwMBJzcnNwNu%2FthmvL5qSv7YZry%2BagT8%2FtZsvsBq%2Ftb%2B1my%2BwGoAAAQAOv%2FRBE4GEgACAA0AGAAcAAABMxEBNQEzETMVIxUjNQE3MxEzFSE1MxEHEwEzAQKpuv7FATt3c3N3%2FNejV23%2BonlgFwLsnv0UARMBIP58YQHj%2FiBkr68FAzn9gHNzAhAc%2BnIGQfm%2FAAAAAAMAOv%2FRBFoGEgAKAA4AKwAAEzczETMVITUzEQcTATMBJTQ%2BATc%2BAjQmIgYHBhUjNDYyFhUUBw4CByEVOqNXbf6ieWAXAuye%2FRQBUiEnHEKqLz9bMw0Yd43VfoIUXnsEAWgFsjn9gHNzAhAc%2BnIGQfm%2FIllLPxxEb0VkPhsXKS9phXtRdGYQRXUacwAABAA9%2F9EEnAYSAAIADQARADQAAAEzEQE1ATMRMxUjFSM1BQEzCQE3FjMyNjQmKwE1MzI2NCYjIgcnPgEyFhQGBx4BFAYHBiMiAvi6%2FsUBO3dzc3f9EALsnv0U%2Ft5PSGs6R0s2aWkyNz4yV0pHIoere0EdK0seHD5xtAETASD%2BfGEB4%2F4gZK%2Bv3gZB%2Bb8DtUBhPWlUZkhZPE5BMUB6f2wNDnBoSx9DAAAAAgBKAAADIgX2AAMAIQAAARUjNQEGBwYiLgE0PgM3Nj0BMxUUBwYPAQ4BFBYzMjcCg%2FMBkkdYUdepZyU8SEkeQ9JCHSNGVC1fQnhFBfbz8%2Fr3jDMuYq%2BleGFeUyZWP6SXZ2QsLFZkcXl8kQD%2F%2FwACAAAEaAgpECcAxwBFAjsSBgAkAAD%2F%2FwACAAAEaAgpECcAyAF5AjoSBgAkAAD%2F%2FwACAAAEaAfYECcAxAD%2FAhMSBgAkAAD%2F%2FwACAAAEaAeLECcAxgI0BgoSBgAkAAD%2F%2FwACAAAEaAd0ECcAaQDvAc4SBgAkAAAAAwACAAAEaAfxABEAGQAcAAASJjYyFhQHBgcBIwMhAyMBJicSFBYyNjQmIgMhA%2FkBqe2oVBMVAa7nff5zffgBpjIpQVByUFByLgEbjQZc7Kmp7FUTD%2FobAbf%2BSQXJFSkBBHJQUHJQ%2ByUB6QAAAgACAAAGOQXrAAMAEwAAAREjAxchAyMBIRUhESEVIREhFSECrznB%2Bv7Nff0BsARg%2FYwBtf5LApr8dwKAAqL9Xsn%2BSQXryf5dyv4i1wAAAAABAD%2F%2BlgR4BgcANwAAEyY0PgI3NjMyFxYXFQcuAicmIg4BBwYVEBcWMj4DNzY1FwYHBgcWFRQHBic1MjU0JyYnJlAQHjtfPYLB9Y5FGNAQLCwaPp1wSBgs4DBsVTotGwgP3y1wd6tZcEFrfTHkkVsCOl7AurGVOHf1d34BOGtjQxYzR3NNjrL%2BKFwUHC0%2BPyE6Mh%2FAjZQXXnJUIhQGmC5KQhbijQAAAP%2F%2FAHsAAAQFCCkQJwDHAD0COxIGACgAAP%2F%2FAHsAAAQFCCkQJwDIAXECOhIGACgAAP%2F%2FAHsAAAQFB9gQJwDEAPYCExIGACgAAP%2F%2FAHsAAAQFB3QQJwBpAOcBzhIGACgAAP%2F%2F%2F5MAAAFSCCkQJwDH%2FuoCOxIGACwAAP%2F%2FAGMAAAJJCCkQJwDIAB4COhIGACwAAP%2F%2F%2F%2BgAAAHaB9gQJwDE%2F6QCExIGACwAAP%2F%2F%2F6UAAAITB3QQJwBp%2F5QBzhIGACwAAAACAAkAAASPBesAEQAhAAAlMzI%2BATc2NC4BJyYrAREhFSkBNTMRISATFhAOAQcGKQERAV%2BQZ6BbHTIXPC9pxpABI%2F7d%2FqpnAWUCJXAlLGdOqv7R%2FpvJTHJNgPGblzV2%2Fh%2B1tQKq%2FkeP%2FsrWwESTAoz%2F%2FwBzAAAEhQeLECcAxgJ7BgoSBgAxAAD%2F%2FwA%2F%2F%2BYEuwgpECcAxwCZAjsSBgAyAAD%2F%2FwA%2F%2F%2BYEuwgpECcAyAHNAjoSBgAyAAD%2F%2FwA%2F%2F%2BYEuwfYECcAxAFSAhMSBgAyAAD%2F%2FwA%2F%2F%2BYEuweLECcAxgKIBgoSBgAyAAD%2F%2FwA%2F%2F%2BYEuwd0ECcAaQFDAc4SBgAyAAAAAf%2F6AR0DigSsAAsAAAM3CQEXCQEHCQEnAQaYATABMJj%2B0AEumP7S%2FtCYATAEFJj%2B0AEwl%2F7Q%2FtCYATD%2B0JcBMAAAAAADADn%2FsgS0BjQADAAsADgAAAAWFxYXASYjIgcGBwYCJjQ%2BAzc2MzIXNxcHFhcWFA4DIicmJwcnNycmCQEWMzI2NzY0JicmASgMDgUGAeFGaIpOTRka0h0SKj5fO3%2B2pHNJuW1bHwwfUXvI5Fc2LU%2B3bgkxAxP%2BJkdviZEWFQcJBwKve0QaFwM%2BQWdkhYP%2BfLGjmJ2MfS1hUn9rvZXZV8XP0pphIhQfiW2%2BDkwC6PzNPcKAgbVmPC3%2F%2FwB7%2F%2BYEYAgpECcAxwB9AjsSBgA4AAD%2F%2FwB7%2F%2BYEYAgpECcAyAGxAjoSBgA4AAD%2F%2FwB7%2F%2BYEYAfYECcAxAE3AhMSBgA4AAD%2F%2FwB7%2F%2BYEYAd0ECcAaQEnAc4SBgA4AAD%2F%2FwACAAAEYQgpECcAyAF1AjoSBgA8AAAAAgB9AAAETAXrAAkAGAAAATMgNzY0JyYrAQMRMxEhIBcWFRQHBiMhEQFtigEASRsvWdyK8PABGgEIe0GUcMD%2B5gIHiTOVOGn8BwXr%2FtfLbHzrg2P%2BwgAAAAEAff%2FuBHAF%2BwBGAAAAPgE1NCYiDgUHBhURIxE0PgM3NjIeARQGBwYHBhQeBB8BFhcWFA4BIiYnJic3FhcWMzI3NjU0JyYvASYnJgGHaeVRZzotIRcPCQID5BsfLkUsad6gYl5eYQ8eEBYrIkATONQzFWOipGszYE2UJB5GbFclIjEsK16jSEkDhH99TTQ4DRErI0w3OE9%2F%2FLwDcvV7ZTpCESdRi7eaLC4UJ0AnHBwRFgUQO5A6n4RIFBkxiFoyHkYkIUNMJiENGi5OTwAAAP%2F%2FAEb%2F6wNzBlMQJgDH%2F2USBgBEAAAAAP%2F%2FAEb%2F6wOLBh0QJwB1AWAALhIGAEQAAP%2F%2FAEb%2F6wNzBd4QJwBBALoAOBIGAEQAAP%2F%2FAEb%2F6wNzBasQJgBhWEkSBgBEAAAAAP%2F%2FAEb%2F6wNzBZcQJwBpAJr%2F8RIGAEQAAP%2F%2FAEb%2F6wNzBqMQJwBxAHIAqxIGAEQAAAADADn%2F6wWmBDEACABGAFUAAAEhNCcmIyIHBgEyFzYzMhcWAyEUFxYyPgE3NjcXBgcGIyAnMAYPAQYPAQYjIicmNDY3NiU0LgMnJiIOAQcGByc%2BAjc2AxQzMj4BPwE2PwE1BgcGA1MBchs0XHszGf6PzVJpssVnYQb9pms3eVAwFBoLiEdXXHv%2B%2BXAQBxUNDyNajMJJJD1HgAE0CQsQGBAnX1MxFBsKjCw%2FPyNUaHotPiAUHQgSEuBFPQKOTjhodDoBYGdqpZr%2B5ctFJB4mGiAbWH86PcQaCRsSDh5LiUS1jTVeOkcgHA8SBAodJBggGFZbPSwNH%2FzygB8REBcHEBH3NDw2AAEAO%2F6eA2oEMQAmAAATEDc2IBcWFwcmJyYjIhEUFjMyNzY3FwYHBgcWBxQHBic1MjU0JyQ7iWwBhW4kDrUIOyg76Xp1UjMsFKQXS1N3WgFvQmt%2BMf50AggBOoVqpDUuUFIwIP6Vs7s8NDtIWVBYEl5yVCIUBpguSkEeAP%2F%2FADv%2F7gNtBlMQJgDH9GUSBgBIAAAAAP%2F%2FADv%2F7gNtBlMQJwDIASgAZBIGAEgAAP%2F%2FADv%2F7gNtBgIQJwDEAK4APRIGAEgAAP%2F%2FADv%2F7gNtBZ4QJwBpAJ7%2F%2BBIGAEgAAP%2F%2F%2F4UAAAFBBlMQJwDH%2FtwAZRIGAMEAAP%2F%2FAGAAAAI6BlMQJgDIEGQSBgDBAAAAAP%2F%2F%2F9kAAAHLBgIQJgDElT0SBgDBAAAAAP%2F%2F%2F5YAAAIFBZ4QJgBphvgSBgDBAAAAAAACADv%2F7gOcBesADgAwAAABBhQeARcWMzIRNCcmIyIDNBIzMhYXLgEnByc3LgEnMxYXNxcHEhMWFA4BBwYjICcmARYFDSAYNWDaQDRmvPTnyUk6GQQyDLNGtihzEM8kQaFGjacNAh1CMmm2%2FvdoPwKEM3tmYCJLAWzRVkb%2BlPoBJxAJGIIUZndqNWwJE0lcd1L%2B7f5xO6ybgy1g24MAAAD%2F%2FwBuAAADfAW1ECcAxgH0BDQSBgBRAAD%2F%2FwA7%2F%2B0DnAZTECYAx%2FxlEgYAUgAAAAD%2F%2FwA7%2F%2B0DnAZTECcAyAEwAGQSBgBSAAD%2F%2FwA7%2F%2B0DnAYCECcAxAC2AD0SBgBSAAD%2F%2FwA7%2F%2B0DnAW1ECcAxgHrBDQSBgBSAAD%2F%2FwA7%2F%2B0DnAWeECcAaQCm%2F%2FgSBgBSAAAAAwAfAPoDaQTMAAMABwALAAATNSEVATUzFQM1MxUgA0n94%2FTy9AJ519f%2BgfT0At709AAAAAMAO%2F%2FAA5wEaAAIABEAJAAAASYiDgEHBhQXCQEWMj4BNzY0ASc3JhASMzIXNxcHFhUQBQYiJwIwHlhNMQ8cCgGe%2FtsnZE8vDxn%2BQLpDU%2BfKV0owukJm%2FvhJx1ADcwkjPS9UzDoBIP4EFSxHMVbV%2FU9rdIgB4wEnHlVrcpLq%2FllgGyIA%2F%2F8Adv%2FuA4UGUxAmAMcOZRIGAFgAAAAA%2F%2F8Adv%2FuA4UGUxAnAMgBQgBkEgYAWAAA%2F%2F8Adv%2FuA4UGAhAnAMQAxwA9EgYAWAAA%2F%2F8Adv%2FuA4UFnhAnAGkAuP%2F4EgYAWAAA%2F%2F8AAv5pA4MGUxAnAMgBBgBkEgYAXAAAAAIAdv5nA8sF6wAOACQAACUWMzI3NjU0JyYiBgcGBwMRMxE2NzYyHgEXFhUQBwYjIi4BJxEBTThnmD4zjjRkMhQfHdbWDSdMrotgI0KGZ7Q2aToE50RyW7D6SBoPDxci%2B0IHhP3aFx04PmdEhKH%2B35x4JioN%2FhwA%2F%2F8AAv5pA4MFnhAmAGl8%2BBIGAFwAAAAAAAEAYAAAATcEHwADAAAzETMRYdYEH%2FvhAAIAPgAABo8F6wAKACIAACURIyIHBhEQFxYzFyInJicmND4DNzYzIRUhESEVIREhFQMGgKdZWOsxPAL4nYcjChIqPl87frcD4f2MAbX%2BSwKa1wRLlZb%2B%2Bv5KUxHXvaH9SpaVmIZ3KlzJ%2Fl3K%2FiLXAAADADv%2F7QX4BDEACAApADgAAAEhNCcmIyIHBgU0EiAXNjMyFxYDIRQXFjI%2BATc2NxcGBwYjIicGIyAnJhMGFB4BFxYzMhE0JyYjIgOlAXIbNFx7Mxn8lucBlXVs1sVnYQb9pms3eVAwFBoLiEdWXXvgcW3Y%2FvNnPdwGDB8YNmLZQDRluQKOTjhodDq%2B%2BgEnmZmlmv7ly0UkHiYaIBtYfzo9jI3cggE%2BNXpiYiRQAW3WU0QAAP%2F%2FAEQEbgI2BcUSBgBB%2Fx8AAv7EAGABAwKeAAcADwAAAhQWMjY0JiICNDYyFhQGIqZQclBQcuap7aio7QG4clBQclD%2FAO6oqO6oAAD%2F%2F%2F6CAHcBQwGBEAcAYf5T%2FB8AAP%2F%2FAKkERgJlBe4QBgBDDwD%2F%2FwBvBEcCKwXvEgYAdQAAAAEAAAHoBAACnQADAAARIRUhBAD8AAKdtQAAAAABAAAB6AgAAp0AAwAAESEVIQgA%2BAACnbUAAAD%2F%2FwAsA%2BgBJgXVEgYACgAAAAIARgQWAfsFpgAIABEAAAE1MxUjFyMuASU1MxUjFyMuAQFPlkFXLANi%2FtyWQVcsA2IFEJaW%2BgO%2BOZaW%2BgO%2BAP%2F%2FABYD6AJIBdUSBgAFAAD%2F%2FwAY%2F9ECSgG%2BEAcAzQAC%2B%2BkAAAABAFwCAQGfA0QABwAAEiY0NjIWFAa4XF2FYWECAWKBYGJ%2BY%2F%2F%2FADAAWAPQBXgSBgAfAAD%2F%2FwAwAFgD0AV4EgYAIQAAAAEARv%2FRA9AGEgADAAAXATMBRgLsnv0ULwZB%2Bb8AAAAAAQAS%2F%2BYEvAYHAD8AABM1MzY3PgE3NjMyFxYXFQcuAicmIg4BBwYHIRUhBhUUFyEVIRIXFjI%2BAzc2NRcGBwYjICcmJyM1MyY1NDcThQ4ZHl89gsHah2Mc0BAsLBs%2BnW9IGA8KAXj%2BdgECAYn%2Bhi2iMGxVOi0bCA%2FfLXCO1%2F74olAkiXQDAgM8lU5LWZU4d8GNnAE4a2NDFjNHc00xNZUiIywplf74QhQcLT4%2FIToyH8CNsPt9r5UrKyIiAAABAB8CeQNpA1AAAwAAEzUhFSADSQJ519cAAAD%2F%2FwAS%2F58DzgZZEgYAEgAJAAYAXP%2F7BQoCFAAkADAAPwBDAE8AXwAAJTcWFxY3Mjc2JzQnJiIGBwYHIxEhFSMVPgEyHgIUDgEjIicmASIQMzY3NjQnJicmAiY0Njc2MzIXFhQOASImBTUzFQMiEDM2NzY0JyYnJgImNDY3NjMyFxYVFAcGIiYCNDcMHBogJBseASUTKB4JFAJHARvHAis0Oy0bK08ySjMZAih7e0oWEwQEDBjkERESKWJ%2FIAgbTm5H%2Fd008nt7ShYTBAQMGOQSERMqYT0nQlUiX0dnKCAXFwEcID1BGw4MCBINASJHcAUJGS1CX1gxNhsBnf4%2BAUA4kyUlI0n%2BkFdmWylasC55b1IuKjQ0Aen%2BPgFAOJMlJSNJ%2FpBYZFwpWixKnLg4Fi4AAA4ASQAAA4cCtQADAAcACwAPABMAFwAbAB8AIwAnACsALwAzADcAAAERMxEDETMRATUhFQE1IRUBNSEVAREzEQMRMxEDETMRAxEzEQE1IRUBNSEVATUhFQERMxEDETMRA2odHR3%2BrwE0%2FswBNP7MATT%2Brx0dHZsdHR3%2BrgE1%2FssBNf7LATX%2Brh0dHQFrASr%2B1v60ASr%2B1gJ5HR3%2BtB0d%2FrQdHQFrASr%2B1v60ASr%2B1gFMASr%2B1v60ASr%2B1gJ5HR3%2BtB0d%2FrQdHQFrASr%2B1v60ASr%2B1gAAAv%2F5AAADwwX6AAcAIQAAASYGHQEzNTQlIh0BMxUjESMRIxEjESM1MzU0ITIXNjIXFQIYO3asAWyW2trWrNaYmAF1VDlV1AcFOBA2P7TiGxxltLX8lgNq%2FJYDarXi%2BScnD7MAAAH%2F%2BQAAAzkF%2BgAZAAATNCEyFxUjNSYiDgIdASERIxEjESMRIzUzkQF1db7zCR5NOzABxNbu1piYBQH5D%2FNAAQcRLSG0%2B%2BEDavyWA2q1AAAAAv%2F5%2F%2F0DKwX6AAQAFAAAASYdATMlNCE2HwERIxEjESMRIzUzAlXu7v48AXVVnzHW7taYmAU4BWq04vkCDQT6EgNt%2FJYDarUAAv%2F5AAAEuwX6AAYAJwAAASIdATM1NCcyFzYgFxUjNSYiDgIdASERIxEjESMRIxEjESM1MzU0AhixrA1VN14BDb7zCR5NOzABxNbu1qzWmJgFOGW04hveJycP80ABBxEtIbT74QNq%2FJYDavyWA2q14vkAAAAD%2F%2Fn%2F%2FQStBfoABQAgACgAAAEiHQEzEQU0ITIXNj8BNh4CMxEjESMRIxEjESMRIzUzASYGHQEzNTQDrMPu%2FLoBdWYnLkVgOK8dQgHW7tas1piYAYc7dqwFOGW0ARk3%2BScXBAYDBwEE%2BhIDbfyWA2r8lgNqtQEZEDY%2FtOIbAAAAAAEAAADdAGAADgBpAAcAAgAAAAEAAQAAAEAAAAAEAAMAAAAUABQAFAAUACgANgBmAMQBAgFiAWwBmgHIAeYB%2FgIQAhwCKAI4AngCjgLKAw4DLANmA3ADhAPaBB4EMARIBFwEcASEBLgFKAVGBYQFygX0BgwGIgZmBn4Giga4BtQG5AcGBx4HYAeGB%2BIIEAhwCIIIrAjACOAI%2FgkWCSwJPglOCWAJcgl%2BCY4J7AoyCmIKnArcCv4LhguoC7oL3Av4DAYMOAxaDI4Mwgz4DRYNYA2KDaoNvg3cDfoOJg48DoAOjg7SDvYPCg9WD6AP2hAAEBQQihCcEPIRLhFMEVwRahG2EcQR4hHwEhgSSBJYEngSsBK8EtIS6BMGEyQTWhOgE%2FQUKhQ2FEIUThRaFGYUnBTEFRgVJBUwFTwVSBVUFWAVbBV4FbAVvBXIFdQV4BXsFfgWGhZ2FoIWjhaaFqYWshbeF0YXUhdeF2oXdheCF44YEBhOGFoYZhhyGH4YihiWGKIYrhj%2BGQoZFhkiGS4ZOhlGGWAZohmuGboZxhnSGd4aGhomGjIaahrEGswa6hr0GvwbBBsSGyAbKBtIG1AbWhtsG3QbfBuMG%2Bob%2BBwAHJAc%2Bh0sHVQdeB2yHfIAAQAAAACAAK1AG6RfDzz1AAsIAAAAAADLmQqMAAAAAMuZCoz%2Bgv1cCSQKDgABAAgAAgAAAAAAAALsAEQAAAAACAAAAAIAAAABVgAwAkIAFgVJAIoEyQCVBDMADwWQAGMBTgAsAl8ATwJfAAACtAAYA%2B4AHwG8ACwCAAAAAVcAMgPrABIEegA%2BA4cAUQStAEkEogA0BQoAcwQiAEUEnABSA9wAQwTDAFYEnABaAVcAMgFWACwEBQAwA64AOwQFADADdwBKBlQAQgRqAAIEfAB7BJ8APwTNAHsENwB7BBEAewTuAD4E%2FAB7AbUAYwOMAAIEfwB7A%2FkAewXGAHQE%2BABzBPoAPwR%2FAHsE%2BgA%2FBGEAewQRABgEJgACBNIAewRQAAIGTgACBFIAAgRiAAIEhQAsAmsAWAPvABMCawA1AnwARQRmAE8CwwCaA6sARgPsAD8DqQA7A%2BEAOwOoADsCTwACA%2FAAFAPlAHcBsgBbAY7%2FxAOdAHwBwwB8BjsAbgPcAG4D1gA7BAUAdgPxADsCiwBuA3oAQwJmABED5gB2A4UABQUmAAYDgwACA4cAAgMbAAIDFQB7AWYAQAMVAEIDHQAvAVYAMAPkAGMEXgAYAwwALQRiAAQBcABAA3wARAKPABAESgA7AioAZAP%2BAG4EsQBPBGoAZQRKADsDJwBjAx4AcAOTACIB9QBeAf4AZQKZAG8D%2FgB2BHQANAFXADIBVAAGAcoAdAI3AF8DuwBuBIEAOgSTADoEzwA9A1wASgRqAAIEagACBGoAAgRqAAIEagACBGoAAgbNAAIEnwA%2FBDcAewQ3AHsENwB7BDcAewG1%2F5QBtQBjAbX%2F6QG1%2F6UEvgAJBPgAcwT6AD8E%2BgA%2FBPoAPwT6AD8E%2BgA%2FA%2Bf%2F%2BwTtADkE0gB7BNIAewTSAHsE0gB7BGIAAgR%2FAH0EsgB9A6sARgOrAEYDqwBGA6sARgOrAEYDqwBGBgQAOQOpADsDqAA7A6gAOwOoADsDqAA7Ag%2F%2FhgIPAGACD%2F%2FaAg%2F%2FlwP3ADsD3ABuA9YAOwPWADsD1gA7A9YAOwPWADsDjQAfBDEAOwPmAHYD5gB2A%2BYAdgPmAHYDhwACA%2FcAdgOHAAICDwBgBsEAPgYyADsCfABEBV3%2BxQHE%2FoMCwwCpApkAbwQAAAAIAAAAAU4ALAJCAEYCQgAWAkIAGAH7AFwEBQAwBAUAMARsAEYFXwASA5MAHwPrABIFZgBcA9EASQPX%2F%2FkDnf%2F5A63%2F%2BQUc%2F%2FkFHf%2F5AAEAAAnO%2FeYAAAlD%2FoL%2FAAkkAAEAAAAAAAAAAAAAAAAAAADdAAEDIwK8AAUAAAUzBZkAAAEeBTMFmQAAA9cAZgISCAYCAAgDAAAAAAAAoAAAYwAAAAIAAAAAAAAAAFBmRWQAIAAN%2BwQJzv3mAAAJzgIagAAAkwAAAAAAAAAAAAIAAAADAAAAFAADAAEAAAAUAAQAsAAAACgAIAAEAAgADQB%2BAP8BMQFTAsYC2gLcIBQgGSAeICIgOiBEIKwiEiIV7%2F3wAP%2F%2FAAAADQAgAKEBMQFSAsYC2gLcIBMgGSAcICIgOSBEIKwiEiIV7%2F3wAP%2F%2F%2F%2FX%2F4%2F%2FB%2F5D%2FcP3%2B%2Fev96uC24LLgsOCt4JfgjuAn3sLewBDZENcAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4Af%2BFsASNAABEBREAAAAHAFoAAwABBAkAAQAUAAAAAwABBAkAAgAIABQAAwABBAkAAwBEABwAAwABBAkABAAUAAAAAwABBAkABQAYAGAAAwABBAkABgASAHgAAwABBAkADgA0AIoATgBlAHcAcwAgAEMAeQBjAGwAZQBCAG8AbABkAEYAbwBuAHQARgBvAHIAZwBlACAAOgAgAE4AZQB3AHMAIABDAHkAYwBsAGUAIAA6ACAAMgA4AC0AMwAtADIAMAAxADIAVgBlAHIAcwBpAG8AbgAgADAALgA1ACAATgBlAHcAcwBDAHkAYwBsAGUAaAB0AHQAcAA6AC8ALwBzAGMAcgBpAHAAdABzAC4AcwBpAGwALgBvAHIAZwAvAE8ARgBMAAIAAAAAAAD%2FAQBmAAAAAAAAAAAAAAAAAAAAAAAAAAAA3QAAAAEAAgADAAQABQAGAAcACAAJAAoACwAMAA0ADgAPABAAEQASABMAFAAVABYAFwAYABkAGgAbABwAHQAeAB8AIAAhACIAIwAkACUAJgAnACgAKQAqACsALAAtAC4ALwAwADEAMgAzADQANQA2ADcAOAA5ADoAOwA8AD0APgA%2FAEAAQQBCAEMARABFAEYARwBIAEkASgBLAEwATQBOAE8AUABRAFIAUwBUAFUAVgBXAFgAWQBaAFsAXABdAF4AXwBgAGEAowCEAIUAvQCWAOgAhgCOAIsAnQCpAKQBAgCKANoAgwCTAQMBBACNAQUAiADDAN4BBgCeAKoA9QD0APYAogCtAMkAxwCuAGIAYwCQAGQAywBlAMgAygDPAMwAzQDOAOkAZgDTANAA0QCvAGcA8ACRANYA1ADVAGgA6wDtAIkAagBpAGsAbQBsAG4AoABvAHEAcAByAHMAdQB0AHYAdwDqAHgAegB5AHsAfQB8ALgAoQB%2FAH4AgACBAOwA7gC6ANcAsACxANgA3QDZAQcBCACyALMAtwC0ALUAxQCHAL4AvwC8AQkA7wEKAQsBDAENAMAAwQEOAQ8HdW5pMDBBRAx0d28uc3VwZXJpb3IOdGhyZWUuc3VwZXJpb3IFbWljcm8Mb25lLnN1cGVyaW9yCWdyYXZlY29tYglhY3V0ZWNvbWIERXVybwlzbGFzaG1hdGgNdmVyc2lvbm51bWJlcg1IcGl4ZWxzX3BlcmVtAmZmA2ZmaQNmZmwAAAAAAAAB%2F%2F8AAwABAAAADAAAAAAAKAACAAQAAgACAAEAxADEAAEA0ADRAAEA1QDVAAEAAQAAAAEAAAABAAAACgAeACwAAWxhdG4ACAAEAAAAAP%2F%2FAAEAAAABa2VybgAIAAAAAQAAAAEABAACAAAAAgAKCIgAAQDIAAQAAABfAYoIBgGQAZoIBgGgAc4B3AHqAgACIgI8Al4CbAJ%2BApwCqgLIAtoC9AL6AxADGgMkAzIDYAN6A3oDZgNwA3oDegOEA5IDmAOeA%2FgEAgQgBD4ETASSBJwEzgTcBOoFAAUKBRwFOgVQBVYFYAh0BW4FdAWKBZgFpgXABdoF7AYCBhAGRgZQBl4GZAZqBnQGegaEBooGkAaWBrwG%2BgcEBwoHUAdiB7gHzgf8CAYIFAgaCCQIKghACFIIYAh0CGoIdAABAF8AAwAFAAYACQAKAAsADAAOABAAEgATABQAFQAWABcAGQAaABsAHAAgACMAJQAmACgAKQAqACsALAAtAC4AMAAxADMANQA2ADcAOAA5ADoAOwA8AD0APgA%2FAEQARgBHAEgASQBKAEwATQBOAE8AVABVAFYAVwBZAFoAWwBcAF0AXgBfAGAAYgBkAGwAcQB8AIgAkACZAJ8AoACiAKoArgCvALAAsQDLAMwAzQDOANAA0QDSANQA2ADZANoA2wDcAAEAy%2F%2FpAAIAFP%2FsABr%2F4wABAMv%2FswALAAv%2FzAAT%2F7wAFv%2FlABf%2FswAZ%2F7kAG%2F%2FPABz%2F2QBNAGMAXv%2FhAK0AVQCwACEAAwAM%2F8wAQP%2FKAGD%2FywADABT%2F3AAW%2F%2BwAGv%2FUAAUAFP%2FdABX%2F4AAW%2F%2BgAGv%2B0ABz%2F6gAIABL%2BHAAT%2F9EAFf%2FkABf%2FeAAZ%2F8cAG%2F%2FjAK0AcACwAEMABgAM%2F74AEv%2FXAD%2F%2F0QBA%2F7wAYP%2B%2BANL%2F1QAIAAb%2F6gAO%2F%2BkAEP%2FqAD%2F%2FyABA%2F9AAYP%2FUAHH%2F1wDU%2F9wAAwAQ%2F%2BAAQP%2FeAGD%2F4QAEAAz%2FzAA%2F%2F98AQP%2FEAGD%2FxwAHAAz%2FxAAa%2F9MAHP%2FqAD%2F%2FwwBA%2F8QAYP%2FIAHH%2F0gADAAz%2F4QBA%2F%2BEAYP%2FhAAcADv%2FVABD%2FugAS%2F2UAF%2F%2BlAGP%2FwADS%2F2QA1P%2FYAAQADP%2FRAD%2F%2F6ABA%2F8kAYP%2FMAAYADP%2B%2FABL%2FygA%2F%2F9gAQP%2B8AGD%2FvwDS%2F8cAAQAa%2F%2BcABQA3%2F5IAOf%2FUADr%2F6AA7%2F%2BYAPP%2BYAAIAh%2F%2F6ALAAMwACAIf%2F%2BwCwACYAAwCtAFMArwASALAARwALACP%2FyQCg%2F%2BsApP%2BrAKX%2FjACtAI4Arv%2FkAK8AMACwAIIAsv%2B5ALb%2FtADB%2F6gAAQCwAAsAAgCtACwAsAAgAAIArQB4ALAARgACAK0AJACwABgAAwCvACIAsABxAMH%2F9gABALAAUgABALAAJgAWACP%2FiQCg%2F98Aof%2BLAKT%2FowCl%2F40Apv9VAKn%2FfgCr%2F08ArP9xAK0AkwCu%2F9AArwAxALAAhgCy%2F6oAs%2F93ALX%2FSgC2%2F6YAt%2F9qALr%2FfQC9%2F28AwP%2BTAMH%2FSwACAK0ALwCwACIABwAj%2F8wAoP%2FkAK0AjwCu%2F94ArwAbALAAewDB%2F7IABwAj%2F%2BIAoP%2FsAK0AjQCu%2F%2BgArwANALAAcADB%2F8wAAwAj%2F%2BgArQCBALAAWwARACP%2FkACg%2F8UAof%2BnAKT%2FawCl%2F3cApv9xAKn%2FmwCs%2F1sArQCRAK7%2FuACwAHAAs%2F%2BVALb%2FcAC3%2F1QAuv%2BiAMD%2FsADB%2F3oAAgCtAGIAsABVAAwAC%2F%2FLABP%2FugAV%2F9IAFv%2FSABf%2FswAZ%2F7cAG%2F%2FIABz%2FzQBNAFYAXv%2FlAK0AcgCwACoAAwAT%2F9MAGf%2FbAMv%2FfwADADf%2FOgA5%2F6oAOv%2FCAAUANv%2F1ADf%2FPwA5%2F6cAOv%2B%2FADv%2F9wACAK0AOQCwAC0ABAA3%2F0cAOf%2BgADr%2FrwA7%2F%2FEABwAt%2F7MANwAMADkAGQA7ABoArQCMAK8AHACwAH8ABQAt%2F%2BsAN%2F9XADn%2F7QA6%2F%2FcATQBtAAEAsAA9AAIATQAVALAAPQADADf%2FZAA5%2F%2BAAOv%2FuAAEATQAfAAUALf96ADf%2FYwA5%2F%2FAAO%2F%2B6AD3%2FzgADADf%2FRQA5%2F6wAOv%2B3AAMAN%2F%2BPADn%2F4wA6%2F%2FEABgAt%2F7AAN%2F9gADn%2F7gA6%2F%2FcAO%2F%2B7AD3%2F0AAGAC3%2FswA3%2F2UAOf%2FtADr%2F9gA7%2F8EAPf%2FUAAQANv%2F3ADf%2FYwA5%2F9wAOv%2FtAAUALf%2BmADf%2FZAA5%2F%2FEAO%2F%2B9AD3%2FzwADADf%2FUwA5%2F8oAOv%2FcAA0AC%2F%2FMABP%2FvQAV%2F9YAFv%2FTABf%2FuwAZ%2F7oAG%2F%2FLABz%2FzwBNAFUAXv%2FjAJAARQCtAHEAsAApAAIArQAtALAAIQADAAz%2F4QBA%2F%2BUAYP%2FjAAEAsAAqAAEAGv%2FpAAIArQA8ALAAKQABABf%2FpQACAK8AJACwAGUAAQCH%2F%2FsAAQBgAEYAAQBA%2F8EACQAM%2F68AEv%2B9AD%2F%2FvgBA%2F7YAYP%2B7AGz%2F2gDM%2F98Azv%2FuANH%2F0wAPAAP%2F5wAM%2F9MADf%2FvAD%2F%2FrABA%2F7sAV%2F%2FYAFn%2FwgBa%2F8wAW%2F%2FmAFz%2FsgBg%2F8EAbP%2FWAG%2F%2F6wB8%2F8oAzP%2FSAAIAP%2F%2ByAED%2FuQABAD%2F%2FrAARAAQAMgAFAGAACgBhAAwAewAiABgAPwCZAEAAmABFAGAASwBjAE4AYwBPAGMAXwBUAGAAmAB8AGkAywBhAMwAUwDNAGAABAAiAC4AbAApAMwAGgDRABQAFQAEACwABQAxAAoAMgAMACMAIgBpAD8ARgBAACsARQAuAEsAMQBMAEAATQA%2FAE4AMQBPADEAXwAiAGAAKwBsAGcAfAAsAMsAMgDMAE4AzQAxANEASgAFAAz%2F3gBA%2F%2BMAW%2F%2FqAF3%2F9gBg%2F%2BQACwAD%2F98ACf%2FLAA3%2F1gAS%2F3AAI%2F%2FVAG%2F%2F5gCtAFoArwAVALAAUADO%2Fy0A0P%2B9AAIArQAaALAAKQADAK0AWgCvABUAsABQAAEAy%2F9LAAIArwAOALAASAABAMv%2F2gAFABP%2F0gAV%2F%2BYAF%2F96ABn%2FyAAb%2F%2BUABAAU%2F9MAFf%2FkABb%2F3AAa%2F9EAAwCtAI0ArwAdALAAgAACAK0ASwCwAD8AAgCtAEsAsAA%2BAAIArQA7ALAALgACG44ABAAAHCId2gBFADMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F3AAA%2F%2FH%2Fif%2Fp%2F7b%2FwwAA%2F4sAAAAAAAD%2F5QAA%2F4L%2Fyv%2FG%2F%2FMAAAAAAAD%2F7%2F%2FlAAAAAAAA%2F6z%2Ftv%2FcAAAAAAAA%2F7kAAP%2Bp%2F7n%2F1AAAAAD%2F0P%2FUAAD%2F0P%2FWAAD%2FxAAAAAAAAAAAAAD%2F1wAA%2F%2FEAAAAAAAAAAAAAAAAAAAAAAAD%2F4wAAAAAAAAAA%2F%2FMAAAAAAAD%2F6f%2FgAAAAAAAAAAAAAP%2FCAAAAAAAAAAAAAAAAAAD%2FyQAAAAAAAP%2FbAAD%2Fuf%2FBAAD%2FrQAAAAAAAP%2FzAAAAAAAAAAD%2F4AAA%2F%2Bn%2F8f%2FX%2F83%2F9gAAAAAAAAAA%2F%2Bj%2Fyf%2FHAAAAAAAAAAAAAP%2F1AAAAAAAAAAAAAAAAAAD%2F0gAAAAAAAAAAAAAAAAAAAAAAAP%2F0AAD%2F9v%2F2%2F%2Bz%2F9P%2F3AAAAAP%2F1AAAAAAAAAAD%2F6AAA%2F%2B7%2F9f%2Fa%2F84AAAAAAAAAAAAA%2F%2Bn%2F0f%2FMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F0wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FaAAAAAP%2FnAAD%2FwwAA%2F93%2F6P%2FD%2F6z%2F2%2F%2F2AAAAAAAA%2F8%2F%2Fu%2F%2B3AAAAAP%2FiAAAAAAAAAAD%2F9wAAAAAAAAAAAAD%2FuQAAAAAAAAAAAAAAAAAA%2F80AAAAAAAAAAAAA%2F%2FEAAP%2FzAAAAAAAAAAD%2F4QAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F4QAAAAAAAAAA%2F%2FMAAAAAAAD%2F5f%2FnAAAAAAAAAAAAAP%2BoAAAAAAAAAAAAAAAAAAD%2FwQAAAAAAAP%2Fk%2F%2Fb%2F0f%2FVAAD%2FzAAAAAAAAAAAAAAAAAAAAAAAAP%2F2AAAAAAAA%2F4UAAAAAAAAAAAAA%2F7r%2FwP%2B6%2F%2FEAAAAAAAD%2F1QAAAAAAAAAA%2F%2B8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP9%2BAAD%2F3%2F87AAAAAAAAAAAAAAAAAAAAAP%2BG%2F8X%2F0gAAAAAAAAAA%2F5D%2F5P9hAAD%2Fzf%2FsAAD%2FkQAAAAAAAP%2FU%2F6gAAAAAAAD%2FggAAAAD%2Fyf%2Bj%2F1v%2Fzv%2Fo%2F7H%2F4P%2Ff%2F9f%2F4v%2BnAAAAAAAAAAAAAAAAAAD%2F1gAA%2F%2BD%2F6gAA%2F7sAAAAAAAAAAAAA%2F9b%2F1P%2FRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2FQAAAAAAAAAAAAAAAD%2F9gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2F3AAAAAAAAAAAAAAAA%2F%2FQAAAAAAAAAAAAAAAD%2F8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2F3%2F%2BsAAAAA%2F%2FcAAAAAAAAAAP%2FzAAAAAAAAAAD%2FwgAA%2F98AAAAAAAAAAAAAAAAAAAAAAAD%2F1AAAAAAAAAAA%2F90AAAAAAAD%2F2v%2FgAAAAAAAAAAAAAP%2BmAAAAAAAAAAAAAAAAAAD%2FtQAAABgAAP%2FU%2F%2FL%2Fuv%2B5AAD%2FsgAAAAAAAAAAAAD%2FxwAAAAD%2FL%2F%2Fo%2F1%2F%2FaQAA%2F0QAAAAAAAD%2FkgAA%2Fzb%2Fx%2F%2FDAAAAAAAAAAD%2Flv%2FiAAAAAAAA%2F1T%2FVP9mAAAAAAAA%2F1QAAP9T%2F1T%2FkgAAAAD%2Fzv%2BbAAD%2FZf9yAAD%2FUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F%2FYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FgAAAAAP%2FvAAD%2FyQAA%2F97%2F6P%2FM%2F7H%2F4AAAAAAAAAAA%2F9H%2Fvv%2B7AAAAAP%2FoAAAAAAAAAAAAAAAAAAAAAAAAAAD%2FvQAAAAAAAAAAAAAAAAAA%2F9UAAAAAAAAAAAAA%2F%2FIAAP%2F1AAAAAP%2BnAAAAAP9ZAAAAAAAAAAAAAP%2FWAAD%2F7v%2Fj%2F8gAAAAAAAD%2F1f%2FS%2F9AAAP9pAAD%2F0QAAAAD%2F1QAAAAAAAAAA%2F%2Fb%2F3wAAAAD%2FiwAAAAAAAP%2Fw%2F23%2F0QAAAAAAAAAAAAAAAP%2F2AAAAAAAAAAAAAP%2FzAAAAAAAA%2F%2FQAAAAA%2F%2BYAAP%2FxAAAAAAAAAAD%2F5%2F%2Fj%2F9kAAAAAAAD%2F1gAAAAD%2F6wAAAAAAAAAA%2F%2FcAAAAAAAAAAAAAAAAAAP%2F0AAAAAAAA%2F%2FUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F5wAA%2F%2Bf%2F7v%2Fe%2F8oAAAAAAAAAAAAA%2F%2Bb%2Fzf%2FKAAAAAAAAAAAAAP%2F2AAAAAAAAAAAAAAAAAAD%2F1AAAAAAAAAAAAAAAAAAAAAAAAP%2F0AAD%2F8%2F%2F0%2F%2FP%2F8AAAAAAAAP%2BIAAD%2FyP9ZAAAAAAAAAAAAAAAAAAAAAP9G%2F7r%2FiQAAAAAAAAAA%2Fzn%2Fnf%2BLAAD%2FiP%2FGAAD%2FOgAAAAAAAP91%2F0sAAAAAAAD%2FiAAAAAD%2Fe%2F9G%2F3D%2Fx%2F%2FS%2F1H%2FYf9k%2F2P%2FVv9UAAAAAP%2FUAAAAAP%2B9AAD%2FkwAA%2F9b%2F5v%2BV%2F5f%2FuwAAAAAAAAAAAAAAAAAAAAAAAP%2FHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2F1AAAAAAAAAAAAAAAA%2F%2FQAAAAAAAAAAAAAAAD%2F8QAAAAAAAAAA%2F%2FUAAAAAAAAAAAAAAAAAAP%2F2%2F%2BIAAAAA%2F%2FYAAAAAAAAAAP%2FxAAAAAP%2B2AAD%2F3v%2BJ%2F%2FIAAAAAAAAAAAAAAAAAAP%2Bo%2F8D%2F1AAAAAAAAAAA%2F5z%2F7f%2BZAAD%2Fxf%2FtAAD%2FngAAAAAAAP%2FW%2F7IAAAAAAAD%2FqAAAAAD%2Fzf%2Br%2F4D%2Fzf%2Ft%2F7r%2F7f%2Fs%2F%2Bj%2F7%2F%2B6AAAAAP%2FDAAD%2F6P%2BSAAAAAAAAAAAAAAAAAAAAAP%2Bz%2F8%2F%2F4wAAAAAAAAAA%2F7QAAP%2B2AAD%2F1v%2FzAAD%2FtgAAAAAAAP%2Fr%2F8wAAAAAAAD%2FwQAAAAD%2F4f%2FC%2F6P%2F0P%2F0%2F9H%2F9%2F%2F1%2F%2FT%2F9%2F%2FRAAAAAAAAAAD%2FygAA%2F98AAAAAAAAAAAAAAAAAAAAAAAD%2F0AAAAAAAAAAA%2F9cAAAAAAAD%2F1f%2FjAAD%2F9gAAAAAAAP%2BhAAAAAAAAAAAAAAAAAAD%2FtQAAABIAAP%2Fb%2F%2B7%2Fuv%2B7AAD%2FtQAAAAAAAP%2BLAAD%2Frv9u%2F%2BYAAAAAAAAAAAAAAAAAAP9V%2F6H%2FmgAAAA8AAAAA%2F0v%2Fxv%2BG%2F%2Ff%2Fhv%2FAAAD%2FTwAAAAAAAP9%2F%2F3oAAAAAAAD%2FhAAAAAD%2Fj%2F9N%2F3D%2Fw%2F%2FG%2F3f%2FoP%2Bg%2F6b%2Fpf90AAAAAAAAAAD%2F9wAAAAAAAP%2FxAAAAAAAA%2F1cAAAAAAAAAAAAA%2F5H%2Ft%2F%2BxAAAAAAAAAAAAAAAAAAAAAAAA%2F7n%2F4QAAAAD%2F4v%2Fi%2F%2BsAAP%2FJ%2F%2BsAAAAAAAAAAAAAAAD%2F8%2F%2F0AAD%2F7wAAAAAAAAAAAAAAAAAAAAAAAP%2F3AAAAAAAA%2F0QAAAAAAAAAAAAA%2F5L%2Fsv%2BvAAAAAAAAAAAAAP%2F3AAAAAAAA%2F7b%2F2QAAAAD%2Fwf%2Fn%2F%2BIAAP%2FF%2F%2BIAAAAAAAAAAP%2F2AAD%2F8%2F%2F0%2F%2BL%2F6gAAAAAAAAAgAAAAAAAyAAD%2FkgAA%2F7X%2FzQAm%2F4YADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F7MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABf%2F4wAAAAAAAP%2FlAAAAAP%2FdAAD%2FigAA%2F9X%2F5P%2FO%2F5v%2F3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2Fz%2F%2FQAAAAAAAD%2FOf%2F0%2F5z%2FtP%2FQ%2F0v%2F7AAAAAAAAAAA%2F4%2F%2FrP%2BoAAAAAAAAAAAAAP%2FyAAAAAAAA%2F6z%2F1QAAAAD%2FsP%2Fc%2F98AAP%2B7%2F98AAAAAAAAAAP%2FxAAD%2F7%2F%2Fx%2F9b%2F5f%2FxAAAAAAAAAAD%2FzgAAAAD%2FcP%2Ff%2F3%2F%2FogAA%2F3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F38AAAAAAAAAAAAAAAAAAP%2FVAAD%2Ftv%2FAAAD%2FrQAAAAAAAP%2FKAAD%2FvP%2FM%2F9gAAAAAAAAAAAAAAAAAAP%2B3AAAAAAAAAAAAAAAA%2F6wAAAAAAAAAAP%2FSAAAAAAAAAAAAAAAA%2F7gAAAAAAAAAAAAAAAAAAP%2B0AAAAAP%2FS%2F7j%2Fuv%2B6%2F9AAAP%2B%2BAAAAAP%2FHAAD%2Fuv%2FF%2F9YAAAAAAAAAAAAAAAoAAP%2ByAAAAAAAAAAAAAAAA%2F6oAAAAAAAAAAP%2FSAAAAAAAAAAAAAAAA%2F7UAAAAAAAAAAAAAAAAAAP%2BzAAAAAP%2FR%2F7b%2Ft%2F%2B4%2F8sAAP%2B7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F0UAAAAAAAAAAAAA%2F6L%2Fuf%2B0%2F%2FgAAAAAAAD%2F6gAAAAAAAAAA%2F8X%2F6AAAAAD%2FxwAAAAAAAP%2FWAAAAAAAAAAAAAAAAAAAAAAAA%2F%2B7%2F9QAAAAAAAAAAAAAAAAAAAAD%2FnQAA%2F%2B4AAAAA%2F8UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F4gAAAAD%2FiwAA%2F5n%2FtQAA%2F4YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FtAAAAAAAAAAAAAAAAAAAAAAAA%2FyIAAP8C%2FyIAAAAAAAAAAP%2FkAAD%2Fzf%2FUAAD%2FugAA%2F%2BcAAP%2FvAAAAAP%2FXAAD%2FiAAA%2F8X%2F1v%2FS%2F4b%2F3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FlAAAAAAAAAAAAAAAAAAAAAAAA%2F%2BgAAAAA%2F%2BgAAAAAAAAAAP%2FjAAAAAAAA%2F9L%2F6P%2FVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F9wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FDAAAAAAAAAAAAAAAAAAAAAAAAACIAAP%2F2%2F%2BcAAAAAAAAAAAAA%2F%2BoAAP%2FWAAD%2FzwAAAAD%2F8gAAAAAAAAAAAAAAAAAAAAD%2F0wAAAAAAAAAA%2F8%2F%2F3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F9EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F6AAAAAAAAAAAAAA%2F9sAAAAA%2F%2FYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FfAAAAAAAAAAAAAAAAAAAAAAAA%2F80AAAAA%2F80AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2B2AAAAAP95AAAAAAAAAAAAAAAAAAAAAP%2FhAAAAAAAAAAAAAAAA%2F9QAAAAAAAAAAAAAAAD%2F2gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2BsAAAAAP96AAAAAAAAAAAAAAAAAAAAAP%2B9AAAAAAAAAAAAAAAA%2F6wAAAAAAAAAAAAAAAD%2FsAAAAAAAAAAA%2F%2BQAAAAAAAAAAAAAAAAAAP%2FIAAAAAAAA%2F%2BgAAAAAAAAAAP%2FnAAAAAP%2FXAAAAAP%2BT%2F%2BD%2FdQAA%2F9T%2F6f%2Bg%2F3%2F%2FpQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F9oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2FPP%2Fy%2F6v%2FxAAA%2F2MAAAAAAAAAAAAA%2F5r%2FtP%2BuAAAAAAAAAAAAAAAAAAAAAAAA%2F8H%2F5wAAAAD%2F2f%2FlAAAAAP%2FRAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F9gAAAAAAAAAAAAD%2F7gAAAAAAAAAAAAAAAAAA%2F6QAAP%2FyAAD%2F6QAA%2F8%2F%2F1P%2FO%2F9wAAAAAAAD%2F0gAAAAD%2F8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F9YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2Fu%2F%2Fd%2F9wAAAAAAAAAAAAAAAAAAP%2FHAAAAAAAAAAAAAAAA%2F7AAAAAAAAAAAP%2FQAAAAAAAAAAAAAAAA%2F9gAAAAAAAAAAAAAAAAAAP%2FEAAAAAP%2FN%2F7%2F%2Ft%2F%2B3AAAAAAAAAAAAAAAAAAAAAAAAAAD%2FTP%2F1%2F7P%2FzQAA%2F3oAAAAAAAAAAAAA%2F67%2Fuf%2B0AAAAAAAAAAAAAAAAAAAAAAAA%2F%2BQAAAAAAAD%2F2QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXAAAAAAAAAAAAAAAA%2F%2BIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F6gAAAAAAAP%2BpAAAAAP96AAAAAAAAAAAAAAAAAAsAAP%2FP%2F8v%2F1v%2FVAAAAAAAA%2F74AAP8EAAD%2FvwAA%2F5b%2FxAAAAAAAAP%2B9%2F%2B0AAAAAAAD%2FLQAAAAD%2F5v%2FY%2F3D%2F3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2FiQAA%2F6v%2FwwAA%2F4QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FoAAAAAAAAAAAAAAAAAAAAAAAA%2F0sAAAAAAAAAAAAAAAAAAP%2FlAAD%2F3v%2FiAAD%2FzwAAAAAAAP%2B1AAAAAP95AAAAAAAAAAAAAAAAAAAAAP%2FlAAAAAAAAAAAAAAAA%2F9UAAP8YAAAAAAAAAAD%2F2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2BpAAAAAP96AAAAAAAAAAAAAAAAAAsAAP%2FPAAAAAAAAAAAAAAAA%2F74AAP8EAAD%2FvwAAAAD%2FxAAAAAAAAAAA%2F%2B0AAAAAAAAAAAAAAAAAAP%2FYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2B2AAAAAAAAAAAAAAAAAAAAAAAA%2F6QAAP%2F0%2F9cAAAAA%2F9r%2Fwv%2B%2B%2F%2BQAAP%2ByAAD%2FsgAAAAD%2F7gAAAAAAAAAAAAD%2FvgAAAAD%2FrwAAAAAAAAAA%2F6T%2F2QAAAAAAAAAAAAAAAAAAAAAAAP%2FSAAAAAP%2FSAAD%2FfAAA%2F83%2F3P%2B1%2F4%2F%2FuwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F9wAAAAAAAP%2F1AAAAAAAA%2F0kAAAAAAAAAAAAA%2F53%2FuP%2ByAAAAAAAAAAAAAAAAAAAAAAAA%2F8T%2F5gAAAAD%2FxwAAAAAAAP%2FUAAAAAAAAAAAAAAAAAAAAAAAA%2F%2Bv%2F8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2BCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2BDAAD%2F0P9fAAAAAAAAAAAAAAAAAA4AAP%2BXAAAAAAAAAAAAAAAA%2F44AAAAAAAAAAP%2FiAAD%2FkAAAAAAAAAAA%2F68AAAAAAAAAAAAAAAAAAP%2BjAAAAAP%2Fp%2F7X%2F1P%2FS%2F9f%2F0%2F%2ByAAAAAP%2FQAAAAAP%2FMAAD%2FyAAA%2F83%2F0AAA%2F8MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FqAAAAAAAAAAAAAAAAAAAAAAAA%2F%2BkAAAAAAAAAAAAAAAAAAP%2FgAAD%2F2%2F%2FcAAD%2F1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2F6AAAAAAAAAAAAAA%2F9L%2F0P%2FPAAAAAAAAAAD%2F6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FPAAAAAAAAAAAAAAAAAAAAAAAA%2F6EAAP%2F2%2F%2BsAAAAA%2F9P%2Fuv%2B3%2F%2B4AAP%2FMAAAAAAAAAAD%2F8gAAAAAAAAAAAAD%2FtwAAAAD%2F2gAAAAAAAAAA%2F7b%2F2gAAAAAAAAAAAAAAAAAAAAAAAP%2FWAAAAAAAAAAAAAAAAAAAAAAAA%2F6AAAP%2F4AAAAAAAA%2F9H%2Fu%2F%2B4%2F%2FIAAP%2FVAAAAAAAAAAD%2F9QAAAAAAAAAAAAD%2FuAAAAAD%2F4QAAAAAAAAAA%2F8H%2F3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD%2F6AAAAAAAAAAAAAAAAAAA%2F6AAAP%2FpAAD%2F6wAA%2F8v%2F0v%2FO%2F9EAAAAAAAD%2FzAAAAAD%2F6wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FoAAoAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FQAAAAAAAAAAAAAAAAAAAAAAAA%2F6QAAAAA%2F%2BwAAAAA%2F9v%2Fwv%2B%2F%2F%2FEAAP%2FMAAAAAAAAAAD%2F9AAAAAAAAAAAAAD%2FwgAAAAD%2F2wAAAAAAAAAA%2F7b%2F3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP%2FsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYAAMAAwAAAAUABQABAAkACwACAA0ADQAFAA8AFAAGABcAFwAMABoAGgANABwAHgAOACQAPwARAEQARgAtAEgATgAwAFAAXgA3AGIAYgBGAGwAbABHAG4AbwBIAHwAfABKAIAAlwBLAJkAsABjALIAtwB7ALkAwwCBAMkAzgCMANEA0QCSANgA2QCTANsA2wCVAAEAAwDZAD4AAAA1AAAAAAAAABwANQAyAAAAHQAAACQAJQAkAD0ARAAxAAAAAAAoAAAAAAA8AAAAMAAjACMAAAAAAAAAAAAAAAEAAwAEAAUAAgAIAAkACgAKAAsADAANAAoACgAPABAADwARABIAEwAVABYAFwAYABkABgAhAB8AAAAAAAAAAAAaAB4AIgAAABsAJwApAC4ADgAOAC8AAAAuAC4AHgAeADMAOQA7AD8AMwBAAEEAQgBDAAcAIAAAAAAAAAAmAAAAAAAAAAAAAAAAAAAAAAAAACsAAAAlADoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAAAAAAAAAA0AAEAAQABAAEAAQABAAIABAACAAIAAgACAAoACgAKAAoABQAKAA8ADwAPAA8ADwAAAA8AFQAVABUAFQAZABQAKgAaABoAGgAaABoAGgAbACIAGwAbABsAGwAOAA4ADgAOAAAALgAeAB4AHgAeAB4AAAAeADMAMwAzADMAQwAeAEMADgACABsAAAAAAAAAAAAAACUAJQA4ADcAOAA2AAAAAAAtAAAAAAAAAAAAAAAAACcADgAAAA4AAQADANoAKgAAACMAAAAAAAAADgAjAAAAIQAPAAAAFgAYABYAKQAyAAAAAAAAABoAAAAAAAAAAAAAABUAFQAAAAAAAAAiABAAAQACAAMAAgACAAIAAwACAAIABAACAAIAAgACAAMAAgADAAIABQAGAAcACAAJAAoACwAMAAAAEQATAAAAAAAAAA0AAAAUABQAFAAZABsAHAAXABcAHAAAACAAIAAUACAAFAAgACgAKwAsAC0ALgAvADAAMQAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQAAABgAJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeAAAAAAAAAAAAAQABAAEAAQABAAEAAQADAAIAAgACAAIAAgACAAIAAgACAAIAAwADAAMAAwADAAAAAwAHAAcABwAHAAsAAgAcAA0ADQANAA0ADQANAA0AFAAUABQAFAAUABcAFwAXABcAFAAgABQAFAAUABQAFAAAABQALAAsACwALAAwABwAMAAXAAMAFAAAAAAAAAAAAAAAGAAYACYAJQAmACQAAAAfAAAAAAAAAAAAAAAAAAAAGQAZABkAGQAZAAEAAAAKAB4ALAABbGF0bgAIAAQAAAAA%2F%2F8AAQAAAAFsaWdhAAgAAAABAAAAAQAEAAQAAAABAAgAAQA2AAEACAAFAAwAFAAcACIAKADcAAMASQBPANsAAwBJAEwA2AACAEkA2gACAE8A2QACAEwAAQABAEk%3D%29%20format%28%27truetype%27%29%3B%0A%7D%0Ahtml%7Bfont%2Dfamily%3Asans%2Dserif%3B%2Dms%2Dtext%2Dsize%2Dadjust%3A100%25%3B%2Dwebkit%2Dtext%2Dsize%2Dadjust%3A100%25%7Dbody%7Bmargin%3A0%7Darticle%2Caside%2Cdetails%2Cfigcaption%2Cfigure%2Cfooter%2Cheader%2Chgroup%2Cmain%2Cmenu%2Cnav%2Csection%2Csummary%7Bdisplay%3Ablock%7Daudio%2Ccanvas%2Cprogress%2Cvideo%7Bdisplay%3Ainline%2Dblock%3Bvertical%2Dalign%3Abaseline%7Daudio%3Anot%28%5Bcontrols%5D%29%7Bdisplay%3Anone%3Bheight%3A0%7D%5Bhidden%5D%2Ctemplate%7Bdisplay%3Anone%7Da%7Bbackground%2Dcolor%3Atransparent%7Da%3Aactive%2Ca%3Ahover%7Boutline%3A0%7Dabbr%5Btitle%5D%7Bborder%2Dbottom%3A1px%20dotted%7Db%2Cstrong%7Bfont%2Dweight%3Abold%7Ddfn%7Bfont%2Dstyle%3Aitalic%7Dh1%7Bfont%2Dsize%3A2em%3Bmargin%3A0%2E67em%200%7Dmark%7Bbackground%3A%23ff0%3Bcolor%3A%23000%7Dsmall%7Bfont%2Dsize%3A80%25%7Dsub%2Csup%7Bfont%2Dsize%3A75%25%3Bline%2Dheight%3A0%3Bposition%3Arelative%3Bvertical%2Dalign%3Abaseline%7Dsup%7Btop%3A%2D0%2E5em%7Dsub%7Bbottom%3A%2D0%2E25em%7Dimg%7Bborder%3A0%7Dsvg%3Anot%28%3Aroot%29%7Boverflow%3Ahidden%7Dfigure%7Bmargin%3A1em%2040px%7Dhr%7B%2Dwebkit%2Dbox%2Dsizing%3Acontent%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Acontent%2Dbox%3Bbox%2Dsizing%3Acontent%2Dbox%3Bheight%3A0%7Dpre%7Boverflow%3Aauto%7Dcode%2Ckbd%2Cpre%2Csamp%7Bfont%2Dfamily%3Amonospace%2C%20monospace%3Bfont%2Dsize%3A1em%7Dbutton%2Cinput%2Coptgroup%2Cselect%2Ctextarea%7Bcolor%3Ainherit%3Bfont%3Ainherit%3Bmargin%3A0%7Dbutton%7Boverflow%3Avisible%7Dbutton%2Cselect%7Btext%2Dtransform%3Anone%7Dbutton%2Chtml%20input%5Btype%3D%22button%22%5D%2Cinput%5Btype%3D%22reset%22%5D%2Cinput%5Btype%3D%22submit%22%5D%7B%2Dwebkit%2Dappearance%3Abutton%3Bcursor%3Apointer%7Dbutton%5Bdisabled%5D%2Chtml%20input%5Bdisabled%5D%7Bcursor%3Adefault%7Dbutton%3A%3A%2Dmoz%2Dfocus%2Dinner%2Cinput%3A%3A%2Dmoz%2Dfocus%2Dinner%7Bborder%3A0%3Bpadding%3A0%7Dinput%7Bline%2Dheight%3Anormal%7Dinput%5Btype%3D%22checkbox%22%5D%2Cinput%5Btype%3D%22radio%22%5D%7B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%3Bpadding%3A0%7Dinput%5Btype%3D%22number%22%5D%3A%3A%2Dwebkit%2Dinner%2Dspin%2Dbutton%2Cinput%5Btype%3D%22number%22%5D%3A%3A%2Dwebkit%2Douter%2Dspin%2Dbutton%7Bheight%3Aauto%7Dinput%5Btype%3D%22search%22%5D%7B%2Dwebkit%2Dappearance%3Atextfield%3B%2Dwebkit%2Dbox%2Dsizing%3Acontent%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Acontent%2Dbox%3Bbox%2Dsizing%3Acontent%2Dbox%7Dinput%5Btype%3D%22search%22%5D%3A%3A%2Dwebkit%2Dsearch%2Dcancel%2Dbutton%2Cinput%5Btype%3D%22search%22%5D%3A%3A%2Dwebkit%2Dsearch%2Ddecoration%7B%2Dwebkit%2Dappearance%3Anone%7Dfieldset%7Bborder%3A1px%20solid%20%23c0c0c0%3Bmargin%3A0%202px%3Bpadding%3A0%2E35em%200%2E625em%200%2E75em%7Dlegend%7Bborder%3A0%3Bpadding%3A0%7Dtextarea%7Boverflow%3Aauto%7Doptgroup%7Bfont%2Dweight%3Abold%7Dtable%7Bborder%2Dcollapse%3Acollapse%3Bborder%2Dspacing%3A0%7Dtd%2Cth%7Bpadding%3A0%7D%40media%20print%7B%2A%2C%2A%3Abefore%2C%2A%3Aafter%7Bbackground%3Atransparent%20%21important%3Bcolor%3A%23000%20%21important%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%20%21important%3Bbox%2Dshadow%3Anone%20%21important%3Btext%2Dshadow%3Anone%20%21important%7Da%2Ca%3Avisited%7Btext%2Ddecoration%3Aunderline%7Da%5Bhref%5D%3Aafter%7Bcontent%3A%22%20%28%22%20attr%28href%29%20%22%29%22%7Dabbr%5Btitle%5D%3Aafter%7Bcontent%3A%22%20%28%22%20attr%28title%29%20%22%29%22%7Da%5Bhref%5E%3D%22%23%22%5D%3Aafter%2Ca%5Bhref%5E%3D%22javascript%3A%22%5D%3Aafter%7Bcontent%3A%22%22%7Dpre%2Cblockquote%7Bborder%3A1px%20solid%20%23999%3Bpage%2Dbreak%2Dinside%3Aavoid%7Dthead%7Bdisplay%3Atable%2Dheader%2Dgroup%7Dtr%2Cimg%7Bpage%2Dbreak%2Dinside%3Aavoid%7Dimg%7Bmax%2Dwidth%3A100%25%20%21important%7Dp%2Ch2%2Ch3%7Borphans%3A3%3Bwidows%3A3%7Dh2%2Ch3%7Bpage%2Dbreak%2Dafter%3Aavoid%7D%2Enavbar%7Bdisplay%3Anone%7D%2Ebtn%3E%2Ecaret%2C%2Edropup%3E%2Ebtn%3E%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23000%20%21important%7D%2Elabel%7Bborder%3A1px%20solid%20%23000%7D%2Etable%7Bborder%2Dcollapse%3Acollapse%20%21important%7D%2Etable%20td%2C%2Etable%20th%7Bbackground%2Dcolor%3A%23fff%20%21important%7D%2Etable%2Dbordered%20th%2C%2Etable%2Dbordered%20td%7Bborder%3A1px%20solid%20%23ddd%20%21important%7D%7D%40font%2Dface%7Bfont%2Dfamily%3A%27Glyphicons%20Halflings%27%3Bsrc%3Aurl%28data%3Aapplication%2Fvnd%2Ems%2Dfontobject%3Bbase64%2Cn04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ%2FLAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM%2FSEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ%2BpexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h%2Fv4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs%2BLWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy%2BpRYVKGVS%2F1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr%2FCm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB%2BlSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX%2BVSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G%2BKspT%2FFupEGGafCCwxSe6ZUa%2B073rXHnNdVXE6eWvibUS27XtRzkH838mYLMBmYysZTM0EM3A1fbpCBYFccN1B%2FEnCYu%2FTgCGmr7bMh8GfYL%2BBfcLvB0gRagC09w9elfldaIy%2FhNCBLRgBgtCC7jAF63wLSMAfbfAlEggYU0bUA7ACCJmTDpEmJtI78w4%2FBO7dN7JR7J7ZvbYaUbaILSQsRBiF3HGk5fEg6p9unwLvn98r%2BvnsV%2B372uf1xBLq4qU%2F45fTuqaAP%2BpssmCCCTF0mhEow8ZXZOS8D7Q85JsxZ%2BAzok7B7O%2Ff6J8AzYBySZQB%2FQHYUSA%2BEeQhEWiS6AIQzgcsDiER4MjgMBAWDV4AgQ3g1eBgIdweCQmCjJEMkJ%2BPKRWyFHHmg1Wi%2F6xzUgA0LREoKJChwnQa9B%2B5RQZRB3IlBlkAnxyQNaANwHMowzlYSMCBgnbpzvqpl0iTJNCQidDI9ZrSYNIRBhHtUa5YHMHxyGEik9hDE0AKj72AbTCaxtHPUaKZdAZSnQTyjGqGLsmBStCejApUhg4uBMU6mATujEl%2BKdDPbI6Ag4vLr%2BhjY6lbjBeoLKnZl0UZgRX8gTySOeynZVz1wOq7e1hFGYIq%2BMhrGxDLak0PrwYzSXtcuyhXEhwOYofiW%2BEcI%2Fjw8P6IY6ed%2BetAbuqKp5QIapT77LnAe505lMuqL79a0ut4rWexzFttsOsLDy7zvtQzcq3U1qabe7tB0wHWVXji%2BzDbo8x8HyIRUbXnwUcklFv51fvTymiV%2BMXLSmGH9d9%2BaXpD5X6lao41anWGig7IwIdnoBY2ht%2FpO9mClLo4NdXHAsefqWUKlXJkbqPOFhMoR4aiA1BXqhRNbB2Xwi%2B7u%2FjpAoOpKJ0UX24EsrzMfHXViakCNcKjBxuQX8BO0ZqjJ3xXzf%2B61t2VXOSgJ8xu65QKgtN6FibPmPYsXbJRHHqbgATcSZxBqGiDiU4NNNsYBsKD0MIP%2FOfKnlk%2FLkaid%2FO2NbKeuQrwOB2Gq3YHyr6ALgzym5wIBnsdC1ZkoBFZSQXChZvlesPqvK2c5oHHT3Q65jYpNxnQcGF0EHbvYqoFw60WNlXIHQF2HQB7zD6lWjZ9rVqUKBXUT6hrkZOle0RFYII0V5ZYGl1JAP0Ud1fZZMvSomBzJ710j4Me8mjQDwEre5Uv2wQfk1ifDwb5ksuJQQ3xt423lbuQjvoIQByQrNDh1JxGFkOdlJvu%2FgFtuW0wR4cgd%2BZKesSV7QkNE2kw6AV4hoIuC02LGmTomyf8PiO6CZzOTLTPQ%2BHW06H%2Btx%2BbQ8LmDYg1pTFrp2oJXgkZTyeRJZM0C8aE2LpFrNVDuhARsN543%2FFV6klQ6Tv1OoZGXLv0igKrl%2FCmJxRmX7JJbJ998VSIPQRyDBICzl4JJlYHbdql30NvYcOuZ7a10uWRrgoieOdgIm4rlq6vNOQBuqESLbXG5lzdJGHw2m0sDYmODXbYGTfSTGRKpssTO95fothJCjUGQgEL4yKoGAF%2F0SrpUDNn8CBgBcSDQByAeNkCXp4S4Ro2Xh4OeaGRgR66PVOsU8bc6TR5%2FxTcn4IVMLOkXSWiXxkZQCbvKfmoAvQaKjO3EDKwkwqHChCDEM5loQRPd5ACBki1TjF772oaQhQbQ5C0lcWXPFOzrfsDGUXGrpxasbG4iab6eByaQkQfm0VFlP0ZsDkvvqCL6QXMUwCjdMx1ZOyKhTJ7a1GWAdOUcJ8RSejxNVyGs31OKMyRyBVoZFjqIkmKlLQ5eHMeEL4MkUf23cQ%2F1SgRCJ1dk4UdBT7OoyuNgLs0oCd8RnrEIb6QdMxT2QjD4zMrJkfgx5aDMcA4orsTtKCqWb%2FVeyceqa5OGSmB28YwH4rFbkQaLoUN8OQQYnD3w2eXpI4ScQfbCUZiJ4yMOIKLyyTc7BQ4uXUw6Ee6%2FxM%2B4Y67ngNBknxIPwuppgIhFcwJyr6EIj%2BLzNj%2FmfR2vhhRlx0BILZoAYruF0caWQ7YxO66UmeguDREAFHYuC7HJviRgVO6ruJH59h%2FC%2FPkgSle8xNzZJULLWq9JMDTE2fjGE146a1Us6PZDGYle6ldWRqn%2FpdpgHKNGrGIdkRK%2BKPETT9nKT6kLyDI8xd9A1FgWmXWRAIHwZ37WyZHOVyCadJEmMVz0MadMjDrPho%2BEIochkVC2xgGiwwsQ6DMv2P7UXqT4x7CdcYGId2BJQQa85EQKmCmwcRejQ9Bm4oATENFPkxPXILHpMPUyWTI5rjNOsIlmEeMbcOCEqInpXACYQ9DDxmFo9vcmsDblcMtg4tqBerNngkIKaFJmrQAPnq1dEzsMXcwjcHdfdCibcAxxA%2Bq%2Fj9m3LM%2FO7WJka4tSidVCjsvo2lQ%2F2ewyoYyXwAYyr2PlRoR5MpgVmSUIrM3PQxXPbgjBOaDQFIyFMJvx3Pc5RSYj12ySVF9fwFPQu2e2KWVoL9q3Ayv3IzpGHUdvdPdrNUdicjsTQ2ISy7QU3DrEytIjvbzJnAkmANXjAFERA0MUoPF3%2F5KFmW14bBNOhwircYgMqoDpUMcDtCmBE82QM2YtdjVLB4kBuKho%2FbcwQdeboqfQartuU3CsCf%2BcXkgYAqp%2F0Ee3RorAZt0AvvOCSI4JICIlGlsV0bsSid%2FNIEALAAzb6HAgyWHBps6xAOwkJIGcB82CxRQq4sJf3FzA70A%2BTRqcqjEMETCoez3mkPcpnoALs0ugJY8kQwrC%2BJE5ik3w9rzrvDRjAQnqgEVvdGrNwlanR0SOKWzxOJOvLJhcd8Cl4AshACUkv9czdMkJCVQSQhp6kp7StAlpVRpK0t0SW6LHeBJnE2QchB5Ccu8kxRghZXGIgZIiSj7gEKMJDClcnX6hgoqJMwiQDigIXg3ioFLCgDgjPtYHYpsF5EiA4kcnN18MZtOrY866dEQAb0FB34OGKHGZQjwW%2FWDHA60cYFaI%2FPjpzquUqdaYGcIq%2BmLez3WLFFCtNBN2QJcrlcoELgiPku5R5dSlJFaCEqEZle1AQzAKC%2B1SotMcBNyQUFuRHRF6OlimSBgjZeTBCwLyc6A%2BP%2FoFRchXTz5ADknYJHxzrJ5pGuIKRQISU6WyKTBBjD8WozmVYWIsto1AS5rxzKlvJu4E%2FvwOiKxRtCWsDM%2BeTHUrmwrCK5BIfMzGkD%2B0Fk5LzBs0jMYXktNDblB06LMNJ09U8pzSLmo14MS0OMjcdrZ31pyQqxJJpRImlSvfYAK8inkYU52QY2FPEVsjoWewpwhRp5yAuNpkqhdb7ku9Seefl2D0B8SMTFD90xi4CSOwwZy9IKkpMtI3FmFUg3%2FkFutpQGNc3pCR7gvC4sgwbupDu3DyEN%2BW6YGLNM21jpB49irxy9BSlHrVDlnihGKHwPrbVFtc%2Bh1rVQKZduxIyojccZIIcOCmhEnC7UkY68WXKQgLi2JCDQkQWJRQuk60hZp0D3rtCTINSeY9Ej2kIKYfGxwOs4j9qMM7fYZiipzgcf7TamnehqdhsiMiCawXnz4xAbyCkLAx5EGbo3Ax1u3dUIKnTxIaxwQTHehPl3V491H0%2BbC5zgpGz7Io%2BmjdhKlPJ01EeMpM7UsRJMi1nGjmJg35i6bQBAAxjO%2FENJubU2mg3ONySEoWklCwdABETcs7ck3jgiuU9pcKKpbgn%2B3YlzV1FzIkB6pmEDOSSyDfPPlQskznctFji0kpgZjW5RZe6x9kYT4KJcXg0bNiCyif%2BpZACCyRMmYsfiKmN9tSO65F0R2OO6ytlEhY5Sj6uRKfFxw0ijJaAx%2Fk3QgnAFSq27%2F2i4GEBA%2BUvTJKK%2F9eISNvG46Em5RZfjTYLdeD8kdXHyrwId%2FDQZUaMCY4gGbke2C8vfjgV%2FY9kkRQOJIn%2FxM9INZSpiBnqX0Q9GlQPpPKAyO5y%2BW5NMPSRdBCUlmuxl40ZfMCnf2Cp044uI9WLFtCi4YVxKjuRCOBWIb4XbIsGdbo4qtMQnNOQz4XDSui7W%2FN6l54qOynCqD3DpWQ%2BmpD7C40D8BZEWGJX3tlAaZBMj1yjvDYKwCJBa201u6nBKE5UE%2B7QSEhCwrXfbRZylAaAkplhBWX50dumrElePyNMRYUrC99UmcSSNgImhFhDI4BXjMtiqkgizUGCrZ8iwFxU6fQ8GEHCFdLewwxYWxgScAYMdMLmcZR6b7rZl95eQVDGVoUKcRMM1ixXQtXNkBETZkVVPg8LoSrdetHzkuM7DjZRHP02tCxA1fmkXKF3VzfN1pc1cv%2F8lbTIkkYpqKM9VOhp65ktYk%2BQ46myFWBapDfyWUCnsnI00QTBQmuFjMZTcd0V2NQ768Fhpby04k2IzNR1wKabuGJqYWwSly6ocMFGTeeI%2BejsWDYgEvr66QgqdcIbFYDNgsm0x9UHY6SCd5%2B7tpsLpKdvhahIDyYmEJQCqMqtCF6UlrE5GXRmbu%2Bvtm3BFSxI6ND6UxIE7GsGMgWqghXxSnaRJuGFveTcK5ZVSPJyjUxe1dKgI6kNF7EZhIZs8y8FVqwEfbM0Xk2ltORVDKZZM40SD3qQoQe0orJEKwPfZwm3YPqwixhUMOndis6MhbmfvLBKjC8sKKIZKbJk8L11oNkCQzCgvjhyyEiQSuJcgCQSG4Mocfgc0Hkwcjal1UNgP0CBPikYqBIk9tONv4kLtBswH07vUCjEaHiFGlLf8MgXKzSgjp2HolRRccAOh0ILHz9qlGgIFkwAnzHJRjWFhlA7ROwINyB5HFj59PRZHFor6voq7l23EPNRwdWhgawqbivLSjRA4htEYUFkjESu67icTg5S0aW1sOkCiIysfJ9UnIWevOOLGpepcBxy1wEhd2WI3AZg7sr9WBmHWyasxMcvY%2FiOmsLtHSWNUWEGk9hScMPShasUA1AcHOtRZlqMeQ0OzYS9vQvYUjOLrzP07BUAFikcJNMi7gIxEw4pL1G54TcmmmoAQ5s7TGWErJZ2Io4yQ0ljRYhL8H5e62oDtLF8aDpnIvZ5R3GWJyAugdiiJW9hQAVTsnCBHhwu7rkBlBX6r3b7ejEY0k5GGeyKv66v%2B6dg7mcJTrWHbtMywbedYqCQ0FPwoytmSWsL8WTtChZCKKzEF7vP6De4x2BJkkniMgSdWhbeBSLtJZR9CTHetK1xb34AYIJ37OegYIoPVbXgJ%2FqDQK%2BbfCtxQRVKQu77WzOoM6SGL7MaZwCGJVk46aImai9fmam%2BWpHG%2B0BtQPWUgZ7RIAlPq6lkECUhZQ2gqWkMYKcYMYaIc4gYCDFHYa2d1nzp3%2BJ1eCBay8IYZ0wQRKGAqvCuZ%2FUgbQPyllosq%2BXtfKIZOzmeJqRazpmmoP%2F76YfkjzV2NlXTDSBYB04SVlNQsFTbGPk1t%2FI4Jktu0XSgifO2ozFOiwd%2F0SssJDn0dn4xqk4GDTTKX73%2FwQyBLdqgJ%2BWx6AQaba3BA9CKEzjtQYIfAsiYamapq80LAamYjinlKXUkxdpIDk0puXUEYzSalfRibAeDAKpNiqQ0FTwoxuGYzRnisyTotdVTclis1LHRQCy%2FqqL8oUaQzWRxilq5Mi0IJGtMY02cGLD69vGjkj3p6pGePKI8bkBv5evq8SjjyU04vJR2cQXQwSJyoinDsUJHCQ50jrFTT7yRdbdYQMB3MYCb6uBzJ9ewhXYPAIZSXfeEQBZZ3GPN3Nbhh%2FwkvAJLXnQMdi5NYYZ5GHE400GS5rXkOZSQsdZgIbzRnF9ueLnsfQ47wHAsirITnTlkCcuWWIUhJSbpM3wWhXNHvt2xUsKKMpdBSbJnBMcihkoDqAd1Zml%2FR4yrzow1Q2A5G%2Bkzo%2FRhRxQS2lCSDRV8LlYLBOOoo1bF4jwJAwKMK1tWLHlu9i0j4Ig8qVm6wE1DxXwAwQwsaBWUg2pOOol2dHxyt6npwJEdLDDVYyRc2D0HbcbLUJQj8gPevQBUBOUHXPrsAPBERICpnYESeu2OHotpXQxRGlCCtLdIsu23MhZVEoJg8Qumj%2FUMMc34IBqTKLDTp76WzL%2FdMjCxK7MjhiGjeYAC%2Fkj%2FjY%2FRde7hpSM1xChrog6yZ7OWTuD56xBJnGFE%2BpT2ElSyCnJcwVzCjkqeNLfMEJqKW0G7OFIp0G%2B9mh50I9o8k1tpCY0xYqFNIALgIfc2me4n1bmJnRZ89oepgLPT0NTMLNZsvSCZAc3TXaNB07vail36%2FdBySis4m9%2FDR8izaLJW6bWCkVgm5T%2Bius3ZXq4xI%2BGnbveLbdRwF2mNtsrE0JjYc1AXknCOrLSu7Te%2Fr4dPYMCl5qtiHNTn%2BTPbh1jCBHH%2BdMJNhwNgs3nT%2BOhQoQ0vYif56BMG6WowAcHR3DjQolxLzyVekHj00PBAaW7IIAF1EF%2BuRIWyXjQMAs2chdpaKPNaB%2BkSezYt0%2BCA04sOg5vx8Fr7Ofa9sUv87h7SLAUFSzbetCCZ9pmyLt6l6%2FTzoA1%2FZBG9bIUVHLAbi%2FkdBFgYGyGwRQGBpkqCEg2ah9UD6EedEcEL3j4y0BQQCiExEnocA3SZboh%2Bepgd3YsOkHskZwPuQ5OoyA0fTA5AXrHcUOQF%2BzkJHIA7PwCDk1gGVmGUZSSoPhNf%2BTklauz98QofOlCIQ%2FtCD4dosHYPqtPCXB3agggQQIqQJsSkB%2Bqn0rkQ1toJjON%2FOtCIB9RYv3PqRA4C4U68ZMlZn6BdgEvi2ziU%2BTQ6NIw3ej%2BAtDwMGEZk7e2IjxUWKdAxyaw9OCwSmeADTPPleyk6UhGDNXQb%2B%2BW6Uk4q6F7%2Frg6WVTo82IoCxSIsFDrav4EPHphD3u4hR53WKVvYZUwNCCeM4PMBWzK%2BEfIthZOkuAwPo5C5jgoZgn6dUdvx5rIDmd58cXXdKNfw3l%2BwM2UjgrDJeQHhbD7HW2QDoZMCujgIUkk5Fg8VCsdyjOtnGRx8wgKRPZN5dR0zPUyfGZFVihbFRniXZFOZGKPnEQzU3AnD1KfR6weHW2XS6KbPJxUkOTZsAB9vTVp3Le1F8q5l%2BDMcLiIq78jxAImD2pGFw0VHfRatScGlK6SMu8leTmhUSMy8Uhdd6xBiH3Gdman4tjQGLboJfqz6fL2WKHTmrfsKZRYX6BTDjDldKMosaSTLdQS7oDisJNqAUhw1PfTlnacCO8vl8706Km1FROgLDmudzxg%2BEWTiArtHgLsRrAXYWdB0NmToNCJdKm0KWycZQqb%2BMw76Qy29iQ5up%2FX7oyw8QZ75kP5F6iJAJz6KCmqxz8fEa%2FxnsMYcIO%2FvEkGRuMckhr4rIeLrKaXnmIzlNLxbFspOphkcnJdnz%2FChp%2FVlpj2P7jJQmQRwGnltkTV5dbF9fE3%2FfxoSqTROgq9wFUlbuYzYcasE0ouzBo%2BdDCDzxKAfhbAZYxQiHrLzV2iVexnDX%2FQnT1fsT%2Fxuhu1ui5qIytgbGmRoQkeQooO8eJNNZsf0iALur8QxZFH0nCMnjerYQqG1pIfjyVZWxhVRznmmfLG00BcBWJE6hzQWRyFknuJnXuk8A5FRDCulwrWASSNoBtR%2BCtGdkPwYN2o7DOw%2FVGlCZPusRBFXODQdUM5zeHDIVuAJBLqbO%2Ff9Qua%2BpDqEPk230Sob9lEZ8BHiCorjVghuI0lI4JDgHGRDD%2FprQ84B1pVGkIpVUAHCG%2Biz3Bn3qm2AVrYcYWhock4jso5%2BJ7HfHVj4WMIQdGctq3psBCVVzupQOEioBGA2Bk%2BUILT7%2BVoX5mdxxA5fS42gISQVi%2FHTzrgMxu0fY6hE1ocUwwbsbWcezrY2n6S8%2F6cxXkOH4prpmPuFoikTzY7T85C4T2XYlbxLglSv2uLCgFv8Quk%2FwdesUdWPeHYIH0R729JIisN9Apdd4eB10aqwXrPt%2BSu9mA8k8n1sjMwnfsfF2j3jMUzXepSHmZ%2FBfqXvzgUNQQWOXO8YEuFBh4QTYCkOAPxywpYu1VxiDyJmKVcmJPGWk%2Fgc3Pov02StyYDahwmzw3E1gYC9wkupyWfDqDSUMpCTH5e5N8B%2F%2FlHiMuIkTNw4USHrJU67bjXGqNav6PBuQSoqTxc8avHoGmvqNtXzIaoyMIQIiiUHIM64cXieouplhNYln7qgc4wBVAYR104kO%2BCvKqsg4yIUlFNThVUAKZxZt1XA34h3TCUUiXVkZ0w8Hh2R0Z5L0b4LZvPd%2Fp1gi%2F07h8qfwHrByuSxglc9cI4QIg2oqvC%2Fqm0i7tjPLTgDhoWTAKDO2ONW5oe%2B%2FeKB9vZB8K6C25yCZ9RFVMnb6NRdRjyVK57CHHSkJBfnM2%2Fj4ODUwRkqrtBBCrDsDpt8jhZdXoy%2F1BCqw3sSGhgGGy0a5Jw6BP%2FTExoCmNFYjZl248A0osgPyGEmRA%2BfAsqPVaNAfytu0vuQJ7rk3J4kTDTR2AlCHJ5cls26opZM4w3jMULh2YXKpcqGBtuleAlOZnaZGbD6DHzMd6i2oFeJ8z9XYmalg1Szd%2FocZDc1C7Y6vcALJz2lYnTXiWEr2wawtoR4g3jvWUU2Ngjd1cewtFzEvM1NiHZPeLlIXFbBPawxNgMwwAlyNSuGF3zizVeOoC9bag1qRAQKQE%2FEZBWC2J8mnXAN2aTBboZ7HewnObE8CwROudZHmUM5oZ%2FUgd%2FJZQK8lvAm43uDRAbyW8gZ%2BZGq0EVerVGUKUSm%2FIdn8AQHdR4m7bue88WBwft9mSCeMOt1ncBwziOmJYI2ZR7ewNMPiCugmSsE4EyQ%2BQATJG6qORMGd4snEzc6B4shPIo4G1T7PgSm8PY5eUkPdF8JZ0VBtadbHXoJgnEhZQaODPj2gpODKJY5Yp4DOsLBFxWbvXN755KWylJm%2BoOd4zEL9Hpubuy2gyyfxh8oEfFutnYWdfB8PdESLWYvSqbElP9qo3u6KTmkhoacDauMNNjj0oy40DFV7Ql0aZj77xfGl7TJNHnIwgqOkenruYYNo6h724%2BzUQ7%2BvkCpZB%2BpGA562hYQiDxHVWOq0oDQl%2FQsoiY%2BcuI7iWq%2FZIBtHcXJ7kks%2Bh2fCNUPA82BzjnqktNts%2BRLdk1VSu%2BtqEn7QZCCsvEqk6FkfiOYkrsw092J8jsfIuEKypNjLxrKA9kiA19mxBD2suxQKCzwXGws7kEJvlhUiV9tArLIdZW0IORcxEzdzKmjtFhsjKy%2F44XYXdI5noQoRcvjZ1RMPACRqYg2V1%2BOwOepcOknRLLFdYgTkT5UApt%2FJhLM3jeFYprZV%2BZow2g8fP%2BU68hkKFWJj2yBbKqsrp25xkZX1DAjUw52IMYWaOhab8Kp05VrdNftqwRrymWF4OQSjbdfzmRZirK8FMJELEgER2PHjEAN9pGfLhCUiTJFbd5LBkOBMaxLr%2FA1SY9dXFz4RjzoU9ExfJCmx%2FI9FKEGT3n2cmzl2X42L3Jh%2BAbQq6sA%2BSs1kitoa4TAYgKHaoybHUDJ51oETdeI%2F9ThSmjWGkyLi5QAGWhL0BG1UsTyRGRJOldKBrYJeB8ljLJHfATWTEQBXBDnQexOHTB%2BUn44zExFE4vLytcu5NwpWrUxO%2F0ZICUGM7hGABXym0V6ZvDST0E370St9MIWQOTWngeoQHUTdCJUP04spMBMS8LSker9cReVQkULFDIZDFPrhTzBl6sed9wcZQTbL%2BBDqMyaN3RJPh%2Fanbx%2BIv%2BqgQdAa3M9Z5JmvYlh4qop%2BHo1F1W5gbOE9YKLgAnWytXElU4G8GtW47lhgFE6gaSs%2Bgs37sFvi0PPVvA5dnCBgILTwoKd%2F%2BDoL9F6inlM7H4rOTzD79KJgKlZO%2FZgt22UsKhrAaXU5ZcLrAglTVKJEmNJvORGN1vqrcfSMizfpsgbIe9zno%2BgBoKVXgIL%2FVI8dB1O5o%2FR3Suez%2FgD7M781ShjKpIIORM%2FnxG%2BjjhhgPwsn2IoXsPGPqYHXA63zJ07M2GPEykQwJBYLK808qYxuIew4frk52nhCsnCYmXiR6CuapvE1IwRB4%2FQftDbEn%2BAucIr1oxrLabRj9q4ae0%2BfXkHnteAJwXRbVkR0mctVSwEbqhJiMSZUp9DNbEDMmjX22m3ABpkrPQQTP3S1sib5pD2VRKRd%2BeNAjLYyT0hGrdjWJZy24OYXRoWQAIhGBZRxuBFMjjZQhpgrWo8SiFYbojcHO8V5DyscJpLTHyx9Fimassyo5U6WNtquUMYgccaHY5amgR3PQzq3ToNM5ABnoB9kuxsebqmYZm0R9qxJbFXCQ1UPyFIbxoUraTJFDpCk0Wk9GaYJKz%2F6oHwEP0Q14lMtlddQsOAU9zlYdMVHiT7RQP3XCmWYDcHCGbVRHGnHuwzScA0BaSBOGkz3lM8CArjrBsyEoV6Ys4qgDK3ykQQPZ3hCRGNXQTNNXbEb6tDiTDLKOyMzRhCFT%2BmAUmiYbV3YQVqFVp9dorv%2BTsLeCykS2b5yyu8AV7IS9cxcL8z4Kfwp%2BxJyYLv1OsxQCZwTB4a8BZ%2F5EdxTBJthApqyfd9u3ifr%2FWILTqq5VqgwMT9SOxbSGWLQJUUWCVi4k9tho9nEsbUh7U6NUsLmkYFXOhZ0kmamaJLRNJzSj%2Fqn4Mso6zb6iLLBXoaZ6AqeWCjHQm2lztnejYYM2eubnpBdKVLORZhudH3JF1waBJKA9%2BW8EhMj3Kzf0L4vi4k6RoHh3Z5YgmSZmk6ns4fjScjAoL8GoOECgqgYEBYUGFVO4FUv4%2FYtowhEmTs0vrvlD%2FCrisnoBNDAcUi%2FteY7OctFlmARQzjOItrrlKuPO6E2Ox93L4O%2F4DcgV%2FdZ7qR3VBwVQxP1GCieA4RIpweYJ5FoYrHxqRBdJjnqbsikA2Ictbb8vE1GYIo9dacK0REgDX4smy6GAkxlH1yCGGsk%2BtgiDhNKuKu3yNrMdxafmKTF632F8Vx4BNK57GvlFisrkjN9WDAtjsWA0ENT2e2nETUb%2Fn7qwhvGnrHuf5bX6Vh%2Fn3xffU3PeHdR%2BFA92i6ufT3AlyAREoNDh6chiMWTvjKjHDeRhOa9YkOQRq1vQXEMppAQVwHCuIcV2g5rBn6GmZZpTR7vnSD6ZmhdSl176gqKTXu5E%2BYbfL0adwNtHP7dT7t7b46DVZIkzaRJOM%2BS6KcrzYVg%2BT3wSRFRQashjfU18NutrKa%2F7PXbtuJvpIjbgPeqd%2BpjmRw6YKpnANFSQcpzTZgpSNJ6J7uiagAbir%2F8tNXJ%2FOsOnRh6iuIexxrmkIneAgz8QoLmiaJ8sLQrELVK2yn3wOHp57BAZJhDZjTBzyoRAuuZ4eoxHruY1pSb7qq79cIeAdOwin4GdgMeIMHeG%2BFZWYaiUQQyC5b50zKjYw97dFjAeY2I4Bnl105Iku1y0lMA1ZHolLx19uZnRdILcXKlZGQx%2FGdEqSsMRU1BIrFqRcV1qQOOHyxOLXEGcbRtAEsuAC2V4K3p5mFJ22IDWaEkk9ttf5Izb2LkD1MnrSwztXmmD%2FQi%2FEmVEFBfiKGmftsPwVaIoZanlKndMZsIBOskFYpDOq3QUs9aSbAAtL5Dbokus2G4%2FasthNMK5UQKCOhU97oaOYNGsTah%2BjfCKsZnTRn5TbhFX8ghg8CBYt%2FBjeYYYUrtUZ5jVij%2Fop7V5SsbA4mYTOwZ46hqdpbB6Qvq3AS2HHNkC15pTDIcDNGsMPXaBidXYPHc6PJAkRh29Vx8KcgX46LoUQBhRM%2B3SW6Opll%2FwgxxsPgKJKzr5QCmwkUxNbeg6Wj34SUnEzOemSuvS2OetRCO8Tyy%2BQbSKVJcqkia%2BGvDefFwMOmgnD7h81TUtMn%2BmRpyJJ349HhAnoWFTejhpYTL9G8N2nVg1qkXBeoS9Nw2fB27t7trm7d%2FQK7Cr4uoCeOQ7%2F8JfKT77KiDzLImESHw%2F0wf73QeHu74hxv7uihi4fTX%2BXEwAyQG3264dwv17aJ5N335Vt9sdrAXhPOAv8JFvzqyYXwfx8WYJaef1gMl98JRFyl5Mv5Uo%2FoVH5ww5OzLFsiTPDns7fS6EURSSWd%2F92BxMYQ8sBaH%2Bj%2BwthQPdVgDGpTfi%2BJQIWMD8xKqULliRH01rTeyF8x8q%2FGBEEEBrAJMPf25UQwi0b8tmqRXY7kIvNkzrkvRWLnxoGYEJsz8u4oOyMp8cHyaybb1HdMCaLApUE%2B%2F7xLIZGP6H9xuSEXp1zLIdjk5nBaMuV%2FyTDRRP8Y2ww5RO6d2D94o%2B6ucWIqUAvgHIHXhZsmDhjVLczmZ3ca0Cb3PpKwt2UtHVQ0BgFJsqqTsnzZPlKahRUkEu4qmkJt%2Bkqdae76ViWe3STan69yaF9%2BfESD2lcQshLHWVu4ovItXxO69bqC5p1nZLvI8NdQB9s9UNaJGlQ5mG947ipdDA0eTIw%2FA1zEdjWquIsQXXGIVEH0thC5M%2BW9pZe7IhAVnPJkYCCXN5a32HjN6nsvokEqRS44tGIs7s2LVTvcrHAF%2BRVmI8L4HUYk4x%2B67AxSMJKqCg8zrGOgvK9kNMdDrNiUtSWuHFpC8%2Fp5qIQrEo%2FH%2B1l%2F0cAwQ2nKmpWxKcMIuHY44Y6DlkpO48tRuUGBWT0FyHwSKO72Ud%2BtJUfdaZ4CWNijzZtlRa8%2BCkmO%2FEwHYfPZFU%2FhzjFWH7vnzHRMo%2BaF9u8qHSAiEkA2HjoNQPEwHsDKOt6hOoK3Ce%2F%2B%2F9boMWDa44I6FrQhdgS7OnNaSzwxWKZMcyHi6LN4WC6sSj0qm2PSOGBTvDs%2FGWJS6SwEN%2FULwpb4LQo9fYjUfSXRwZkynUazlSpvX9e%2BG2zor8l%2BYaMxSEomDdLHGcD6YVQPegTaA74H8%2BV4WvJkFUrjMLGLlvSZQWvi8%2FQA7yzQ8GPno%2F%2F5SJHRP%2FOqKObPCo81s%2F%2B6WgLqykYpGAgQZhVDEBPXWgU%2FWzFZjKUhSFInufPRiMAUULC6T11yL45ZrRoB4DzOyJShKXaAJIBS9wzLYIoCEcJKQW8GVCx4fihqJ6mshBUXSw3wWVj3grrHQlGNGhIDNNzsxQ3M%2BGWn6ASobIWC%2BLbYOC6UpahVO13Zs2zOzZC8z7FmA05JhUGyBsF4tsG0drcggIFzgg%2Fkpf3%2BCnAXKiMgIE8Jk%2FMhpkc8DUJEUzDSnWlQFme3d0sHZDrg7LavtsEX3cHwjCYA17pMTfx8Ajw9hHscN67hyo%2BRJQ4458RmPywXykkVcW688oVUrQhahpPRvTWPnuI0B%2BSkQu7dCyvLRyFYlC1LG1gRCIvn3rwQeINzZQC2KXq31FaR9UmVV2QeGVqBHjmE%2BVMd3b1fhCynD0pQNhCG6%2FWCDbKPyE7NRQzL3BzQAJ0g09aUzcQA6mUp9iZFK6Sbp%2FYbHjo%2B%2B7%2FWj8S4YNa%2BZdqAw1hDrKWFXv9%2BzaXpf8ZTDSbiqsxnwN%2FCzK5tPkOr4tRh2kY3Bn9JtalbIOI4b3F7F1vPQMfoDcdxMS8CW9m%2FNCW%2FHILTUVWQIPiD0j1A6bo8vsv6P1hCESl2abrSJWDrq5sSzUpwoxaCU9FtJyYH4QFMxDBpkkBR6kn0LMPO%2B5EJ7Z6bCiRoPedRZ%2FP0SSdii7ZnPAtVwwHUidcdyspwncz5uq6vvm4IEDbJVLUFCn%2FLvIHfooUBTkFO130FC7CmmcrKdgDJcid9mvVzsDSibOoXtIf9k6ABle3PmIxejodc4aob0QKS432srrCMndbfD454q52V01G4q913mC5HOsTzWF4h2No1av1VbcUgWAqyoZl%2B11PoFYnNv2HwAODeNRkHj%2B8SF1fcvVBu6MrehHAZK1Gm69ICcTKizykHgGFx7QdowTVAsYEF2tVc0Z6wLryz2FI1sc5By2znJAAmINndoJiB4sfPdPrTC8RnkW7KRCwxC6YvXg5ahMlQuMpoCSXjOlBy0Kij%2BbsCYPbGp8BdCBiLmLSAkEQRaieWo1SYvZIKJGj9Ur%2FeWHjiB7SOVdqMAVmpBvfRiebsFjger7DC%2B8kRFGtNrTrnnGD2GAJb8rQCWkUPYHhwXsjNBSkE6lGWUj5QNhK0DMNM2l%2BkXRZ0KLZaGsFSIdQz%2FHXDxf3%2FTE30%2BDgBKWGWdxElyLccJfEpjsnszECNoDGZpdwdRgCixeg9L4EPhH%2BRptvRMVRaahu4cySjS3P5wxAUCPkmn%2BrhyASpmiTaiDeggaIxYBmtLZDDhiWIJaBgzfCsAGUF1Q1SFZYyXDt9skCaxJsxK2Ms65dmdp5WAZyxik%2FzbrTQk5KmgxCg%2Ff45L0jywebOWUYFJQAJia7XzCV0x89rpp%2Ff3AVWhSPyTanqmik2SkD8A3Ml4NhIGLAjBXtPShwKYfi2eXtrDuKLk4QlSyTw1ftXgwqA2jUuopDl%2B5tfUWZNwBpEPXghzbBggYCw%2Fdhy0ntds2yeHCDKkF%2FYxQjNIL%2FF%2F37jLPHCKBO9ibwYCmuxImIo0ijV2Wbg3kSN2psoe8IsABv3RNFaF9uMyCtCYtqcD%2BqNOhwMlfARQUdJ2tUX%2BMNJqOwIciWalZsmEjt07tfa8ma4cji9sqz%2BQ9hWfmMoKEbIHPOQORbhQRHIsrTYlnVTNvcq1imqmmPDdVDkJgRcTgB8Sb6epCQVmFZe%2BjGDiNJQLWnfx%2BdrTKYjm0G8yH0ZAGMWzEJhUEQ4Maimgf%2Fbkvo8PLVBsZl152y5S8%2BHRDfZIMCbYZ1WDp4yrdchOJw8k6R%2B%2F2pHmydK4NIK2PHdFPHtoLmHxRDwLFb7eB%2BM4zNZcB9NrAgjVyzLM7xyYSY13ykWfIEEd2n5%2FiYp3ZdrCf7fL%2Ben%2BsIJu2W7E30MrAgZBD1rAAbZHPgeAMtKCg3NpSpYQUDWJu9bT3V7tOKv%2BNRiJc8JAKqqgCA%2FPNRBR7ChpiEulyQApMK1AyqcWnpSOmYh6yLiWkGJ2mklCSPIqN7UypWj3dGi5MvsHQ87MrB4VFgypJaFriaHivwcHIpmyi5LhNqtem4q0n8awM19Qk8BOS0EsqGscuuydYsIGsbT5GHnERUiMpKJl4ON7qjB4fEqlGN%2FhCky89232UQCiaeWpDYCJINXjT6xl4Gc7DxRCtgV0i1ma4RgWLsNtnEBRQFqZggCLiuyEydmFd7WlogpkCw5G1x4ft2psm3KAREwVwr1Gzl6RT7FDAqpVal34ewVm3VH4qn5mjGj%2BbYL1NgfLNeXDwtmYSpwzbruDKpTjOdgiIHDVQSb5%2FzBgSMbHLkxWWgghIh9QTFSDILixVwg0Eg1puooBiHAt7DzwJ7m8i8%2Fi%2BjHvKf0QDnnHVkVTIqMvIQImOrzCJwhSR7qYB5gSwL6aWL9hERHCZc4G2%2BJrpgHNB8eCCmcIWIQ6rSdyPCyftXkDlErUkHafHRlkOIjxGbAktz75bnh50dU7YHk%2BMz7wwstg6RFZb%2BTZuSOx1qqP5C66c0mptQmzIC2dlpte7vZrauAMm%2F7RfBYkGtXWGiaWTtwvAQiq2oD4YixPLXE2khB2FRaNRDTk%2B9sZ6K74Ia9VntCpN4BhJGJMT4Z5c5FhSepRCRWmBXqx%2BwhVZC4me4saDs2iNqXMuCl6iAZflH8fscC1sTsy4PHeC%2BXYuqMBMUun5YezKbRKmEPwuK%2BCLzijPEQgfhahQswBBLfg%2FGBgBiI4QwAqzJkkyYAWtjzSg2ILgMAgqxYfwERRo3zruBL9WOryUArSD8sQOcD7fvIODJxKFS615KFPsb68USBEPPj1orNzFY2xoTtNBVTyzBhPbhFH0PI5AtlJBl2aSgNPYzxYLw7XTDBDinmVoENwiGzmngrMo8OmnRP0Z0i0Zrln9DDFcnmOoBZjABaQIbPOJYZGqX%2BRCMlDDbElcjaROLDoualmUIQ88Kekk3iM4OQrADcxi3rJguS4MOIBIgKgXrjd1WkbCdqxJk%2F4efRIFsavZA7KvvJQqp3Iid5Z0NFc5aiMRzGN3vrpBzaMy4JYde3wr96PjN90AYOIbyp6T4zj8LoE66OGcX1Ef4Z3KoWLAUF4BTg7ug%2FAbkG5UNQXAMkQezujSHeir2uTThgd3gpyzDrbnEdDRH2W7U6PeRvBX1ZFMP5RM%2BZu6UUZZD8hDPHldVWntTCNk7To8IeOW9yn2wx0gmurwqC60AOde4r3ETi5pVMSDK8wxhoGAoEX9NLWHIR33VbrbMveii2jAJlrxwytTHbWNu8Y4N8vCCyZjAX%2FpcsfwXbLze2%2BD%2Bu33OGBoJyAAL3jn3RuEcdp5If8O%2Ba4NKWvxOTyDltG0IWoHhwVGe7dKkCWFT%2B%2Btm%2BhaBCikRUUMrMhYKZJKYoVuv%2FbsJzO8DwfVIInQq3g3BYypiz8baogH3r3GwqCwFtZnz4xMjAVOYnyOi5HWbFA8n0qz1OjSpHWFzpQOpvkNETZBGpxN8ybhtqV%2FDMUxd9uFZmBfKXMCn%2FSqkWJyKPnT6lq%2B4zBZni6fYRByJn6OK%2BOgPBGRAJluwGSk4wxjOOzyce%2FPKODwRlsgrVkdcsEiYrqYdXo0Er2GXi2GQZd0tNJT6c9pK1EEJG1zgDJBoTVuCXGAU8BKTvCO%2FcEQ1Wjk3Zzuy90JX4m3O5IlxVFhYkSUwuQB2up7jhvkm%2BbddRQu5F9s0XftGEJ9JSuSk%2BZachCbdU45fEqbugzTIUokwoAKvpUQF%2FCvLbWW5BNQFqFkJg2f30E%2F48StNe5QwBg8zz3YAJ82FZoXBxXSv4QDooDo79NixyglO9AembuBcx5Re3CwOKTHebOPhkmFC7wNaWtoBhFuV4AkEuJ0J%2B1pT0tLkvFVZaNzfhs%2FKd3%2BA9YsImlO4XK4vpCo%2FelHQi%2F9gkFg07xxnuXLt21unCIpDV%2BbbRxb7FC6nWYTsMFF8%2B1LUg4JFjVt3vqbuhHmDKbgQ4e%2BRGizRiO8ky05LQGMdL2IKLSNar0kNG7lHJMaXr5mLdG3nykgj6vB%2FKVijd1ARWkFEf3yiUw1v%2FWaQivVUpIDdSNrrKbjO5NPnxz6qTTGgYg03HgPhDrCFyYZTi3XQw3HXCva39mpLNFtz8AiEhxAJHpWX13gCTAwgm9YTvMeiqetdNQv6IU0hH0G%2BZManTqDLPjyrOse7WiiwOJCG%2BJ0pZYULhN8NILulmYYvmVcV2MjAfA39sGKqGdjpiPo86fecg65UPyXDIAOyOkCx5NQsLeD4gGVjTVDwOHWkbbBW0GeNjDkcSOn2Nq4cEssP54t9D749A7M1AIOBl0Fi0sSO5v3P7LCBrM6ZwFY6kp2FX6AcbGUdybnfChHPyu6WlRZ2Fwv9YM0RMI7kISRgR8HpQSJJOyTfXj%2F6gQKuihPtiUtlCQVPohUgzfezTg8o1b3n9pNZeco1QucaoXe40Fa5JYhqdTspFmxGtW9h5ezLFZs3j%2FN46f%2BS2rjYNC2JySXrnSAFhvAkz9a5L3pza8eYKHNoPrvBRESpxYPJdKVUxBE39nJ1chrAFpy4MMkf0qKgYALctGg1DQI1kIymyeS2AJNT4X240d3IFQb%2F0jQbaHJ2YRK8A%2Bls6WMhWmpCXYG5jqapGs5%2FeOJErxi2%2F2KWVHiPellTgh%2FfNl%2F2KYPKb7DUcAg%2BmCOPQFCiU9Mq%2FWLcU1xxC8aLePFZZlE%2BPCLzf7ey46INWRw2kcXySR9FDgByXzfxiNKwDFbUSMMhALPFSedyjEVM5442GZ4hTrsAEvZxIieSHGSgkwFh%2FnFNdrrFD4tBH4Il7fW6ur4J8Xaz7RW9jgtuPEXQsYk7gcMs2neu3zJwTyUerHKSh1iTBkj2YJh1SSOZL5pLuQbFFAvyO4k1Hxg2h99MTC6cTUkbONQIAnEfGsGkNFWRbuRyyaEZInM5pij73EA9rPIUfU4XoqQpHT9THZkW%2BoKFLvpyvTBMM69tN1Ydwv1LIEhHsC%2BueVG%2Bw%2BkyCPsvV3erRikcscHjZCkccx6VrBkBRusTDDd8847GA7p2Ucy0y0HdSRN6YIBciYa4vuXcAZbQAuSEmzw%2BH%2FAuOx%2BaH%2BtBL88H57D0MsqyiZxhOEQkF%2F8DR1d2hSPMj%2FsNOa5rxcUnBgH8ictv2J%2Bcb4BA4v3MCShdZ2vtK30vAwkobnEWh7rsSyhmos3WC93Gn9C4nnAd%2FPjMMtQfyDNZsOPd6XcAsnBE%2FmRHtHEyJMzJfZFLE9OvQa0i9kUmToJ0ZxknTgdl%2FXPV8xoh0K7wNHHsnBdvFH3sv52lU7UFteseLG%2FVanIvcwycVA7%2BBE1Ulyb20BvwUWZcMTKhaCcmY3ROpvonVMV4N7yBXTL7IDtHzQ4CCcqF66LjF3xUqgErKzolLyCG6Kb7irP%2FMVTCCwGRxfrPGpMMGvPLgJ881PHMNMIO09T5ig7AzZTX%2F5PLlwnJLDAPfuHynSGhV4tPqR3gJ4kg4c06c%2FF1AcjGytKm2Yb5jwMotF7vro4YDLWlnMIpmPg36NgAZsGA0W1spfLSue4xxat0Gdwd0lqDBOgIaMANykwwDKejt5YaNtJYIkrSgu0KjIg0pznY0SCd1qlC6R19g97UrWDoYJGlrvCE05J%2F5wkjpkre727p5PTRX5FGrSBIfJqhJE%2FIS876PaHFkx9pGTH3oaY3jJRvLX9Iy3Edoar7cFvJqyUlOhAEiOSAyYgVEGkzHdug%2BoRHIEOXAExMiTSKU9A6nmRC8mp8iYhwWdP2U%2F5EkFAdPrZw03YA3gSyNUtMZeh7dDCu8pF5x0VORCTgKp07ehy7NZqKTpIC4UJJ89lnboyAfy5OyXzXtuDRbtAFjZRSyGFTpFrXwkpjSLIQIG3N0Vj4BtzK3wdlkBJrO18MNsgseR4BysJilI0wI6ZahLhBFA0XBmV8d4LUzEcNVb0xbLjLTETYN8OEVqNxkt10W614dd1FlFFVTIgB7%2FBQQp1sWlNolpIu4ekxUTBV7NmxOFKEBmmN%2BnA7pvF78%2FRII5ZHA09OAiE%2F66MF6HQ%2BqVEJCHxwymukkNvzqHEh52dULPbVasfQMgTDyBZzx4007YiKdBuUauQOt27Gmy8ISclPmEUCIcuLbkb1mzQSqIa3iE0PJh7UMYQbkpe%2BhXjTJKdldyt2mVPwywoODGJtBV1lJTgMsuSQBlDMwhEKIfrvsxGQjHPCEfNfMAY2oxvyKcKPUbQySkKG6tj9AQyEW3Q5rpaDJ5Sns9ScLKeizPRbvWYAw4bXkrZdmB7CQopCH8NAmqbuciZChHN8lVGaDbCnmddnqO1PQ4ieMYfcSiBE5zzMz%2BJV%2F4eyzrzTEShvqSGzgWimkNxLvUj86iAwcZuIkqdB0VaIB7wncLRmzHkiUQpPBIXbDDLHBlq7vp9xwuC9AiNkIptAYlG7Biyuk8ILdynuUM1cHWJgeB%2BK3wBP%2FineogxkvBNNQ4AkW0hvpBOQGFfeptF2YTR75MexYDUy7Q%2F9uocGsx41O4IZhViw%2F2FvAEuGO5g2kyXBUijAggWM08bRhXg5ijgMwDJy40QeY%2FcQpUDZiIzmvskQpO5G1zyGZA8WByjIQU4jRoFJt56behxtHUUE%2Fom7Rj2psYXGmq3llVOCgGYKNMo4pzwntITtapDqjvQtqpjaJwjHmDzSVGLxMt12gEXAdLi%2FcaHSM3FPRGRf7dB7YC%2BcD2ho6oL2zGDCkjlf%2FDFoQVl8GS%2F56wur3rdV6ggtzZW60MRB3g%2BU1W8o8cvqIpMkctiGVMzXUFI7FacFLrgtdz4mTEr4aRAaQ2AFQaNeG7GX0yOJgMRYFziXdJf24kg%2FgBQIZMG%2FYcPEllRTVNoDYR6oSJ8wQNLuihfw81UpiKPm714bZX1KYjcXJdfclCUOOpvTxr9AAJevTY4HK%2FG7F3mUc3GOAKqh60zM0v34v%2BELyhJZqhkaMA8UMMOU90f8RKEJFj7EqepBVwsRiLbwMo1J2zrE2UYJnsgIAscDmjPjnzI8a719Wxp757wqmSJBjXowhc46QN4RwKIxqEE6E5218OeK7RfcpGjWG1jD7qND%2B%2FGTk6M56Ig4yMsU6LUW1EWE%2BfIYycVV1thldSlbP6ltdC01y3KUfkobkt2q01YYMmxpKRvh1Z48uNKzP%2FIoRIZ%2FF6buOymSnW8gICitpJjKWBscSb9JJKaWkvEkqinAJ2kowKoqkqZftRqfRQlLtKoqvTRDi2vg%2FRrPD%2Fd3a09J8JhGZlEkOM6znTsoMCsuvTmywxTCDhw5dd0GJOHCMPbsj3QLkTE3MInsZsimDQ3HkvthT7U9VA4s6G07sID0FW4SHJmRGwCl%2BMu4xf0ezqeXD2PtPDnwMPo86sbwDV%2B9PWcgFcARUVYm3hrFQrHcgMElFGbSM2A1zUYA3baWfheJp2AINmTJLuoyYD%2FOwA4a6V0ChBN97E8YtDBerUECv0u0TlxR5yhJCXvJxgyM73Bb6pyq0jTFJDZ4p1Am1SA6sh8nADd1hAcGBMfq4d%2FUfwnmBqe0Jun1n1LzrgKuZMAnxA3NtCN7Klf4BH%2B14B7ibBmgt0TGUafVzI4uKlpF7v8NmgNjg90D6QE3tbx8AjSAC%2BOA1YJvclyPKgT27QpIEgVYpbPYGBsnyCNrGz9XUsCHkW1QAHgL2STZk12QGqmvAB0NFteERkvBIH7INDsNW9KKaAYyDMdBEMzJiWaJHZALqDxQDWRntumSDPcplyFiI1oDpT8wbwe01AHhW6%2BvAUUBoGhY3CT2tgwehdPqU%2F4Q7ZLYvhRl%2FogOvR9O2%2BwkkPKW5vCTjD2fHRYXONCoIl4Jh1bZY0ZE1O94mMGn%2FdFSWBWzQ%2FVYk%2BGezi46RgiDv3EshoTmMSlioUK6MQEN8qeyK6FRninyX8ZPeUWjjbMJChn0n%2FyJvrq5bh5UcCAcBYSafTFg7p0jDgrXo2QWLb3WpSOET%2FHh4oSadBTvyDo10IufLzxiMLAnbZ1vcUmj3w7BQuIXjEZXifwukVxrGa9j%2BDXfpi12m1RbzYLg9J2wFergEwOxFyD0%2FJstNK06ZN2XdZSGWxcJODpQHOq4iKqjqkJUmPu1VczL5xTGUfCgLEYyNBCCbMBFT%2FcUP6pE%2FmujnHsSDeWxMbhrNilS5MyYR0nJyzanWXBeVcEQrRIhQeJA6Xt4f2eQESNeLwmC10WJVHqwx8SSyrtAAjpGjidcj1E2FYN0LObUcFQhafUKTiGmHWRHGsFCB%2BHEXgrzJEB5bp0QiF8ZHh11nFX8AboTD0PS4O1LqF8XBks2MpjsQnwKHF6HgaKCVLJtcr0XjqFMRGfKv8tmmykhLRzu%2BvqQ02%2BKpJBjaLt9ye1Ab%2BBbEBhy4EVdIJDrL2naV0o4wU8YZ2Lq04FG1mWCKC%2BUwkXOoAjneU%2FxHplMQo2cXUlrVNqJYczgYlaOEczVCs%2FOCgkyvLmTmdaBJc1iBLuKwmr6qtRnhowngsDxhzKFAi02tf8bmET8BO27ovJKF1plJwm3b0JpMh38%2BxsrXXg7U74QUM8ZCIMOpXujHntKdaRtsgyEZl5MClMVMMMZkZLNxH9%2Bb8fH6%2Bb8Lev30A9TuEVj9CqAdmwAAHBPbfOBFEATAPZ2CS0OH1Pj%2F0Q7PFUcC8hDrxESWdfgFRm%2B7vvWbkEppHB4T%2F1ApWnlTIqQwjcPl0VgS1yHSmD0OdsCVST8CQVwuiew1Y%2Bg3QGFjNMzwRB2DSsAk26cmA8lp2wIU4p93AUBiUHFGOxOajAqD7Gm6NezNDjYzwLOaSXRBYcWipTSONHjUDXCY4mMI8XoVCR%2FRrs%2FJLKXgEx%2BqkmeDlFOD1%2FyTQNDClRuiUyKYCllfMiQiyFkmuTz2vLsBNyRW%2Bxz%2B5FElFxWB28VjYIGZ0Yd%2B5wIjkcoMaggxswbT0pCmckRAErbRlIlcOGdBo4djTNO8FAgQ%2BlT6vPS60BwTRSUAM3ddkEAZiwtEyArrkiDRnS7LJ%2B2hwbzd2YDQagSgACpsovmjil5wfPuXq3GuH0CyE7FK3M4FgRaFoIkaodORrPx1%2BJpI9psyNYIFuJogZa0%2F1AhOWdlHQxdAgbwacsHqPZo8u%2FngAH2GmaTdhYnBfSDbBfh8CHq6Bx5bttP2%2BRdM%2BMAaYaZ0Y%2FADkbNCZuAyAVQa2OcXOeICmDn9Q%2FeFkDeFQg5MgHEDXq%2FtVjj%2Bjtd26nhaaolWxs1ixSUgOBwrDhRIGOLyOVk2%2FBc0UxvseQCO2pQ2i%2BKrfhu%2FWeBovNb5dJxQtJRUDv2mCwYVpNl2efQM9xQHnK0JwLYt%2FU0Wf%2BphiA4uw8G91slC832pmOTCAoZXohg1fewCZqLBhkOUBofBWpMPsqg7XEXgPfAlDo2U5WXjtFdS87PIqClCK5nW6adCeXPkUiTGx0emOIDQqw1yFYGHEVx20xKjJVYe0O8iLmnQr3FA9nSIQilUKtJ4ZAdcTm7%2BExseJauyqo30hs%2B1qSW211A1SFAOUgDlCGq7eTIcMAeyZkV1SQJ4j%2Fe1Smbq4HcjqgFbLAGLyKxlMDMgZavK5NAYH19Olz3la%2FQCTiVelFnU6O%2FGCvykqS%2FwZJDhKN9gBtSOp%2F1SP5VRgJcoVj%2Bkmf2wBgv4gjrgARBWiURYx8xENV3bEVUAAWWD3dYDKAIWk5opaCFCMR5ZjJExiCAw7gYiSZ2rkyTce4eNMY3lfGn%2B8p6%2BvBckGlKEXnA6Eota69OxDO9oOsJoy28BXOR0UoXNRaJD5ceKdlWMJlOFzDdZNpc05tkMGQtqeNF2lttZqNco1VtwXgRstLSQ6tSPChgqtGV5h2DcDReIQadaNRR6AsAYKL5gSFsCJMgfsaZ7DpKh8mg8Wz8V7H%2BgDnLuMxaWEIUPevIbClgap4dqmVWSrPgVYCzAoZHIa5z2Ocx1D%2FGvDOEqMOKLrMefWIbSWHZ6jbgA8qVBhYNHpx0P%2BjAgN5TB3haSifDcApp6yymEi6Ij%2FGsEpDYUgcHATJUYDUAmC1SCkJ4cuZXSAP2DEpQsGUjQmKJfJOvlC2x%2FpChkOyLW7KEoMYc5FDC4v2FGqSoRWiLsbPCiyg1U5yiHZVm1XLkHMMZL11%2Fyxyw0UnGig3MFdZklN5FI%2FqiT65T%2BjOXOdO7XbgWurOAZR6Cv9uu1cm5LjkXX4xi6mWn5r5NjBS0gTliHhMZI2WNqSiSphEtiCAwnafS11JhseDGHYQ5%2BbqWiAYiAv6Jsf79%2FVUs4cIl%2Bn6%2BWOjcgB%2F2l5TreoAV2717JzZbQIR0W1cl%2FdEqCy5kJ3ZSIHuU0vBoHooEpiHeQWVkkkOqRX27eD1FWw4BfO9CJDdKoSogQi3hAAwsPRFrN5RbX7bqLdBJ9JYMohWrgJKHSjVl1sy2xAG0E3sNyO0oCbSGOxCNBRRXTXenYKuwAoDLfnDcQaCwehUOIDiHAu5m5hMpKeKM4sIo3vxACakIxKoH2YWF2QM84e6F5C5hJU4g8uxuFOlAYnqtwxmHyNEawLW%2FPhoawJDrGAP0JYWHgAVUByo%2FbGdiv2T2EMg8gsS14%2FrAdzlOYazFE7w4OzxeKiWdm3nSOnQRRKXSlVo8HEAbBfyJMKqoq%2BSCcTSx5NDtbFwNlh8VhjGGDu7JG5%2FTAGAvniQSSUog0pNzTim8Owc6QTuSKSTXlQqwV3eiEnklS3LeSXYPXGK2VgeZBqNcHG6tZHvA3vTINhV0ELuQdp3t1y9%2BogD8Kk%2FW7QoRN1UWPqM4%2BxdygkFDPLoTaumKReKiLWoPHOfY54m3qPx4c%2B4pgY3MRKKbljG8w4wvz8pxk3AqKsy4GMAkAtmRjRMsCxbb4Q2Ds0Ia9ci8cMT6DmsJG00XaHCIS%2Bo3F8YVVeikw13w%2BOEDaCYYhC0ZE54kA4jpjruBr5STWeqQG6M74HHL6TZ3lXrd99ZX%2B%2B7LhNatQaZosuxEf5yRA15S9gPeHskBIq3Gcw81AGb9%2FO53DYi%2F5CsQ51EmEh8Rkg4vOciClpy4d04eYsfr6fyQkBmtD%2BP8sNh6e%2BXYHJXT%2FlkXxT4KXU5F2sGxYyzfniMMQkb9OjDN2C8tRRgTyL7GwozH14PrEUZc6oz05Emne3Ts5EG7WolDmU8OB1LDG3VrpQxp%2BpT0KYV5dGtknU64JhabdqcVQbGZiAxQAnvN1u70y1AnmvOSPgLI6uB4AuDGhmAu3ATkJSw7OtS%2F2ToPjqkaq62%2F7WFG8advGlRRqxB9diP07JrXowKR9tpRa%2BjGJ91zxNTT1h8I2PcSfoUPtd7NejVoH03EUcqSBuFZPkMZhegHyo2ZAITovmm3zAIdGFWxoNNORiMRShgwdYwFzkPw5PA4a5MIIQpmq%2Bnsp3YMuXt%2FGkXxLx%2FP6%2BZJS0lFyz4MunC3eWSGE8xlCQrKvhKUPXr0hjpAN9ZK4PfEDrPMfMbGNWcHDzjA7ngMxTPnT7GMHar%2BgMQQ3NwHCv4zH4BIMYvzsdiERi6gebRmerTsVwZJTRsL8dkZgxgRxmpbgRcud%2BYlCIRpPwHShlUSwuipZnx9QCsEWziVazdDeKSYU5CF7UVPAhLer3CgJOQXl%2Fzh575R5rsrmRnKAzq4POFdgbYBuEviM4%2BLVC15ssLNFghbTtHWerS1hDt5s4qkLUha%2FqpZXhWh1C6lTQAqCNQnaDjS7UGFBC6wTu8yFnKJnExCnAs3Ok9yj5KpfZESQ4lTy5pTGTnkAUpxI%2ByjEldJfSo4y0QhG4i4IwkRFGcjWY8%2BEzgYYJUK7BXQksLxAww%2FYYWBMhJILB9e8ePEJ4OP7z%2B4%2FwOQDl64iOYDp26DaONPxpKtBxq%2FaTzRGarm3VkPYTLJKx6Z%2FMw2YbBGseJhPMwhhNswrIkyvV2BYzrvZbxLpKwcWJhYmFtVZ%2BlPEq91FzVp1HlQY1bZVLqeNR9SAUn6n0E28k%2FUuGkNpP1DBI5ch%2FEehZfjUQ9aE41NhETExoPT2gGQz0IhWJbEOvTQ4wgcXCHHFBhewYUiFHuhRSAUVmEHeCRQHQkXGFwkAgyzREJCVN7TRnTon36Zw3tPhx4EALwNdwDv%2BJ41YSP4B2CQqz0EFgARZ4ESgBHQgROwAVn9GTI%2BHYexTUevLUeta4%2FDqKrbMVS%2BYqb8hUwYCrlgKtmAq1YCrFgKrd4qpXiqZcKn1oqdWipjYKpWwVPVYqW6xUpVipKqFR3QKjagVEtAqHpxUMTitsnFaJOKx2cVhswq35RVpyiq9lFVNIKnOQVMkgqtYxVNxiqQjFS7GKlSIVIsQqPIhUWwioigFQ%2B%2BKkN8VHr49HDw9Ebo9EDo9DTo9Crg9BDg9%2FWx7gWx7YWwlobYrOGxWPNisAaAHEyALpkAVDIAeWAArsABVXACYuAD5cAF6wAKFQAQqgAbVAAsoAAlQAUaYAfkwAvogBWQACOgAD9AAHSAAKT4GUdMiOvFngBTwCn2AZ7Dv6B6k%2F90B8%2ByRnkV144AIBoAMTQATGgAjNAA4YABgwABZgB%2FmQCwyAVlwCguASlwCEuAQFwB4uAMlwBYuAJlQAUVAAhUD2KgdpUDaJgaRMDFJgX5MC1JgWJEAokQCWRAHxEAWkQBMRADpEAMkQAYROAEecC484DRpwBDTnwNOdw05tjTmiNOYwtswhYFwLA7BYG4LA2BYGOLAwRYFuLAsxYFQJAohIEyJAMwkAwiQC0JAJgkAeiQBkJAFokAPCQA0JABwcD4Dgc4cDdDgaYcDIDgYgUC6CgWgUClCgUYUAVBQBOFAEYMALgwAgDA9QYAdIn8AZzeBB2L5EcWrenUT1KXienEsuJJ7x5U8XlTjc1NVzUyXFTGb1LlpUtWlTDIjqwE4LsagowoCi2gJLKAkpoBgJQNpAIhNqaEoneI6kiiqQ6Go%2Fn6j0cS%2Ba2gEU8gIHJ%2BBwfgZX4GL%2BBd%2FgW34FZ%2BBS%2FgUH4FN6BTegTvoEv6BJegRnYEF2A79gOvYDl2BdEjCkqkGtwXp0LNToIskOTXzh%2FF062yJ7AAAAEDAWAAABWhJ%2BKPEIJgBFxMVP7w2QJBGHASQnOBKXKFIdUK4igKA9IEaYJg%29%3Bsrc%3Aurl%28data%3Aapplication%2Fvnd%2Ems%2Dfontobject%3Bbase64%2Cn04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ%2FLAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM%2FSEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ%2BpexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h%2Fv4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs%2BLWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy%2BpRYVKGVS%2F1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr%2FCm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB%2BlSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX%2BVSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G%2BKspT%2FFupEGGafCCwxSe6ZUa%2B073rXHnNdVXE6eWvibUS27XtRzkH838mYLMBmYysZTM0EM3A1fbpCBYFccN1B%2FEnCYu%2FTgCGmr7bMh8GfYL%2BBfcLvB0gRagC09w9elfldaIy%2FhNCBLRgBgtCC7jAF63wLSMAfbfAlEggYU0bUA7ACCJmTDpEmJtI78w4%2FBO7dN7JR7J7ZvbYaUbaILSQsRBiF3HGk5fEg6p9unwLvn98r%2BvnsV%2B372uf1xBLq4qU%2F45fTuqaAP%2BpssmCCCTF0mhEow8ZXZOS8D7Q85JsxZ%2BAzok7B7O%2Ff6J8AzYBySZQB%2FQHYUSA%2BEeQhEWiS6AIQzgcsDiER4MjgMBAWDV4AgQ3g1eBgIdweCQmCjJEMkJ%2BPKRWyFHHmg1Wi%2F6xzUgA0LREoKJChwnQa9B%2B5RQZRB3IlBlkAnxyQNaANwHMowzlYSMCBgnbpzvqpl0iTJNCQidDI9ZrSYNIRBhHtUa5YHMHxyGEik9hDE0AKj72AbTCaxtHPUaKZdAZSnQTyjGqGLsmBStCejApUhg4uBMU6mATujEl%2BKdDPbI6Ag4vLr%2BhjY6lbjBeoLKnZl0UZgRX8gTySOeynZVz1wOq7e1hFGYIq%2BMhrGxDLak0PrwYzSXtcuyhXEhwOYofiW%2BEcI%2Fjw8P6IY6ed%2BetAbuqKp5QIapT77LnAe505lMuqL79a0ut4rWexzFttsOsLDy7zvtQzcq3U1qabe7tB0wHWVXji%2BzDbo8x8HyIRUbXnwUcklFv51fvTymiV%2BMXLSmGH9d9%2BaXpD5X6lao41anWGig7IwIdnoBY2ht%2FpO9mClLo4NdXHAsefqWUKlXJkbqPOFhMoR4aiA1BXqhRNbB2Xwi%2B7u%2FjpAoOpKJ0UX24EsrzMfHXViakCNcKjBxuQX8BO0ZqjJ3xXzf%2B61t2VXOSgJ8xu65QKgtN6FibPmPYsXbJRHHqbgATcSZxBqGiDiU4NNNsYBsKD0MIP%2FOfKnlk%2FLkaid%2FO2NbKeuQrwOB2Gq3YHyr6ALgzym5wIBnsdC1ZkoBFZSQXChZvlesPqvK2c5oHHT3Q65jYpNxnQcGF0EHbvYqoFw60WNlXIHQF2HQB7zD6lWjZ9rVqUKBXUT6hrkZOle0RFYII0V5ZYGl1JAP0Ud1fZZMvSomBzJ710j4Me8mjQDwEre5Uv2wQfk1ifDwb5ksuJQQ3xt423lbuQjvoIQByQrNDh1JxGFkOdlJvu%2FgFtuW0wR4cgd%2BZKesSV7QkNE2kw6AV4hoIuC02LGmTomyf8PiO6CZzOTLTPQ%2BHW06H%2Btx%2BbQ8LmDYg1pTFrp2oJXgkZTyeRJZM0C8aE2LpFrNVDuhARsN543%2FFV6klQ6Tv1OoZGXLv0igKrl%2FCmJxRmX7JJbJ998VSIPQRyDBICzl4JJlYHbdql30NvYcOuZ7a10uWRrgoieOdgIm4rlq6vNOQBuqESLbXG5lzdJGHw2m0sDYmODXbYGTfSTGRKpssTO95fothJCjUGQgEL4yKoGAF%2F0SrpUDNn8CBgBcSDQByAeNkCXp4S4Ro2Xh4OeaGRgR66PVOsU8bc6TR5%2FxTcn4IVMLOkXSWiXxkZQCbvKfmoAvQaKjO3EDKwkwqHChCDEM5loQRPd5ACBki1TjF772oaQhQbQ5C0lcWXPFOzrfsDGUXGrpxasbG4iab6eByaQkQfm0VFlP0ZsDkvvqCL6QXMUwCjdMx1ZOyKhTJ7a1GWAdOUcJ8RSejxNVyGs31OKMyRyBVoZFjqIkmKlLQ5eHMeEL4MkUf23cQ%2F1SgRCJ1dk4UdBT7OoyuNgLs0oCd8RnrEIb6QdMxT2QjD4zMrJkfgx5aDMcA4orsTtKCqWb%2FVeyceqa5OGSmB28YwH4rFbkQaLoUN8OQQYnD3w2eXpI4ScQfbCUZiJ4yMOIKLyyTc7BQ4uXUw6Ee6%2FxM%2B4Y67ngNBknxIPwuppgIhFcwJyr6EIj%2BLzNj%2FmfR2vhhRlx0BILZoAYruF0caWQ7YxO66UmeguDREAFHYuC7HJviRgVO6ruJH59h%2FC%2FPkgSle8xNzZJULLWq9JMDTE2fjGE146a1Us6PZDGYle6ldWRqn%2FpdpgHKNGrGIdkRK%2BKPETT9nKT6kLyDI8xd9A1FgWmXWRAIHwZ37WyZHOVyCadJEmMVz0MadMjDrPho%2BEIochkVC2xgGiwwsQ6DMv2P7UXqT4x7CdcYGId2BJQQa85EQKmCmwcRejQ9Bm4oATENFPkxPXILHpMPUyWTI5rjNOsIlmEeMbcOCEqInpXACYQ9DDxmFo9vcmsDblcMtg4tqBerNngkIKaFJmrQAPnq1dEzsMXcwjcHdfdCibcAxxA%2Bq%2Fj9m3LM%2FO7WJka4tSidVCjsvo2lQ%2F2ewyoYyXwAYyr2PlRoR5MpgVmSUIrM3PQxXPbgjBOaDQFIyFMJvx3Pc5RSYj12ySVF9fwFPQu2e2KWVoL9q3Ayv3IzpGHUdvdPdrNUdicjsTQ2ISy7QU3DrEytIjvbzJnAkmANXjAFERA0MUoPF3%2F5KFmW14bBNOhwircYgMqoDpUMcDtCmBE82QM2YtdjVLB4kBuKho%2FbcwQdeboqfQartuU3CsCf%2BcXkgYAqp%2F0Ee3RorAZt0AvvOCSI4JICIlGlsV0bsSid%2FNIEALAAzb6HAgyWHBps6xAOwkJIGcB82CxRQq4sJf3FzA70A%2BTRqcqjEMETCoez3mkPcpnoALs0ugJY8kQwrC%2BJE5ik3w9rzrvDRjAQnqgEVvdGrNwlanR0SOKWzxOJOvLJhcd8Cl4AshACUkv9czdMkJCVQSQhp6kp7StAlpVRpK0t0SW6LHeBJnE2QchB5Ccu8kxRghZXGIgZIiSj7gEKMJDClcnX6hgoqJMwiQDigIXg3ioFLCgDgjPtYHYpsF5EiA4kcnN18MZtOrY866dEQAb0FB34OGKHGZQjwW%2FWDHA60cYFaI%2FPjpzquUqdaYGcIq%2BmLez3WLFFCtNBN2QJcrlcoELgiPku5R5dSlJFaCEqEZle1AQzAKC%2B1SotMcBNyQUFuRHRF6OlimSBgjZeTBCwLyc6A%2BP%2FoFRchXTz5ADknYJHxzrJ5pGuIKRQISU6WyKTBBjD8WozmVYWIsto1AS5rxzKlvJu4E%2FvwOiKxRtCWsDM%2BeTHUrmwrCK5BIfMzGkD%2B0Fk5LzBs0jMYXktNDblB06LMNJ09U8pzSLmo14MS0OMjcdrZ31pyQqxJJpRImlSvfYAK8inkYU52QY2FPEVsjoWewpwhRp5yAuNpkqhdb7ku9Seefl2D0B8SMTFD90xi4CSOwwZy9IKkpMtI3FmFUg3%2FkFutpQGNc3pCR7gvC4sgwbupDu3DyEN%2BW6YGLNM21jpB49irxy9BSlHrVDlnihGKHwPrbVFtc%2Bh1rVQKZduxIyojccZIIcOCmhEnC7UkY68WXKQgLi2JCDQkQWJRQuk60hZp0D3rtCTINSeY9Ej2kIKYfGxwOs4j9qMM7fYZiipzgcf7TamnehqdhsiMiCawXnz4xAbyCkLAx5EGbo3Ax1u3dUIKnTxIaxwQTHehPl3V491H0%2BbC5zgpGz7Io%2BmjdhKlPJ01EeMpM7UsRJMi1nGjmJg35i6bQBAAxjO%2FENJubU2mg3ONySEoWklCwdABETcs7ck3jgiuU9pcKKpbgn%2B3YlzV1FzIkB6pmEDOSSyDfPPlQskznctFji0kpgZjW5RZe6x9kYT4KJcXg0bNiCyif%2BpZACCyRMmYsfiKmN9tSO65F0R2OO6ytlEhY5Sj6uRKfFxw0ijJaAx%2Fk3QgnAFSq27%2F2i4GEBA%2BUvTJKK%2F9eISNvG46Em5RZfjTYLdeD8kdXHyrwId%2FDQZUaMCY4gGbke2C8vfjgV%2FY9kkRQOJIn%2FxM9INZSpiBnqX0Q9GlQPpPKAyO5y%2BW5NMPSRdBCUlmuxl40ZfMCnf2Cp044uI9WLFtCi4YVxKjuRCOBWIb4XbIsGdbo4qtMQnNOQz4XDSui7W%2FN6l54qOynCqD3DpWQ%2BmpD7C40D8BZEWGJX3tlAaZBMj1yjvDYKwCJBa201u6nBKE5UE%2B7QSEhCwrXfbRZylAaAkplhBWX50dumrElePyNMRYUrC99UmcSSNgImhFhDI4BXjMtiqkgizUGCrZ8iwFxU6fQ8GEHCFdLewwxYWxgScAYMdMLmcZR6b7rZl95eQVDGVoUKcRMM1ixXQtXNkBETZkVVPg8LoSrdetHzkuM7DjZRHP02tCxA1fmkXKF3VzfN1pc1cv%2F8lbTIkkYpqKM9VOhp65ktYk%2BQ46myFWBapDfyWUCnsnI00QTBQmuFjMZTcd0V2NQ768Fhpby04k2IzNR1wKabuGJqYWwSly6ocMFGTeeI%2BejsWDYgEvr66QgqdcIbFYDNgsm0x9UHY6SCd5%2B7tpsLpKdvhahIDyYmEJQCqMqtCF6UlrE5GXRmbu%2Bvtm3BFSxI6ND6UxIE7GsGMgWqghXxSnaRJuGFveTcK5ZVSPJyjUxe1dKgI6kNF7EZhIZs8y8FVqwEfbM0Xk2ltORVDKZZM40SD3qQoQe0orJEKwPfZwm3YPqwixhUMOndis6MhbmfvLBKjC8sKKIZKbJk8L11oNkCQzCgvjhyyEiQSuJcgCQSG4Mocfgc0Hkwcjal1UNgP0CBPikYqBIk9tONv4kLtBswH07vUCjEaHiFGlLf8MgXKzSgjp2HolRRccAOh0ILHz9qlGgIFkwAnzHJRjWFhlA7ROwINyB5HFj59PRZHFor6voq7l23EPNRwdWhgawqbivLSjRA4htEYUFkjESu67icTg5S0aW1sOkCiIysfJ9UnIWevOOLGpepcBxy1wEhd2WI3AZg7sr9WBmHWyasxMcvY%2FiOmsLtHSWNUWEGk9hScMPShasUA1AcHOtRZlqMeQ0OzYS9vQvYUjOLrzP07BUAFikcJNMi7gIxEw4pL1G54TcmmmoAQ5s7TGWErJZ2Io4yQ0ljRYhL8H5e62oDtLF8aDpnIvZ5R3GWJyAugdiiJW9hQAVTsnCBHhwu7rkBlBX6r3b7ejEY0k5GGeyKv66v%2B6dg7mcJTrWHbtMywbedYqCQ0FPwoytmSWsL8WTtChZCKKzEF7vP6De4x2BJkkniMgSdWhbeBSLtJZR9CTHetK1xb34AYIJ37OegYIoPVbXgJ%2FqDQK%2BbfCtxQRVKQu77WzOoM6SGL7MaZwCGJVk46aImai9fmam%2BWpHG%2B0BtQPWUgZ7RIAlPq6lkECUhZQ2gqWkMYKcYMYaIc4gYCDFHYa2d1nzp3%2BJ1eCBay8IYZ0wQRKGAqvCuZ%2FUgbQPyllosq%2BXtfKIZOzmeJqRazpmmoP%2F76YfkjzV2NlXTDSBYB04SVlNQsFTbGPk1t%2FI4Jktu0XSgifO2ozFOiwd%2F0SssJDn0dn4xqk4GDTTKX73%2FwQyBLdqgJ%2BWx6AQaba3BA9CKEzjtQYIfAsiYamapq80LAamYjinlKXUkxdpIDk0puXUEYzSalfRibAeDAKpNiqQ0FTwoxuGYzRnisyTotdVTclis1LHRQCy%2FqqL8oUaQzWRxilq5Mi0IJGtMY02cGLD69vGjkj3p6pGePKI8bkBv5evq8SjjyU04vJR2cQXQwSJyoinDsUJHCQ50jrFTT7yRdbdYQMB3MYCb6uBzJ9ewhXYPAIZSXfeEQBZZ3GPN3Nbhh%2FwkvAJLXnQMdi5NYYZ5GHE400GS5rXkOZSQsdZgIbzRnF9ueLnsfQ47wHAsirITnTlkCcuWWIUhJSbpM3wWhXNHvt2xUsKKMpdBSbJnBMcihkoDqAd1Zml%2FR4yrzow1Q2A5G%2Bkzo%2FRhRxQS2lCSDRV8LlYLBOOoo1bF4jwJAwKMK1tWLHlu9i0j4Ig8qVm6wE1DxXwAwQwsaBWUg2pOOol2dHxyt6npwJEdLDDVYyRc2D0HbcbLUJQj8gPevQBUBOUHXPrsAPBERICpnYESeu2OHotpXQxRGlCCtLdIsu23MhZVEoJg8Qumj%2FUMMc34IBqTKLDTp76WzL%2FdMjCxK7MjhiGjeYAC%2Fkj%2FjY%2FRde7hpSM1xChrog6yZ7OWTuD56xBJnGFE%2BpT2ElSyCnJcwVzCjkqeNLfMEJqKW0G7OFIp0G%2B9mh50I9o8k1tpCY0xYqFNIALgIfc2me4n1bmJnRZ89oepgLPT0NTMLNZsvSCZAc3TXaNB07vail36%2FdBySis4m9%2FDR8izaLJW6bWCkVgm5T%2Bius3ZXq4xI%2BGnbveLbdRwF2mNtsrE0JjYc1AXknCOrLSu7Te%2Fr4dPYMCl5qtiHNTn%2BTPbh1jCBHH%2BdMJNhwNgs3nT%2BOhQoQ0vYif56BMG6WowAcHR3DjQolxLzyVekHj00PBAaW7IIAF1EF%2BuRIWyXjQMAs2chdpaKPNaB%2BkSezYt0%2BCA04sOg5vx8Fr7Ofa9sUv87h7SLAUFSzbetCCZ9pmyLt6l6%2FTzoA1%2FZBG9bIUVHLAbi%2FkdBFgYGyGwRQGBpkqCEg2ah9UD6EedEcEL3j4y0BQQCiExEnocA3SZboh%2Bepgd3YsOkHskZwPuQ5OoyA0fTA5AXrHcUOQF%2BzkJHIA7PwCDk1gGVmGUZSSoPhNf%2BTklauz98QofOlCIQ%2FtCD4dosHYPqtPCXB3agggQQIqQJsSkB%2Bqn0rkQ1toJjON%2FOtCIB9RYv3PqRA4C4U68ZMlZn6BdgEvi2ziU%2BTQ6NIw3ej%2BAtDwMGEZk7e2IjxUWKdAxyaw9OCwSmeADTPPleyk6UhGDNXQb%2B%2BW6Uk4q6F7%2Frg6WVTo82IoCxSIsFDrav4EPHphD3u4hR53WKVvYZUwNCCeM4PMBWzK%2BEfIthZOkuAwPo5C5jgoZgn6dUdvx5rIDmd58cXXdKNfw3l%2BwM2UjgrDJeQHhbD7HW2QDoZMCujgIUkk5Fg8VCsdyjOtnGRx8wgKRPZN5dR0zPUyfGZFVihbFRniXZFOZGKPnEQzU3AnD1KfR6weHW2XS6KbPJxUkOTZsAB9vTVp3Le1F8q5l%2BDMcLiIq78jxAImD2pGFw0VHfRatScGlK6SMu8leTmhUSMy8Uhdd6xBiH3Gdman4tjQGLboJfqz6fL2WKHTmrfsKZRYX6BTDjDldKMosaSTLdQS7oDisJNqAUhw1PfTlnacCO8vl8706Km1FROgLDmudzxg%2BEWTiArtHgLsRrAXYWdB0NmToNCJdKm0KWycZQqb%2BMw76Qy29iQ5up%2FX7oyw8QZ75kP5F6iJAJz6KCmqxz8fEa%2FxnsMYcIO%2FvEkGRuMckhr4rIeLrKaXnmIzlNLxbFspOphkcnJdnz%2FChp%2FVlpj2P7jJQmQRwGnltkTV5dbF9fE3%2FfxoSqTROgq9wFUlbuYzYcasE0ouzBo%2BdDCDzxKAfhbAZYxQiHrLzV2iVexnDX%2FQnT1fsT%2Fxuhu1ui5qIytgbGmRoQkeQooO8eJNNZsf0iALur8QxZFH0nCMnjerYQqG1pIfjyVZWxhVRznmmfLG00BcBWJE6hzQWRyFknuJnXuk8A5FRDCulwrWASSNoBtR%2BCtGdkPwYN2o7DOw%2FVGlCZPusRBFXODQdUM5zeHDIVuAJBLqbO%2Ff9Qua%2BpDqEPk230Sob9lEZ8BHiCorjVghuI0lI4JDgHGRDD%2FprQ84B1pVGkIpVUAHCG%2Biz3Bn3qm2AVrYcYWhock4jso5%2BJ7HfHVj4WMIQdGctq3psBCVVzupQOEioBGA2Bk%2BUILT7%2BVoX5mdxxA5fS42gISQVi%2FHTzrgMxu0fY6hE1ocUwwbsbWcezrY2n6S8%2F6cxXkOH4prpmPuFoikTzY7T85C4T2XYlbxLglSv2uLCgFv8Quk%2FwdesUdWPeHYIH0R729JIisN9Apdd4eB10aqwXrPt%2BSu9mA8k8n1sjMwnfsfF2j3jMUzXepSHmZ%2FBfqXvzgUNQQWOXO8YEuFBh4QTYCkOAPxywpYu1VxiDyJmKVcmJPGWk%2Fgc3Pov02StyYDahwmzw3E1gYC9wkupyWfDqDSUMpCTH5e5N8B%2F%2FlHiMuIkTNw4USHrJU67bjXGqNav6PBuQSoqTxc8avHoGmvqNtXzIaoyMIQIiiUHIM64cXieouplhNYln7qgc4wBVAYR104kO%2BCvKqsg4yIUlFNThVUAKZxZt1XA34h3TCUUiXVkZ0w8Hh2R0Z5L0b4LZvPd%2Fp1gi%2F07h8qfwHrByuSxglc9cI4QIg2oqvC%2Fqm0i7tjPLTgDhoWTAKDO2ONW5oe%2B%2FeKB9vZB8K6C25yCZ9RFVMnb6NRdRjyVK57CHHSkJBfnM2%2Fj4ODUwRkqrtBBCrDsDpt8jhZdXoy%2F1BCqw3sSGhgGGy0a5Jw6BP%2FTExoCmNFYjZl248A0osgPyGEmRA%2BfAsqPVaNAfytu0vuQJ7rk3J4kTDTR2AlCHJ5cls26opZM4w3jMULh2YXKpcqGBtuleAlOZnaZGbD6DHzMd6i2oFeJ8z9XYmalg1Szd%2FocZDc1C7Y6vcALJz2lYnTXiWEr2wawtoR4g3jvWUU2Ngjd1cewtFzEvM1NiHZPeLlIXFbBPawxNgMwwAlyNSuGF3zizVeOoC9bag1qRAQKQE%2FEZBWC2J8mnXAN2aTBboZ7HewnObE8CwROudZHmUM5oZ%2FUgd%2FJZQK8lvAm43uDRAbyW8gZ%2BZGq0EVerVGUKUSm%2FIdn8AQHdR4m7bue88WBwft9mSCeMOt1ncBwziOmJYI2ZR7ewNMPiCugmSsE4EyQ%2BQATJG6qORMGd4snEzc6B4shPIo4G1T7PgSm8PY5eUkPdF8JZ0VBtadbHXoJgnEhZQaODPj2gpODKJY5Yp4DOsLBFxWbvXN755KWylJm%2BoOd4zEL9Hpubuy2gyyfxh8oEfFutnYWdfB8PdESLWYvSqbElP9qo3u6KTmkhoacDauMNNjj0oy40DFV7Ql0aZj77xfGl7TJNHnIwgqOkenruYYNo6h724%2BzUQ7%2BvkCpZB%2BpGA562hYQiDxHVWOq0oDQl%2FQsoiY%2BcuI7iWq%2FZIBtHcXJ7kks%2Bh2fCNUPA82BzjnqktNts%2BRLdk1VSu%2BtqEn7QZCCsvEqk6FkfiOYkrsw092J8jsfIuEKypNjLxrKA9kiA19mxBD2suxQKCzwXGws7kEJvlhUiV9tArLIdZW0IORcxEzdzKmjtFhsjKy%2F44XYXdI5noQoRcvjZ1RMPACRqYg2V1%2BOwOepcOknRLLFdYgTkT5UApt%2FJhLM3jeFYprZV%2BZow2g8fP%2BU68hkKFWJj2yBbKqsrp25xkZX1DAjUw52IMYWaOhab8Kp05VrdNftqwRrymWF4OQSjbdfzmRZirK8FMJELEgER2PHjEAN9pGfLhCUiTJFbd5LBkOBMaxLr%2FA1SY9dXFz4RjzoU9ExfJCmx%2FI9FKEGT3n2cmzl2X42L3Jh%2BAbQq6sA%2BSs1kitoa4TAYgKHaoybHUDJ51oETdeI%2F9ThSmjWGkyLi5QAGWhL0BG1UsTyRGRJOldKBrYJeB8ljLJHfATWTEQBXBDnQexOHTB%2BUn44zExFE4vLytcu5NwpWrUxO%2F0ZICUGM7hGABXym0V6ZvDST0E370St9MIWQOTWngeoQHUTdCJUP04spMBMS8LSker9cReVQkULFDIZDFPrhTzBl6sed9wcZQTbL%2BBDqMyaN3RJPh%2Fanbx%2BIv%2BqgQdAa3M9Z5JmvYlh4qop%2BHo1F1W5gbOE9YKLgAnWytXElU4G8GtW47lhgFE6gaSs%2Bgs37sFvi0PPVvA5dnCBgILTwoKd%2F%2BDoL9F6inlM7H4rOTzD79KJgKlZO%2FZgt22UsKhrAaXU5ZcLrAglTVKJEmNJvORGN1vqrcfSMizfpsgbIe9zno%2BgBoKVXgIL%2FVI8dB1O5o%2FR3Suez%2FgD7M781ShjKpIIORM%2FnxG%2BjjhhgPwsn2IoXsPGPqYHXA63zJ07M2GPEykQwJBYLK808qYxuIew4frk52nhCsnCYmXiR6CuapvE1IwRB4%2FQftDbEn%2BAucIr1oxrLabRj9q4ae0%2BfXkHnteAJwXRbVkR0mctVSwEbqhJiMSZUp9DNbEDMmjX22m3ABpkrPQQTP3S1sib5pD2VRKRd%2BeNAjLYyT0hGrdjWJZy24OYXRoWQAIhGBZRxuBFMjjZQhpgrWo8SiFYbojcHO8V5DyscJpLTHyx9Fimassyo5U6WNtquUMYgccaHY5amgR3PQzq3ToNM5ABnoB9kuxsebqmYZm0R9qxJbFXCQ1UPyFIbxoUraTJFDpCk0Wk9GaYJKz%2F6oHwEP0Q14lMtlddQsOAU9zlYdMVHiT7RQP3XCmWYDcHCGbVRHGnHuwzScA0BaSBOGkz3lM8CArjrBsyEoV6Ys4qgDK3ykQQPZ3hCRGNXQTNNXbEb6tDiTDLKOyMzRhCFT%2BmAUmiYbV3YQVqFVp9dorv%2BTsLeCykS2b5yyu8AV7IS9cxcL8z4Kfwp%2BxJyYLv1OsxQCZwTB4a8BZ%2F5EdxTBJthApqyfd9u3ifr%2FWILTqq5VqgwMT9SOxbSGWLQJUUWCVi4k9tho9nEsbUh7U6NUsLmkYFXOhZ0kmamaJLRNJzSj%2Fqn4Mso6zb6iLLBXoaZ6AqeWCjHQm2lztnejYYM2eubnpBdKVLORZhudH3JF1waBJKA9%2BW8EhMj3Kzf0L4vi4k6RoHh3Z5YgmSZmk6ns4fjScjAoL8GoOECgqgYEBYUGFVO4FUv4%2FYtowhEmTs0vrvlD%2FCrisnoBNDAcUi%2FteY7OctFlmARQzjOItrrlKuPO6E2Ox93L4O%2F4DcgV%2FdZ7qR3VBwVQxP1GCieA4RIpweYJ5FoYrHxqRBdJjnqbsikA2Ictbb8vE1GYIo9dacK0REgDX4smy6GAkxlH1yCGGsk%2BtgiDhNKuKu3yNrMdxafmKTF632F8Vx4BNK57GvlFisrkjN9WDAtjsWA0ENT2e2nETUb%2Fn7qwhvGnrHuf5bX6Vh%2Fn3xffU3PeHdR%2BFA92i6ufT3AlyAREoNDh6chiMWTvjKjHDeRhOa9YkOQRq1vQXEMppAQVwHCuIcV2g5rBn6GmZZpTR7vnSD6ZmhdSl176gqKTXu5E%2BYbfL0adwNtHP7dT7t7b46DVZIkzaRJOM%2BS6KcrzYVg%2BT3wSRFRQashjfU18NutrKa%2F7PXbtuJvpIjbgPeqd%2BpjmRw6YKpnANFSQcpzTZgpSNJ6J7uiagAbir%2F8tNXJ%2FOsOnRh6iuIexxrmkIneAgz8QoLmiaJ8sLQrELVK2yn3wOHp57BAZJhDZjTBzyoRAuuZ4eoxHruY1pSb7qq79cIeAdOwin4GdgMeIMHeG%2BFZWYaiUQQyC5b50zKjYw97dFjAeY2I4Bnl105Iku1y0lMA1ZHolLx19uZnRdILcXKlZGQx%2FGdEqSsMRU1BIrFqRcV1qQOOHyxOLXEGcbRtAEsuAC2V4K3p5mFJ22IDWaEkk9ttf5Izb2LkD1MnrSwztXmmD%2FQi%2FEmVEFBfiKGmftsPwVaIoZanlKndMZsIBOskFYpDOq3QUs9aSbAAtL5Dbokus2G4%2FasthNMK5UQKCOhU97oaOYNGsTah%2BjfCKsZnTRn5TbhFX8ghg8CBYt%2FBjeYYYUrtUZ5jVij%2Fop7V5SsbA4mYTOwZ46hqdpbB6Qvq3AS2HHNkC15pTDIcDNGsMPXaBidXYPHc6PJAkRh29Vx8KcgX46LoUQBhRM%2B3SW6Opll%2FwgxxsPgKJKzr5QCmwkUxNbeg6Wj34SUnEzOemSuvS2OetRCO8Tyy%2BQbSKVJcqkia%2BGvDefFwMOmgnD7h81TUtMn%2BmRpyJJ349HhAnoWFTejhpYTL9G8N2nVg1qkXBeoS9Nw2fB27t7trm7d%2FQK7Cr4uoCeOQ7%2F8JfKT77KiDzLImESHw%2F0wf73QeHu74hxv7uihi4fTX%2BXEwAyQG3264dwv17aJ5N335Vt9sdrAXhPOAv8JFvzqyYXwfx8WYJaef1gMl98JRFyl5Mv5Uo%2FoVH5ww5OzLFsiTPDns7fS6EURSSWd%2F92BxMYQ8sBaH%2Bj%2BwthQPdVgDGpTfi%2BJQIWMD8xKqULliRH01rTeyF8x8q%2FGBEEEBrAJMPf25UQwi0b8tmqRXY7kIvNkzrkvRWLnxoGYEJsz8u4oOyMp8cHyaybb1HdMCaLApUE%2B%2F7xLIZGP6H9xuSEXp1zLIdjk5nBaMuV%2FyTDRRP8Y2ww5RO6d2D94o%2B6ucWIqUAvgHIHXhZsmDhjVLczmZ3ca0Cb3PpKwt2UtHVQ0BgFJsqqTsnzZPlKahRUkEu4qmkJt%2Bkqdae76ViWe3STan69yaF9%2BfESD2lcQshLHWVu4ovItXxO69bqC5p1nZLvI8NdQB9s9UNaJGlQ5mG947ipdDA0eTIw%2FA1zEdjWquIsQXXGIVEH0thC5M%2BW9pZe7IhAVnPJkYCCXN5a32HjN6nsvokEqRS44tGIs7s2LVTvcrHAF%2BRVmI8L4HUYk4x%2B67AxSMJKqCg8zrGOgvK9kNMdDrNiUtSWuHFpC8%2Fp5qIQrEo%2FH%2B1l%2F0cAwQ2nKmpWxKcMIuHY44Y6DlkpO48tRuUGBWT0FyHwSKO72Ud%2BtJUfdaZ4CWNijzZtlRa8%2BCkmO%2FEwHYfPZFU%2FhzjFWH7vnzHRMo%2BaF9u8qHSAiEkA2HjoNQPEwHsDKOt6hOoK3Ce%2F%2B%2F9boMWDa44I6FrQhdgS7OnNaSzwxWKZMcyHi6LN4WC6sSj0qm2PSOGBTvDs%2FGWJS6SwEN%2FULwpb4LQo9fYjUfSXRwZkynUazlSpvX9e%2BG2zor8l%2BYaMxSEomDdLHGcD6YVQPegTaA74H8%2BV4WvJkFUrjMLGLlvSZQWvi8%2FQA7yzQ8GPno%2F%2F5SJHRP%2FOqKObPCo81s%2F%2B6WgLqykYpGAgQZhVDEBPXWgU%2FWzFZjKUhSFInufPRiMAUULC6T11yL45ZrRoB4DzOyJShKXaAJIBS9wzLYIoCEcJKQW8GVCx4fihqJ6mshBUXSw3wWVj3grrHQlGNGhIDNNzsxQ3M%2BGWn6ASobIWC%2BLbYOC6UpahVO13Zs2zOzZC8z7FmA05JhUGyBsF4tsG0drcggIFzgg%2Fkpf3%2BCnAXKiMgIE8Jk%2FMhpkc8DUJEUzDSnWlQFme3d0sHZDrg7LavtsEX3cHwjCYA17pMTfx8Ajw9hHscN67hyo%2BRJQ4458RmPywXykkVcW688oVUrQhahpPRvTWPnuI0B%2BSkQu7dCyvLRyFYlC1LG1gRCIvn3rwQeINzZQC2KXq31FaR9UmVV2QeGVqBHjmE%2BVMd3b1fhCynD0pQNhCG6%2FWCDbKPyE7NRQzL3BzQAJ0g09aUzcQA6mUp9iZFK6Sbp%2FYbHjo%2B%2B7%2FWj8S4YNa%2BZdqAw1hDrKWFXv9%2BzaXpf8ZTDSbiqsxnwN%2FCzK5tPkOr4tRh2kY3Bn9JtalbIOI4b3F7F1vPQMfoDcdxMS8CW9m%2FNCW%2FHILTUVWQIPiD0j1A6bo8vsv6P1hCESl2abrSJWDrq5sSzUpwoxaCU9FtJyYH4QFMxDBpkkBR6kn0LMPO%2B5EJ7Z6bCiRoPedRZ%2FP0SSdii7ZnPAtVwwHUidcdyspwncz5uq6vvm4IEDbJVLUFCn%2FLvIHfooUBTkFO130FC7CmmcrKdgDJcid9mvVzsDSibOoXtIf9k6ABle3PmIxejodc4aob0QKS432srrCMndbfD454q52V01G4q913mC5HOsTzWF4h2No1av1VbcUgWAqyoZl%2B11PoFYnNv2HwAODeNRkHj%2B8SF1fcvVBu6MrehHAZK1Gm69ICcTKizykHgGFx7QdowTVAsYEF2tVc0Z6wLryz2FI1sc5By2znJAAmINndoJiB4sfPdPrTC8RnkW7KRCwxC6YvXg5ahMlQuMpoCSXjOlBy0Kij%2BbsCYPbGp8BdCBiLmLSAkEQRaieWo1SYvZIKJGj9Ur%2FeWHjiB7SOVdqMAVmpBvfRiebsFjger7DC%2B8kRFGtNrTrnnGD2GAJb8rQCWkUPYHhwXsjNBSkE6lGWUj5QNhK0DMNM2l%2BkXRZ0KLZaGsFSIdQz%2FHXDxf3%2FTE30%2BDgBKWGWdxElyLccJfEpjsnszECNoDGZpdwdRgCixeg9L4EPhH%2BRptvRMVRaahu4cySjS3P5wxAUCPkmn%2BrhyASpmiTaiDeggaIxYBmtLZDDhiWIJaBgzfCsAGUF1Q1SFZYyXDt9skCaxJsxK2Ms65dmdp5WAZyxik%2FzbrTQk5KmgxCg%2Ff45L0jywebOWUYFJQAJia7XzCV0x89rpp%2Ff3AVWhSPyTanqmik2SkD8A3Ml4NhIGLAjBXtPShwKYfi2eXtrDuKLk4QlSyTw1ftXgwqA2jUuopDl%2B5tfUWZNwBpEPXghzbBggYCw%2Fdhy0ntds2yeHCDKkF%2FYxQjNIL%2FF%2F37jLPHCKBO9ibwYCmuxImIo0ijV2Wbg3kSN2psoe8IsABv3RNFaF9uMyCtCYtqcD%2BqNOhwMlfARQUdJ2tUX%2BMNJqOwIciWalZsmEjt07tfa8ma4cji9sqz%2BQ9hWfmMoKEbIHPOQORbhQRHIsrTYlnVTNvcq1imqmmPDdVDkJgRcTgB8Sb6epCQVmFZe%2BjGDiNJQLWnfx%2BdrTKYjm0G8yH0ZAGMWzEJhUEQ4Maimgf%2Fbkvo8PLVBsZl152y5S8%2BHRDfZIMCbYZ1WDp4yrdchOJw8k6R%2B%2F2pHmydK4NIK2PHdFPHtoLmHxRDwLFb7eB%2BM4zNZcB9NrAgjVyzLM7xyYSY13ykWfIEEd2n5%2FiYp3ZdrCf7fL%2Ben%2BsIJu2W7E30MrAgZBD1rAAbZHPgeAMtKCg3NpSpYQUDWJu9bT3V7tOKv%2BNRiJc8JAKqqgCA%2FPNRBR7ChpiEulyQApMK1AyqcWnpSOmYh6yLiWkGJ2mklCSPIqN7UypWj3dGi5MvsHQ87MrB4VFgypJaFriaHivwcHIpmyi5LhNqtem4q0n8awM19Qk8BOS0EsqGscuuydYsIGsbT5GHnERUiMpKJl4ON7qjB4fEqlGN%2FhCky89232UQCiaeWpDYCJINXjT6xl4Gc7DxRCtgV0i1ma4RgWLsNtnEBRQFqZggCLiuyEydmFd7WlogpkCw5G1x4ft2psm3KAREwVwr1Gzl6RT7FDAqpVal34ewVm3VH4qn5mjGj%2BbYL1NgfLNeXDwtmYSpwzbruDKpTjOdgiIHDVQSb5%2FzBgSMbHLkxWWgghIh9QTFSDILixVwg0Eg1puooBiHAt7DzwJ7m8i8%2Fi%2BjHvKf0QDnnHVkVTIqMvIQImOrzCJwhSR7qYB5gSwL6aWL9hERHCZc4G2%2BJrpgHNB8eCCmcIWIQ6rSdyPCyftXkDlErUkHafHRlkOIjxGbAktz75bnh50dU7YHk%2BMz7wwstg6RFZb%2BTZuSOx1qqP5C66c0mptQmzIC2dlpte7vZrauAMm%2F7RfBYkGtXWGiaWTtwvAQiq2oD4YixPLXE2khB2FRaNRDTk%2B9sZ6K74Ia9VntCpN4BhJGJMT4Z5c5FhSepRCRWmBXqx%2BwhVZC4me4saDs2iNqXMuCl6iAZflH8fscC1sTsy4PHeC%2BXYuqMBMUun5YezKbRKmEPwuK%2BCLzijPEQgfhahQswBBLfg%2FGBgBiI4QwAqzJkkyYAWtjzSg2ILgMAgqxYfwERRo3zruBL9WOryUArSD8sQOcD7fvIODJxKFS615KFPsb68USBEPPj1orNzFY2xoTtNBVTyzBhPbhFH0PI5AtlJBl2aSgNPYzxYLw7XTDBDinmVoENwiGzmngrMo8OmnRP0Z0i0Zrln9DDFcnmOoBZjABaQIbPOJYZGqX%2BRCMlDDbElcjaROLDoualmUIQ88Kekk3iM4OQrADcxi3rJguS4MOIBIgKgXrjd1WkbCdqxJk%2F4efRIFsavZA7KvvJQqp3Iid5Z0NFc5aiMRzGN3vrpBzaMy4JYde3wr96PjN90AYOIbyp6T4zj8LoE66OGcX1Ef4Z3KoWLAUF4BTg7ug%2FAbkG5UNQXAMkQezujSHeir2uTThgd3gpyzDrbnEdDRH2W7U6PeRvBX1ZFMP5RM%2BZu6UUZZD8hDPHldVWntTCNk7To8IeOW9yn2wx0gmurwqC60AOde4r3ETi5pVMSDK8wxhoGAoEX9NLWHIR33VbrbMveii2jAJlrxwytTHbWNu8Y4N8vCCyZjAX%2FpcsfwXbLze2%2BD%2Bu33OGBoJyAAL3jn3RuEcdp5If8O%2Ba4NKWvxOTyDltG0IWoHhwVGe7dKkCWFT%2B%2Btm%2BhaBCikRUUMrMhYKZJKYoVuv%2FbsJzO8DwfVIInQq3g3BYypiz8baogH3r3GwqCwFtZnz4xMjAVOYnyOi5HWbFA8n0qz1OjSpHWFzpQOpvkNETZBGpxN8ybhtqV%2FDMUxd9uFZmBfKXMCn%2FSqkWJyKPnT6lq%2B4zBZni6fYRByJn6OK%2BOgPBGRAJluwGSk4wxjOOzyce%2FPKODwRlsgrVkdcsEiYrqYdXo0Er2GXi2GQZd0tNJT6c9pK1EEJG1zgDJBoTVuCXGAU8BKTvCO%2FcEQ1Wjk3Zzuy90JX4m3O5IlxVFhYkSUwuQB2up7jhvkm%2BbddRQu5F9s0XftGEJ9JSuSk%2BZachCbdU45fEqbugzTIUokwoAKvpUQF%2FCvLbWW5BNQFqFkJg2f30E%2F48StNe5QwBg8zz3YAJ82FZoXBxXSv4QDooDo79NixyglO9AembuBcx5Re3CwOKTHebOPhkmFC7wNaWtoBhFuV4AkEuJ0J%2B1pT0tLkvFVZaNzfhs%2FKd3%2BA9YsImlO4XK4vpCo%2FelHQi%2F9gkFg07xxnuXLt21unCIpDV%2BbbRxb7FC6nWYTsMFF8%2B1LUg4JFjVt3vqbuhHmDKbgQ4e%2BRGizRiO8ky05LQGMdL2IKLSNar0kNG7lHJMaXr5mLdG3nykgj6vB%2FKVijd1ARWkFEf3yiUw1v%2FWaQivVUpIDdSNrrKbjO5NPnxz6qTTGgYg03HgPhDrCFyYZTi3XQw3HXCva39mpLNFtz8AiEhxAJHpWX13gCTAwgm9YTvMeiqetdNQv6IU0hH0G%2BZManTqDLPjyrOse7WiiwOJCG%2BJ0pZYULhN8NILulmYYvmVcV2MjAfA39sGKqGdjpiPo86fecg65UPyXDIAOyOkCx5NQsLeD4gGVjTVDwOHWkbbBW0GeNjDkcSOn2Nq4cEssP54t9D749A7M1AIOBl0Fi0sSO5v3P7LCBrM6ZwFY6kp2FX6AcbGUdybnfChHPyu6WlRZ2Fwv9YM0RMI7kISRgR8HpQSJJOyTfXj%2F6gQKuihPtiUtlCQVPohUgzfezTg8o1b3n9pNZeco1QucaoXe40Fa5JYhqdTspFmxGtW9h5ezLFZs3j%2FN46f%2BS2rjYNC2JySXrnSAFhvAkz9a5L3pza8eYKHNoPrvBRESpxYPJdKVUxBE39nJ1chrAFpy4MMkf0qKgYALctGg1DQI1kIymyeS2AJNT4X240d3IFQb%2F0jQbaHJ2YRK8A%2Bls6WMhWmpCXYG5jqapGs5%2FeOJErxi2%2F2KWVHiPellTgh%2FfNl%2F2KYPKb7DUcAg%2BmCOPQFCiU9Mq%2FWLcU1xxC8aLePFZZlE%2BPCLzf7ey46INWRw2kcXySR9FDgByXzfxiNKwDFbUSMMhALPFSedyjEVM5442GZ4hTrsAEvZxIieSHGSgkwFh%2FnFNdrrFD4tBH4Il7fW6ur4J8Xaz7RW9jgtuPEXQsYk7gcMs2neu3zJwTyUerHKSh1iTBkj2YJh1SSOZL5pLuQbFFAvyO4k1Hxg2h99MTC6cTUkbONQIAnEfGsGkNFWRbuRyyaEZInM5pij73EA9rPIUfU4XoqQpHT9THZkW%2BoKFLvpyvTBMM69tN1Ydwv1LIEhHsC%2BueVG%2Bw%2BkyCPsvV3erRikcscHjZCkccx6VrBkBRusTDDd8847GA7p2Ucy0y0HdSRN6YIBciYa4vuXcAZbQAuSEmzw%2BH%2FAuOx%2BaH%2BtBL88H57D0MsqyiZxhOEQkF%2F8DR1d2hSPMj%2FsNOa5rxcUnBgH8ictv2J%2Bcb4BA4v3MCShdZ2vtK30vAwkobnEWh7rsSyhmos3WC93Gn9C4nnAd%2FPjMMtQfyDNZsOPd6XcAsnBE%2FmRHtHEyJMzJfZFLE9OvQa0i9kUmToJ0ZxknTgdl%2FXPV8xoh0K7wNHHsnBdvFH3sv52lU7UFteseLG%2FVanIvcwycVA7%2BBE1Ulyb20BvwUWZcMTKhaCcmY3ROpvonVMV4N7yBXTL7IDtHzQ4CCcqF66LjF3xUqgErKzolLyCG6Kb7irP%2FMVTCCwGRxfrPGpMMGvPLgJ881PHMNMIO09T5ig7AzZTX%2F5PLlwnJLDAPfuHynSGhV4tPqR3gJ4kg4c06c%2FF1AcjGytKm2Yb5jwMotF7vro4YDLWlnMIpmPg36NgAZsGA0W1spfLSue4xxat0Gdwd0lqDBOgIaMANykwwDKejt5YaNtJYIkrSgu0KjIg0pznY0SCd1qlC6R19g97UrWDoYJGlrvCE05J%2F5wkjpkre727p5PTRX5FGrSBIfJqhJE%2FIS876PaHFkx9pGTH3oaY3jJRvLX9Iy3Edoar7cFvJqyUlOhAEiOSAyYgVEGkzHdug%2BoRHIEOXAExMiTSKU9A6nmRC8mp8iYhwWdP2U%2F5EkFAdPrZw03YA3gSyNUtMZeh7dDCu8pF5x0VORCTgKp07ehy7NZqKTpIC4UJJ89lnboyAfy5OyXzXtuDRbtAFjZRSyGFTpFrXwkpjSLIQIG3N0Vj4BtzK3wdlkBJrO18MNsgseR4BysJilI0wI6ZahLhBFA0XBmV8d4LUzEcNVb0xbLjLTETYN8OEVqNxkt10W614dd1FlFFVTIgB7%2FBQQp1sWlNolpIu4ekxUTBV7NmxOFKEBmmN%2BnA7pvF78%2FRII5ZHA09OAiE%2F66MF6HQ%2BqVEJCHxwymukkNvzqHEh52dULPbVasfQMgTDyBZzx4007YiKdBuUauQOt27Gmy8ISclPmEUCIcuLbkb1mzQSqIa3iE0PJh7UMYQbkpe%2BhXjTJKdldyt2mVPwywoODGJtBV1lJTgMsuSQBlDMwhEKIfrvsxGQjHPCEfNfMAY2oxvyKcKPUbQySkKG6tj9AQyEW3Q5rpaDJ5Sns9ScLKeizPRbvWYAw4bXkrZdmB7CQopCH8NAmqbuciZChHN8lVGaDbCnmddnqO1PQ4ieMYfcSiBE5zzMz%2BJV%2F4eyzrzTEShvqSGzgWimkNxLvUj86iAwcZuIkqdB0VaIB7wncLRmzHkiUQpPBIXbDDLHBlq7vp9xwuC9AiNkIptAYlG7Biyuk8ILdynuUM1cHWJgeB%2BK3wBP%2FineogxkvBNNQ4AkW0hvpBOQGFfeptF2YTR75MexYDUy7Q%2F9uocGsx41O4IZhViw%2F2FvAEuGO5g2kyXBUijAggWM08bRhXg5ijgMwDJy40QeY%2FcQpUDZiIzmvskQpO5G1zyGZA8WByjIQU4jRoFJt56behxtHUUE%2Fom7Rj2psYXGmq3llVOCgGYKNMo4pzwntITtapDqjvQtqpjaJwjHmDzSVGLxMt12gEXAdLi%2FcaHSM3FPRGRf7dB7YC%2BcD2ho6oL2zGDCkjlf%2FDFoQVl8GS%2F56wur3rdV6ggtzZW60MRB3g%2BU1W8o8cvqIpMkctiGVMzXUFI7FacFLrgtdz4mTEr4aRAaQ2AFQaNeG7GX0yOJgMRYFziXdJf24kg%2FgBQIZMG%2FYcPEllRTVNoDYR6oSJ8wQNLuihfw81UpiKPm714bZX1KYjcXJdfclCUOOpvTxr9AAJevTY4HK%2FG7F3mUc3GOAKqh60zM0v34v%2BELyhJZqhkaMA8UMMOU90f8RKEJFj7EqepBVwsRiLbwMo1J2zrE2UYJnsgIAscDmjPjnzI8a719Wxp757wqmSJBjXowhc46QN4RwKIxqEE6E5218OeK7RfcpGjWG1jD7qND%2B%2FGTk6M56Ig4yMsU6LUW1EWE%2BfIYycVV1thldSlbP6ltdC01y3KUfkobkt2q01YYMmxpKRvh1Z48uNKzP%2FIoRIZ%2FF6buOymSnW8gICitpJjKWBscSb9JJKaWkvEkqinAJ2kowKoqkqZftRqfRQlLtKoqvTRDi2vg%2FRrPD%2Fd3a09J8JhGZlEkOM6znTsoMCsuvTmywxTCDhw5dd0GJOHCMPbsj3QLkTE3MInsZsimDQ3HkvthT7U9VA4s6G07sID0FW4SHJmRGwCl%2BMu4xf0ezqeXD2PtPDnwMPo86sbwDV%2B9PWcgFcARUVYm3hrFQrHcgMElFGbSM2A1zUYA3baWfheJp2AINmTJLuoyYD%2FOwA4a6V0ChBN97E8YtDBerUECv0u0TlxR5yhJCXvJxgyM73Bb6pyq0jTFJDZ4p1Am1SA6sh8nADd1hAcGBMfq4d%2FUfwnmBqe0Jun1n1LzrgKuZMAnxA3NtCN7Klf4BH%2B14B7ibBmgt0TGUafVzI4uKlpF7v8NmgNjg90D6QE3tbx8AjSAC%2BOA1YJvclyPKgT27QpIEgVYpbPYGBsnyCNrGz9XUsCHkW1QAHgL2STZk12QGqmvAB0NFteERkvBIH7INDsNW9KKaAYyDMdBEMzJiWaJHZALqDxQDWRntumSDPcplyFiI1oDpT8wbwe01AHhW6%2BvAUUBoGhY3CT2tgwehdPqU%2F4Q7ZLYvhRl%2FogOvR9O2%2BwkkPKW5vCTjD2fHRYXONCoIl4Jh1bZY0ZE1O94mMGn%2FdFSWBWzQ%2FVYk%2BGezi46RgiDv3EshoTmMSlioUK6MQEN8qeyK6FRninyX8ZPeUWjjbMJChn0n%2FyJvrq5bh5UcCAcBYSafTFg7p0jDgrXo2QWLb3WpSOET%2FHh4oSadBTvyDo10IufLzxiMLAnbZ1vcUmj3w7BQuIXjEZXifwukVxrGa9j%2BDXfpi12m1RbzYLg9J2wFergEwOxFyD0%2FJstNK06ZN2XdZSGWxcJODpQHOq4iKqjqkJUmPu1VczL5xTGUfCgLEYyNBCCbMBFT%2FcUP6pE%2FmujnHsSDeWxMbhrNilS5MyYR0nJyzanWXBeVcEQrRIhQeJA6Xt4f2eQESNeLwmC10WJVHqwx8SSyrtAAjpGjidcj1E2FYN0LObUcFQhafUKTiGmHWRHGsFCB%2BHEXgrzJEB5bp0QiF8ZHh11nFX8AboTD0PS4O1LqF8XBks2MpjsQnwKHF6HgaKCVLJtcr0XjqFMRGfKv8tmmykhLRzu%2BvqQ02%2BKpJBjaLt9ye1Ab%2BBbEBhy4EVdIJDrL2naV0o4wU8YZ2Lq04FG1mWCKC%2BUwkXOoAjneU%2FxHplMQo2cXUlrVNqJYczgYlaOEczVCs%2FOCgkyvLmTmdaBJc1iBLuKwmr6qtRnhowngsDxhzKFAi02tf8bmET8BO27ovJKF1plJwm3b0JpMh38%2BxsrXXg7U74QUM8ZCIMOpXujHntKdaRtsgyEZl5MClMVMMMZkZLNxH9%2Bb8fH6%2Bb8Lev30A9TuEVj9CqAdmwAAHBPbfOBFEATAPZ2CS0OH1Pj%2F0Q7PFUcC8hDrxESWdfgFRm%2B7vvWbkEppHB4T%2F1ApWnlTIqQwjcPl0VgS1yHSmD0OdsCVST8CQVwuiew1Y%2Bg3QGFjNMzwRB2DSsAk26cmA8lp2wIU4p93AUBiUHFGOxOajAqD7Gm6NezNDjYzwLOaSXRBYcWipTSONHjUDXCY4mMI8XoVCR%2FRrs%2FJLKXgEx%2BqkmeDlFOD1%2FyTQNDClRuiUyKYCllfMiQiyFkmuTz2vLsBNyRW%2Bxz%2B5FElFxWB28VjYIGZ0Yd%2B5wIjkcoMaggxswbT0pCmckRAErbRlIlcOGdBo4djTNO8FAgQ%2BlT6vPS60BwTRSUAM3ddkEAZiwtEyArrkiDRnS7LJ%2B2hwbzd2YDQagSgACpsovmjil5wfPuXq3GuH0CyE7FK3M4FgRaFoIkaodORrPx1%2BJpI9psyNYIFuJogZa0%2F1AhOWdlHQxdAgbwacsHqPZo8u%2FngAH2GmaTdhYnBfSDbBfh8CHq6Bx5bttP2%2BRdM%2BMAaYaZ0Y%2FADkbNCZuAyAVQa2OcXOeICmDn9Q%2FeFkDeFQg5MgHEDXq%2FtVjj%2Bjtd26nhaaolWxs1ixSUgOBwrDhRIGOLyOVk2%2FBc0UxvseQCO2pQ2i%2BKrfhu%2FWeBovNb5dJxQtJRUDv2mCwYVpNl2efQM9xQHnK0JwLYt%2FU0Wf%2BphiA4uw8G91slC832pmOTCAoZXohg1fewCZqLBhkOUBofBWpMPsqg7XEXgPfAlDo2U5WXjtFdS87PIqClCK5nW6adCeXPkUiTGx0emOIDQqw1yFYGHEVx20xKjJVYe0O8iLmnQr3FA9nSIQilUKtJ4ZAdcTm7%2BExseJauyqo30hs%2B1qSW211A1SFAOUgDlCGq7eTIcMAeyZkV1SQJ4j%2Fe1Smbq4HcjqgFbLAGLyKxlMDMgZavK5NAYH19Olz3la%2FQCTiVelFnU6O%2FGCvykqS%2FwZJDhKN9gBtSOp%2F1SP5VRgJcoVj%2Bkmf2wBgv4gjrgARBWiURYx8xENV3bEVUAAWWD3dYDKAIWk5opaCFCMR5ZjJExiCAw7gYiSZ2rkyTce4eNMY3lfGn%2B8p6%2BvBckGlKEXnA6Eota69OxDO9oOsJoy28BXOR0UoXNRaJD5ceKdlWMJlOFzDdZNpc05tkMGQtqeNF2lttZqNco1VtwXgRstLSQ6tSPChgqtGV5h2DcDReIQadaNRR6AsAYKL5gSFsCJMgfsaZ7DpKh8mg8Wz8V7H%2BgDnLuMxaWEIUPevIbClgap4dqmVWSrPgVYCzAoZHIa5z2Ocx1D%2FGvDOEqMOKLrMefWIbSWHZ6jbgA8qVBhYNHpx0P%2BjAgN5TB3haSifDcApp6yymEi6Ij%2FGsEpDYUgcHATJUYDUAmC1SCkJ4cuZXSAP2DEpQsGUjQmKJfJOvlC2x%2FpChkOyLW7KEoMYc5FDC4v2FGqSoRWiLsbPCiyg1U5yiHZVm1XLkHMMZL11%2Fyxyw0UnGig3MFdZklN5FI%2FqiT65T%2BjOXOdO7XbgWurOAZR6Cv9uu1cm5LjkXX4xi6mWn5r5NjBS0gTliHhMZI2WNqSiSphEtiCAwnafS11JhseDGHYQ5%2BbqWiAYiAv6Jsf79%2FVUs4cIl%2Bn6%2BWOjcgB%2F2l5TreoAV2717JzZbQIR0W1cl%2FdEqCy5kJ3ZSIHuU0vBoHooEpiHeQWVkkkOqRX27eD1FWw4BfO9CJDdKoSogQi3hAAwsPRFrN5RbX7bqLdBJ9JYMohWrgJKHSjVl1sy2xAG0E3sNyO0oCbSGOxCNBRRXTXenYKuwAoDLfnDcQaCwehUOIDiHAu5m5hMpKeKM4sIo3vxACakIxKoH2YWF2QM84e6F5C5hJU4g8uxuFOlAYnqtwxmHyNEawLW%2FPhoawJDrGAP0JYWHgAVUByo%2FbGdiv2T2EMg8gsS14%2FrAdzlOYazFE7w4OzxeKiWdm3nSOnQRRKXSlVo8HEAbBfyJMKqoq%2BSCcTSx5NDtbFwNlh8VhjGGDu7JG5%2FTAGAvniQSSUog0pNzTim8Owc6QTuSKSTXlQqwV3eiEnklS3LeSXYPXGK2VgeZBqNcHG6tZHvA3vTINhV0ELuQdp3t1y9%2BogD8Kk%2FW7QoRN1UWPqM4%2BxdygkFDPLoTaumKReKiLWoPHOfY54m3qPx4c%2B4pgY3MRKKbljG8w4wvz8pxk3AqKsy4GMAkAtmRjRMsCxbb4Q2Ds0Ia9ci8cMT6DmsJG00XaHCIS%2Bo3F8YVVeikw13w%2BOEDaCYYhC0ZE54kA4jpjruBr5STWeqQG6M74HHL6TZ3lXrd99ZX%2B%2B7LhNatQaZosuxEf5yRA15S9gPeHskBIq3Gcw81AGb9%2FO53DYi%2F5CsQ51EmEh8Rkg4vOciClpy4d04eYsfr6fyQkBmtD%2BP8sNh6e%2BXYHJXT%2FlkXxT4KXU5F2sGxYyzfniMMQkb9OjDN2C8tRRgTyL7GwozH14PrEUZc6oz05Emne3Ts5EG7WolDmU8OB1LDG3VrpQxp%2BpT0KYV5dGtknU64JhabdqcVQbGZiAxQAnvN1u70y1AnmvOSPgLI6uB4AuDGhmAu3ATkJSw7OtS%2F2ToPjqkaq62%2F7WFG8advGlRRqxB9diP07JrXowKR9tpRa%2BjGJ91zxNTT1h8I2PcSfoUPtd7NejVoH03EUcqSBuFZPkMZhegHyo2ZAITovmm3zAIdGFWxoNNORiMRShgwdYwFzkPw5PA4a5MIIQpmq%2Bnsp3YMuXt%2FGkXxLx%2FP6%2BZJS0lFyz4MunC3eWSGE8xlCQrKvhKUPXr0hjpAN9ZK4PfEDrPMfMbGNWcHDzjA7ngMxTPnT7GMHar%2BgMQQ3NwHCv4zH4BIMYvzsdiERi6gebRmerTsVwZJTRsL8dkZgxgRxmpbgRcud%2BYlCIRpPwHShlUSwuipZnx9QCsEWziVazdDeKSYU5CF7UVPAhLer3CgJOQXl%2Fzh575R5rsrmRnKAzq4POFdgbYBuEviM4%2BLVC15ssLNFghbTtHWerS1hDt5s4qkLUha%2FqpZXhWh1C6lTQAqCNQnaDjS7UGFBC6wTu8yFnKJnExCnAs3Ok9yj5KpfZESQ4lTy5pTGTnkAUpxI%2ByjEldJfSo4y0QhG4i4IwkRFGcjWY8%2BEzgYYJUK7BXQksLxAww%2FYYWBMhJILB9e8ePEJ4OP7z%2B4%2FwOQDl64iOYDp26DaONPxpKtBxq%2FaTzRGarm3VkPYTLJKx6Z%2FMw2YbBGseJhPMwhhNswrIkyvV2BYzrvZbxLpKwcWJhYmFtVZ%2BlPEq91FzVp1HlQY1bZVLqeNR9SAUn6n0E28k%2FUuGkNpP1DBI5ch%2FEehZfjUQ9aE41NhETExoPT2gGQz0IhWJbEOvTQ4wgcXCHHFBhewYUiFHuhRSAUVmEHeCRQHQkXGFwkAgyzREJCVN7TRnTon36Zw3tPhx4EALwNdwDv%2BJ41YSP4B2CQqz0EFgARZ4ESgBHQgROwAVn9GTI%2BHYexTUevLUeta4%2FDqKrbMVS%2BYqb8hUwYCrlgKtmAq1YCrFgKrd4qpXiqZcKn1oqdWipjYKpWwVPVYqW6xUpVipKqFR3QKjagVEtAqHpxUMTitsnFaJOKx2cVhswq35RVpyiq9lFVNIKnOQVMkgqtYxVNxiqQjFS7GKlSIVIsQqPIhUWwioigFQ%2B%2BKkN8VHr49HDw9Ebo9EDo9DTo9Crg9BDg9%2FWx7gWx7YWwlobYrOGxWPNisAaAHEyALpkAVDIAeWAArsABVXACYuAD5cAF6wAKFQAQqgAbVAAsoAAlQAUaYAfkwAvogBWQACOgAD9AAHSAAKT4GUdMiOvFngBTwCn2AZ7Dv6B6k%2F90B8%2ByRnkV144AIBoAMTQATGgAjNAA4YABgwABZgB%2FmQCwyAVlwCguASlwCEuAQFwB4uAMlwBYuAJlQAUVAAhUD2KgdpUDaJgaRMDFJgX5MC1JgWJEAokQCWRAHxEAWkQBMRADpEAMkQAYROAEecC484DRpwBDTnwNOdw05tjTmiNOYwtswhYFwLA7BYG4LA2BYGOLAwRYFuLAsxYFQJAohIEyJAMwkAwiQC0JAJgkAeiQBkJAFokAPCQA0JABwcD4Dgc4cDdDgaYcDIDgYgUC6CgWgUClCgUYUAVBQBOFAEYMALgwAgDA9QYAdIn8AZzeBB2L5EcWrenUT1KXienEsuJJ7x5U8XlTjc1NVzUyXFTGb1LlpUtWlTDIjqwE4LsagowoCi2gJLKAkpoBgJQNpAIhNqaEoneI6kiiqQ6Go%2Fn6j0cS%2Ba2gEU8gIHJ%2BBwfgZX4GL%2BBd%2FgW34FZ%2BBS%2FgUH4FN6BTegTvoEv6BJegRnYEF2A79gOvYDl2BdEjCkqkGtwXp0LNToIskOTXzh%2FF062yJ7AAAAEDAWAAABWhJ%2BKPEIJgBFxMVP7w2QJBGHASQnOBKXKFIdUK4igKA9IEaYJg%29%20format%28%27embedded%2Dopentype%27%29%2Curl%28data%3Aapplication%2Fx%2Dfont%2Dwoff%3Bbase64%2Cd09GRgABAAAAAFuAAA8AAAAAsVwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAABWAAAABwAAAAcbSqX3EdERUYAAAF0AAAAHwAAACABRAAET1MvMgAAAZQAAABFAAAAYGe5a4ljbWFwAAAB3AAAAsAAAAZy2q3jgWN2dCAAAAScAAAABAAAAAQAKAL4Z2FzcAAABKAAAAAIAAAACP%2F%2FAANnbHlmAAAEqAAATRcAAJSkfV3Cb2hlYWQAAFHAAAAANAAAADYFTS%2FYaGhlYQAAUfQAAAAcAAAAJApEBBFobXR4AABSEAAAAU8AAAN00scgYGxvY2EAAFNgAAACJwAAAjBv%2B5XObWF4cAAAVYgAAAAgAAAAIAFqANhuYW1lAABVqAAAAZ4AAAOisyygm3Bvc3QAAFdIAAAELQAACtG6o%2BU1d2ViZgAAW3gAAAAGAAAABsMYVFAAAAABAAAAAMw9os8AAAAA0HaBdQAAAADQdnOXeNpjYGRgYOADYgkGEGBiYGRgZBQDkixgHgMABUgASgB42mNgZulmnMDAysDCzMN0gYGBIQpCMy5hMGLaAeQDpRCACYkd6h3ux%2BDAoPD%2FP%2FOB%2FwJAdSIM1UBhRiQlCgyMADGWCwwAAAB42u2UP2hTQRzHf5ekaVPExv6JjW3fvTQ0sa3QLA5xylBLgyBx0gzSWEUaXbIoBBQyCQGHLqXUqYNdtIIgIg5FHJxEtwqtpbnfaV1E1KFaSvX5vVwGEbW6OPngk8%2FvvXfv7pt3v4SImojIDw6BViKxRgIVBaZwVdSv%2BxvXA%2BIuzqcog2cOkkvDNE8Lbqs74k64i%2B5Sf3u8Z2AnIRLbyVCyTflVSEXVoEqrrMqrgiqqsqqqWQ5xlAc5zWOc5TwXucxVnuE5HdQhHdFRHdNJndZZndeFLc%2FzsKJLQ%2FWV6BcrCdWkwspVKZVROaw0qUqqoqZZcJhdTnGGxznHBS5xhad5VhNWCuturBTXKZ3RObuS98pb9c57k6ql9rp2v1as5deb1r6s9q1GV2IrHSt73T631424YXzjgPwqt%2BRn%2BVG%2BlRvyirwsS%2FKCPCfPytPypDwhj8mjctRZd9acF86y89x55jxxHjkPnXstXfbt%2FpNjj%2FnwXW%2BcHa6%2FSYvZ7yEwbDYazDcIgoUGzY3h2HtqgUcs1AFPWKgTXrRQF7xkoQhRf7uF9hPFeyzUTTSwY6EoUUJY6AC8bSGMS4Ys1Au3WaiPSGGsMtkdGH2rzJgYHAaYjxIwQqtB1CnYkEZ9BM6ALOpROAfyqI%2FDBQudgidBETXuqRIooz4DV0AV9UV4GsyivkTEyMMmw1UYGdhkuAYjA5sMGMvIwCbDDRgZeAz1TXgcmDy3YeRhk%2BcOjCxsMjyAkYFNhscwMrDJ8BQ2886gXoaRhedQvyTSkDZ7uA6HLLQBI5vGntAbGHugTc53cMxC7%2BE4SKL%2BACOzNpk3YWTWJid%2BiRo5NXIKM3fBItAPW55FdJLY3FeHBDr90606JCIU9Jk%2BMs3%2FY%2F8L8jUq3y79bJ%2F0%2F%2BROoP4v9v%2F4%2Fmj%2Bi7HBXUd0%2FelU6IHfHt8Aj9EPGAAoAvgAAAAB%2F%2F8AAnjaxb0JfBvVtTA%2BdxaN1hltI1m2ZVuSJVneLVlSHCdy9oTEWchqtrBEJRAgCYEsQNhC2EsbWmpI2dqkQBoSYgKlpaQthVL0yusrpW77aEubfq%2Fly%2BujvJampSTW5Dvnzmi1E%2Bjr%2F%2F3%2BXmbu3Llz77nnbuece865DMu0MAy5jGtiOEZkOp8lTNeUwyLP%2FDH%2BrEH41ZTDHAtB5lkOowWMPiwayNiUwwTjE46AI5xwhFrINPXYn%2F7ENY0dbWHfZAiTZbL8ID%2FInAd5xz2NpIH4STpDGonHIJNE3OP1KG4ISaSNeBuITAyRLgIxoiEUhFAnmUpEiXSRSGqAQEw0kuyFUIb0k2gnGSApyBFi0il2SI5YLGb5MdFjXCey4mNHzQ7WwLGEdZiPPgYR64we8THZHAt%2BwnT84D%2Fx8YTpGPgheKH4CMEDVF9xBOIeP3EbQgGH29BGgpGkIxCMTCW9qUTA0Zsir%2BQUP1mt%2BP2KusevwIO6Bx%2FIaj8%2FOD5O0VNrZW2EsqZBWbO1skRiEKE0DdlKKaSVO5VAuRpqk8VQJAqY7ydxaK44YJvrO2EWjOoDBoFYzQbDNkON%2BUbiKoRkywMWWf1j4bEY2iIY1AeMgvmEz%2FkVo9v4FSc%2FaMZMrFbjl4zWLL0%2BY5FlyzNlEVYDudJohg8gPUP7kcB%2Fmn%2BG6cd%2B5PV4Q72dXCgocWJADBgUuDTwiXiGSyZo14HOEQ2lE6k0XDIEusexDzZOMXwt1Dutz%2BtqmxTvlskNWXXUQIbhaurum9GrePqm9Yaeabjkiqf%2BbUvzDOvb2Y1E%2BEX2DnemcTP%2FzLcuu7xjQXdAtjR0Lo5n4%2FHs%2FGtntMlysHt%2B29NXbH6se%2F%2FWbFcyu%2Br28H0MwzI30DYeYTLMXIA2EG8QlHpAsyS0EfEToR0a3utIxFPJ3kiIHCCrZ66b0e2xEmL1dM9YN%2FMwS5p01N5jMX%2FBLKt%2F1R83l0LyC29M6%2BiYxo%2FUNg%2FEF7c2WyyW5tYl8WnhWg2%2FhyySbD5UhnDyS7OcU0dnrFw%2BDfGdI7v4QfYIIzOMq9hFtY55gmvC7jZ2FK7sEdrn6IXBuucYhjsGdQ8z0yEbWkkczjjsE5hNAIZrPx2zOLZDmKNXcXtg7EMqidAEEWg%2BSJCBBNwxvxJfc%2FbZa%2BKKf%2BxoKZybnq5vaqpPTye7CiF%2BZFjxZ8%2F7Qij0hfOG%2FcowPA1rT1l4ymWnrKmxxqfErTVrpgwPlz1kC%2BOy8NMDz6c%2BIO38K%2Fx0xkPnLW8Kx6qGAoQdL%2BTD9V9rb%2B%2Fctn%2F%2Ftrxz8dUrZrD%2Fzk%2FferF0cNt1BzctmX2FZPXt%2FjnFCQNz4Ah%2FiKllGiCMs1w5Lkg0kiEwj6VTXCDKsX9rMpnvIj9pcDecXAIXMnqn2dTUbN6w0XQ9ue6FV%2FnnXCH7S3lPWGltVcLsH75ub3ab7A8M28caNrIeOr3o5Q0yFsYL80xaa0EY%2FUEczV7icUMY5pnelAkmUAXmHYjvFWFGxuqlSaow3OM%2B%2FiYY7%2Fl%2FhVELF4EjRqNR%2FbvRbOY%2BDUGzGR%2FOh3EqmE%2FugIQQguGt%2FeMYz%2F%2BL0cimjeZfQDI3phXMbMQsqH%2BCjwVz%2Fhf4idHovgVmB8gLvjbicDcC%2FNypP536E%2F9N%2FpuMibExdohBmNwyiaZdJGoigos7GpF222xrfnZhML%2F7Z%2BylaqP63Hr%2Bm7bdUkQ6%2F2cXqdfmvwixY%2Bs2ksXFeXcE%2BiX0Z%2BIow76DBNgjJ7TOdUK18iPsPflfQD%2BDPsZG2Aj9VmKMMJ4fYRrhIaxhTDR0Elh2vA6h%2FAE6xUb29mj3sjmL72petXjejPy%2Boel60M99tFduCI59N3221xe7apOvxs6aHs7vab1IqY2tv7q2xsHeHGml%2FcV06u%2F8S%2FxTjJ%2BJYc0bWEX0ukW6YmIbGkJRMdjJ9mYIH5QIdJF4hvRGyK7cC7ctImQRcUET99fGXOoft35GYLMQu%2Bg2smnkgZUrH8AL%2F9Si217IssJ916nv14ZrJrvdxLkQvrvtBcjgPC0NXOicO8Qf4mcxPqh3hgUw3DDfdvLJXngg7N3dN2zbPJSaed3OfZnMU7dvmznp3C3bruO%2BNmue0LFsy7S%2B6265%2BfCKFYdvvuW6vmlblnUI8xCXp37CrOZv4B9gauDBlYp7adcUXB5DNCwYImlXOJJKkAdvExXxVvKEYnCo%2B3eIskP9qrrfIYs71CccBjfXRC52udTHHdaP1A1ui%2FVvH1otbrLrpNXBsGX5B89QghDyimlvNB2KfkxZ5C9%2Fem3%2Bd1%2Bd%2F%2FIfFp2%2B2Oxn%2Fs%2B9n%2F79p39S3s8idN6g0yZObwJOgKUpNB3GyU0Ls0PbRzIRq4lcarLKOJBkLRzJQD4j2090XrbA7DW8K3jNF5hlGS5e4V2D17zgss4T20egOJte5iD0bReM9yjTxnQxCRj3c5kFzGJmGbNKmwGw39IJDJcXJZGMkaAB4jyJAKw0jt5IAuIE%2BA%2BU3cVAZZrq9zhDyBrU8oosuxcGNTzCKJfla7JjNVmuSb%2F%2BtuzN2H%2BX4vlB%2BPpdfMXXmuVsNiub1T34SFbjYw5itEvVi0K0Nt9pNJUMI7SLGRhf2xipfCYf8z5OdlGKayOucFeVPeS%2Fdbo3lBrbSMmwUiQN5%2Fed7g0Ds1s17IuZC5kNzM3MZ6EWCa0DtekdJfAxz%2BR%2FOX28sND7yRMTBcf%2B%2Bs8mQCQWHya4qBv%2FufeMoWyslPA9DtMxUknxkH%2FyfTnm2CMYzs%2BCq3r7PxY%2FMXomrvTEsRpfEGHa%2BWN8E1AHjElb7d06ddA7oK%2F%2B5Mdsv9EtPms0jv0Z5kf1FqPxWdFtfFr0kHfgDX0Y%2B5PRSG7RUj0tQr7rmfX8DH4G5W28kKeJLtmQsQkuwMP1pk16EV4sl7vrMJATfyUWo%2FGwEco4rh4XFQgaiUX9qxZHrMQqKnz%2Fc2d8b9TysYrAuXpP%2FRf%2FGr8b1qwwc5a%2BeuLa6S6sneNXToG2XrEJi4R5SGs8Sq2S3d97bsfCRaTdaLwKClRHt37mkudvXbjwVrLhuYeGhh56bvfQkHpk2CwvwClqgWwuBfndC3c8dwmstj81KkagcUgbfPY8Zje0W%2F82VPWJHmSq6pP8hPWpotc%2FEexDOK3qU%2BwngPhOCiO9MJRm8TJefjelrzoKnG2Bn%2B1NCUmPE4gHFmBN9jrTigRIpsACrc9Gstg58ULkp9467%2BGf%2FeFnD5%2F31lNrt2967dhrm7bzI%2BVT5m%2BfzKhvf2MzpICEm79Bopkn07lt1762adNr127LwVqQLdJ5%2BlpQDcvHPQtVY5knhYrK6q8%2FJsiP6EuhGZdFdaNszjvpqvc%2BPI0CdjN0AXsFOC3ZfALDJwr4q2Xq%2BGF%2BGNbsxUg5NLLIEXi8otcDQcUts0D8eQ1iVDRAMBTsYiNdRIxE09EIBJO9A2xqgERTaW86BUFn0OD2xFO97FAgFhF6OoQ7prYt4XwSeUgQHiJyDbeke9IdQntciLQ1FlJMaYcUNvZBg%2BFB1ubjlnRNvl3o6IEU2w7fdNPhm%2Fhh%2BFLysUu6%2B%2BDLHkOkrSHYEjH0tEPe7WdD3uyDgvAgK%2Fm4szFFR7ch0toUgBTdWHr7EpaWru6%2B6dmbbnqWEbV2EtxAsXiZAPTtGPSbHsotI2leoM8TePEqgSQprs7AGFf8kuOkPdZPXGb55POAW1d%2FjLST9v5YflasP6v%2FCO7%2BGNAPC2BMZWmsOjp2NNbfHwMCJD%2BLPVL%2BD%2FOYlWEEI%2F9jpPddOFkB5d1GSuKZYggmCCd7JUxD7EXAzxyirYnNDLdDZoFdx14kivkvGc3579Jm36reTTvDgBnaO6vzyQ6chQmlsMoIkIQ2%2BbBDWBud1Va4pcCn8CPqxlh%2FfgtG8IPaPH8C5wk6%2FnZDv69jurV5QhtwE0x2iqOsj9Mx8B9%2F0EaUdiPfOYYDCi%2Fq9jhWRuupMDEU0%2BCtX0sDFxv07T%2FK5niBPqN9%2BtQjgEc31NGCXFeMcCEuQBIc%2FBK4CO78u7EPYvl3yaEfK3vcb6qP1R2tI7vUjVDDUdKubsSrNjYKY1qBEa2P50SJoaXiksIoLiCwnxS6EBuBde87botNfdEWwYvF%2FR0%2Fu5yCqhGeEOR2ynSeyXjt6ka7neyye8kryBSWE52y%2BRBgogrXPZ8E1yIHoHIFUM%2BAbJhE7lbMtt8ApL%2BxmZW7PwbjAO0fAVoXQOuiSP%2FksIVdFZ0aulsamKUzwPZ%2FNYDMJRBPCxsBqLzqHyneXF6Ej9HlIFo7%2Bpg%2BjUb3unRmGpstGkm6etOuDBGA5wCMefp1gTHcdZlvPBXlOslvYTp1cd8UjYLVd%2FJ5awNrIOKLnIt9MD9qdrKrWCvA6ALm3QV9VrsPm60Q7%2BRHJHP%2B2hqfugo%2FMvI2H%2Fmqr4b9tFnKSRY1Y5Ek80Nm%2FWIhr1ikKnxGz9TWXrokf9xwujfvcOTtNTWnxd0F37Y2W79tteBqZ4G5qLCuomw%2BnSr28QESCRVLTyYKILGJOPfcnaIFOsewhRdvv%2BrWa%2FWih0vlbX6Zb75T5C0qNKVFvH1QL%2FvazSWgC2s6oWXXIuUxQelKiJbowuJDQViatLmLijg9CQBMg8WiPgiw3LEeYRmm5f%2BXdnvkDnxLLjMLxtvX74C3OlwPQqx4xwIdpPx38LrlDphiyWUWHWKAzzxurS%2FxTo%2BP5wGFak62ap1PVFFN4v%2Fy%2BxuR39WnIO7lsWfwgVsK17wxrs9K8ltIKuhkw7f%2F6dhK6gQokFKhWX3urrjk%2FrnI0pgfpGMeuQIUaEM7%2BGF5q2iMkCaMQwxxOzcvU0eXbsnS9XknXvP7Gtw5dwPXlFu2ecvSHEZgNDsU6x%2FGdXBYXyOQjzZReSedeEPY6nEv9gJR4oBQJtFO6Kd0fwC6BO4LNHDeBujB6dSNcUQC9zIv2LnAzGk99bUDrdFY%2B9yGFQtEo0GQPNv6vS2drj4%2B1jHbv3aJSMUWP%2BQTZrmbNTjU8wyG%2FiXNNpskybLcJ3CiTF5Ir%2BJYzmJwE0mSVhlxbtbmvweB3ulB6Til5UuUZydpgiFVeobhU0WaBqpJ198d%2B%2FXeNRTZ9%2F1OPfG7%2B2hwzd5W3D%2BhmyjsRcUg%2F%2BCavb%2B%2BVh2ls3L7zT%2FetOnHNxeerv313vzLVqPai4nJv%2BK1FC6040%2F4udw7sAb3laSg0XCkAAs0npBO6VJabS4Elk%2FU%2BD4gTXW%2Bj0wnrMlqNamq4tMIYB87tE10i0FR3LZNhJsb7%2FR561btmes8YBCRkhYNByRtKd55mqTas9FYhJnbRGHuOh3M4QTdgQSqmgRxuzGdSvZGcbMxNQGk5C3ebLjoXIOFM4l%2BWKHmLTJwRv9E8GWJ6dYvf%2FFmEyEGr%2Bgyrr1p5zrgkz0Cw2j94Hv8Jdx7dIVegBSNtgsqGsRQEYiIBoXwD0LNvQ5d7s5Z00QzwNhqZA0b%2BtMG1tQq5nd84uq8R0zPvX35G8uRaze4jcOHzz0w1%2BQ2BIRvf6J6Kgatnrbiem%2BCFvAxfkrndzD9MFPP1GWTUHclpASUkCNAQkpCCcCgDSUDAhDZ%2BCuEkgn8J7i9nMA7pA4lISappxILKfAeSAbIcSDuN2bJcfZILqeO5rLs0MnngSHYRdrHjmaz7JEsEPw51ZqDJDmUIOZIe34WaQeegNsJn1qz8AIpT3yCjyEih%2FxELkuJ0lEMYTLVCiWpo5oYMleMH6USyYJcD%2BuOe%2BkWKpn1Qns34iyYDjkSLvgnZXcgVQNeqINXr48m3iS7cjm8tedyY0f1QvTnHHdsrKby%2F%2BSSbPY8%2FNH6vpl%2FEsq3Ae4ZU1HC44KFiI9o7CEgab%2FRqHbj7s5KAg06s39ZP%2FzxI%2FmVuF%2FTbTSy%2B3Fb8If9%2Fcv7%2Bwt91yy8RfP1QXtW5RzQn7qIiZyuFM5QfJ5E9uVnqT85TanFx0lkP3ukBAMprvsRyi%2FC8NAJL1xbIIirSvnSj4O5netb4JxmNANHPssHAcHMHsFRgEug816gDBeMbdfiuRcghqYcm0%2BXxx%2F5IAEtN3fqFF3LzAXqwoT0PN0OVTNqxo8sxMkd5Ig6k79Zk7VxxX6gMLOZFQgvpW2RrMW1D0BDihaXQ9wVRoBxPLfpknmkeMtoB%2FqM9cRc9IqmMD2XUmdZ7GSRKPUZvChf8BoykriM2MnKYbOHX8R7cLdNCxSFFVQqoYswnlWtlFS2mNkhswVpZiQW1J%2FUKFfipHGlUkM6UKBhMz1istELIHJLMSctu3ugzfaVSOjKvUgc%2FTHK4Sdg2Wscz69leKIkkrwuuWiOe9yGYKQXRumkC3qbRcMwrvhjNXgdZk3RxAUEhuSPvn3nnd%2B%2BU%2F3vlVOmrJzCD8JLxV1OHRjrZifbcFDOuRNTGqdgQm1tSNJ2OcQ04YiEXuxtII1ECSQRoQGYioEsgCfchB4ghAtw7FfJre4WZ9hkVi9MtjuWqtdNDlpMrfEG9fOT6q21okg%2Be4As38MfGquNt7oUws6Ysarj1%2FefE%2Byst86YUVNvDdts3Pv5c8m%2FaP0C%2Bf8%2FQb%2BIMnGq09BgwN01oIOAnAdagI8mBSrqk1gxTDUBOtk2ousEtBH2z4Ir2d3f6k8PXXVlt2qN9RODxRuoJT%2Fv27wm09jRYVc%2Fe%2B%2Biyx2tyzJb%2Fn3J0htXP87eSsQaf2Ly0s6Zmxela88REy1cf4273mI3iXNJ7KxrZibOm9xm6rl4fqy%2Ft27smU8tOfdW2ucBzg2UfmOIVyLIl3kpYlwphDISTXJXsctmiDtN7fNV6zelgxwnWxsVr83Aj%2FS5ki1jL%2Fa0GC6%2B2L6Um%2BaoddlNFuj%2BbJ8mH%2FiaLh8I0%2FU51NspIEfq0dohwyFXKgm4NggwQ4rRhCOUFtxxo8XnitT4cnGfT93IS8FaT85XE3H5LMY4zIEPL1hw443wz%2B1UmhTJyJGxZzw%2BwsKkKZgUiVtKOKMEb2AKHTv61FNc01PQFwKnvsZ%2F9pPA4RKTASWahmh%2B8MxwzHxKy74IRn5LGRjsPUUwTu64UYNY38caqd7HKucZ%2FtHnODtENw%2F2UfHRMaq1UUPDJQ0OKkWCeet5fYOhII1VRz8%2B%2FElg5j4Gxur3J8o2PJ4rg%2B2d08T%2FfwEzSVbyZ9XPro95T477lRKqUSRXQnauHNsISAl27oWi6Fv9z48JMv8r%2FaMMj8onCP%2FDuDZOuN%2BGPPr%2F%2Bp7bx%2B7JlbYdppcNhzKU%2F1Px5aiaGDn%2Fs1iGMaBcleKUo%2Fv9rcxkZj7DBEKOfrayytXNLYiUdBY%2BpleQXdnscKlQcpzuWluxsieeyuXIK6SdxozitWyGOV3vOHHjguyCQ6fpIYy2JwvrQEF%2FQa9Pdf%2FQqOSqCiE%2FEE1%2FXIVKTc2tzWbHnimrEd%2BVyz311Ml3P0GVTj7PD5aDnsvCvH36alEaPMePcMegXs7x8igTu4B9v7G9vTHvhCu%2FkzIdx%2BBxC0ay9zRSvoS0F2lIxI%2BX7klU63I40gLQ3w5ep5na%2BSFnba3z5D64zv%2BQtM4n4ffG3tq4aNHGRfxgrXPMim%2B5487abL7xhdseIRn1KDl%2B7aINixdv0OD%2BJSPwKf5%2BxoP6aiTeQIDVlIhMcL1H5R9PYXvprs3fv2bO7MOplCmweuiq2JRZ1zz%2B9a%2Fv2PH1Hfz9236w%2BZrPXvWfAxlj4NLLHpq3c%2FPQ3uvmvbrjG7fe%2Bo2y%2FcLdtE6VUlXi0ASb1VLUBVSUWSU4HdvAraTyS8xzM8NxvxFkXV6pUVRiJwcgC5zEeht4rwcp7ki0k41G0qlQhG1Vzlq8alEmnFi58caB5Q9vn988MLhqyVlHvLEWjtQFeupdiocF%2FtkkOGPW2ibWaBTkeZ%2FdvPWazXfOnnvL6jkRXpi85sFzZt%2B55ZptW3bl1cCCHZPD06MhySha7UFzjcjbp8fOecFCirzAG%2FyVjBX6OFIaadSjQq1nNhyIe8tVbaaSdHlXIWKacMeuZA1uxS95zILhyrxAdsXTL6m7kNQlx2P9uZf2qhufePFFbpI6%2FOU0WcP99RrCsrwseVot5mtytpf6Y0gm9sdeyKnPQ7onyK4nXlR%2Frg7H95M1upzu89DH6pgUcikoiihJ6NJKmRxV1x%2BMJiOA3YwhDRQrWU0u%2F0rvq0VYXnyCwsLeTJYBq3dAtJDavuzyoVpzZ99Z0%2Ba0uoiFH%2FxcqgDR7rUFeOrUn6Cywb8ZeNMbhLV5ugP9l0zv9UN5b5mFkjzxUcpPJCn3V402pRxtJd2GrnLdhtVk9ZSZh9W91fCSH5B7ofxPiWL%2Bj3D%2FuwhBRdyAyozeZwvQzs79soi%2BBKSnafLviZCcfrpBpLyimfLfTyJtbyruIQKD01tUwJyKEo%2FybaxkSNFUMdMkhQoJyRBQFhnUkDQSXhTM%2B3NmY0EDM7ffLIjqWEGt8lCO6mLia3PukFnghosJD5p5SIho%2FVDkzQfLE%2BIrYoJXkD19pdP7OwG%2FvoIUtagiWiZ4PAFTHHlTVhRZ7dYmPar%2BNJ%2B8JhmR6DFK5DV1foHoLNO%2FpHrvZfmWZ15RQlwvoVDKhCWNK3CCch9lfFBuAqUgpFSShmNaPj%2Bi5%2B%2BWZfKeViJfW5HnUakVL4UCNVkA4%2BETfIqx4B5xSaP2L1yn0zn2ltPn4%2BOqZGmwwEVCaCSqG53ldtL1oLGAhdMLd09MpCCF6tD6ZnAZBY9hDaYsP0jzZ0j5ZjKsF4i1UmLuhbJMCnYJPt5VwFNvmZawXjEvLJqIH8STonZjq7BZ8gKgR20C9MDFqJAX1H64QW2NEup6qgzLP8cvppL%2FNNTOBTCJABOHeWoXzLhw4Wuy7gaBtjKr9kgKq8ZlRYBS32Lpxc8vIhpNDTfyNXWybMJbn2RyQ5EmWc2QF9wmSZ0KYCE%2BcPuYO6b15Uotj2Kd4MItLS7gtFbkTdrFND6pvEZqv5Yv7jXAus7Pg7avo7KDot50NX3CPkP%2BKps8J9%2F3mGQIteY%2FLGPC%2BL7872SPR2br5fy8MtKBMHedGuM28%2FMZmPJMrGgi3Gb1S%2BSi1%2FL%2FzrZwO9XH1ce%2Fz7ZQ1WSoY%2F%2BpMb5FT4ua0Wm%2BJf%2F298nFmChEQ%2BTi71est4mq9VYI6RsymoRJKYidElT2FGnDTZvqtfhGAFTbeqEw68GqtfmbVa%2F1IFO1%2FjdWr%2F8BDRRtQh9XNjubEm4aWVpVonpTGR7PVGc%2BKJNoBIWF7kYi4gUV3r1U6723i6TxUl3n3%2FtM27aZfKb7THiHW9VzFSwHJ05VfK6Ar7kaB0XgPPE0BSkSFKsBUpaLihEWoA9wBt8qirh2VSOkZwXEwyrxZ5jyt2rJmSo9gX7cg6jsEUGJU9z9xJPOEM3uQQxKgkh35DNATnVyrmJ3mbCNyIB%2Fyox4wH1bg2DwN7q9kov4pFqny8oSm3RQbGgJ1QQTs6ZMLilOVYJ9v6Wha3HcJ9jddsXp9YhGUXLXt%2FqMDnvLpPNTXfNa60z5%2FyjXQOMq%2BlNmwh5egpYrdfZQZV9rI47xlRkuyTjpzsmCBSWNkAXVoK8sgYWqQJWbo1RLo6QH0YW6pxqfCnRgkd%2BRiFjUQUQ7poIaYoakgXxwFd9BuuI38H1xBxXSFb%2FpBDIKQFn7YB3dB36l7sG1FLaKiBdp1KxLvfswap%2F30lnVESgNnvjbUoT6w9N%2BXoio0qcYOIM%2Bheg940YimsucQVvli9NEcft2UZwGQwLuilj1fFr1i3NP94X%2BPE7Hpvtj6lBJfJ4R6NvWiaL6MgzWHxiN66DExa%2BdAdAbMYX6HVF8A%2B7rjEZIXAVbDe7PVI9rmN69JOLV1DOSvRPxWNPZBZf%2FNf%2BNy65BhYxxxV%2B77XJ2wfQ389%2FIQPgajXbwMsuAz%2F0IaQcXJavKbRqR2IqyZruXjVC2%2Bhdee%2F5vdnYOedpmVtR3NGXldxSzDSIiBVpkGb9by89UpEPKrSLZmyFDzMab%2FwXl2CNe7s%2FqCtTvWgG5kpBmCBlSzDS%2Fr8N4uwBwohRW63JTS1y32f0TQsPfXVGEHQrV8%2FNCfiOUVirYcBbIeA2%2BiF68rQIo3B%2FS628vYESr79ehzS7Q9LEL9UXmik9XVHb1yBO3Ngvt5935%2Bk1efkV51mzzrM0LL3%2F20avnwMeKuWyOUZg2TasSqZ%2BKcZQiOn1Iu2Vh497ALUVZiCKt%2Fgh6IvTIj1ZLRjWAkpHKOKovNwp00eqPROiAbiNEKieXwMLcXhVJ1%2FuzmLP4tfxaHR59cBdJVG1kTAgl9ze9QKUEQ946Hkb%2BokJ5JRDyf54Axur1D%2BWS49cLr0tTPEu7UmXrxcSr3XNvumv4yXzInXKH4F7Tc7p17Zt%2Bt%2FqW2%2B93k063X7VW6lALxTY7i1nBXMxcxmzQbabxz%2BtJo%2BwijYaIGMNS8AoSMgAPt84DdHOoMPfjXhF%2BkuH1tZvuFQrRCN07xGcXRX9MYxYchDe5BcHj%2BZ4i%2B42WyPc8Xofi7bbZJN5nJLJ5qr6IqRtzqNlM17SpFsnkEyTWoABEjz4JXOQvzWYuwdnV5LNGOwTM5v9r4RpQ8ZXsYodks3o31JBlzbYtNotisnm22MxiwGFXam5oN1n0TA%2FhRvshvTSDwHff4nNzRo9Dum6PaJbMXzDz%2Bx%2BFkj4L4bFNBb1asqsgH7Dyh4DvbkPtf5yMDKzEwyoaESMSNS9P9gJVA3%2FRTlwoMwZvxECFWxIPNw9gi01nOHjP32esZTtmXHnxvZd8ZtakqQ7ekajbXetpNa6ocTVxJtY%2BuSe69OLz77zh5bDR3xjZMzUz6fxrz1nqrZGcHQHfPVefN%2BfiK86LeXj%2BSc5lPKy%2Bk%2FvCUI%2FDaLFYCWHr6nbXuILTIsb5imNKY%2FrCm28fSMxPhkN1XbNMNZGuqwOBhtTSxWuTk6bw0ZaG86b1hKddePOKuBvmiguYBn4T%2FyOqOyGRBt7bKUI1GjioBC8aUKwF7Q319UgcmtFGIzCJGBqwQij0ynDsfdFGc3TS3BlNfJ25xmzniMkpXXTPvCaD3ZaZvyzjmZdudBostmhb0ORZNN2sJBeed1HXkrUsywueQH%2BL0eCPxmsa5ZpgRJSDZ11yDv%2Bjmbd86vxZfc1WcZJ3UkMq1BOOOVtvu%2F%2BpB%2Ben186d3GTwWAw2jheaJs09%2F%2BLNfZft37DALyrNj1wABMuUKbODyTVnT%2FKYbJ3Tpq8IrNh92dkxOj5P%2FYpZx4%2FycyiVcDYdn4JbEoKdQi9054iBKsygLW46FRGxAb0NPNCm8BSNCPjoKcj6EAus4SuP3rB%2BcV99%2FeTF6294dA8%2BTK6v74MHVpYNRt%2FI30e8QGTOOdfGWzzxcy%2B87a7bLjw37rHw1nPzp0KyyRSeZO%2BQQhInt3dYgvycjrPOv%2BT8s1rptaP84VeywdWX2T4ysr0%2F7TLIs6%2Bx9zib56ye1dM9e%2FXsZmePY3NDs9zlnNVt4%2BWgHJbbz3Livg4P9WWgviOMm4kCRT6I8vw0NbUUEnFvOuFKoxQW1gTsvFirsF5pb7qTUCx4i7VmtToveaDxvK9uOaedVvPRpVOnNz0Q6bry7uiSdQ8t7Vy4JQKVS%2BXPplV2ts4bvCwZu%2BKzgITtxepaPRzWdpv74muvv6RO0SorX6cu%2FdqKn%2FXWnrtp%2FZragz13DUCl5myiFW2Ycvb0PtsXnU%2Btx8pvLFbUspLX68mdegwmOif%2FNPDONajTGoUh6tU56HBJCTBASVvNUB5VIiKpc9kd7kludodSFz7xQbiOmMk5dOYk56gzL6uaf7N8a6MQOHm0ae6snZpFDfuT3%2FjdYzjzwkXXIVHoXNuCfQslQZqBZjTsoHMqrkE4jaYdgkGz2ATOgB3cPkSukD01DnV3ttb1wx%2B6arPqbkcNAHoFPzKUUQ%2BqL0k97pjbZv1I%2FegC9zTFbrrlFpNdmea%2BgIgfWW3wqkcis8ky5FAcRd1If5nNZrl2FFpungc8wpoCl1BpQV%2FScS%2BzjlASyUTVv%2FAJ46gkJI4bHX4lTnloctxPZE1ckS3%2BjG2fKIjkQFyzuo8jvYQG1OrGvJPSTu%2FnSp9PHNTl4z5hK%2F8gtXVKF6gEKiglgcKiRlCESsQCV5QIlKWKpr34lt%2FwkSx%2FJCmP5%2FcBKQfl%2F5gd%2BrOS%2F%2Bp91%2F%2BYCg5CXK2W4M9fu%2B%2F6xxX%2BvnelVuldIDCG0VQTpU9Dw4pRfei%2B6zWx0MLie0gPbyrkmRU7OwT16JGeyXLHqOLqAfVN1GPlBzWtFNzj0TRTCjogtP1NjIvu5habN5Aoa1k66wGpqriVetJgiGdwDZtKhnN0y4n9sXYnsqGmZfDSR15%2B5NLBlhoDaedEm7sxmpqRija6ZEEg2EAnTiAC8IrmFbGz1q08P9PSkjl%2F5bqzYqT9hMmptEXDgTqP3Wiye%2BsD4Wir4jCeoHbbp5hRfpB7BakUIppIlPCD30dR1GtslDz8OsqbXmejFC%2Fv8wu5X2myq7SJ8Avzv9DFUJySf5uNvq4%2BTi7W9D%2FOZrLChdwxmPNiBRqVjnpK%2FaGxRCDspVYKAW9AN1JANoo8wP4BJUlGqdgw6m1qPQ2QW3%2BOfU5%2FieLS%2FNuKpDU3uf8bcAXyBal5jMR2NEAbPAZt0K3hvxHBEDlUxfIGcD%2BN2gNSNx36nfqlAYow0puatNpRz0e4W2oahKzQHsjf2c16ad%2F3t2KTtPobnX6D8C8pd0MDP%2BKx7wnXqGGlLQcvikMErm6TmfsuxJXbSAxqNjOogJLQBLiKEHAE%2BJGTS3JoEhTrz8%2FCB%2B5YlupJ58aOat8Kv4JvregxwcU5Cp8GFAFm1FyOfto6GS2m1NGTS6CPNKkbsTdCBlnN9onMho55BX8IJZtEQ35lk%2BhtwN5A0V3RCPoD%2FyXAcv6pAtbZczRUA64JmcUf4q7Q89ZHLeJVZ5D1Ps%2Ft%2B0iCT3AHVtZC7JDCXfR7OSb%2FXja5H3zQbZL1B%2BULX1BMTEk3AseSpmnKEK4T9ekMIidUCRQFfcbj7z8gNLvzF7mbhQN8h6ZbRset%2BnQWdS%2FZX3k7WpS8P9sfo0iGS64wV516pOhjI6TZ2dApgI5%2BLhxywYoWxKUrykKJsIoDsR4mSrCTg0egMPnLW%2F3Q5Nn8BZEuzqEI7HK3n0%2BzFmuO3TtWQ5WJoG9YqCD6Gc32SxnbnVPfsxvrFXK2dILl7bLthDp6glhcsfp4bYvbSmj%2FmQ94uBTw0E73x2jbNRCvC6VL6GCFDwU7eWQDcC5FY5s0slieRDwtAbRsbLXbaXAuu14e2OJw1dc6jQ3ZdY8v7rv2%2FBWZLqvFWVvvcmwZkK9f5jS4muO9yR5res4kfkRxhV03L1RfPOiPtYi8pd7jNEsOpyTwxpaY%2FyCZu%2FAmd5Or9uS3DYaeqVOhH7gZN%2F8I%2Fwi1fEuLXvyNivibjuKvN%2B1Nc01HF%2F3h%2Bef%2FsOhox8MPd5SFucPjorQwXT%2BytA8EmA5mamHNFDVhBI5pjZbQpugBNkO8MvRub8KVDKST1Wag7D3xlin1ZF7LFP%2F79nbvCXFOY%2BPUjrT7%2FotsPXXZ4exdPzuhZuL5LUXVAn7k7PbhG89uz3b41X01gbjP1xwlu5rrvvf9%2Bpbs6E%2FVu7Nk642%2FPYRaAiUBdrmO6CDTBLPQFA1ur0uXoBR1INDMkypKpoTqnSMx5GiEdTEaSHLs0Alvu%2F19%2F5QW9Rv1U1ridT22i%2B53pzumbs%2BXFFXYC%2B%2BCGsTj5JUT%2FGCgRt3n78i2n71FHG4%2Fu6X%2B%2B9%2Braya7os3ZbDmgWfXun44e%2Bu2NZKuGZ0HiF8M4TlMPR%2BEU6rPKRJ8wOU2RFUFLex3egEsz3YqEAq0cqhAAW19dBZIlVzR61tuIdTnpXH7l%2BuXrbjPUyep%2B8cl6aXKWhPHpDcXl9KiTWDNr4mBQc8Tq%2BNzK%2FOKSbsfl79o9G20R%2BbrBXYvUg0rLHhtrc4TN81TTOWSZ0gL1ZVlOYH2ery%2F7XVUjFMbzYpg7UswcqJPQwBd0LKLabJ8IaCr2otcjSkIrGwootKECaUd4XH1%2BSdazRrfddkBU98t1htvWrbjqSqjaCguxrffM%2F5zDCpBALUycmajhd%2BR6ww4SWafuZ5eU%2BtPid4lgd3gt%2Bb%2FY9rQoZNmiXYPXyRHbRs8zX%2Ff4WIFjWZJtUdSD55AP3xtXH%2BZipC0EqdBGDA4CoYEU6gRLGPU11QhkLTBiEYPiqOeQgwTCl9aok1Qr5pFf71qEeNxjy%2F8F0GoqYPv75Yh9j3x4DuJ%2BuEzHRpAq2lMqb%2BqfTdiq6kGtzfOWsv0c7lSeMXDHBDe1MT%2BLUgx0Pg%2Fp87u2UicdIvqQi8DkxhcUwUXCedMpb4NQjwY3npTmgsURJavLwCRyEcN2HfWsDVGfv%2Fu9ZUWUx%2BPYFueUKwaNvbtu%2BXps3eVWbN1GcgVrdMnWJ7WmJz9SD66EBidag0NF1Ukep0t5A7sFCWdhzvYwHv6L%2FBehXuHqfaBwBEU7hfVLcXvS4VQv%2BT%2FvaSIl7cbeMc7ekv9i8S3e1L5xxpvMGcu1EYPbKyCiijjGXcDKckm43PqU2qNWlXusZMiqF82cuVzolUHN9NNR0HZPxFPV9V0wLtvq%2Bk4DqOwVWDlzuQLVdqFiP08cRX7aRlBVfR8cb55bWe5LExnlcsDp1vAP8Q9BucPMk1Ulh4GnN0SAdxcNHv3q9ohx1Ati4S%2FtkWjIDe3hQdkUGrGRaFBiUdiTSkI41UkMuuQHP%2BEaSQYlPQTFWJF03BNPpTu5KFAdkWgDukzsZKMG0Q1TAQQglScOaP%2FdsZ8%2BfP75D%2F9Uu5Gs3FY%2F2SxPld0DHOciXI9gqjcEidXjE%2B3BLosy0OcX3T7O5g65ROGyzQ2BZs7WbZVnO5ydLe32hMwTQ4wnnKXW6XW5LAa7oaXOIHoUl0FgLQLH2by8wSTWeAx2Y5PDazK3BqZbeJZwXGPaYhX87ZNszoDdaRxotXO1nNlpdvAPFWHDm8PqEE0sZxDEqGzxisFNnuCWetPcGrObN0p23tTZwMuRVodSV8%2BLTrOV3eRvzjQZiSjaLYS1WEJe0kNsJlZu9LFun7%2B%2BwW4gRDRbaxw2nrOGm%2BxOj9cmtbp9ZqeTM1m8UXfQQCSTVSQox6pvtjot%2FFpHvIUjJovFEoYvHYV9C5Y%2FxN9OfcalvII37UEhTbTg%2FAQIaPb4Vz6j5u8%2FaViycMod%2FfkDcpu8QZbZoeBi%2FvbzP3XPsZvOubMtaPHkD9jt6%2BU2O7vqU%2F9C9SMvgrXpQNG%2FE0oJxun%2BCiElUa0IKQSUwERxOntKSV7ekcuh9VBZBBo3VUcB58ofKBHCwLyf9qFosz9Ibf8dGqwaBMjRig4SGOZ2UkWI7UiO9OfUPdxOYFApUZyfpY7mgEc5rtNGGk2H1lPhAk1Hp%2FVAMqQEHEUfEYkkUQq1JMdzsX7kklRrTrUi1wMcDjmu1YYfATj7Y%2BpGpPEBXuoQIj8rR9mgCl4C9yqmF7xnVWxGVniNqtpVmXBvQ6iwni5YQ8a1jYrXtc2J13HvgkvqWxuva1sbr%2BP2S5ceKGyBwDv2DbrToe1u6BkAJV7xnVLUaq0sJB8pFqcUIPi3yuwxi4JuLr%2BP30f3OkPQ72aO0xYo3%2FEsmO3QO5qEF8S0qQH0UsKXv0brnl9%2B8M7jF174%2BDsfvPOl1au%2FRL5%2F9DsbNnwHL2pHR1NTRxMZhJtHktOOxLxErPF6YlLvpC9YP73x%2B4ofw%2B3xVdrHcDE0dQQCmCRgvt9b35xINDf1CDcRSfJ%2BpYl%2BSf8YcurfmXP5F%2Fkj6J82jNsrkWiEuhVlgFfyNkB3S5MUzLhoNiwSCYcxQ7Ui4J0Xh7fmqRbaPa1tzujxkBRlsEHy0%2FOM4pYLPb7g9O6BQJN6l9zQ0OGyCaZz0vMTbHOzXfQ7a2tsterTcqxeInODoemdktw%2B1SbVhKwtW9ffe8VKadK0OVuC3bWzyKm5LeddsWTeorWyY9IMtUFutdu5g%2BRn533qkocdvLs2HmhU75br%2FMmWtD8zA3OP2t1ea636jEzqYxJZGAwFiDEd61oTsrRuW3%2F3pYNi3bS%2BRd%2BGjOfVpAPNd6y64Gsz1GaZleWIPoYL%2Fv9mTeQBENVEguiF1aC4YeXxFETw6QyPfn0m9g8IrMFAvKM1EI11DARnbqibHk%2FIojy5rSdgCyZi06y8sS024PeuO4MfwQ5Y9yKRZCqyYaF30vzeHlmUprR21tR0t0yz8KZY66zWuGvxVQB%2F36kP%2BK38t2Hu6NQ9SFJfw0AdpqPEK2qTMpf2VCqJwqPoJezTL824b8akoL%2Bx03nhh%2BoNo5e77psxg9Q5LzebIKD%2BfsY34f2MtB9fk9v5b8PT6tYrgv4kRPwd0q9z3gdJSJ0653KjCYPwCaR5aUY63eW48O%2Fkdo33yxX9wCiMv2QTrk8eGSI6Ag6moG9t2P%2FF7GRNlDjl0gw7pJ5aOXXqyqn8SENnXBmbSwUYLyqJjv3UmY1nKr4t80no0faXsaIEiF%2FBRaIBnItSce4OUif7W6Vm9T9H1X9Vj71BEm%2BRdmIJQST%2FZfVdudUvh9S%2FqqNvqT98g9SQ3lHibZY0mRVHooyDN%2FFHmTgzjdozKw28NwQ0hwN6BCoPKaEk3YtKwNhwRLXuk076CGoZNXDQcRwZvreTZY9EZi%2Bd0s4%2Bztv8iei04JQl6ZbDD2eHV7X4uHuFVfPrOmcs6m6Kr7hssr%2B1VZFcEZ%2FPdJkn1hOs8SXS%2FNFFgqt94PIZzZ3tdaL6Q5vo6piSzdy737pwsX1VyxUrF15iJ4uNkq%2Brbyg1Z%2BO8VsNC1UmcvORPRfxtPrfRwL2p%2FoA1eZp6Z%2FaGffoewaXcA%2FxBlKlQLfhQL%2FoPgBGP3qsA7IQS8qDVNswHKRSheDUvA3Q7MZoRcJMxlEygujn1QdyzfPfq3dEp%2FbXh5e5YXW2Ngfvza0ZF6UgFL%2FE0fTq4LBlvTE2qb%2FKuuzYSXVnjTfM1osvqMHVbm9950quIZlbqaL6YP7jk3kUtA0GnX2nvq53f3WoSsvEdDRnULgo2fN7lNZJgI8%2FVWi33c3bBZnGY05%2Bdm%2B3qc7fNmj4YGKLj2nfqFP%2Bg7jdDlxEV5XsJQZP6hYrS1l0VQr4c69Xueixp90gnZPmE5OF22j%2BSYEWHlZ0K%2FHgsh%2FZtsbh6h2DNRlvv6jJh9XaJaHCZDiUDKNTMkvb8vsqCyf3ZNdSmO0fa0Y4baJTtpbKzuVzeeSI7fCKr2Z0WypapnXJ4gnoWy3PoUIlIQ1TXdqhQJIXp9Wx5fYdpeWh2TY5D%2BYVyKd0jw3iumwi%2FBC3cEy4o83QlZnW79MrCgCjbhWXBlRZVVZZv4rIKpXC01HFlHdHLoeWVl6UVc%2FJ5uGm6CViW5mulYMk%2BHqNYr0AyUPivLg2oMs2MPqtuhHyRyiwvNJej1Br%2BfcLyoAyu8D9B7bgmzUqfFobF5nKnK4%2Bt8MPJkI%2FxHUNWk117jugWF%2BxazTAALQn6%2BUE9lhoI5ApGA%2FiuJOsrlNP28SVVuBVajXmircLel46w2bJS1Q0Ft0KDuikDFL%2F3pYrid1Q4FvofwRIo4R9h2ftSwc6jHAMqLcCql8YPHtlzGoByNXYN6v8hXnRaOhUvx0sVLCexwupGDR4NOYC7PePa5keIPACnuAdD7dEadRuTIiS6Lb7uskb381My5yjzF8lGCjBRqdwrWJCagfB3yCy7XT1i92hbcZ5Ci1FJkgYMDf6n%2BjspIsHFjJrTOdzSMuOa9DbDcj%2FnH9N9bIoGVgzHPWIQuFuYtaMRaq8eCKI0gEF6lPOZjBz3EEvaaxwSUT9U%2F8JbJZPJJLBLolH1La%2FRbF9AbC8JJjv%2FmMnssKjLRBJyqj9QXxNko0Ux%2FX79epfiXkm6fmKwF%2Fen1HLc6LxloXWKvGa5rVCVL83VuiPcDEX%2FK5pTXOxHfx6HHB0t2FI0qI2rCZFTrvPWU67zVuS%2FkTsLnc7IKhFg30e4FOkqNSfH5PtkmUy6Cpiv%2F36k2sbqCeCFNa%2BURpoY0sZoYmCgCr3qgZz6s8I0gP1bYiR%2BD79H56NOz0EVWCTy2%2FfffvSCCx59W7uRV9995eqrX8GLesOXNm360iZ%2BT%2FEl3uZqL%2BFyzSZ8XxpTiI%2FG0nkT4zznFZ0t4ipMz5v4q9ssqbdKUZt6u82knPCrt6PZwsnn0XySVnyPR1ZXAn72yx48bWJsu7apnI3Hy8bygUK5Js32qcytapqgmn95uexccj205vGgJ%2BeuOeG2SORmKZr%2FqKzcx9SFctMJdwMUFZDJITs7dnOp1EKZCxg304Cevyfya%2BvlKqv6aXK1qIj3imL%2BL6hL%2ByvUlFfE0VKZ7E8gBY3M%2F8VoJCFgizH1W6VyC76nH6b7jiibYVxUmVIEspry%2FLgZIlCeP11Z4zs%2FAwvVwtGFEut5S1JY4lfyT0N%2FevOLo%2BrUEgjcqc9IkGpQbv3iW7Co5b%2BKgjvpzYdH85PLcc4X21ouwEGl%2FS4qnUAvoSlXUUhR1eKr2VWFTB%2BGMl6FsiQsVD1R3urlAAIoSn7JQkmiVVCHSpCwDH%2FqPepXQ0Db77CJOAImohB%2BRPWr31ev5g%2FkE%2BzTa4lbvZo8xdWPffQu9yJTPCNB66s%2BzXoJt%2F0L6hSoCuBIoK8fnBGG87OoRckJpLqyWe4YbpGi50g0%2B3I3UD85Oa0fzubfoXxPLbW3FDWzigmyJeM0tQkax7PqTy80%2BUxfUHPlBZIRVNQ%2Bv0xRm8REKPoLmNr0%2BUo48v9GFbXPKylqQ2IKm00QddgyWGMROCTxdLB9nCY8P7j2DjlsV%2F%2Bmfr0C0r%2FNkeXbbpPlOTBBwT0mVz1zx9S%2FwJecBF9Wgv3p032iP2v4VSgfgW2G%2BHUEdEXU6iq4CtpLJfIN9XQG8dwa1VoO8XC2SrPDDyCOQptXgbcPvlAgBfxBoGwftQKeKFrNTASPt3pGGqDt%2FQRasn2kri%2BH6L80MJRsmVYJrAKyDItpJUy3%2F15WYIJqcJ9Q5N%2FLFJ4c3dc1URpWl9hW6mu50MUIelg4ucTPf15zs5DFo1c0VSp1tKB9jkwIyuM45kb%2BIP8gHed%2B6jO3v0KbIknzLy636E8KPTdCuUpB0wLo9JKnAO6pv0vS31EtBha%2FfJemkgLVVnd8KCk4qBTpQ5m7FbifBKrPJcq0pZAFVG%2FXbOFz%2BTcq2MLrcmV28Nmi%2FOHskh82bau0k8eWCaPijQPWQ5lUvslwVCfHkXBMIehqUgtDNLeauH1huvZTbYmw%2BluPjyWoNGEuxRLR7LK5fSyXFUyK7PURQv2v8D3XOt2NJ6liBbmPGOsakw1kbeOs%2B31Wm5qpH%2BiJWSzqdPr2O7zc2TmtnrzCig6bBd%2FvgQmzOlz0STWIlmZEQfupogOZFHUZ7EkUnMn0RrpIMqAgHRJAOjIJ3yGw1I%2FMAp9q9S3Q%2FclADNm1wEeO%2Bxbwg5OIYHZLY3ehG5lJk2xhco%2B6JWybpEVz2wrR6hZyD0QXZbeDVB%2BonmlimpkWprdAs4WEZDSQppsDlcdCBJJESIYFuAtUnC4GIF2C3Uu2Kv7L1bdz6FxtqxpG4TqQOqOUNAJ2HLvPWA2GgDy4O4vaDrtyl6P%2B1fAll%2BSyFcQ28GHqh7fvvf37udylf0fNwhzgz87Y%2Bcf5x9GnF6ygHu18sAbipWeF0YPBgp2GaKeQduxxdEr3SgbH1kvH7tvqSLhedomOvZyts2dw8acu3dY%2Ff%2BucuMtCuP%2Fe4zC4XnH3OLZ8ZuxTWxy8dJfU5dhDeKPSlJy5pn%2F%2B7u3XrJhmr9C5CuleGflGQocKnlAUaRKp0BAHV0ZwUt9VCqk6zYOgRIuMfePJzdmBdpPJ7%2F6B23%2Bf%2Bsp9NMDZevovvfYHG5dGPISQq1DojqNckchVrCcCYz%2FQ0hI0m3NKDRfkgsrnamo%2Bp0CAq1FyvC3a3Nak%2Fs5VX282x9Ufy3E39VAx6o7LpCvO2wK%2Bch9jNqpJCutcIOooKnYWtDK8gTRVYygRQfwgzKM5%2BjP2jOZdx3r32Py7rQUPOzAnoRs95NvRAR0qLGU11Taqu1bUYSzMcWjMEir067JQQHfIrLBHsrgv00%2FWavd8HRLMEEYFSW3HCSNQehnrHztKqHcDyo4VfZ6gPKCR%2BgufwA8GegxUEo4A%2Bgd0BASHiH6jYMLIsUdQJTs%2FC641KN4oCHWolCMLlMfIdtWKScjx7SM5LD9HnfmhrGI0S139UWfUnxgOXdJFW%2BAMcGjKr6eHAttHF5sUoeArYKDcxMSYcKA%2FxUDhPiEOEAPafSIUFArN0r24ynI91EPARDXvIDYyvqZaWeroBOUABQA%2FE%2BDXC7PWafDLQY2oiwpUEyj4RQtVlUp1GrM7In2p2A7VuiOW6otMiGOo5Mrp05ejVuTy6dNX%2Fk%2F7mybZQ0nUmfrbx3U4KueDnlHm5wdh8FFeKnoaKKh%2FTK18StOPhwG9Xo5mqXAxvw%2F79YQwwDR%2BnAKQQ4izVXioB84qcppWB7IqjU45z4CE17OvF1Dw%2BoTFqxtz8dxwtogBnF9MjIl%2Fin%2BK8s3hM9laIn0TiCbTAXL0T798bPXqx36p3chrv0O%2BGC9Xaj48Ecv8U8UEeBvUEsDlTepiU5OvlpeNGvpnKF0RvUooWhIjnx6GeBapXCQYTw9DNg6%2FOC3gZjp76oNTj9Kz6Jqobxb9NDqc08vcKReOpcsQV2K8InXFaXW3aI6Ofr1k48rp7CX7rx%2Bv1UKPsfvzQU0Kc83i2VdILmd2%2FyX55zT9luN2%2BCu4nKfwPcK%2FCvDVU%2BpHh8%2BLaldIf1fA5h3ndT6Fln9%2FW%2F9Ce1vndfvJtnPVO2xhm3qbafHVCN1X363UXHq9xuVD8OSD29Z8pZ5cZrern9cAdGW%2Fuib%2Fud%2BVK0L9a42r6C90kL8KzxwLQw9NkIQJL0ASU8M%2BVG0KsUdgdvpgP%2F6NqqP0%2FgHZFUfGEijZLHpiIgvV5%2FBltrj8Qd7XQd5p4P%2B7tJo30NMO6VGBwahSPMYiaaBYoLY6uEnciyhhh1Z%2FvvacG%2Frjpsvnpzs0B1Id6fmX8119l88XnOxe%2FuGrzzHcdu7UtY3%2B2vmXN5zUyj3ZcPl8p1sZSs6%2FnGXtwrV7Ka0XZdz83fwjjINpZWYw85lL8BRK4nGyIir2RiOsEyipuEcIakpGjWgBjLiHWOgj0Yi34gW1kKPxHt2Na5q%2Blwg1RdRSpFDNzosb44YJXnAfoEOpZW%2F%2F6u1lhYA6leevezbI26zNHO811M2dc5HFxpk4i1jPC0s21%2FBWW5DnPQbn2X1WK43%2FaM2n18DfSoybbNHijFpamzXI31eRibGUOxSu%2FlT96YZlq1Yt20DaSBuG6knw2eusHs5EPBfNmVvHKdaQzcDfz9ZsXmLDWGXy2U5OsYSsIn8CS12jQIyD12KKqZrLPy7mSPdICmd6WGHG8NDZkkHuE4h9TU8FpmUO%2FVjC%2FEinToFyoNDz2p9XD6g78WgQdPG7Z3R0T%2FZ5dTM9lsL8Ktek7szl2L%2BgQwGgwkZHc2g5Su7NvVqwGy2Ua4KSXUwt1X4PaM5paaEu6jQ5zVFyNabxvUksVt2T%2F4VeamYPlLtffdQsk%2B2sUTY%2FzDXl%2F05W53%2FBz9UK3p7LjapZ2ZxOm%2BUlZXrL3HHGqO8%2BwVroDaCTTnTxitMxmiAAYQzVJQH%2Bnj3oIHnPaN6Zq6sNSLjBl8tKgVr2mj%2F9CWi9dnKca8rBQBsd5R1tzVlgrl5pbnPw6kZclCr2CHxMnHohLz%2B3KRQokzALyeIKFU1TNCiayJdoHvDYe7K6mZLm8S3uJ9dojuaJ62%2FqN%2FtjQxnSnhnKPw%2BLNrLi8ZKyJ3x1YhiI1aNAtP6NzCGzYv3DmaGh%2FLvQZnt0evgIhTFV0kE%2FPYxAnOHhCQUZdCWY5JWJwMzlAGl1mpNbDU7yyGnhRMILsYhH3VRAijrPcBU8%2FCj1Y9NY6cnGVW0CjTLaz7E3epvaT%2FLtTV72Rs%2B0WVVmd0dz%2FMGTI5F0OsIviaqDlbbO5X6xT3PeXbXHRtf%2Fz%2Bfdka%2BeKPr8KF7IF4vBsT9MFPuPJMBTBMq9hQxXelQ%2Bbewnf18ap4Ib%2BmSMrtDU5zqlD8QANa5MBGh%2FOwOvSDfcV2d66mfEWsbGWmIz6nsyZDWQSmqmxDneYyvjHPmRXHZxeueyRGLZzvRioKnGto9nIPkibAJA16adcOZRQr1iAP3bUyBR7T4RgAWTKxhkCYFwshq%2B7iV9r0whk50cmRcTg4fy5x4OmmNkHndIA2%2BYuMbmE9dwGYB4KFTsvnDE6Ah47r%2FfE3AYI%2BoXADpkdlENcZ8OZEEf8FFGZNxMs6ZLpG3SUFLL7Q2kcFU%2FA%2FJsw%2BvWDa%2F7emewLaoeibaF1B9qUNnuqWK3%2BUfXYVL1v%2FomD15xxeDkPnXTOKSVcCbDGtOu0YQNpGAP7U1HU58UrqGu8xIbHtkQ3LVhb7Dx46ET3Ffcm1q0YcOizNmf3bC3VjWfAcpSv3MyTlgJ23FHQgmgvk%2Bgk8pL0mcCDOn08MDAQlf%2B%2FSlTZ1z12fnqntOhbOTL9%2FZdevbAPN%2Byby1f%2FuUtC%2Fixm8ZBo59LTXEW060hGrTDplNprWd58fwB%2Fb%2FE27BdS%2Fs7U%2BrGVCeQ46nzaw9QccnmZerGZZs3Yw9aVHt%2BKh6HN4ti6lxIhT%2FwahnZtWwzlY9QHQ2c79C%2BdxzvVDKy8GqKWQERO9YAKbpsDUTLdWV5dE8PVPjvj9pqw7ah%2FPFVtkit7aj6G5xY9mfJrCz1j1e0BcnPol4UjtrCdbahIVtd2HaURujnFJR8CuOuUUfhrGhgKKgjCYNSvCc1WKlEp8wHUaAYynFNyzZn%2B2MnYv36dbMDBTonl%2FT%2Fma5IKAyEGz%2B4eRnVtaX6tss2o34u8mWorFtuFgm4A6qK%2Fyp%2FgLEBVat5WnPDdKA574ubuFJ%2FIUfZ%2FY2Nt6mN%2BZNNTSTaeI56gKwkXerTe9DDHUw8%2FH35FY3nNN7GGuBKWhrV9ep%2B0k1WjNWVaHkW1yA%2BQHWNu8rtBw2a5YXuE40rs7%2FGA%2Bj09V3hA98yRnFPOGr8ltGlsFdD%2F7tRce3LH6Trcneuiy7K7J3khKu%2B3qUaXPWaX7T6%2FKfj9BX2eZq2XAcZT79u1ClJzUtHUqfqSMWBcZS43Ena0cUGLgpkKxB1QM%2B0Fxz10wgg6r5rltnFpH05pepUq3Y2HfYqeKRntmUFNz%2BXmcOs1H31U6cC6RTVLfCg7RNBF1UF2%2FwBgu0fFQtPEU1sSg3VcNsR7dWq3af87tUFn1l3ltXpaJxpNvtcZkH2WmMst3JqRpxUH%2BWC0E1qOGtP66s1MYv%2BVLu8%2FXFXvV%2FZbunYYBeVN64ls0ur6NzpV9xzlmQwB5qC4Tq70WC0tk8dWJXeHvkD0h9zJOM0vD86%2F1NJMaIAolctvlByferCsqOKDKceOfUu1PsmoFCamV5mCrMUOCi6V6FJosMF22AcrKJgQDVhfYh6tepp%2FlYgvnCEAbJQ1L0rOpajEmRcasMiPfxhgGoVo4rwreQpV6fUJHH2e8fa1s2c13Apl1b89a58ozdoap2sjgLN9uISl7P1DrulyeIkt0zr6JjWocoPOZsaXPb6jtqBblsgsaRre2xHi4nELm0MhG1%2Bx1SXwLpFi53b%2BaHRYo%2FIrbZtuWAKu5cSEXfybnnmUCaXGTpQr0xK2O2WWY76f%2BnAjNVf7nCZHU5XqIkTnpt6VtvsFlPXg1031g%2FVRdpkkyVpD7jnmax88QwDvg%2F66NnMRdRXTcGTmQc3cuINwN5IQqi0yzb%2BYFVHuVqI5s4ADfg5oE4ybDLd28mFSFmYvRoomsWXEdLU2Wl3GJy93ZNb%2Fd5gqmNaqJZSO1l6PVRy0nZIj%2F45EetjLguh1rLqR%2BSK0hO6NrsqcNX8zoUdjQYDJ7tb4os6%2Bi%2BY0qpY2AWlnLRDWdGFTfGY1gV0zNAtJ7pdo24se0D88AwLY%2FgZmE9iuP4V5v7CSR%2FRThaHLh%2BUeBkXwU6BC7lGOevK65udTv%2BtS%2FPfW7qj3ljTcj3b9OkbV85t8xsMj7Ddj7DGpthZKwKPvso%2Fc%2F1K9aLE12fMWLV1y1D9ua8lyJdWXr%2FbG%2BnoCFutf%2FmLILe39ITUV4igr3876fpX5g2zeB52sWnIL4fXHlgeUzOx5QfIvJQyrKQE9wHUqVq%2BPEaOrz0wVvNbJZVSfsuMzxN4l9PkedFzw9V5Dj%2BnzpgoT4ZxCxJfC5RWLc74YVHxKlExCYt0JAOMatREhHBSCAtSfod6x6Ls8HCWECLwXZ9nd5Dz1T24JUdWs6fU3%2B%2BfcnT49Qe%2BkBs%2BwdsMZgPXMp3U5S958snPP%2FEE7bvkOPCuTUDTUQ%2FUzirLhML9yPahoe1D5Fj5jWsaoveyP00PehdUAHk%2FseDVWsvDWXXXsyn%2F4wfpXc2V3%2FQxli3jl%2F5hj%2F83avSCfpTNxOEKLmTjxOEKuxgNlsQn0xgct724mhynupNW1Ph6o3RYS3%2F%2B2TJrzLlkFz%2Bip3qCHKf6eqW02QJLjBYuuj4sobhCWqa%2FYHGEHpcnumuWSOhxeaL7sOakNR6vvmo%2BYcfFA8UFXEPZf9UjyudIOyNwx%2Fi90DdsujS%2FFX2UAwvWSVK4NxaMhAGw3oowp%2Fuc8CTi7D2rBgZWwb%2F60faR7SPsEbjkXy4G0XaqhXPwe2cePjxjxuHD6ssQuR1fq6PF0E%2Bo2t1nePTn8TUmxz%2FA3crMoCc7egESuoTHYc7mYdg6etORoOhR7BBGD%2BqJopELrl4S6cJNRtEAsLP%2FOdvnJq0Wo0GolY2Et9VFB2Kf%2B4bZvVyxfOMz3WdFfSIryj6DwWghre7aQbdiDrkTL3A3vNDuDpk93HqXwam%2BbWmUJZfNn5ozKV5Pmmq8PF%2FjVY%2B2Tlk2M2RzSXKjmbQ4RZcQavEYrN%2F9rlXwtIQqzxQNMzPPfHYLvuPoO9TbT8bpGw5CQPGd%2BSyX%2FCyf0Vxjd2R9NmsunnXYa8xGHzn%2BsSfM5J0y0DZEXWWxkXjcR75KBLNLHi7XvX2G8VOrf4Ykg0AMdBESIpo7MgAfyakA6rkqpI6UjNs0px7cMV%2BD5BF49Tez1VGnYmq0WIijp985m4Sn2gJR9b07riPPFo97OYbUZbxJCpot7H%2FlpZBicglCPN7WOfJkcHqc3ElWqvvz%2F1E6bIQrG%2Btz6WkM1SM9FBTR7FSs8KyBBytSmNEoquJNFN5EQyTiCrnKDx1h58yxCepPHU5nxGoxEQeeOZi2m80DxNxncVhr6BmEfUarxejw%2BWSiHhWk19bSY7aKR5MsteblJpfTLtjimBouXsm3d3djjYM%2BwEW0El9dM%2FueVRWIsXwe43R7SgbVZqrnqoJ1X%2FkuF7pcgf8duv4q6vayV5U9zMV91GxO59UUjW8rHV6u799WzKMT7umRCXbYUKM%2BfoaCcwgaoqZUtmodV3p%2BX7akb4dnU9B9La38RPFUG2SCC90tVA4XwEFhyOpZZrUCsgWYHsczLFBBVGNtstoN1bw0Z%2BO4fYIbvZVt4EUcJEKOhHeincWqONw%2Bq6w5Go%2BWGOSR7LhKV%2BKBqbBPpfUvOf9QqkpDyVhBeyyZQGMsdA5FBUqvFMtUyGq9vjnsAJU4UcrxldP1CCaofyDkSAifoP5QwWx%2BSyUGxp75BzGAvtG7uQ38LehlyEQMeh0TeE6Bm7tYdXqdkt0uOb3kfYlNwmOdDyacOq%2FqlFo1v%2BPTmTi3E%2FglC9W11b34A22zmLzvb231Q0L2Bgg60OTW4YdstO%2BYOJnO38TtpH7zy9ymokWyA79qlVSn38HtpFlImFnhu3b4boNWXklOXV0Iwo7lQ1hrZyPFcwtjwFP7iEKSHSSJw509kh8kj6pr%2BH1jR7km9vcvqN9657vffefkv%2BfKxge1X%2B7RdjYUPIESN7gTvRkB%2FRMYtEkaVkdHApmdBPpnKmz0n1xSWFOyVIuLrinZwpoCRe6kyiVZoHX088F%2BUX4%2BWKS4iBTP0IWxGtZgOdMaV4KTayqHQF%2FVihBwTbgDXTCmKoOBJeNhwJMzEVjtjIFLuU38fPR7hqNG1JS7g%2FqRCuy3vmQ3W9Vu8qbVbP%2BSzazGRJH83MzP90Ck2m31mMjP8TiLn5uwD2Ugr2PFvPQjB5BnSJvQxGQZZEB%2BLopqzGzDbMmbkAPkZVJjeO5FzOSBKCgJze2ZS4Gemc9twrwY6u9H61iUQTcRvtdT9RW3tRxAWwFs2tcuJRnI6xjmBdWjbgFNRHMHiF1uHYBfUR%2Fut5Ug2jXAaT96%2B9RH%2FFToRwIzGbKmVJ1AZQnoabSB1yyIg7ByAridHApPMjyw0OiV6RjSbCuzwLAvFizBliWJua1tsuAgvNPbmljYbpt8lkWam7b3XZiOiKJskMOtmfScnsbPW208knwjuXrXK4Q1iKIgNyYXXDVT9C2Ye%2F78GQ5BEEXfFdde2RwauOysdJNL5AzCy84ard%2FnGAVN8alecnFdgu5Gbd5DJTL%2BhHZK0vApVy3OfU8XTSJg1TlssivsPYUlIqvn66PzrVTymCc4wgF6SDNR0pDf%2B9Gp%2BVnsUH5WtpHYsuhOaey8zdwLN47V8MTbm78g687%2BP3cx6tcAeNpjYGRgYGBk8s0%2FzBIfz2%2FzlUGeZQNQhOFCWfF0GP0%2F8P8c1jusIkAuBwMTSBQAYwQM6HjaY2BkYGAV%2Bd8KJgP%2FXWG9wwAUQQGLAYqPBl942n1TvUoDQRCe1VM8kWARjNrZGIurBAsRBIuA2vkAFsJiKTYW4guIjT5ARMgTxCLoA1hcb5OgDyGHrY7f7M65e8fpLF%2B%2B2W%2FnZ2eTmGfaIJi5I0qGDlZZcD51QzTTJirZPAI9JIwVA%2BwT8L5nOdMaV0AuMJ%2BicRHq8of6LSD18fzq8ds7xjpwBnQiSI9V5QVl6NwPvgM15NXn%2FAtWZyj3W0HjEXitOc%2FdIdbetPdFTZ%2BP6t%2BX7xU0%2Fk6GJtOe1%2FB3arN0%2Fpmz1J4UZc%2BD6ExwjD7vioeGd5HvhvU%2BR%2BDZcGZ6YBPNfAi0G97iBPwFXqph2cW8%2BD7kjMfwtinHb6kLb6Wygk3cZytSEoptGrlScdHtLPeri1JKueACMZfU1ViJG1Sq5E43dIt7SZZFl1zuRhb%2FGOs44xFVDbrJzB5tYs35OmaXTrEmkv0DajnMWQB42mNgYNCCwk0MLxheMPrhgUuY2JiUmOqY2pjWMD1hdmPOY%2B5hPsLCwWLEksSyiOUOawzrLrYiti%2FsCuxJ7Kc45DiSOPZxmnG2cG7jvMelweXDNYXrEbcBdxf3KR4OngheLd443g18fHwZfFv4NfiX8T8TEBIIEZggsEpQS7BMcJsQl5CFUI3QAWEp4RLhCyJaIldEbURXiJ4RYxEzE0sQ2yD2TzxIfJkEk4SeRJbENIkNEg8k%2FklqSGZITpE8InlL8p2UmVSG1A6pb9Jx0ltkjGSmyDySlZF1kc2RnSK7R%2FaZnJ5cmdwB%2BST5SwpuCvsUjRTLFHcoOShNU9qhzKespGyhXKV8SPmBCpOKgUqcyjSVR6omqgmqe9RE1OrUnqkHqO9R%2F6FholGgsUZzgeYZLTUtL60WbS7tKh0OnQydXTpvdGV0O3S%2F6Gnopekt0ruhz6fvpl%2Bnv0n%2Fh4GdQYvBJUMhwwTDdYYvjFSM4oxmGd0zVjK2M84w3mYiYZJgssLkkqmO6TzTF2Z2ZjVmd8ylzP3MJ5lfsRCwcLJoszhhyWXpZdlhecZKxirHapbVPesF1ndsJGwCbBbZ%2FLA1sn1jZ2XXY3fFXsM%2Bz36V%2FS8HD4cGh2OOTI51ThJOK5zeOUs4OzmXOS9wPuUi4JLgss7lm2uU6zY3NrcSty1u39zN3Mvct7l%2F8xDzMPLw88jyaPM44ynkaeEZ59niucqLyUvPKwgAn3OqOQAAAQAAARcApwARAAAAAAACAAAAAQABAAAAQAAuAAAAAHjarZK9TgJBEMf%2Fd6CRaAyRhMLqCgsbL4ciglTGRPEjSiSKlnLycXJ86CEniU%2FhM9jYWPgIFkYfwd6nsDD%2Bd1mBIIUx3mZnfzs3MzszuwDCeIYG8UUwQxmAFgxxPeeuyxrmcaNYxzTuFAewi0fFQSTxqXgM11pC8TgS2oPiCUS1d8Uh8ofiSczpYcVT5LjiCPlY8Qui%2BncOr7D02y6%2FBTCrP%2Fm%2Bb5bdTrPi2I26Z9qNGtbRQBMdXMJBGRW0YOCecxEWYoiTCvxrYBunqHPdoX2bLOyrMKlZg8thDETw5K7Itci1TXlGy0124QRZZLDFU%2FexhxztMozlosTpMH6ZPge0L%2BOKGnFKjJ4WRwppHPL0PP3SI2P9jLQwFOu3GRhDfkeyDo%2F%2FG7IHgzllZQxLdquvrdCyBVvat3seJlYo06gxapUxhU2JWnFygR03sSxnEkvcpf5Y5eibGq315TDp7fKWm8zbUVl71Aqq%2FZtNnlkWmLnQtno9ycvXYbA6W2pF3aKfCayyC0Ja7Fr%2FPW70%2FHO4YM0OKxFvzf0C1MyPjwAAeNpt1VWUU2cYRuHsgxenQt1d8%2F3JOUnqAyR1d%2FcCLQVKO22pu7tQd3d3d3d3d3cXmGzumrWy3pWLs%2FNdPDMpZaWu1783l1Lpf14MnfzO6FbqVupfGkD30iR60JNe9KYP09CXfvRnAAMZxGCGMG3pW6ZjemZgKDMyEzMzC7MyG7MzB3MyF3MzD%2FMyH%2FOzAAuyEAuzCIuyGIuzBGWCRIUqOQU16jRYkqVYmmVYluVYng6GMZwRNGmxAiuyEiuzCquyGquzBmuyFmuzDuuyHuuzARuyERuzCZuyGZuzBVuyFVuzDduyHdszklGMZgd2ZAw7MZZxjGdnJrALu9LJbuzOHkxkT%2FZib%2FZhX%2FZjfw7gQA7iYA7hUA7jcI7gSI7iaI7hWI7jeE7gRE7iZE5hEqdyGqdzBmdyFmdzDudyHudzARdyERdzCZdyGZdzBVdyFVdzDddyHddzAzdyEzdzC7dyG7dzB3dyF3dzD%2FdyH%2FfzAA%2FyEA%2FzCI%2FyGI%2FzBE%2FyFE%2FzDM%2FyHM%2FzAi%2FyEi%2FzCq%2FyGq%2FzBm%2FyFm%2FzDu%2FyHu%2FzAR%2FyER%2FzCZ%2FyGZ%2FzBV%2FyFV%2FzDd%2FyHd%2FzAz%2FyEz%2FzC7%2FyG7%2FzB3%2FyF3%2FzD%2F9mpYwsy7pl3bMeWc%2BsV9Y765NNk%2FXN%2BmX9swHZwGxQNjgb0nPkmInjR0V7Uq%2FOsaPL5Y7ylE3l8tQNN7kVt%2BrmbuHW3LrbcDvam1rtzVvdm50TxrU%2FDBvRtZUY1rV5a3jXFn550Wo%2FXDNWK3dFmh7X9LimxzU9qulRTY9qelTTo5rlKLt2wk7YiaprL%2ByFvbAX9pK9ZC%2FZS%2FaSvWQv2Uv2kr1kr2KvYq9ir2KvYq9ir2KvYq9ir2Kvaq9qr2qvaq9qr2qvaq9qr2qvai%2B3l9vL7eX2cnu5vdxebi%2B3l9sr7BV2CjuFncJOYaewU9gp7NTs1LyrZq9mr2avZq9mr2avZq9mr26vbq9ur26vbq9ur26vbq9ur26vYa9hr2GvYa9hr2GvYa%2FR7oXuQ%2Feh%2B2j%2FUU7e3C3cqc%2FV3fYdof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D92H7kP3ofvQfeg%2BdB%2B6D92H7kP3ofvQfRT29B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6j6nuG3Ya7U5q%2F0hN3nCTW3Grbu4Wrs%2FrP%2Bk%2F6T%2FpP%2Bk%2F6T%2FpP%2Bk%2B6T7pPek86TzpPOk86TzpOuk66TrpOuk66TrpOlWmPu%2F36zrpOuk66TrpOuk66TrpOvl%2FPek76TvpO%2Bk76TvpO%2Bk76TvpO%2Bk76TvpO7V9t%2BqtVs%2FOaOURU6bo6PgPt6rZbwAAAAABVFDDFwAA%29%20format%28%27woff%27%29%2Curl%28data%3Aapplication%2Fx%2Dfont%2Dtruetype%3Bbase64%2CAAEAAAAPAIAAAwBwRkZUTW0ql9wAAAD8AAAAHEdERUYBRAAEAAABGAAAACBPUy8yZ7lriQAAATgAAABgY21hcNqt44EAAAGYAAAGcmN2dCAAKAL4AAAIDAAAAARnYXNw%2F%2F8AAwAACBAAAAAIZ2x5Zn1dwm8AAAgYAACUpGhlYWQFTS%2FYAACcvAAAADZoaGVhCkQEEQAAnPQAAAAkaG10eNLHIGAAAJ0YAAADdGxvY2Fv%2B5XOAACgjAAAAjBtYXhwAWoA2AAAorwAAAAgbmFtZbMsoJsAAKLcAAADonBvc3S6o%2BU1AACmgAAACtF3ZWJmwxhUUAAAsVQAAAAGAAAAAQAAAADMPaLPAAAAANB2gXUAAAAA0HZzlwABAAAADgAAABgAAAAAAAIAAQABARYAAQAEAAAAAgAAAAMEiwGQAAUABAMMAtAAAABaAwwC0AAAAaQAMgK4AAAAAAUAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAFVLV04AQAAg%2F%2F8DwP8QAAAFFAB7AAAAAQAAAAAAAAAAAAAAIAABAAAABQAAAAMAAAAsAAAACgAAAdwAAQAAAAAEaAADAAEAAAAsAAMACgAAAdwABAGwAAAAaABAAAUAKAAgACsAoAClIAogLyBfIKwgvSISIxsl%2FCYBJvonCScP4APgCeAZ4CngOeBJ4FngYOBp4HngieCX4QnhGeEp4TnhRuFJ4VnhaeF54YnhleGZ4gbiCeIW4hniIeIn4jniSeJZ4mD4%2F%2F%2F%2FAAAAIAAqAKAApSAAIC8gXyCsIL0iEiMbJfwmASb6JwknD%2BAB4AXgEOAg4DDgQOBQ4GDgYuBw4IDgkOEB4RDhIOEw4UDhSOFQ4WDhcOGA4ZDhl%2BIA4gniEOIY4iHiI%2BIw4kDiUOJg%2BP%2F%2F%2F%2F%2Fj%2F9r%2FZv9i4Ajf5N%2B132nfWd4F3P3aHdoZ2SHZE9kOIB0gHCAWIBAgCiAEH%2F4f%2BB%2F3H%2FEf6x%2FlH3wfdh9wH2ofZB9jH10fVx9RH0sfRR9EHt4e3B7WHtUezh7NHsUevx65HrMIFQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAACjAAAAAAAAAA1AAAAIAAAACAAAAADAAAAKgAAACsAAAAEAAAAoAAAAKAAAAAGAAAApQAAAKUAAAAHAAAgAAAAIAoAAAAIAAAgLwAAIC8AAAATAAAgXwAAIF8AAAAUAAAgrAAAIKwAAAAVAAAgvQAAIL0AAAAWAAAiEgAAIhIAAAAXAAAjGwAAIxsAAAAYAAAl%2FAAAJfwAAAAZAAAmAQAAJgEAAAAaAAAm%2BgAAJvoAAAAbAAAnCQAAJwkAAAAcAAAnDwAAJw8AAAAdAADgAQAA4AMAAAAeAADgBQAA4AkAAAAhAADgEAAA4BkAAAAmAADgIAAA4CkAAAAwAADgMAAA4DkAAAA6AADgQAAA4EkAAABEAADgUAAA4FkAAABOAADgYAAA4GAAAABYAADgYgAA4GkAAABZAADgcAAA4HkAAABhAADggAAA4IkAAABrAADgkAAA4JcAAAB1AADhAQAA4QkAAAB9AADhEAAA4RkAAACGAADhIAAA4SkAAACQAADhMAAA4TkAAACaAADhQAAA4UYAAACkAADhSAAA4UkAAACrAADhUAAA4VkAAACtAADhYAAA4WkAAAC3AADhcAAA4XkAAADBAADhgAAA4YkAAADLAADhkAAA4ZUAAADVAADhlwAA4ZkAAADbAADiAAAA4gYAAADeAADiCQAA4gkAAADlAADiEAAA4hYAAADmAADiGAAA4hkAAADtAADiIQAA4iEAAADvAADiIwAA4icAAADwAADiMAAA4jkAAAD1AADiQAAA4kkAAAD%2FAADiUAAA4lkAAAEJAADiYAAA4mAAAAETAAD4%2FwAA%2BP8AAAEUAAH1EQAB9REAAAEVAAH2qgAB9qoAAAEWAAYCCgAAAAABAAABAAAAAAAAAAAAAAAAAAAAAQACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAAEAAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAL4AAAAAf%2F%2FAAIAAgAoAAABaAMgAAMABwAusQEALzyyBwQA7TKxBgXcPLIDAgDtMgCxAwAvPLIFBADtMrIHBgH8PLIBAgDtMjMRIRElMxEjKAFA%2Fujw8AMg%2FOAoAtAAAQBkAGQETARMAFsAAAEyFh8BHgEdATc%2BAR8BFgYPATMyFhcWFRQGDwEOASsBFx4BDwEGJi8BFRQGBwYjIiYvAS4BPQEHDgEvASY2PwEjIiYnJjU0Nj8BPgE7AScuAT8BNhYfATU0Njc2AlgPJgsLCg%2BeBxYIagcCB57gChECBgMCAQIRCuCeBwIHaggWB54PCikiDyYLCwoPngcWCGoHAgee4AoRAgYDAgECEQrgngcCB2oIFgeeDwopBEwDAgECEQrgngcCB2oIFgeeDwopIg8mCwsKD54HFghqBwIHnuAKEQIGAwIBAhEK4J4HAgdqCBYHng8KKSIPJgsLCg%2BeBxYIagcCB57gChECBgAAAAABAAAAAARMBEwAIwAAATMyFhURITIWHQEUBiMhERQGKwEiJjURISImPQE0NjMhETQ2AcLIFR0BXhUdHRX%2Boh0VyBUd%2FqIVHR0VAV4dBEwdFf6iHRXIFR3%2BohUdHRUBXh0VyBUdAV4VHQAAAAABAHAAAARABEwARQAAATMyFgcBBgchMhYPAQ4BKwEVITIWDwEOASsBFRQGKwEiJj0BISImPwE%2BATsBNSEiJj8BPgE7ASYnASY2OwEyHwEWMj8BNgM5%2BgoFCP6UBgUBDAoGBngGGAp9ARMKBgZ4BhgKfQ8LlAsP%2Fu0KBgZ4BhgKff7tCgYGeAYYCnYFBv6UCAUK%2BhkSpAgUCKQSBEwKCP6UBgwMCKAIDGQMCKAIDK4LDw8LrgwIoAgMZAwIoAgMDAYBbAgKEqQICKQSAAABAGQABQSMBK4AOwAAATIXFhcjNC4DIyIOAwchByEGFSEHIR4EMzI%2BAzUzBgcGIyInLgEnIzczNjcjNzM%2BATc2AujycDwGtSM0QDkXEys4MjAPAXtk%2FtQGAZZk%2FtQJMDlCNBUWOUA0I64eYmunznYkQgzZZHABBdpkhhQ%2BH3UErr1oaS1LMCEPCx4uTzJkMjJkSnRCKw8PIjBKK6trdZ4wqndkLzVkV4UljQAAAgB7AAAETASwAD4ARwAAASEyHgUVHAEVFA4FKwEHITIWDwEOASsBFRQGKwEiJj0BISImPwE%2BATsBNSEiJj8BPgE7ARE0NhcRMzI2NTQmIwGsAV5DakIwFgwBAQwWMEJqQ7ICASAKBgZ4BhgKigsKlQoP%2FvUKBgZ4BhgKdf71CgYGeAYYCnUPtstALS1ABLAaJD8yTyokCwsLJCpQMkAlGmQMCKAIDK8LDg8KrwwIoAgMZAwIoAgMAdsKD8j%2B1EJWVEAAAAEAyAGQBEwCvAAPAAATITIWHQEUBiMhIiY9ATQ2%2BgMgFR0dFfzgFR0dArwdFcgVHR0VyBUdAAAAAgDIAAAD6ASwACUAQQAAARUUBisBFRQGBx4BHQEzMhYdASE1NDY7ATU0NjcuAT0BIyImPQEXFRQWFx4BFAYHDgEdASE1NCYnLgE0Njc%2BAT0BA%2BgdFTJjUVFjMhUd%2FOAdFTJjUVFjMhUdyEE3HCAgHDdBAZBBNxwgIBw3QQSwlhUdZFuVIyOVW5YdFZaWFR2WW5UjI5VbZB0VlshkPGMYDDI8MgwYYzyWljxjGAwyPDIMGGM8ZAAAAAEAAAAAAAAAAAAAAAAxAAAB%2F%2FIBLATCBEEAFgAAATIWFzYzMhYVFAYjISImNTQ2NyY1NDYB9261LCwueKqqeP0ST3FVQgLYBEF3YQ6teHmtclBFaw4MGZnXAAAAAgAAAGQEsASvABoAHgAAAB4BDwEBMzIWHQEhNTQ2OwEBJyY%2BARYfATc2AyEnAwL2IAkKiAHTHhQe%2B1AeFB4B1IcKCSAkCm9wCXoBebbDBLMTIxC7%2FRYlFSoqFSUC6rcQJBQJEJSWEPwecAIWAAAAAAQAAABkBLAETAALABcAIwA3AAATITIWBwEGIicBJjYXARYUBwEGJjURNDYJATYWFREUBicBJjQHARYGIyEiJjcBNjIfARYyPwE2MhkEfgoFCP3MCBQI%2FcwIBQMBCAgI%2FvgICgoDjAEICAoKCP74CFwBbAgFCvuCCgUIAWwIFAikCBQIpAgUBEwKCP3JCAgCNwgK2v74CBQI%2FvgIBQoCJgoF%2FvABCAgFCv3aCgUIAQgIFID%2BlAgKCggBbAgIpAgIpAgAAAAD%2F%2FD%2F8AS6BLoACQANABAAAAAyHwEWFA8BJzcTAScJAQUTA%2BAmDpkNDWPWXyL9mdYCZv4f%2FrNuBLoNmQ4mDlzWYP50%2FZrWAmb8anABTwAAAAEAAAAABLAEsAAPAAABETMyFh0BITU0NjsBEQEhArz6FR384B0V%2Bv4MBLACiv3aHRUyMhUdAiYCJgAAAAEADgAIBEwEnAAfAAABJTYWFREUBgcGLgE2NzYXEQURFAYHBi4BNjc2FxE0NgFwAoUnMFNGT4gkV09IQv2oWEFPiCRXT0hCHQP5ow8eIvzBN1EXGSltchkYEAIJm%2F2iKmAVGilucRoYEQJ%2FJioAAAACAAn%2F%2BAS7BKcAHQApAAAAMh4CFQcXFAcBFgYPAQYiJwEGIycHIi4CND4BBCIOARQeATI%2BATQmAZDItoNOAQFOARMXARY7GikT%2Fu13jgUCZLaDTk6DAXKwlFZWlLCUVlYEp06DtmQCBY15%2Fu4aJRg6FBQBEk0BAU6Dtsi2g1tWlLCUVlaUsJQAAQBkAFgErwREABkAAAE%2BAh4CFRQOAwcuBDU0PgIeAQKJMHt4dVg2Q3mEqD4%2Bp4V4Qzhadnh5A7VESAUtU3ZAOXmAf7JVVbJ%2FgHk5QHZTLQVIAAAAAf%2FTAF4EewSUABgAAAETNjIXEyEyFgcFExYGJyUFBiY3EyUmNjMBl4MHFQeBAaUVBhH%2BqoIHDxH%2Bqf6qEQ8Hgv6lEQYUAyABYRMT%2Fp8RDPn%2BbxQLDPb3DAsUAZD7DBEAAv%2FTAF4EewSUABgAIgAAARM2MhcTITIWBwUTFgYnJQUGJjcTJSY2MwUjFwc3Fyc3IycBl4MHFQeBAaUVBhH%2BqoIHDxH%2Bqf6qEQ8Hgv6lEQYUAfPwxUrBw0rA6k4DIAFhExP%2BnxEM%2Bf5vFAsM9vcMCxQBkPsMEWSO4ouM5YzTAAABAAAAAASwBLAAJgAAATIWHQEUBiMVFBYXBR4BHQEUBiMhIiY9ATQ2NyU%2BAT0BIiY9ATQ2Alh8sD4mDAkBZgkMDwr7ggoPDAkBZgkMJj6wBLCwfPouaEsKFwbmBRcKXQoPDwpdChcF5gYXCktoLvp8sAAAAA0AAAAABLAETAAPABMAIwAnACsALwAzADcARwBLAE8AUwBXAAATITIWFREUBiMhIiY1ETQ2FxUzNSkBIgYVERQWMyEyNjURNCYzFTM1BRUzNSEVMzUFFTM1IRUzNQchIgYVERQWMyEyNjURNCYFFTM1IRUzNQUVMzUhFTM1GQR%2BCg8PCvuCCg8PVWQCo%2F3aCg8PCgImCg8Pc2T8GGQDIGT8GGQDIGTh%2FdoKDw8KAiYKDw%2F872QDIGT8GGQDIGQETA8K%2B%2BYKDw8KBBoKD2RkZA8K%2FqIKDw8KAV4KD2RkyGRkZGTIZGRkZGQPCv6iCg8PCgFeCg9kZGRkZMhkZGRkAAAEAAAAAARMBEwADwAfAC8APwAAEyEyFhURFAYjISImNRE0NikBMhYVERQGIyEiJjURNDYBITIWFREUBiMhIiY1ETQ2KQEyFhURFAYjISImNRE0NjIBkBUdHRX%2BcBUdHQJtAZAVHR0V%2FnAVHR39vQGQFR0dFf5wFR0dAm0BkBUdHRX%2BcBUdHQRMHRX%2BcBUdHRUBkBUdHRX%2BcBUdHRUBkBUd%2FagdFf5wFR0dFQGQFR0dFf5wFR0dFQGQFR0AAAkAAAAABEwETAAPAB8ALwA%2FAE8AXwBvAH8AjwAAEzMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2ATMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2ATMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2MsgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR389cgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR389cgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR0ETB0VyBUdHRXIFR0dFcgVHR0VyBUdHRXIFR0dFcgVHf5wHRXIFR0dFcgVHR0VyBUdHRXIFR0dFcgVHR0VyBUd%2FnAdFcgVHR0VyBUdHRXIFR0dFcgVHR0VyBUdHRXIFR0ABgAAAAAEsARMAA8AHwAvAD8ATwBfAAATMzIWHQEUBisBIiY9ATQ2KQEyFh0BFAYjISImPQE0NgEzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2ATMyFh0BFAYrASImPQE0NikBMhYdARQGIyEiJj0BNDYyyBUdHRXIFR0dAaUCvBUdHRX9RBUdHf6FyBUdHRXIFR0dAaUCvBUdHRX9RBUdHf6FyBUdHRXIFR0dAaUCvBUdHRX9RBUdHQRMHRXIFR0dFcgVHR0VyBUdHRXIFR3%2BcB0VyBUdHRXIFR0dFcgVHR0VyBUd%2FnAdFcgVHR0VyBUdHRXIFR0dFcgVHQAAAAABACYALAToBCAAFwAACQE2Mh8BFhQHAQYiJwEmND8BNjIfARYyAdECOwgUB7EICPzxBxUH%2FoAICLEHFAirBxYB3QI7CAixBxQI%2FPAICAGACBQHsQgIqwcAAQBuAG4EQgRCACMAAAEXFhQHCQEWFA8BBiInCQEGIi8BJjQ3CQEmND8BNjIXCQE2MgOIsggI%2FvUBCwgIsggVB%2F70%2FvQHFQiyCAgBC%2F71CAiyCBUHAQwBDAcVBDuzCBUH%2FvT%2B9AcVCLIICAEL%2FvUICLIIFQcBDAEMBxUIsggI%2FvUBDAcAAwAX%2F%2BsExQSZABkAJQBJAAAAMh4CFRQHARYUDwEGIicBBiMiLgI0PgEEIg4BFB4BMj4BNCYFMzIWHQEzMhYdARQGKwEVFAYrASImPQEjIiY9ATQ2OwE1NDYBmcSzgk1OASwICG0HFQj%2B1HeOYrSBTU2BAW%2BzmFhYmLOZWFj%2BvJYKD0sKDw8KSw8KlgoPSwoPDwpLDwSZTYKzYo15%2FtUIFQhsCAgBK01NgbTEs4JNWJmzmFhYmLOZIw8KSw8KlgoPSwoPDwpLDwqWCg9LCg8AAAMAF%2F%2FrBMUEmQAZACUANQAAADIeAhUUBwEWFA8BBiInAQYjIi4CND4BBCIOARQeATI%2BATQmBSEyFh0BFAYjISImPQE0NgGZxLOCTU4BLAgIbQcVCP7Ud45itIFNTYEBb7OYWFiYs5lYWP5YAV4KDw8K%2FqIKDw8EmU2Cs2KNef7VCBUIbAgIAStNTYG0xLOCTViZs5hYWJizmYcPCpYKDw8KlgoPAAAAAAIAFwAXBJkEsAAPAC0AAAEzMhYVERQGKwEiJjURNDYFNRYSFRQOAiIuAjU0EjcVDgEVFB4BMj4BNTQmAiZkFR0dFWQVHR0BD6fSW5vW6tabW9KnZ3xyxejFcnwEsB0V%2FnAVHR0VAZAVHeGmPv7ZuHXWm1tbm9Z1uAEnPqY3yHh0xXJyxXR4yAAEAGQAAASwBLAADwAfAC8APwAAATMyFhURFAYrASImNRE0NgEzMhYVERQGKwEiJjURNDYBMzIWFREUBisBIiY1ETQ2BTMyFh0BFAYrASImPQE0NgQBlgoPDwqWCg8P%2Ft6WCg8PCpYKDw%2F%2B3pYKDw8KlgoPD%2F7elgoPDwqWCg8PBLAPCvuCCg8PCgR%2BCg%2F%2BcA8K%2FRIKDw8KAu4KD%2F7UDwr%2BPgoPDwoBwgoPyA8K%2BgoPDwr6Cg8AAAAAAgAaABsElgSWAEcATwAAATIfAhYfATcWFwcXFh8CFhUUDwIGDwEXBgcnBwYPAgYjIi8CJi8BByYnNycmLwImNTQ%2FAjY%2FASc2Nxc3Nj8CNhIiBhQWMjY0AlghKSYFMS0Fhj0rUAMZDgGYBQWYAQ8YA1AwOIYFLDIFJisfISkmBTEtBYY8LFADGQ0ClwYGlwINGQNQLzqFBS0xBSYreLJ%2BfrJ%2BBJYFmAEOGQJQMDmGBSwxBiYrHiIoJgYxLAWGPSxRAxkOApcFBZcCDhkDUTA5hgUtMAYmKiAhKCYGMC0Fhj0sUAIZDgGYBf6ZfrF%2BfrEABwBkAAAEsAUUABMAFwAhACUAKQAtADEAAAEhMhYdASEyFh0BITU0NjMhNTQ2FxUhNQERFAYjISImNREXETMRMxEzETMRMxEzETMRAfQBLCk7ARMKD%2Fu0DwoBEzspASwBLDsp%2FUQpO2RkZGRkZGRkBRQ7KWQPCktLCg9kKTtkZGT%2B1PzgKTs7KQMgZP1EArz9RAK8%2FUQCvP1EArwAAQAMAAAFCATRAB8AABMBNjIXARYGKwERFAYrASImNREhERQGKwEiJjURIyImEgJsCBUHAmAIBQqvDwr6Cg%2F%2B1A8K%2BgoPrwoFAmoCYAcH%2FaAICv3BCg8PCgF3%2FokKDw8KAj8KAAIAZAAAA%2BgEsAARABcAAAERFBYzIREUBiMhIiY1ETQ2MwEjIiY9AQJYOykBLB0V%2FOAVHR0VA1L6FR0EsP5wKTv9dhUdHRUETBUd%2FnAdFfoAAwAXABcEmQSZAA8AGwAwAAAAMh4CFA4CIi4CND4BBCIOARQeATI%2BATQmBTMyFhURMzIWHQEUBisBIiY1ETQ2AePq1ptbW5vW6tabW1ubAb%2FoxXJyxejFcnL%2BfDIKD68KDw8K%2BgoPDwSZW5vW6tabW1ub1urWmztyxejFcnLF6MUNDwr%2B7Q8KMgoPDwoBXgoPAAAAAAL%2FnAAABRQEsAALAA8AACkBAyMDIQEzAzMDMwEDMwMFFP3mKfIp%2FeYBr9EVohTQ%2Fp4b4BsBkP5wBLD%2B1AEs%2FnD%2B1AEsAAAAAAIAZAAABLAEsAAVAC8AAAEzMhYVETMyFgcBBiInASY2OwERNDYBMzIWFREUBiMhIiY1ETQ2OwEyFh0BITU0NgImyBUdvxQLDf65DSYN%2FrkNCxS%2FHQJUMgoPDwr75goPDwoyCg8DhA8EsB0V%2Fj4XEP5wEBABkBAXAcIVHfzgDwr%2BogoPDwoBXgoPDwqvrwoPAAMAFwAXBJkEmQAPABsAMQAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JgUzMhYVETMyFgcDBiInAyY2OwERNDYB4%2BrWm1tbm9bq1ptbW5sBv%2BjFcnLF6MVycv58lgoPiRUKDd8NJg3fDQoViQ8EmVub1urWm1tbm9bq1ps7csXoxXJyxejFDQ8K%2Fu0XEP7tEBABExAXARMKDwAAAAMAFwAXBJkEmQAPABsAMQAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JiUTFgYrAREUBisBIiY1ESMiJjcTNjIB4%2BrWm1tbm9bq1ptbW5sBv%2BjFcnLF6MVycv7n3w0KFYkPCpYKD4kVCg3fDSYEmVub1urWm1tbm9bq1ps7csXoxXJyxejFAf7tEBf%2B7QoPDwoBExcQARMQAAAAAAIAAAAABLAEsAAZADkAABMhMhYXExYVERQGBwYjISImJyY1EzQ3Ez4BBSEiBgcDBhY7ATIWHwEeATsBMjY%2FAT4BOwEyNicDLgHhAu4KEwO6BwgFDBn7tAweAgYBB7kDEwKX%2FdQKEgJXAgwKlgoTAiYCEwr6ChMCJgITCpYKDAJXAhIEsA4K%2FXQYGf5XDB4CBggEDRkBqRkYAowKDsgOC%2F4%2BCw4OCpgKDg4KmAoODgsBwgsOAAMAFwAXBJkEmQAPABsAJwAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JgUXFhQPAQYmNRE0NgHj6tabW1ub1urWm1tbmwG%2F6MVycsXoxXJy%2Fov9ERH9EBgYBJlbm9bq1ptbW5vW6tabO3LF6MVycsXoxV2%2BDCQMvgwLFQGQFQsAAQAXABcEmQSwACgAAAE3NhYVERQGIyEiJj8BJiMiDgEUHgEyPgE1MxQOAiIuAjQ%2BAjMyA7OHBwsPCv6WCwQHhW2BdMVycsXoxXKWW5vW6tabW1ub1nXABCSHBwQL%2FpYKDwsHhUxyxejFcnLFdHXWm1tbm9bq1ptbAAAAAAIAFwABBJkEsAAaADUAAAE3NhYVERQGIyEiJj8BJiMiDgEVIzQ%2BAjMyEzMUDgIjIicHBiY1ETQ2MyEyFg8BFjMyPgEDs4cHCw8L%2FpcLBAeGboF0xXKWW5vWdcDrllub1nXAnIYHCw8LAWgKBQiFboJ0xXIEJIcHBAv%2BlwsPCweGS3LFdHXWm1v9v3XWm1t2hggFCgFoCw8LB4VMcsUAAAAKAGQAAASwBLAADwAfAC8APwBPAF8AbwB%2FAI8AnwAAEyEyFhURFAYjISImNRE0NgUhIgYVERQWMyEyNjURNCYFMzIWHQEUBisBIiY9ATQ2MyEyFh0BFAYjISImPQE0NgczMhYdARQGKwEiJj0BNDYzITIWHQEUBiMhIiY9ATQ2BzMyFh0BFAYrASImPQE0NjMhMhYdARQGIyEiJj0BNDYHMzIWHQEUBisBIiY9ATQ2MyEyFh0BFAYjISImPQE0Nn0EGgoPDwr75goPDwPA%2FK4KDw8KA1IKDw%2F9CDIKDw8KMgoPD9IBwgoPDwr%2BPgoPD74yCg8PCjIKDw%2FSAcIKDw8K%2Fj4KDw%2B%2BMgoPDwoyCg8P0gHCCg8PCv4%2BCg8PvjIKDw8KMgoPD9IBwgoPDwr%2BPgoPDwSwDwr7ggoPDwoEfgoPyA8K%2FK4KDw8KA1IKD2QPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKDwAAAAACAAAAAARMBLAAGQAjAAABNTQmIyEiBh0BIyIGFREUFjMhMjY1ETQmIyE1NDY7ATIWHQEDhHVT%2FtRSdmQpOzspA4QpOzsp%2FageFMgUHgMgyFN1dlLIOyn9qCk7OykCWCk7lhUdHRWWAAIAZAAABEwETAAJADcAABMzMhYVESMRNDYFMhcWFREUBw4DIyIuAScuAiMiBwYjIicmNRE%2BATc2HgMXHgIzMjc2fTIKD2QPA8AEBRADIUNAMRwaPyonKSxHHlVLBwgGBQ4WeDsXKC4TOQQpLUUdZ1AHBEwPCvvNBDMKDzACBhH%2BWwYGO1AkDQ0ODg8PDzkFAwcPAbY3VwMCAwsGFAEODg5XCAAAAwAAAAAEsASXACEAMQBBAAAAMh4CFREUBisBIiY1ETQuASAOARURFAYrASImNRE0PgEDMzIWFREUBisBIiY1ETQ2ITMyFhURFAYrASImNRE0NgHk6N6jYw8KMgoPjeT%2B%2BuSNDwoyCg9joyqgCAwMCKAIDAwCYKAIDAwIoAgMDASXY6PedP7UCg8PCgEsf9FyctF%2F%2FtQKDw8KASx03qP9wAwI%2FjQIDAwIAcwIDAwI%2FjQIDAwIAcwIDAAAAAACAAAA0wRHA90AFQA5AAABJTYWFREUBiclJisBIiY1ETQ2OwEyBTc2Mh8BFhQPARcWFA8BBiIvAQcGIi8BJjQ%2FAScmND8BNjIXAUEBAgkMDAn%2B%2FhUZ%2BgoPDwr6GQJYeAcUByIHB3h4BwciBxQHeHgHFAciBwd3dwcHIgcUBwMurAYHCv0SCgcGrA4PCgFeCg%2BEeAcHIgcUB3h4BxQHIgcHd3cHByIHFAd4eAcUByIICAAAAAACAAAA0wNyA90AFQAvAAABJTYWFREUBiclJisBIiY1ETQ2OwEyJTMWFxYVFAcGDwEiLwEuATc2NTQnJjY%2FATYBQQECCQwMCf7%2BFRn6Cg8PCvoZAdIECgZgWgYLAwkHHQcDBkhOBgMIHQcDLqwGBwr9EgoHBqwODwoBXgoPZAEJgaGafwkBAQYXBxMIZ36EaggUBxYFAAAAAAMAAADEBGID7AAbADEASwAAATMWFxYVFAYHBgcjIi8BLgE3NjU0JicmNj8BNgUlNhYVERQGJyUmKwEiJjURNDY7ATIlMxYXFhUUBwYPASIvAS4BNzY1NCcmNj8BNgPHAwsGh0RABwoDCQcqCAIGbzs3BgIJKgf9ggECCQwMCf7%2BFRn6Cg8PCvoZAdIECgZgWgYLAwkHHQcDBkhOBgMIHQcD7AEJs9lpy1QJAQYiBhQIlrJarEcJFAYhBb6sBgcK%2FRIKBwasDg8KAV4KD2QBCYGhmn8JAQEGFwcTCGd%2BhGoIFQYWBQAAAAANAAAAAASwBLAACQAVABkAHQAhACUALQA7AD8AQwBHAEsATwAAATMVIxUhFSMRIQEjFTMVIREjESM1IQURIREhESERBSM1MwUjNTMBMxEhETM1MwEzFSMVIzUjNTM1IzUhBREhEQcjNTMFIzUzASM1MwUhNSEB9GRk%2FnBkAfQCvMjI%2FtTIZAJY%2B7QBLAGQASz84GRkArxkZP1EyP4MyGQB9MhkyGRkyAEs%2FUQBLGRkZAOEZGT%2BDGRkAfT%2B1AEsA4RkZGQCWP4MZMgBLAEsyGT%2B1AEs%2FtQBLMhkZGT%2BDP4MAfRk%2FtRkZGRkyGTI%2FtQBLMhkZGT%2B1GRkZAAAAAAJAAAAAASwBLAAAwAHAAsADwATABcAGwAfACMAADcjETMTIxEzASMRMxMjETMBIxEzASE1IRcjNTMXIzUzBSM1M2RkZMhkZAGQyMjIZGQBLMjI%2FOD%2B1AEsyGRkyGRkASzIyMgD6PwYA%2Bj8GAPo%2FBgD6PwYA%2Bj7UGRkW1tbW1sAAAIAAAAKBKYEsAANABUAAAkBFhQHAQYiJwETNDYzBCYiBhQWMjYB9AKqCAj%2BMAgUCP1WAQ8KAUM7Uzs7UzsEsP1WCBQI%2FjAICAKqAdsKD807O1Q7OwAAAAADAAAACgXSBLAADQAZACEAAAkBFhQHAQYiJwETNDYzIQEWFAcBBiIvAQkBBCYiBhQWMjYB9AKqCAj%2BMAgUCP1WAQ8KAwYCqggI%2FjAIFAg4Aaj9RP7TO1M7O1M7BLD9VggUCP4wCAgCqgHbCg%2F9VggUCP4wCAg4AaoCvM07O1Q7OwAAAAABAGQAAASwBLAAJgAAASEyFREUDwEGJjURNCYjISIPAQYWMyEyFhURFAYjISImNRE0PwE2ASwDOUsSQAgKDwr9RBkSQAgFCgK8Cg8PCvyuCg8SixIEsEv8fBkSQAgFCgO2Cg8SQAgKDwr8SgoPDwoDzxkSixIAAAABAMj%2F%2FwRMBLAACgAAEyEyFhURCQERNDb6AyAVHf4%2B%2Fj4dBLAdFfuCAbz%2BQwR%2FFR0AAAAAAwAAAAAEsASwABUARQBVAAABISIGBwMGHwEeATMhMjY%2FATYnAy4BASMiBg8BDgEjISImLwEuASsBIgYVERQWOwEyNj0BNDYzITIWHQEUFjsBMjY1ETQmASEiBg8BBhYzITI2LwEuAQM2%2FkQLEAFOBw45BhcKAcIKFwY%2BDgdTARABVpYKFgROBBYK%2FdoKFgROBBYKlgoPDwqWCg8PCgLuCg8PCpYKDw%2F%2Bsf4MChMCJgILCgJYCgsCJgITBLAPCv7TGBVsCQwMCWwVGAEtCg%2F%2BcA0JnAkNDQmcCQ0PCv12Cg8PCpYKDw8KlgoPDwoCigoP%2FagOCpgKDg4KmAoOAAAAAAQAAABkBLAETAAdACEAKQAxAAABMzIeAh8BMzIWFREUBiMhIiY1ETQ2OwE%2BBAEVMzUEIgYUFjI2NCQyFhQGIiY0AfTIOF00JAcGlik7Oyn8GCk7OymWAgknM10ByGT%2Bz76Hh76H%2Fu9WPDxWPARMKTs7FRQ7Kf2oKTs7KQJYKTsIG0U1K%2F7UZGRGh76Hh74IPFY8PFYAAAAAAgA1AAAEsASvACAAIwAACQEWFx4BHwEVITUyNi8BIQYHBh4CMxUhNTY3PgE%2FAQEDIQMCqQGBFCgSJQkK%2Fl81LBFS%2Fnk6IgsJKjIe%2FpM4HAwaBwcBj6wBVKIEr%2FwaMioTFQECQkJXLd6RWSIuHAxCQhgcDCUNDQPu%2FVoByQAAAAADAGQAAAPwBLAAJwAyADsAAAEeBhUUDgMjITU%2BATURNC4EJzUFMh4CFRQOAgclMzI2NTQuAisBETMyNjU0JisBAvEFEzUwOyodN1htbDD%2BDCk7AQYLFyEaAdc5dWM%2BHy0tEP6Pi05pESpTPnbYUFJ9Xp8CgQEHGB0zOlIuQ3VONxpZBzMoAzsYFBwLEAkHRwEpSXNDM1s6KwkxYUopOzQb%2FK5lUFqBAAABAMgAAANvBLAAGQAAARcOAQcDBhYXFSE1NjcTNjQuBCcmJzUDbQJTQgeECSxK%2Fgy6Dq0DAw8MHxUXDQYEsDkTNSj8uTEoBmFhEFIDQBEaExAJCwYHAwI5AAAAAAL%2FtQAABRQEsAAlAC8AAAEjNC4FKwERFBYfARUhNTI%2BAzURIyIOBRUjESEFIxEzByczESM3BRQyCAsZEyYYGcgyGRn%2BcAQOIhoWyBkYJhMZCwgyA%2Bj7m0tLfX1LS30DhBUgFQ4IAwH8rhYZAQJkZAEFCRUOA1IBAwgOFSAVASzI%2FOCnpwMgpwACACH%2FtQSPBLAAJQAvAAABIzQuBSsBERQWHwEVITUyPgM1ESMiDgUVIxEhEwc1IRUnNxUhNQRMMggLGRMmGBnIMhkZ%2FnAEDiIaFsgZGCYTGQsIMgPoQ6f84KenAyADhBUgFQ4IAwH9dhYZAQJkZAEFCRUOAooBAwgOFSAVASz7gn1LS319S0sABAAAAAAEsARMAA8AHwAvAD8AABMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYyAlgVHR0V%2FagVHR0VA%2BgVHR0V%2FBgVHR0VAyAVHR0V%2FOAVHR0VBEwVHR0V%2B7QVHR0ETB0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR0ABAAAAAAEsARMAA8AHwAvAD8AABMhMhYdARQGIyEiJj0BNDYDITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NgMhMhYdARQGIyEiJj0BNDb6ArwVHR0V%2FUQVHR2zBEwVHR0V%2B7QVHR3dArwVHR0V%2FUQVHR2zBEwVHR0V%2B7QVHR0ETB0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR0ABAAAAAAEsARMAA8AHwAvAD8AAAE1NDYzITIWHQEUBiMhIiYBNTQ2MyEyFh0BFAYjISImEzU0NjMhMhYdARQGIyEiJgE1NDYzITIWHQEUBiMhIiYB9B0VAlgVHR0V%2FagVHf5wHRUD6BUdHRX8GBUdyB0VAyAVHR0V%2FOAVHf7UHRUETBUdHRX7tBUdA7ZkFR0dFWQVHR3%2B6WQVHR0VZBUdHf7pZBUdHRVkFR0d%2FulkFR0dFWQVHR0AAAQAAAAABLAETAAPAB8ALwA%2FAAATITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2MgRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dBEwdFWQVHR0VZBUd%2FtQdFWQVHR0VZBUd%2FtQdFWQVHR0VZBUd%2FtQdFWQVHR0VZBUdAAgAAAAABLAETAAPAB8ALwA%2FAE8AXwBvAH8AABMzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2ATMyFh0BFAYrASImPQE0NikBMhYdARQGIyEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2KQEyFh0BFAYjISImPQE0NgEzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2MmQVHR0VZBUdHQFBAyAVHR0V%2FOAVHR3%2B6WQVHR0VZBUdHQFBAyAVHR0V%2FOAVHR3%2B6WQVHR0VZBUdHQFBAyAVHR0V%2FOAVHR3%2B6WQVHR0VZBUdHQFBAyAVHR0V%2FOAVHR0ETB0VZBUdHRVkFR0dFWQVHR0VZBUd%2FtQdFWQVHR0VZBUdHRVkFR0dFWQVHf7UHRVkFR0dFWQVHR0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR0dFWQVHR0VZBUdAAAG%2F5wAAASwBEwAAwATACMAKgA6AEoAACEjETsCMhYdARQGKwEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2BQc1IzUzNQUhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2AZBkZJZkFR0dFWQVHR0VAfQVHR0V%2FgwVHR3%2B%2BqfIyAHCASwVHR0V%2FtQVHR0VAlgVHR0V%2FagVHR0ETB0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR36fUtkS68dFWQVHR0VZBUd%2FtQdFWQVHR0VZBUdAAAABgAAAAAFFARMAA8AEwAjACoAOgBKAAATMzIWHQEUBisBIiY9ATQ2ASMRMwEhMhYdARQGIyEiJj0BNDYFMxUjFSc3BSEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYyZBUdHRVkFR0dA2dkZPyuAfQVHR0V%2FgwVHR0EL8jIp6f75gEsFR0dFf7UFR0dFQJYFR0dFf2oFR0dBEwdFWQVHR0VZBUd%2B7QETP7UHRVkFR0dFWQVHchkS319rx0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR0AAAAAAgAAAMgEsAPoAA8AEgAAEyEyFhURFAYjISImNRE0NgkCSwLuHywsH%2F0SHywsBIT%2B1AEsA%2BgsH%2F12HywsHwKKHyz9RAEsASwAAwAAAAAEsARMAA8AFwAfAAATITIWFREUBiMhIiY1ETQ2FxE3BScBExEEMhYUBiImNCwEWBIaGhL7qBIaGkr3ASpKASXs%2FNJwTk5wTgRMGhL8DBIaGhID9BIaZP0ftoOcAT7%2B4AH0dE5vT09vAAAAAAIA2wAFBDYEkQAWAB4AAAEyHgEVFAcOAQ8BLgQnJjU0PgIWIgYUFjI2NAKIdcZzRkWyNjYJIV5YbSk8RHOft7eCgreCBJF4ynVzj23pPz4IIWZomEiEdVijeUjDgriBgbgAAAACABcAFwSZBJkADwAXAAAAMh4CFA4CIi4CND4BAREiDgEUHgEB4%2BrWm1tbm9bq1ptbW5sBS3TFcnLFBJlbm9bq1ptbW5vW6tab%2FG8DVnLF6MVyAAACAHUAAwPfBQ8AGgA1AAABHgYVFA4DBy4DNTQ%2BBQMOAhceBBcWNj8BNiYnLgInJjc2IyYCKhVJT1dOPiUzVnB9P1SbfEokP0xXUEm8FykoAwEbITEcExUWAgYCCQkFEikMGiACCAgFD0iPdXdzdYdFR4BeRiYEBTpjl1lFh3ZzeHaQ%2Ff4hS4I6JUEnIw4IBwwQIgoYBwQQQSlZtgsBAAAAAwAAAAAEywRsAAwAKgAvAAABNz4CHgEXHgEPAiUhMhcHISIGFREUFjMhMjY9ATcRFAYjISImNRE0NgkBBzcBA%2BhsAgYUFR0OFgoFBmz9BQGQMje7%2FpApOzspAfQpO8i7o%2F5wpbm5Azj%2BlqE3AWMD9XMBAgIEDw4WKgsKc8gNuzsp%2FgwpOzsptsj%2BtKW5uaUBkKW5%2Ftf%2BljKqAWMAAgAAAAAEkwRMABsANgAAASEGByMiBhURFBYzITI2NTcVFAYjISImNRE0NgUBFhQHAQYmJzUmDgMHPgY3NT4BAV4BaaQ0wyk7OykB9Ck7yLml%2FnClubkCfwFTCAj%2BrAcLARo5ZFRYGgouOUlARioTAQsETJI2Oyn%2BDCk7OymZZ6W5uaUBkKW5G%2F7TBxUH%2Fs4GBAnLAQINFjAhO2JBNB0UBwHSCgUAAAAAAgAAAAAEnQRMAB0ANQAAASEyFwchIgYVERQWMyEyNj0BNxUUBiMhIiY1ETQ2CQE2Mh8BFhQHAQYiLwEmND8BNjIfARYyAV4BXjxDsv6jKTs7KQH0KTvIuaX%2BcKW5uQHKAYsHFQdlBwf97QcVB%2FgHB2UHFQdvCBQETBexOyn%2BDCk7OylFyNulubmlAZCluf4zAYsHB2UHFQf97AcH%2BAcVB2UHB28HAAAAAQAKAAoEpgSmADsAAAkBNjIXARYGKwEVMzU0NhcBFhQHAQYmPQEjFTMyFgcBBiInASY2OwE1IxUUBicBJjQ3ATYWHQEzNSMiJgE%2BAQgIFAgBBAcFCqrICggBCAgI%2FvgICsiqCgUH%2FvwIFAj%2B%2BAgFCq%2FICgj%2B%2BAgIAQgICsivCgUDlgEICAj%2B%2BAgKyK0KBAf%2B%2FAcVB%2F73BwQKrcgKCP74CAgBCAgKyK0KBAcBCQcVBwEEBwQKrcgKAAEAyAAAA4QETAAZAAATMzIWFREBNhYVERQGJwERFAYrASImNRE0NvpkFR0B0A8VFQ%2F%2BMB0VZBUdHQRMHRX%2BSgHFDggV%2FBgVCA4Bxf5KFR0dFQPoFR0AAAABAAAAAASwBEwAIwAAEzMyFhURATYWFREBNhYVERQGJwERFAYnAREUBisBIiY1ETQ2MmQVHQHQDxUB0A8VFQ%2F%2BMBUP%2FjAdFWQVHR0ETB0V%2FkoBxQ4IFf5KAcUOCBX8GBUIDgHF%2FkoVCA4Bxf5KFR0dFQPoFR0AAAABAJ0AGQSwBDMAFQAAAREUBicBERQGJwEmNDcBNhYVEQE2FgSwFQ%2F%2BMBUP%2FhQPDwHsDxUB0A8VBBr8GBUIDgHF%2FkoVCA4B4A4qDgHgDggV%2FkoBxQ4IAAAAAQDIABYEMwQ2AAsAABMBFhQHAQYmNRE0NvMDLhIS%2FNISGRkEMv4OCx4L%2Fg4LDhUD6BUOAAIAyABkA4QD6AAPAB8AABMzMhYVERQGKwEiJjURNDYhMzIWFREUBisBIiY1ETQ2%2BsgVHR0VyBUdHQGlyBUdHRXIFR0dA%2BgdFfzgFR0dFQMgFR0dFfzgFR0dFQMgFR0AAAEAyABkBEwD6AAPAAABERQGIyEiJjURNDYzITIWBEwdFfzgFR0dFQMgFR0DtvzgFR0dFQMgFR0dAAAAAAEAAAAZBBMEMwAVAAABETQ2FwEWFAcBBiY1EQEGJjURNDYXAfQVDwHsDw%2F%2BFA8V%2FjAPFRUPAmQBthUIDv4gDioO%2FiAOCBUBtv47DggVA%2BgVCA4AAAH%2F%2FgACBLMETwAjAAABNzIWFRMUBiMHIiY1AwEGJjUDAQYmNQM0NhcBAzQ2FwEDNDYEGGQUHgUdFWQVHQL%2BMQ4VAv4yDxUFFQ8B0gIVDwHSAh0ETgEdFfwYFR0BHRUBtf46DwkVAbX%2BOQ4JFAPoFQkP%2Fj4BthQJDv49AbYVHQAAAQEsAAAD6ARMABkAAAEzMhYVERQGKwEiJjURAQYmNRE0NhcBETQ2A1JkFR0dFWQVHf4wDxUVDwHQHQRMHRX8GBUdHRUBtv47DggVA%2BgVCA7%2BOwG2FR0AAAIAZADIBLAESAALABsAAAkBFgYjISImNwE2MgEhMhYdARQGIyEiJj0BNDYCrgH1DwkW%2B%2B4WCQ8B9Q8q%2FfcD6BUdHRX8GBUdHQQ5%2FeQPFhYPAhwP%2FUgdFWQVHR0VZBUdAAEAiP%2F8A3UESgAFAAAJAgcJAQN1%2FqABYMX92AIoA4T%2Bn%2F6fxgIoAiYAAAAAAQE7%2F%2FwEKARKAAUAAAkBJwkBNwQo%2FdnGAWH%2Bn8YCI%2F3ZxgFhAWHGAAIAFwAXBJkEmQAPADMAAAAyHgIUDgIiLgI0PgEFIyIGHQEjIgYdARQWOwEVFBY7ATI2PQEzMjY9ATQmKwE1NCYB4%2BrWm1tbm9bq1ptbW5sBfWQVHZYVHR0Vlh0VZBUdlhUdHRWWHQSZW5vW6tabW1ub1urWm7odFZYdFWQVHZYVHR0Vlh0VZBUdlhUdAAAAAAIAFwAXBJkEmQAPAB8AAAAyHgIUDgIiLgI0PgEBISIGHQEUFjMhMjY9ATQmAePq1ptbW5vW6tabW1ubAkX%2BDBUdHRUB9BUdHQSZW5vW6tabW1ub1urWm%2F5%2BHRVkFR0dFWQVHQACABcAFwSZBJkADwAzAAAAMh4CFA4CIi4CND4BBCIPAScmIg8BBhQfAQcGFB8BFjI%2FARcWMj8BNjQvATc2NC8BAePq1ptbW5vW6tabW1ubAeUZCXh4CRkJjQkJeHgJCY0JGQl4eAkZCY0JCXh4CQmNBJlbm9bq1ptbW5vW6tabrQl4eAkJjQkZCXh4CRkJjQkJeHgJCY0JGQl4eAkZCY0AAgAXABcEmQSZAA8AJAAAADIeAhQOAiIuAjQ%2BAQEnJiIPAQYUHwEWMjcBNjQvASYiBwHj6tabW1ub1urWm1tbmwEVVAcVCIsHB%2FIHFQcBdwcHiwcVBwSZW5vW6tabW1ub1urWm%2F4xVQcHiwgUCPEICAF3BxUIiwcHAAAAAAMAFwAXBJkEmQAPADsASwAAADIeAhQOAiIuAjQ%2BAQUiDgMVFDsBFjc%2BATMyFhUUBgciDgUHBhY7ATI%2BAzU0LgMTIyIGHQEUFjsBMjY9ATQmAePq1ptbW5vW6tabW1ubAT8dPEIyIRSDHgUGHR8UFw4TARkOGhITDAIBDQ6tBx4oIxgiM0Q8OpYKDw8KlgoPDwSZW5vW6tabW1ub1urWm5ELHi9PMhkFEBQQFRIXFgcIBw4UHCoZCBEQKDhcNi9IKhsJ%2FeMPCpYKDw8KlgoPAAADABcAFwSZBJkADwAfAD4AAAAyHgIUDgIiLgI0PgEFIyIGHQEUFjsBMjY9ATQmAyMiBh0BFBY7ARUjIgYdARQWMyEyNj0BNCYrARE0JgHj6tabW1ub1urWm1tbmwGWlgoPDwqWCg8PCvoKDw8KS0sKDw8KAV4KDw8KSw8EmVub1urWm1tbm9bq1ptWDwqWCg8PCpYKD%2F7UDwoyCg%2FIDwoyCg8PCjIKDwETCg8AAgAAAAAEsASwAC8AXwAAATMyFh0BHgEXMzIWHQEUBisBDgEHFRQGKwEiJj0BLgEnIyImPQE0NjsBPgE3NTQ2ExUUBisBIiY9AQ4BBzMyFh0BFAYrAR4BFzU0NjsBMhYdAT4BNyMiJj0BNDY7AS4BAg2WCg9nlxvCCg8PCsIbl2cPCpYKD2eXG8IKDw8KwhuXZw%2B5DwqWCg9EZheoCg8PCqgXZkQPCpYKD0RmF6gKDw8KqBdmBLAPCsIbl2cPCpYKD2eXG8IKDw8KwhuXZw8KlgoPZ5cbwgoP%2Fs2oCg8PCqgXZkQPCpYKD0RmF6gKDw8KqBdmRA8KlgoPRGYAAwAXABcEmQSZAA8AGwA%2FAAAAMh4CFA4CIi4CND4BBCIOARQeATI%2BATQmBxcWFA8BFxYUDwEGIi8BBwYiLwEmND8BJyY0PwE2Mh8BNzYyAePq1ptbW5vW6tabW1ubAb%2FoxXJyxejFcnKaQAcHfHwHB0AHFQd8fAcVB0AHB3x8BwdABxUHfHwHFQSZW5vW6tabW1ub1urWmztyxejFcnLF6MVaQAcVB3x8BxUHQAcHfHwHB0AHFQd8fAcVB0AHB3x8BwAAAAMAFwAXBJkEmQAPABsAMAAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JgcXFhQHAQYiLwEmND8BNjIfATc2MgHj6tabW1ub1urWm1tbmwG%2F6MVycsXoxXJyg2oHB%2F7ACBQIyggIagcVB0%2FFBxUEmVub1urWm1tbm9bq1ps7csXoxXJyxejFfWoHFQf%2BvwcHywcVB2oICE%2FFBwAAAAMAFwAXBJkEmQAPABgAIQAAADIeAhQOAiIuAjQ%2BAQUiDgEVFBcBJhcBFjMyPgE1NAHj6tabW1ub1urWm1tbmwFLdMVyQQJLafX9uGhzdMVyBJlbm9bq1ptbW5vW6tabO3LFdHhpAktB0P24PnLFdHMAAAAAAQAXAFMEsAP5ABUAABMBNhYVESEyFh0BFAYjIREUBicBJjQnAgoQFwImFR0dFf3aFxD99hACRgGrDQoV%2Ft0dFcgVHf7dFQoNAasNJgAAAAABAAAAUwSZA%2FkAFQAACQEWFAcBBiY1ESEiJj0BNDYzIRE0NgJ%2FAgoQEP32EBf92hUdHRUCJhcD8f5VDSYN%2FlUNChUBIx0VyBUdASMVCgAAAAEAtwAABF0EmQAVAAAJARYGIyERFAYrASImNREhIiY3ATYyAqoBqw0KFf7dHRXIFR3%2B3RUKDQGrDSYEif32EBf92hUdHRUCJhcQAgoQAAAAAQC3ABcEXQSwABUAAAEzMhYVESEyFgcBBiInASY2MyERNDYCJsgVHQEjFQoN%2FlUNJg3%2BVQ0KFQEjHQSwHRX92hcQ%2FfYQEAIKEBcCJhUdAAABAAAAtwSZBF0AFwAACQEWFAcBBiY1EQ4DBz4ENxE0NgJ%2FAgoQEP32EBdesKWBJAUsW4fHfhcEVf5VDSYN%2FlUNChUBIwIkRHVNabGdcUYHAQYVCgACAAAAAASwBLAAFQArAAABITIWFREUBi8BBwYiLwEmND8BJyY2ASEiJjURNDYfATc2Mh8BFhQPARcWBgNSASwVHRUOXvkIFAhqBwf5Xg4I%2FiH%2B1BUdFQ5e%2BQgUCGoHB%2FleDggEsB0V%2FtQVCA5e%2BQcHaggUCPleDhX7UB0VASwVCA5e%2BQcHaggUCPleDhUAAAACAEkASQRnBGcAFQArAAABFxYUDwEXFgYjISImNRE0Nh8BNzYyASEyFhURFAYvAQcGIi8BJjQ%2FAScmNgP2agcH%2BV4OCBX%2B1BUdFQ5e%2BQgU%2FQwBLBUdFQ5e%2BQgUCGoHB%2FleDggEYGoIFAj5Xg4VHRUBLBUIDl75B%2F3xHRX%2B1BUIDl75BwdqCBQI%2BV4OFQAAAAADABcAFwSZBJkADwAfAC8AAAAyHgIUDgIiLgI0PgEFIyIGFxMeATsBMjY3EzYmAyMiBh0BFBY7ATI2PQE0JgHj6tabW1ub1urWm1tbmwGz0BQYBDoEIxQ2FCMEOgQYMZYKDw8KlgoPDwSZW5vW6tabW1ub1urWm7odFP7SFB0dFAEuFB3%2BDA8KlgoPDwqWCg8AAAAABQAAAAAEsASwAEkAVQBhAGgAbwAAATIWHwEWHwEWFxY3Nj8BNjc2MzIWHwEWHwIeATsBMhYdARQGKwEiBh0BIREjESE1NCYrASImPQE0NjsBMjY1ND8BNjc%2BBAUHBhY7ATI2LwEuAQUnJgYPAQYWOwEyNhMhIiY1ESkBERQGIyERAQQJFAUFFhbEFQ8dCAsmxBYXERUXMA0NDgQZCAEPCj0KDw8KMgoP%2FnDI%2FnAPCjIKDw8KPQsOCRkFDgIGFRYfAp2mBwQK2woKAzMDEP41sQgQAzMDCgrnCwMe%2FokKDwGQAlgPCv6JBLAEAgIKDXYNCxUJDRZ2DQoHIREQFRh7LAkLDwoyCg8PCq8BLP7UrwoPDwoyCg8GBQQwgBkUAwgWEQ55ogcKDgqVCgSqnQcECo8KDgr8cg8KAXf%2BiQoPAZAAAAAAAgAAAAwErwSmACsASQAAATYWFQYCDgQuAScmByYOAQ8BBiY1NDc%2BATc%2BAScuAT4BNz4GFyYGBw4BDwEOBAcOARY2Nz4CNz4DNz4BBI0IGgItQmxhi2KORDg9EQQRMxuZGhYqCFUYEyADCQIQOjEnUmFch3vAJQgdHyaiPT44XHRZUhcYDhItIRmKcVtGYWtbKRYEBKYDEwiy%2Ft3IlVgxEQgLCwwBAQIbG5kYEyJAJghKFRE8Hzdff4U%2FM0o1JSMbL0QJGCYvcSEhHjZST2c1ODwEJygeW0AxJUBff1UyFAABAF0AHgRyBM8ATwAAAQ4BHgQXLgc%2BATceAwYHDgQHBicmNzY3PgQuAScWDgMmJy4BJyY%2BBDcGHgM3PgEuAicmPgMCjScfCic4R0IgBBsKGAoQAwEJEg5gikggBhANPkpTPhZINx8SBgsNJysiCRZOQQoVNU1bYC9QZwICBAUWITsoCAYdJzIYHw8YIiYHDyJJYlkEz0OAZVxEOSQMBzgXOB42IzElKRIqg5Gnl0o3Z0c6IAYWCwYNAwQFIDhHXGF1OWiqb0sdBxUknF0XNTQ8PEUiNWNROBYJDS5AQVUhVZloUSkAAAAAA%2F%2FcAGoE1ARGABsAPwBRAAAAMh4FFA4FIi4FND4EBSYGFxYVFAYiJjU0NzYmBwYHDgEXHgQyPgM3NiYnJgUHDgEXFhcWNj8BNiYnJicuAQIGpJ17bk85HBw6T257naKde25POhwcOU9uewIPDwYIGbD4sBcIBw5GWg0ECxYyWl%2BDiINfWjIWCwQMWv3%2FIw8JCSU4EC0OIw4DDywtCyIERi1JXGJcSSpJXGJcSS0tSVxiXEkqSVxiXEncDwYTOT58sLB8OzcTBg9FcxAxEiRGXkQxMEVeRSQSMRF1HiQPLxJEMA0EDyIPJQ8sSRIEAAAABP%2FcAAAE1ASwABQAJwA7AEwAACEjNy4ENTQ%2BBTMyFzczEzceARUUDgMHNz4BNzYmJyYlBgcOARceBBc3LgE1NDc2JhcHDgEXFhcWNj8CJyYnLgECUJQfW6l2WSwcOU9ue51SPUEglCYvbIknUGqYUi5NdiYLBAw2%2FVFGWg0ECxIqSExoNSlrjxcIB3wjDwkJJTgQLQ4MFgMsLQsieBRhdHpiGxVJXGJcSS0Pef5StVXWNBpacm5jGq0xiD8SMRFGckVzEDESHjxRQTkNmhKnbjs3EwZwJA8vEkQwDQQPC1YELEkSBAAAAAP%2FngAABRIEqwALABgAKAAAJwE2FhcBFgYjISImJSE1NDY7ATIWHQEhAQczMhYPAQ4BKwEiJi8BJjZaAoIUOBQCghUbJfryJRsBCgFZDwqWCg8BWf5DaNAUGAQ6BCMUNhQjBDoEGGQEKh8FIfvgIEdEhEsKDw8KSwLT3x0U%2FBQdHRT8FB0AAAABAGQAFQSwBLAAKAAAADIWFREBHgEdARQGJyURFh0BFAYvAQcGJj0BNDcRBQYmPQE0NjcBETQCTHxYAWsPFhgR%2FplkGhPNzRMaZP6ZERgWDwFrBLBYPv6t%2FrsOMRQpFA0M%2Bf75XRRAFRAJgIAJEBVAFF0BB%2FkMDRQpFDEOAUUBUz4AAAARAAAAAARMBLAAHQAnACsALwAzADcAOwA%2FAEMARwBLAE8AUwBXAFsAXwBjAAABMzIWHQEzMhYdASE1NDY7ATU0NjsBMhYdASE1NDYBERQGIyEiJjURFxUzNTMVMzUzFTM1MxUzNTMVMzUFFTM1MxUzNTMVMzUzFTM1MxUzNQUVMzUzFTM1MxUzNTMVMzUzFTM1A1JkFR0yFR37tB0VMh0VZBUdAfQdAQ8dFfwYFR1kZGRkZGRkZGRk%2FHxkZGRkZGRkZGT8fGRkZGRkZGRkZASwHRUyHRWWlhUdMhUdHRUyMhUd%2FnD9EhUdHRUC7shkZGRkZGRkZGRkyGRkZGRkZGRkZGTIZGRkZGRkZGRkZAAAAAMAAAAZBXcElwAZACUANwAAARcWFA8BBiY9ASMBISImPQE0NjsBATM1NDYBBycjIiY9ATQ2MyEBFxYUDwEGJj0BIyc3FzM1NDYEb%2FkPD%2FkOFZ%2F9qP7dFR0dFdECWPEV%2FamNetEVHR0VASMDGvkPD%2FkOFfG1jXqfFQSN5g4qDuYOCBWW%2FagdFWQVHQJYlhUI%2FpiNeh0VZBUd%2Fk3mDioO5g4IFZa1jXqWFQgAAAABAAAAAASwBEwAEgAAEyEyFhURFAYjIQERIyImNRE0NmQD6Ck7Oyn9rP7QZCk7OwRMOyn9qCk7%2FtQBLDspAlgpOwAAAAMAZAAABEwEsAAJABMAPwAAEzMyFh0BITU0NiEzMhYdASE1NDYBERQOBSIuBTURIRUUFRwBHgYyPgYmNTQ9AZbIFR3%2B1B0C0cgVHf7UHQEPBhgoTGacwJxmTCgYBgEsAwcNFB8nNkI2Jx8TDwUFAQSwHRX6%2BhUdHRX6%2BhUd%2FnD%2B1ClJalZcPigoPlxWakkpASz6CRIVKyclIRsWEAgJEBccISUnKhURCPoAAAAB%2F%2F8A1ARMA8IABQAAAQcJAScBBEzG%2Fp%2F%2Bn8UCJwGbxwFh%2Fp%2FHAicAAQAAAO4ETQPcAAUAAAkCNwkBBE392v3ZxgFhAWEDFf3ZAifH%2Fp8BYQAAAAAC%2F1EAZAVfA%2BgAFAApAAABITIWFREzMhYPAQYiLwEmNjsBESElFxYGKwERIRchIiY1ESMiJj8BNjIBlALqFR2WFQgO5g4qDuYOCBWW%2FoP%2BHOYOCBWWAYHX%2FRIVHZYVCA7mDioD6B0V%2FdkVDvkPD%2FkOFQGRuPkOFf5wyB0VAiYVDvkPAAABAAYAAASeBLAAMAAAEzMyFh8BITIWBwMOASMhFyEyFhQGKwEVFAYiJj0BIRUUBiImPQEjIiYvAQMjIiY0NjheERwEJgOAGB4FZAUsIf2HMAIXFR0dFTIdKh3%2B1B0qHR8SHQYFyTYUHh4EsBYQoiUY%2FiUVK8gdKh0yFR0dFTIyFR0dFTIUCQoDwR0qHQAAAAACAAAAAASwBEwACwAPAAABFSE1MzQ2MyEyFhUFIREhBLD7UMg7KQEsKTv9RASw%2B1AD6GRkKTs7Kcj84AACAAAAAAXcBEwADAAQAAATAxEzNDYzITIWFSEVBQEhAcjIyDspASwqOgH0ASz%2B1PtQASwDIP5wAlgpOzspyGT9RAK8AAEBRQAAA2sErwAbAAABFxYGKwERMzIWDwEGIi8BJjY7AREjIiY%2FATYyAnvmDggVlpYVCA7mDioO5g4IFZaWFQgO5g4qBKD5DhX9pxUO%2BQ8P%2BQ4VAlkVDvkPAAAAAQABAUQErwNrABsAAAEXFhQPAQYmPQEhFRQGLwEmND8BNhYdASE1NDYDqPkODvkPFf2oFQ%2F5Dg75DxUCWBUDYOUPKQ%2FlDwkUl5cUCQ%2FlDykP5Q8JFZWVFQkAAAAEAAAAAASwBLAACQAZAB0AIQAAAQMuASMhIgYHAwUhIgYdARQWMyEyNj0BNCYFNTMVMzUzFQSRrAUkFP1gFCQFrAQt%2FBgpOzspA%2BgpOzv%2Bq2RkZAGQAtwXLSgV%2FR1kOylkKTs7KWQpO8hkZGRkAAAAA%2F%2BcAGQEsARMAAsAIwAxAAAAMhYVERQGIiY1ETQDJSMTFgYjIisBIiYnAj0BNDU0PgE7ASUBFSIuAz0BND4CNwRpKh0dKh1k%2FV0mLwMRFQUCVBQdBDcCCwzIAqP8GAQOIhoWFR0dCwRMHRX8rhUdHRUDUhX8mcj%2B7BAIHBUBUQ76AgQQDw36%2FtT6AQsTKRwyGigUDAEAAAACAEoAAARmBLAALAA1AAABMzIWDwEeARcTFzMyFhQGBw4EIyIuBC8BLgE0NjsBNxM%2BATcnJjYDFjMyNw4BIiYCKV4UEgYSU3oPP3YRExwaEggeZGqfTzl0XFU%2BLwwLEhocExF2Pw96UxIGEyQyNDUxDDdGOASwFRMlE39N%2FrmtHSkoBwQLHBYSCg4REg4FBAgoKR2tAUdNfhQgExr7vgYGMT09AAEAFAAUBJwEnAAXAAABNwcXBxcHFycHJwcnBzcnNyc3Jxc3FzcDIOBO6rS06k7gLZubLeBO6rS06k7gLZubA7JO4C2bmy3gTuq0tOpO4C2bmy3gTuq0tAADAAAAZASwBLAAIQAtAD0AAAEzMhYdAQchMhYdARQHAw4BKwEiJi8BIyImNRE0PwI%2BARcPAREzFzMTNSE3NQEzMhYVERQGKwEiJjURNDYCijIoPBwBSCg8He4QLBf6B0YfHz0tNxSRYA0xG2SWZIjW%2Bv4%2BMv12ZBUdHRVkFR0dBLBRLJZ9USxkLR3%2BqBghMhkZJCcBkCQbxMYcKGTU1f6JZAF3feGv%2FtQdFf4MFR0dFQH0FR0AAAAAAwAAAAAEsARMACAAMAA8AAABMzIWFxMWHQEUBiMhFh0BFAYrASImLwImNRE0NjsBNgUzMhYVERQGKwEiJjURNDYhByMRHwEzNSchNQMCWPoXLBDuHTwo%2FrgcPCgyGzENYJEUNy09fP3pZBUdHRVkFR0dAl%2BIZJZkMjIBwvoETCEY%2FqgdLWQsUXYHlixRKBzGxBskAZAnJGRkHRX%2BDBUdHRUB9BUdZP6J1dSv4X0BdwADAAAAZAUOBE8AGwA3AEcAAAElNh8BHgEPASEyFhQGKwEDDgEjISImNRE0NjcXERchEz4BOwEyNiYjISoDLgQnJj8BJwUzMhYVERQGKwEiJjURNDYBZAFrHxZuDQEMVAEuVGxuVGqDBhsP%2FqoHphwOOmQBJYMGGw%2FLFRMSFv44AgoCCQMHAwUDAQwRklb9T2QVHR0VZBUdHQNp5hAWcA0mD3lMkE7%2BrRUoog0CDRElCkj%2BCVkBUxUoMjIBAgIDBQIZFrdT5B0V%2FgwVHR0VAfQVHQAAAAP%2FnABkBLAETwAdADYARgAAAQUeBBURFAYjISImJwMjIiY0NjMhJyY2PwE2BxcWBw4FKgIjIRUzMhYXEyE3ESUFMzIWFREUBisBIiY1ETQ2AdsBbgIIFBANrAf%2Bqg8bBoNqVW1sVAEuVQsBDW4WSpIRDAIDBQMHAwkDCgH%2BJd0PHAaCASZq%2FqoCUGQVHR0VZBUdHQRP5gEFEBEXC%2F3zDaIoFQFTTpBMeQ8mDXAWrrcWGQIFAwICAWQoFf6tWQH37OQdFf4MFR0dFQH0FR0AAAADAGEAAARMBQ4AGwA3AEcAAAAyFh0BBR4BFREUBiMhIiYvAQMmPwE%2BAR8BETQXNTQmBhURHAMOBAcGLwEHEyE3ESUuAQMhMhYdARQGIyEiJj0BNDYB3pBOAVMVKKIN%2FfMRJQoJ5hAWcA0mD3nGMjIBAgIDBQIZFrdT7AH3Wf6tFSiWAfQVHR0V%2FgwVHR0FDm5UaoMGGw%2F%2BqgemHA4OAWsfFm4NAQxUAS5U1ssVExIW%2FjgCCgIJAwcDBQMBDBGSVv6tZAElgwYb%2FQsdFWQVHR0VZBUdAAP%2F%2FQAGA%2BgFFAAPAC0ASQAAASEyNj0BNCYjISIGHQEUFgEVFAYiJjURBwYmLwEmNxM%2BBDMhMhYVERQGBwEDFzc2Fx4FHAIVERQWNj0BNDY3JREnAV4B9BUdHRX%2BDBUdHQEPTpBMeQ8mDXAWEOYBBRARFwsCDQ2iKBX9iexTtxYZAgUDAgIBMjIoFQFTWQRMHRVkFR0dFWQVHfzmalRubFQBLlQMAQ1uFh8BawIIEw8Mpgf%2Bqg8bBgHP%2Fq1WkhEMAQMFAwcDCQIKAv44FhITFcsPGwaDASVkAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEBJSYGHQEhIgYdARQWMyEVFBY3JTY0AeLs1ptbW5vW7NabW1ubAob%2B7RAX%2Fu0KDw8KARMXEAETEASaW5vW7NabW1ub1uzWm%2F453w0KFYkPCpYKD4kVCg3fDSYAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgENAQYUFwUWNj0BITI2PQE0JiMhNTQmAeLs1ptbW5vW7NabW1ubASX%2B7RAQARMQFwETCg8PCv7tFwSaW5vW7NabW1ub1uzWm%2BjfDSYN3w0KFYkPCpYKD4kVCgAAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEBAyYiBwMGFjsBERQWOwEyNjURMzI2AeLs1ptbW5vW7NabW1ubAkvfDSYN3w0KFYkPCpYKD4kVCgSaW5vW7NabW1ub1uzWm%2F5AARMQEP7tEBf%2B7QoPDwoBExcAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEFIyIGFREjIgYXExYyNxM2JisBETQmAeLs1ptbW5vW7NabW1ubAZeWCg%2BJFQoN3w0mDd8NChWJDwSaW5vW7NabW1ub1uzWm7sPCv7tFxD%2B7RAQARMQFwETCg8AAAMAGAAYBJgEmAAPAJYApgAAADIeAhQOAiIuAjQ%2BASUOAwcGJgcOAQcGFgcOAQcGFgcUFgcyHgEXHgIXHgI3Fg4BFx4CFxQGFBcWNz4CNy4BJy4BJyIOAgcGJyY2NS4BJzYuAQYHBicmNzY3HgIXHgMfAT4CJyY%2BATc%2BAzcmNzIWMjY3LgMnND4CJiceAT8BNi4CJwYHFB4BFS4CJz4BNxYyPgEB5OjVm1xcm9Xo1ZtcXJsBZA8rHDoKDz0PFD8DAxMBAzEFCRwGIgEMFhkHECIvCxU%2FOR0HFBkDDRQjEwcFaHUeISQDDTAMD0UREi4oLBAzDwQBBikEAQMLGhIXExMLBhAGKBsGBxYVEwYFAgsFAwMNFwQGCQcYFgYQCCARFwkKKiFBCwQCAQMDHzcLDAUdLDgNEiEQEgg%2FKhADGgMKEgoRBJhcm9Xo1ZtcXJvV6NWbEQwRBwkCAwYFBycPCxcHInIWInYcCUcYChQECA4QBAkuHgQPJioRFRscBAcSCgwCch0kPiAIAQcHEAsBAgsLIxcBMQENCQIPHxkCFBkdHB4QBgEBBwoMGBENBAMMJSAQEhYXDQ4qFBkKEhIDCQsXJxQiBgEOCQwHAQ0DBAUcJAwSCwRnETIoAwEJCwsLJQcKDBEAAAAAAQAAAAIErwSFABYAAAE2FwUXNxYGBw4BJwEGIi8BJjQ3ASY2AvSkjv79kfsGUE08hjv9rA8rD28PDwJYIk8EhVxliuh%2BWYcrIgsW%2FawQEG4PKxACV2XJAAYAAABgBLAErAAPABMAIwAnADcAOwAAEyEyFh0BFAYjISImPQE0NgUjFTMFITIWHQEUBiMhIiY9ATQ2BSEVIQUhMhYdARQGIyEiJj0BNDYFIRUhZAPoKTs7KfwYKTs7BBHIyPwYA%2BgpOzsp%2FBgpOzsEEf4MAfT8GAPoKTs7KfwYKTs7BBH%2B1AEsBKw7KWQpOzspZCk7ZGTIOylkKTs7KWQpO2RkyDspZCk7OylkKTtkZAAAAAIAZAAABEwEsAALABEAABMhMhYUBiMhIiY0NgERBxEBIZYDhBUdHRX8fBUdHQI7yP6iA4QEsB0qHR0qHf1E%2FtTIAfQB9AAAAAMAAABkBLAEsAAXABsAJQAAATMyFh0BITIWFREhNSMVIRE0NjMhNTQ2FxUzNQEVFAYjISImPQEB9MgpOwEsKTv%2BDMj%2BDDspASw7KcgB9Dsp%2FBgpOwSwOylkOyn%2BcGRkAZApO2QpO2RkZP1EyCk7OynIAAAABAAAAAAEsASwABUAKwBBAFcAABMhMhYPARcWFA8BBiIvAQcGJjURNDYpATIWFREUBi8BBwYiLwEmND8BJyY2ARcWFA8BFxYGIyEiJjURNDYfATc2MgU3NhYVERQGIyEiJj8BJyY0PwE2MhcyASwVCA5exwcHaggUCMdeDhUdAzUBLBUdFQ5exwgUCGoHB8deDgj%2BL2oHB8deDggV%2FtQVHRUOXscIFALLXg4VHRX%2B1BUIDl7HBwdqCBQIBLAVDl7HCBQIagcHx14OCBUBLBUdHRX%2B1BUIDl7HBwdqCBQIx14OFf0maggUCMdeDhUdFQEsFQgOXscHzl4OCBX%2B1BUdFQ5exwgUCGoHBwAAAAYAAAAABKgEqAAPABsAIwA7AEMASwAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JiQyFhQGIiY0JDIWFAYjIicHFhUUBiImNTQ2PwImNTQEMhYUBiImNCQyFhQGIiY0Advy3Z9fX5%2Fd8t2gXl6gAcbgv29vv%2BC%2Fb2%2F%2BLS0gIC0gAUwtICAWDg83ETNIMykfegEJ%2FoctICAtIAIdLSAgLSAEqF%2Bf3fLdoF5eoN3y3Z9Xb7%2Fgv29vv%2BC%2FBiAtISEtICAtIQqRFxwkMzMkIDEFfgEODhekIC0gIC0gIC0gIC0AAf%2FYAFoEuQS8AFsAACUBNjc2JicmIyIOAwcABw4EFx4BMzI3ATYnLgEjIgcGBwEOASY0NwA3PgEzMhceARcWBgcOBgcGIyImJyY2NwE2NzYzMhceARcWBgcBDgEnLgECIgHVWwgHdl8WGSJBMD8hIP6IDx4eLRMNBQlZN0ozAiQkEAcdEhoYDRr%2Bqw8pHA4BRyIjQS4ODyw9DQ4YIwwod26La1YOOEBGdiIwGkQB%2F0coW2tQSE5nDxE4Qv4eDyoQEAOtAdZbZWKbEQQUGjIhH%2F6JDxsdNSg3HT5CMwIkJCcQFBcMGv6uDwEcKQ4BTSIjIQEINykvYyMLKnhuiWZMBxtAOU6%2BRAH%2FSBg3ISSGV121Qv4kDwIPDyYAAAACAGQAWASvBEQAGQBEAAABPgIeAhUUDgMHLgQ1ND4CHgEFIg4DIi4DIyIGFRQeAhcWFx4EMj4DNzY3PgQ1NCYCiTB7eHVYNkN5hKg%2BPqeFeEM4WnZ4eQEjIT8yLSohJyktPyJDbxtBMjMPBw86KzEhDSIzKUAMBAgrKT8dF2oDtURIBS1TdkA5eYB%2FslVVsn%2BAeTlAdlMtBUgtJjY1JiY1NiZvTRc4SjQxDwcOPCouGBgwKEALBAkpKkQqMhNPbQACADn%2F8gR3BL4AFwAuAAAAMh8BFhUUBg8BJi8BNycBFwcvASY0NwEDNxYfARYUBwEGIi8BJjQ%2FARYfAQcXAQKru0KNQjgiHR8uEl%2F3%2FnvUaRONQkIBGxJpCgmNQkL%2B5UK6Qo1CQjcdLhJf9wGFBL5CjUJeKmsiHTUuEl%2F4%2FnvUahKNQrpCARv%2BRmkICY1CukL%2B5UJCjUK7Qjc3LxFf%2BAGFAAAAAAMAyAAAA%2BgEsAARABUAHQAAADIeAhURFAYjISImNRE0PgEHESERACIGFBYyNjQCBqqaZDo7Kf2oKTs8Zj4CWP7%2FVj09Vj0EsB4uMhX8Ryk7OykDuRUzLar9RAK8%2FRY9Vj09VgABAAAAAASwBLAAFgAACQEWFAYiLwEBEScBBRMBJyEBJyY0NjIDhgEbDx0qDiT%2B6dT%2BzP7oywEz0gEsAQsjDx0qBKH%2B5g8qHQ8j%2FvX%2B1NL%2BzcsBGAE01AEXJA4qHQAAAAADAScAEQQJBOAAMgBAAEsAAAEVHgQXIy4DJxEXHgQVFAYHFSM1JicuASczHgEXEScuBDU0PgI3NRkBDgMVFB4DFxYXET4ENC4CArwmRVI8LAKfBA0dMydAIjxQNyiym2SWVygZA4sFV0obLkJOMCAyVWg6HSoqFQ4TJhkZCWgWKTEiGBkzNwTgTgUTLD9pQiQuLBsH%2Fs0NBxMtPGQ%2Bi6oMTU8QVyhrVk1iEAFPCA4ZLzlYNkZwSCoGTf4SARIEDh02Jh0rGRQIBgPQ%2FsoCCRYgNEM0JRkAAAABAGQAZgOUBK0ASgAAATIeARUjNC4CIyIGBwYVFB4BFxYXMxUjFgYHBgc%2BATM2FjMyNxcOAyMiLgEHDgEPASc%2BBTc%2BAScjNTMmJy4CPgE3NgIxVJlemSc8OxolVBQpGxoYBgPxxQgVFS02ImIWIIwiUzUyHzY4HCAXanQmJ1YYFzcEGAcTDBEJMAwk3aYXFQcKAg4tJGEErVCLTig%2FIhIdFSw5GkowKgkFZDKCHj4yCg8BIh6TExcIASIfBAMaDAuRAxAFDQsRCjePR2QvORQrREFMIVgAAAACABn%2F%2FwSXBLAADwAfAAABMzIWDwEGIi8BJjY7AREzBRcWBisBESMRIyImPwE2MgGQlhUIDuYOKg7mDggVlsgCF%2BYOCBWWyJYVCA7mDioBLBYO%2Bg8P%2Bg4WA4QQ%2BQ4V%2FHwDhBUO%2BQ8AAAQAGf%2F%2FA%2BgEsAAHABcAGwAlAAABIzUjFSMRIQEzMhYPAQYiLwEmNjsBETMFFTM1EwczFSE1NyM1IQPoZGRkASz9qJYVCA7mDioO5g4IFZbIAZFkY8jI%2FtTIyAEsArxkZAH0%2FHwWDvoPD%2FoOFgOEZMjI%2FRL6ZJb6ZAAAAAAEABn%2F%2FwPoBLAADwAZACEAJQAAATMyFg8BBiIvASY2OwERMwUHMxUhNTcjNSERIzUjFSMRIQcVMzUBkJYVCA7mDioO5g4IFZbIAljIyP7UyMgBLGRkZAEsx2QBLBYO%2Bg8P%2Bg4WA4SW%2BmSW%2BmT7UGRkAfRkyMgAAAAEABn%2F%2FwRMBLAADwAVABsAHwAAATMyFg8BBiIvASY2OwERMwEjESM1MxMjNSMRIQcVMzUBkJYVCA7mDioO5g4IFZbIAlhkZMhkZMgBLMdkASwWDvoPD%2FoOFgOE%2FgwBkGT7UGQBkGTIyAAAAAAEABn%2F%2FwRMBLAADwAVABkAHwAAATMyFg8BBiIvASY2OwERMwEjNSMRIQcVMzUDIxEjNTMBkJYVCA7mDioO5g4IFZbIArxkyAEsx2QBZGTIASwWDvoPD%2FoOFgOE%2FgxkAZBkyMj7tAGQZAAAAAAFABn%2F%2FwSwBLAADwATABcAGwAfAAABMzIWDwEGIi8BJjY7AREzBSM1MxMhNSETITUhEyE1IQGQlhUIDuYOKg7mDggVlsgB9MjIZP7UASxk%2FnABkGT%2BDAH0ASwWDvoPD%2FoOFgOEyMj%2BDMj%2BDMj%2BDMgABQAZ%2F%2F8EsASwAA8AEwAXABsAHwAAATMyFg8BBiIvASY2OwERMwUhNSEDITUhAyE1IQMjNTMBkJYVCA7mDioO5g4IFZbIAyD%2BDAH0ZP5wAZBk%2FtQBLGTIyAEsFg76Dw%2F6DhYDhMjI%2FgzI%2FgzI%2FgzIAAIAAAAABEwETAAPAB8AAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmAV4BkKK8u6P%2BcKW5uQJn%2FgwpOzspAfQpOzsETLuj%2FnClubmlAZClucg7Kf4MKTs7KQH0KTsAAAAAAwAAAAAETARMAA8AHwArAAABITIWFREUBiMhIiY1ETQ2BSEiBhURFBYzITI2NRE0JgUXFhQPAQYmNRE0NgFeAZClubml%2FnCju7wCZP4MKTs7KQH0KTs7%2Fm%2F9ERH9EBgYBEy5pf5wpbm5pQGQo7vIOyn%2BDCk7OykB9Ck7gr4MJAy%2BDAsVAZAVCwAAAAADAAAAAARMBEwADwAfACsAAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmBSEyFg8BBiIvASY2AV4BkKO7uaX%2BcKW5uQJn%2FgwpOzspAfQpOzv%2BFQGQFQsMvgwkDL4MCwRMvKL%2BcKW5uaUBkKO7yDsp%2FgwpOzspAfQpO8gYEP0REf0QGAAAAAMAAAAABEwETAAPAB8AKwAAASEyFhURFAYjISImNRE0NgUhIgYVERQWMyEyNjURNCYFFxYGIyEiJj8BNjIBXgGQpbm5pf5wo7u5Amf%2BDCk7OykB9Ck7O%2F77vgwLFf5wFQsMvgwkBEy5pf5wo7u8ogGQpbnIOyn%2BDCk7OykB9Ck7z%2F0QGBgQ%2FREAAAAAAgAAAAAFFARMAB8ANQAAASEyFhURFAYjISImPQE0NjMhMjY1ETQmIyEiJj0BNDYHARYUBwEGJj0BIyImPQE0NjsBNTQ2AiYBkKW5uaX%2BcBUdHRUBwik7Oyn%2BPhUdHb8BRBAQ%2FrwQFvoVHR0V%2BhYETLml%2FnCluR0VZBUdOykB9Ck7HRVkFR3p%2FuQOJg7%2B5A4KFZYdFcgVHZYVCgAAAQDZAAID1wSeACMAAAEXFgcGAgclMhYHIggBBwYrAScmNz4BPwEhIicmNzYANjc2MwMZCQgDA5gCASwYEQ4B%2Fvf%2B8wQMDgkJCQUCUCcn%2FtIXCAoQSwENuwUJEASeCQoRC%2F5TBwEjEv7K%2FsUFDwgLFQnlbm4TFRRWAS%2FTBhAAAAACAAAAAAT%2BBEwAHwA1AAABITIWHQEUBiMhIgYVERQWMyEyFh0BFAYjISImNRE0NgUBFhQHAQYmPQEjIiY9ATQ2OwE1NDYBXgGQFR0dFf4%2BKTs7KQHCFR0dFf5wpbm5AvEBRBAQ%2FrwQFvoVHR0V%2BhYETB0VZBUdOyn%2BDCk7HRVkFR25pQGQpbnp%2FuQOJg7%2B5A4KFZYdFcgVHZYVCgACAAAAAASwBLAAFQAxAAABITIWFREUBi8BAQYiLwEmNDcBJyY2ASMiBhURFBYzITI2PQE3ERQGIyEiJjURNDYzIQLuAZAVHRUObf7IDykPjQ8PAThtDgj%2B75wpOzspAfQpO8i7o%2F5wpbm5pQEsBLAdFf5wFQgObf7IDw%2BNDykPAThtDhX%2B1Dsp%2FgwpOzsplMj%2B1qW5uaUBkKW5AAADAA4ADgSiBKIADwAbACMAAAAyHgIUDgIiLgI0PgEEIg4BFB4BMj4BNCYEMhYUBiImNAHh7tmdXV2d2e7ZnV1dnQHD5sJxccLmwnFx%2FnugcnKgcgSiXZ3Z7tmdXV2d2e7ZnUdxwubCcXHC5sJzcqBycqAAAAMAAAAABEwEsAAVAB8AIwAAATMyFhURMzIWBwEGIicBJjY7ARE0NgEhMhYdASE1NDYFFTM1AcLIFR31FAoO%2FoEOJw3%2BhQ0JFfod%2FoUD6BUd%2B7QdA2dkBLAdFf6iFg%2F%2BVg8PAaoPFgFeFR38fB0V%2BvoVHWQyMgAAAAMAAAAABEwErAAVAB8AIwAACQEWBisBFRQGKwEiJj0BIyImNwE%2BAQEhMhYdASE1NDYFFTM1AkcBeg4KFfQiFsgUGPoUCw4Bfw4n%2FfkD6BUd%2B7QdA2dkBJ7%2BTQ8g%2BhQeHRX6IQ8BrxAC%2FH8dFfr6FR1kMjIAAwAAAAAETARLABQAHgAiAAAJATYyHwEWFAcBBiInASY0PwE2MhcDITIWHQEhNTQ2BRUzNQGMAXEHFQeLBwf98wcVB%2F7cBweLCBUH1APoFR37tB0DZ2QC0wFxBweLCBUH%2FfMICAEjCBQIiwcH%2FdIdFfr6FR1kMjIABAAAAAAETASbAAkAGQAjACcAABM3NjIfAQcnJjQFNzYWFQMOASMFIiY%2FASc3ASEyFh0BITU0NgUVMzWHjg4qDk3UTQ4CFtIOFQIBHRX9qxUIDtCa1P49A%2BgVHfu0HQNnZAP%2Fjg4OTdRMDyqa0g4IFf2pFB4BFQ7Qm9T9Oh0V%2BvoVHWQyMgAAAAQAAAAABEwEsAAPABkAIwAnAAABBR4BFRMUBi8BByc3JyY2EwcGIi8BJjQ%2FAQEhMhYdASE1NDYFFTM1AV4CVxQeARUO0JvUm9IOCMNMDyoOjg4OTf76A%2BgVHfu0HQNnZASwAgEdFf2rFQgO0JrUmtIOFf1QTQ4Ojg4qDk3%2BWB0V%2BvoVHWQyMgACAAT%2F7ASwBK8ABQAIAAAlCQERIQkBFQEEsP4d%2Fsb%2BcQSs%2FTMCq2cBFP5xAacDHPz55gO5AAAAAAIAAABkBEwEsAAVABkAAAERFAYrAREhESMiJjURNDY7AREhETMHIzUzBEwdFZb9RJYVHR0V%2BgH0ZMhkZAPo%2FK4VHQGQ%2FnAdFQPoFB7%2B1AEsyMgAAAMAAABFBN0EsAAWABoALwAAAQcBJyYiDwEhESMiJjURNDY7AREhETMHIzUzARcWFAcBBiIvASY0PwE2Mh8BATYyBEwC%2FtVfCRkJlf7IlhUdHRX6AfRkyGRkAbBqBwf%2BXAgUCMoICGoHFQdPASkHFQPolf7VXwkJk%2F5wHRUD6BQe%2FtQBLMjI%2Fc5qBxUH%2FlsHB8sHFQdqCAhPASkHAAMAAAANBQcEsAAWABoAPgAAAREHJy4BBwEhESMiJjURNDY7AREhETMHIzUzARcWFA8BFxYUDwEGIi8BBwYiLwEmND8BJyY0PwE2Mh8BNzYyBExnhg8lEP72%2FreWFR0dFfoB9GTIZGQB9kYPD4ODDw9GDykPg4MPKQ9GDw%2BDgw8PRg8pD4ODDykD6P7zZ4YPAw7%2B9v5wHRUD6BQe%2FtQBLMjI%2FYxGDykPg4MPKQ9GDw%2BDgw8PRg8pD4ODDykPRg8Pg4MPAAADAAAAFQSXBLAAFQAZAC8AAAERISIGHQEhESMiJjURNDY7AREhETMHIzUzEzMyFh0BMzIWDwEGIi8BJjY7ATU0NgRM%2FqIVHf4MlhUdHRX6AfRkyGRklmQVHZYVCA7mDioO5g4IFZYdA%2Bj%2B1B0Vlv5wHRUD6BQe%2FtQBLMjI%2FagdFfoVDuYODuYOFfoVHQAAAAADAAAAAASXBLAAFQAZAC8AAAERJyYiBwEhESMiJjURNDY7AREhETMHIzUzExcWBisBFRQGKwEiJj0BIyImPwE2MgRMpQ4qDv75%2Fm6WFR0dFfoB9GTIZGTr5g4IFZYdFWQVHZYVCA7mDioD6P5wpQ8P%2Fvf%2BcB0VA%2BgUHv7UASzIyP2F5Q8V%2BhQeHhT6FQ%2FlDwADAAAAyASwBEwACQATABcAABMhMhYdASE1NDYBERQGIyEiJjURExUhNTIETBUd%2B1AdBJMdFfu0FR1kAZAETB0VlpYVHf7U%2FdoVHR0VAib%2B1MjIAAAGAAMAfQStBJcADwAZAB0ALQAxADsAAAEXFhQPAQYmPQEhNSE1NDYBIyImPQE0NjsBFyM1MwE3NhYdASEVIRUUBi8BJjQFIzU7AjIWHQEUBisBA6f4Dg74DhX%2BcAGQFf0vMhUdHRUyyGRk%2FoL3DhUBkP5wFQ73DwOBZGRkMxQdHRQzBI3mDioO5g4IFZbIlhUI%2FoUdFWQVHcjI%2FcvmDggVlsiWFQgO5g4qecgdFWQVHQAAAAACAGQAAASwBLAAFgBRAAABJTYWFREUBisBIiY1ES4ENRE0NiUyFh8BERQOAg8BERQGKwEiJjURLgQ1ETQ%2BAzMyFh8BETMRPAE%2BAjMyFh8BETMRND4DA14BFBklHRXIFR0EDiIaFiX%2B4RYZAgEVHR0LCh0VyBUdBA4iGhYBBwoTDRQZAgNkBQkVDxcZAQFkAQUJFQQxdBIUH%2FuuFR0dFQGNAQgbHzUeAWcfRJEZDA3%2BPhw%2FMSkLC%2F5BFR0dFQG%2FBA8uLkAcAcICBxENCxkMDf6iAV4CBxENCxkMDf6iAV4CBxENCwABAGQAAASwBEwAMwAAARUiDgMVERQWHwEVITUyNjURIREUFjMVITUyPgM1ETQmLwE1IRUiBhURIRE0JiM1BLAEDiIaFjIZGf5wSxn%2BDBlL%2FnAEDiIaFjIZGQGQSxkB9BlLBEw4AQUKFA78iBYZAQI4OA0lAYr%2BdiUNODgBBQoUDgN4FhkBAjg4DSX%2BdgGKJQ04AAAABgAAAAAETARMAAwAHAAgACQAKAA0AAABITIWHQEjBTUnITchBSEyFhURFAYjISImNRE0NhcVITUBBTUlBRUhNQUVFAYjIQchJyE3MwKjAXcVHWn%2B2cj%2BcGQBd%2F4lASwpOzsp%2FtQpOzspASwCvP5wAZD8GAEsArwdFf6JZP6JZAGQyGkD6B0VlmJiyGTIOyn%2BDCk7OykB9Ck7ZMjI%2FveFo4XGyMhm%2BBUdZGTIAAEAEAAQBJ8EnwAmAAATNzYWHwEWBg8BHgEXNz4BHwEeAQ8BBiIuBicuBTcRohEuDosOBhF3ZvyNdxEzE8ATBxGjAw0uMUxPZWZ4O0p3RjITCwED76IRBhPCFDERdo78ZXYRBA6IDi8RogEECBUgNUNjO0qZfHNVQBAAAAACAAAAAASwBEwAIwBBAAAAMh4EHwEVFAYvAS4BPQEmIAcVFAYPAQYmPQE%2BBRIyHgIfARUBHgEdARQGIyEiJj0BNDY3ATU0PgIB%2FLimdWQ%2FLAkJHRTKFB2N%2FsKNHRTKFB0DDTE7ZnTKcFImFgEBAW0OFR0V%2B7QVHRUOAW0CFiYETBUhKCgiCgrIFRgDIgMiFZIYGJIVIgMiAxgVyAQNJyQrIP7kExwcCgoy%2FtEPMhTUFR0dFdQUMg8BLzIEDSEZAAADAAAAAASwBLAADQAdACcAAAEHIScRMxUzNTMVMzUzASEyFhQGKwEXITcjIiY0NgMhMhYdASE1NDYETMj9qMjIyMjIyPyuArwVHR0VDIn8SokMFR0dswRMFR37UB0CvMjIAfTIyMjI%2FOAdKh1kZB0qHf7UHRUyMhUdAAAAAwBkAAAEsARMAAkAEwAdAAABIyIGFREhETQmASMiBhURIRE0JgEhETQ2OwEyFhUCvGQpOwEsOwFnZCk7ASw7%2FRv%2B1DspZCk7BEw7KfwYA%2BgpO%2F7UOyn9RAK8KTv84AGQKTs7KQAAAAAF%2F5wAAASwBEwADwATAB8AJQApAAATITIWFREUBiMhIiY1ETQ2FxEhEQUjFTMRITUzNSMRIQURByMRMwcRMxHIArx8sLB8%2FUR8sLAYA4T%2BDMjI%2FtTIyAEsAZBkyMhkZARMsHz%2BDHywsHwB9HywyP1EArzIZP7UZGQBLGT%2B1GQB9GT%2B1AEsAAAABf%2BcAAAEsARMAA8AEwAfACUAKQAAEyEyFhURFAYjISImNRE0NhcRIREBIzUjFSMRMxUzNTMFEQcjETMHETMRyAK8fLCwfP1EfLCwGAOE%2FgxkZGRkZGQBkGTIyGRkBEywfP4MfLCwfAH0fLDI%2FUQCvP2oyMgB9MjIZP7UZAH0ZP7UASwABP%2BcAAAEsARMAA8AEwAbACMAABMhMhYVERQGIyEiJjURNDYXESERBSMRMxUhESEFIxEzFSERIcgCvHywsHz9RHywsBgDhP4MyMj%2B1AEsAZDIyP7UASwETLB8%2Fgx8sLB8AfR8sMj9RAK8yP7UZAH0ZP7UZAH0AAAABP%2BcAAAEsARMAA8AEwAWABkAABMhMhYVERQGIyEiJjURNDYXESERAS0BDQERyAK8fLCwfP1EfLCwGAOE%2Fgz%2B1AEsAZD%2B1ARMsHz%2BDHywsHwB9HywyP1EArz%2BDJaWlpYBLAAAAAX%2FnAAABLAETAAPABMAFwAgACkAABMhMhYVERQGIyEiJjURNDYXESERAyERIQcjIgYVFBY7AQERMzI2NTQmI8gCvHywsHz9RHywsBgDhGT9RAK8ZIImOTYpgv4Mgik2OSYETLB8%2Fgx8sLB8AfR8sMj9RAK8%2FagB9GRWQUFUASz%2B1FRBQVYAAAAF%2F5wAAASwBEwADwATAB8AJQApAAATITIWFREUBiMhIiY1ETQ2FxEhEQUjFTMRITUzNSMRIQEjESM1MwMjNTPIArx8sLB8%2FUR8sLAYA4T%2BDMjI%2FtTIyAEsAZBkZMjIZGQETLB8%2Fgx8sLB8AfR8sMj9RAK8yGT%2B1GRkASz%2BDAGQZP4MZAAG%2F5wAAASwBEwADwATABkAHwAjACcAABMhMhYVERQGIyEiJjURNDYXESERBTMRIREzASMRIzUzBRUzNQEjNTPIArx8sLB8%2FUR8sLAYA4T9RMj%2B1GQCWGRkyP2oZAEsZGQETLB8%2Fgx8sLB8AfR8sMj9RAK8yP5wAfT%2BDAGQZMjIyP7UZAAF%2F5wAAASwBEwADwATABwAIgAmAAATITIWFREUBiMhIiY1ETQ2FxEhEQEHIzU3NSM1IQEjESM1MwMjNTPIArx8sLB8%2FUR8sLAYA4T%2BDMdkx8gBLAGQZGTIx2RkBEywfP4MfLCwfAH0fLDI%2FUQCvP5wyDLIlmT%2BDAGQZP4MZAAAAAMACQAJBKcEpwAPABsAJQAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JgchFSEVISc1NyEB4PDbnl5entvw255eXp4BxeTCcXHC5MJxcWz%2B1AEs%2FtRkZAEsBKdentvw255eXp7b8NueTHHC5MJxccLkwtDIZGTIZAAAAAAEAAkACQSnBKcADwAbACcAKwAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JgcVBxcVIycjFSMRIQcVMzUB4PDbnl5entvw255eXp4BxeTCcXHC5MJxcWwyZGRklmQBLMjIBKdentvw255eXp7b8NueTHHC5MJxccLkwtBkMmQyZGQBkGRkZAAAAv%2Fy%2F50EwgRBACAANgAAATIWFzYzMhYUBisBNTQmIyEiBh0BIyImNTQ2NyY1ND4BEzMyFhURMzIWDwEGIi8BJjY7ARE0NgH3brUsLC54qqp4gB0V%2FtQVHd5QcFZBAmKqepYKD4kVCg3fDSYN3w0KFYkPBEF3YQ6t8a36FR0dFfpzT0VrDhMSZKpi%2FbMPCv7tFxD0EBD0EBcBEwoPAAAAAAL%2F8v%2BcBMMEQQAcADMAAAEyFhc2MzIWFxQGBwEmIgcBIyImNTQ2NyY1ND4BExcWBisBERQGKwEiJjURIyImNzY3NjIB9m62LCsueaoBeFr%2Bhg0lDf6DCU9xVkECYqnm3w0KFYkPCpYKD4kVCg3HGBMZBEF3YQ%2BteGOkHAFoEBD%2Bk3NPRWsOExNkqWP9kuQQF%2F7tCg8PCgETFxDMGBMAAAABAGQAAARMBG0AGAAAJTUhATMBMwkBMwEzASEVIyIGHQEhNTQmIwK8AZD%2B8qr%2B8qr%2B1P7Uqv7yqv7yAZAyFR0BkB0VZGQBLAEsAU3%2Bs%2F7U%2FtRkHRUyMhUdAAAAAAEAeQAABDcEmwAvAAABMhYXHgEVFAYHFhUUBiMiJxUyFh0BITU0NjM1BiMiJjU0Ny4BNTQ2MzIXNCY1NDYCWF6TGll7OzIJaUo3LRUd%2FtQdFS03SmkELzlpSgUSAqMEm3FZBoNaPWcfHRpKaR77HRUyMhUd%2Bx5pShIUFVg1SmkCAhAFdKMAAAAGACcAFASJBJwAEQAqAEIASgBiAHsAAAEWEgIHDgEiJicmAhI3PgEyFgUiBw4BBwYWHwEWMzI3Njc2Nz4BLwEmJyYXIgcOAQcGFh8BFjMyNz4BNz4BLwEmJyYWJiIGFBYyNjciBw4BBw4BHwEWFxYzMjc%2BATc2Ji8BJhciBwYHBgcOAR8BFhcWMzI3PgE3NiYvASYD8m9PT29T2dzZU29PT29T2dzZ%2Fj0EBHmxIgQNDCQDBBcGG0dGYAsNAwkDCwccBAVQdRgEDA0iBAQWBhJROQwMAwkDCwf5Y4xjY4xjVhYGElE6CwwDCQMLBwgEBVB1GAQNDCIEjRcGG0dGYAsNAwkDCwcIBAR5sSIEDQwkAwPyb%2F7V%2FtVvU1dXU28BKwErb1NXVxwBIrF5DBYDCQEWYEZHGwMVDCMNBgSRAhh1UA0WAwkBFTpREgMVCyMMBwT6Y2OMY2MVFTpREQQVCyMMBwQCGHVQDRYDCQEkFmBGRxsDFQwjDQYEASKxeQwWAwkBAAAABQBkAAAD6ASwAAwADwAWABwAIgAAASERIzUhFSERNDYzIQEjNQMzByczNTMDISImNREFFRQGKwECvAEstP6s%2FoQPCgI%2FASzIZKLU1KJktP51Cg8DhA8KwwMg%2FoTIyALzCg%2F%2B1Mj84NTUyP4MDwoBi8jDCg8AAAAABQBkAAAD6ASwAAkADAATABoAIQAAASERCQERNDYzIQEjNRMjFSM1IzcDISImPQEpARUUBisBNQK8ASz%2Bov3aDwoCPwEsyD6iZKLUqv6dCg8BfAIIDwqbAyD9%2BAFe%2FdoERwoP%2FtTI%2FHzIyNT%2BZA8KNzcKD1AAAAAAAwAAAAAEsAP0AAgAGQAfAAABIxUzFyERIzcFMzIeAhUhFSEDETM0PgIBMwMhASEEiqJkZP7UotT9EsgbGiEOASz9qMhkDiEaAnPw8PzgASwB9AMgyGQBLNTUBBErJGT%2BogHCJCsRBP5w%2FnAB9AAAAAMAAAAABEwETAAZADIAOQAAATMyFh0BMzIWHQEUBiMhIiY9ATQ2OwE1NDYFNTIWFREUBiMhIic3ARE0NjMVFBYzITI2AQc1IzUzNQKKZBUdMhUdHRX%2B1BUdHRUyHQFzKTs7Kf2oARP2%2Fro7KVg%2BASw%2BWP201MjIBEwdFTIdFWQVHR0VZBUdMhUd%2BpY7KfzgKTsE9gFGAUQpO5Y%2BWFj95tSiZKIAAwBkAAAEvARMABkANgA9AAABMzIWHQEzMhYdARQGIyEiJj0BNDY7ATU0NgU1MhYVESMRMxQOAiMhIiY1ETQ2MxUUFjMhMjYBBzUjNTM1AcJkFR0yFR0dFf7UFR0dFTIdAXMpO8jIDiEaG%2F2oKTs7KVg%2BASw%2BWAGc1MjIBEwdFTIdFWQVHR0VZBUdMhUd%2BpY7Kf4M%2FtQkKxEEOykDICk7lj5YWP3m1KJkogAAAAP%2FogAABRYE1AALABsAHwAACQEWBiMhIiY3ATYyEyMiBhcTHgE7ATI2NxM2JgMVMzUCkgJ9FyAs%2BwQsIBcCfRZARNAUGAQ6BCMUNhQjBDoEGODIBK37sCY3NyYEUCf%2BTB0U%2FtIUHR0UAS4UHf4MZGQAAAAACQAAAAAETARMAA8AHwAvAD8ATwBfAG8AfwCPAAABMzIWHQEUBisBIiY9ATQ2EzMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2ITMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2ITMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBqfoKDw8K%2BgoPDwr6Cg8PCvoKDw8BmvoKDw8K%2BgoPD%2Fzq%2BgoPDwr6Cg8PAZr6Cg8PCvoKDw8BmvoKDw8K%2BgoPD%2Fzq%2BgoPDwr6Cg8PAZr6Cg8PCvoKDw8BmvoKDw8K%2BgoPDwRMDwqWCg8PCpYKD%2F7UDwqWCg8PCpYKDw8KlgoPDwqWCg%2F%2B1A8KlgoPDwqWCg8PCpYKDw8KlgoPDwqWCg8PCpYKD%2F7UDwqWCg8PCpYKDw8KlgoPDwqWCg8PCpYKDw8KlgoPAAAAAwAAAAAEsAUUABkAKQAzAAABMxUjFSEyFg8BBgchJi8BJjYzITUjNTM1MwEhMhYUBisBFyE3IyImNDYDITIWHQEhNTQ2ArxkZAFePjEcQiko%2FPwoKUIcMT4BXmRkyP4%2BArwVHR0VDIn8SooNFR0dswRMFR37UB0EsMhkTzeEUzMzU4Q3T2TIZPx8HSodZGQdKh3%2B1B0VMjIVHQAABAAAAAAEsAUUAAUAGQArADUAAAAyFhUjNAchFhUUByEyFg8BIScmNjMhJjU0AyEyFhQGKwEVBSElNSMiJjQ2AyEyFh0BITU0NgIwUDnCPAE6EgMBSCkHIq%2F9WrIiCikBSAOvArwVHR0VlgET%2FEoBE5YVHR2zBEwVHftQHQUUOykpjSUmCBEhFpGRFiERCCb%2BlR0qHcjIyMgdKh39qB0VMjIVHQAEAAAAAASwBJ0ABwAUACQALgAAADIWFAYiJjQTMzIWFRQXITY1NDYzASEyFhQGKwEXITcjIiY0NgMhMhYdASE1NDYCDZZqapZqty4iKyf%2BvCcrI%2F7NArwVHR0VDYr8SokMFR0dswRMFR37UB0EnWqWamqW%2Fus5Okxra0w6Of5yHSodZGQdKh3%2B1B0VMjIVHQAEAAAAAASwBRQADwAcACwANgAAATIeARUUBiImNTQ3FzcnNhMzMhYVFBchNjU0NjMBITIWFAYrARchNyMiJjQ2AyEyFh0BITU0NgJYL1szb5xvIpBvoyIfLiIrJ%2F68Jysj%2Fs0CvBUdHRUNivxKiQwVHR2zBEwVHftQHQUUa4s2Tm9vTj5Rj2%2BjGv4KOTpMa2tMOjn%2Bch0qHWRkHSod%2FtQdFTIyFR0AAAADAAAAAASwBRIAEgAiACwAAAEFFSEUHgMXIS4BNTQ%2BAjcBITIWFAYrARchNyMiJjQ2AyEyFh0BITU0NgJYASz%2B1CU%2FP00T%2Fe48PUJtj0r%2BogK8FR0dFQ2K%2FEqJDBUdHbMETBUd%2B1AdBLChizlmUT9IGVO9VFShdksE%2FH4dKh1kZB0qHf7UHRUyMhUdAAIAyAAAA%2BgFFAAPACkAAAAyFh0BHgEdASE1NDY3NTQDITIWFyMVMxUjFTMVIxUzFAYjISImNRE0NgIvUjsuNv5wNi5kAZA2XBqsyMjIyMh1U%2F5wU3V1BRQ7KU4aXDYyMjZcGk4p%2Fkc2LmRkZGRkU3V1UwGQU3UAAAMAZP%2F%2FBEwETAAPAC8AMwAAEyEyFhURFAYjISImNRE0NgMhMhYdARQGIyEXFhQGIi8BIQcGIiY0PwEhIiY9ATQ2BQchJ5YDhBUdHRX8fBUdHQQDtgoPDwr%2B5eANGiUNWP30Vw0mGg3g%2Ft8KDw8BqmQBRGQETB0V%2FgwVHR0VAfQVHf1EDwoyCg%2FgDSUbDVhYDRslDeAPCjIKD2RkZAAAAAAEAAAAAASwBEwAGQAjAC0ANwAAEyEyFh0BIzQmKwEiBhUjNCYrASIGFSM1NDYDITIWFREhETQ2ExUUBisBIiY9ASEVFAYrASImPQHIAyBTdWQ7KfopO2Q7KfopO2R1EQPoKTv7UDvxHRVkFR0D6B0VZBUdBEx1U8gpOzspKTs7KchTdf4MOyn%2B1AEsKTv%2BDDIVHR0VMjIVHR0VMgADAAEAAASpBKwADQARABsAAAkBFhQPASEBJjQ3ATYyCQMDITIWHQEhNTQ2AeACqh8fg%2F4f%2FfsgIAEnH1n%2BrAFWAS%2F%2Bq6IDIBUd%2FHwdBI39VR9ZH4MCBh9ZHwEoH%2F5u%2FqoBMAFV%2FBsdFTIyFR0AAAAAAgCPAAAEIQSwABcALwAAAQMuASMhIgYHAwYWMyEVFBYyNj0BMzI2AyE1NDY7ATU0NjsBETMRMzIWHQEzMhYVBCG9CCcV%2FnAVJwi9CBMVAnEdKh19FROo%2Fa0dFTIdFTDILxUdMhUdAocB%2BhMcHBP%2BBhMclhUdHRWWHP2MMhUdMhUdASz%2B1B0VMh0VAAAEAAAAAASwBLAADQAQAB8AIgAAASERFAYjIREBNTQ2MyEBIzUBIREUBiMhIiY1ETQ2MyEBIzUDhAEsDwr%2Bif7UDwoBdwEsyP2oASwPCv12Cg8PCgF3ASzIAyD9wQoPAk8BLFQKD%2F7UyP4M%2FcEKDw8KA7YKD%2F7UyAAC%2F5wAZAUUBEcARgBWAAABMzIeAhcWFxY2NzYnJjc%2BARYXFgcOASsBDgEPAQ4BKwEiJj8BBisBIicHDgErASImPwEmLwEuAT0BNDY7ATY3JyY2OwE2BSMiBh0BFBY7ATI2PQE0JgHkw0uOakkMEhEfQwoKGRMKBQ8XDCkCA1Y9Pgc4HCcDIhVkFRgDDDEqwxgpCwMiFWQVGAMaVCyfExwdFXwLLW8QBxXLdAFF%2BgoPDwr6Cg8PBEdBa4pJDgYKISAiJRsQCAYIDCw9P1c3fCbqFB0dFEYOCEAUHR0UnUplNQcmFTIVHVdPXw4TZV8PCjIKDw8KMgoPAAb%2FnP%2FmBRQEfgAJACQANAA8AFIAYgAAASU2Fh8BFgYPASUzMhYfASEyFh0BFAYHBQYmJyYjISImPQE0NhcjIgYdARQ7ATI2NTQmJyYEIgYUFjI2NAE3PgEeARceAT8BFxYGDwEGJi8BJjYlBwYfAR4BPwE2Jy4BJy4BAoEBpxMuDiAOAxCL%2FCtqQ0geZgM3FR0cE%2F0fFyIJKjr%2B1D5YWLlQExIqhhALIAsSAYBALS1ALf4PmBIgHhMQHC0aPzANITNQL3wpgigJASlmHyElDR0RPRMFAhQHCxADhPcICxAmDyoNeMgiNtQdFTIVJgeEBBQPQ1g%2ByD5YrBwVODMQEAtEERzJLUAtLUD%2B24ITChESEyMgAwWzPUkrRSgJL5cvfRxYGyYrDwkLNRAhFEgJDAQAAAAAAwBkAAAEOQSwAFEAYABvAAABMzIWHQEeARcWDgIPATIeBRUUDgUjFRQGKwEiJj0BIxUUBisBIiY9ASMiJj0BNDY7AREjIiY9ATQ2OwE1NDY7ATIWHQEzNTQ2AxUhMj4CNTc0LgMjARUhMj4CNTc0LgMjAnGWCg9PaAEBIC4uEBEGEjQwOiodFyI2LUAjGg8KlgoPZA8KlgoPrwoPDwpLSwoPDwqvDwqWCg9kD9cBBxwpEwsBAQsTKRz%2B%2BQFrHCkTCwEBCxMpHASwDwptIW1KLk0tHwYGAw8UKDJOLTtdPCoVCwJLCg8PCktLCg8PCksPCpYKDwJYDwqWCg9LCg8PCktLCg%2F%2B1MgVHR0LCgQOIhoW%2FnDIFR0dCwoEDiIaFgAAAwAEAAIEsASuABcAKQAsAAATITIWFREUBg8BDgEjISImJy4CNRE0NgQiDgQPARchNy4FAyMT1AMMVnokEhIdgVL9xFKCHAgYKHoCIIx9VkcrHQYGnAIwnAIIIClJVSGdwwSuelb%2BYDO3QkJXd3ZYHFrFMwGgVnqZFyYtLSUMDPPzBQ8sKDEj%2FsIBBQACAMgAAAOEBRQADwAZAAABMzIWFREUBiMhIiY1ETQ2ARUUBisBIiY9AQHblmesVCn%2BPilUrAFINhWWFTYFFKxn%2FgwpVFQpAfRnrPwY4RU2NhXhAAACAMgAAAOEBRQADwAZAAABMxQWMxEUBiMhIiY1ETQ2ARUUBisBIiY9AQHbYLOWVCn%2BPilUrAFINhWWFTYFFJaz%2FkIpVFQpAfRnrPwY4RU2NhXhAAACAAAAFAUOBBoAFAAaAAAJASUHFRcVJwc1NzU0Jj4CPwEnCQEFJTUFJQUO%2FYL%2Bhk5klpZkAQEBBQQvkwKCAVz%2Bov6iAV4BXgL%2F%2FuWqPOCWx5SVyJb6BA0GCgYDKEEBG%2F1ipqaTpaUAAAMAZAH0BLADIAAHAA8AFwAAEjIWFAYiJjQkMhYUBiImNCQyFhQGIiY0vHxYWHxYAeh8WFh8WAHofFhYfFgDIFh8WFh8WFh8WFh8WFh8WFh8AAAAAAMBkAAAArwETAAHAA8AFwAAADIWFAYiJjQSMhYUBiImNBIyFhQGIiY0Aeh8WFh8WFh8WFh8WFh8WFh8WARMWHxYWHz%2ByFh8WFh8%2FshYfFhYfAAAAAMAZABkBEwETAAPAB8ALwAAEyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2fQO2Cg8PCvxKCg8PCgO2Cg8PCvxKCg8PCgO2Cg8PCvxKCg8PBEwPCpYKDw8KlgoP%2FnAPCpYKDw8KlgoP%2FnAPCpYKDw8KlgoPAAAABAAAAAAEsASwAA8AHwAvADMAAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmBSEyFhURFAYjISImNRE0NhcVITUBXgH0ory7o%2F4Mpbm5Asv9qCk7OykCWCk7O%2F2xAfQVHR0V%2FgwVHR1HAZAEsLuj%2FgylubmlAfSlucg7Kf2oKTs7KQJYKTtkHRX%2B1BUdHRUBLBUdZMjIAAAAAAEAZABkBLAETAA7AAATITIWFAYrARUzMhYUBisBFTMyFhQGKwEVMzIWFAYjISImNDY7ATUjIiY0NjsBNSMiJjQ2OwE1IyImNDaWA%2BgVHR0VMjIVHR0VMjIVHR0VMjIVHR0V%2FBgVHR0VMjIVHR0VMjIVHR0VMjIVHR0ETB0qHcgdKh3IHSodyB0qHR0qHcgdKh3IHSodyB0qHQAAAAYBLAAFA%2BgEowAHAA0AEwAZAB8AKgAAAR4BBgcuATYBMhYVIiYlFAYjNDYBMhYVIiYlFAYjNDYDFRQGIiY9ARYzMgKKVz8%2FV1c%2FP%2F75fLB8sAK8sHyw%2FcB8sHywArywfLCwHSodKAMRBKNDsrJCQrKy%2FsCwfLB8fLB8sP7UsHywfHywfLD%2B05AVHR0VjgQAAAH%2FtQDIBJQDgQBCAAABNzYXAR4BBw4BKwEyFRQOBCsBIhE0NyYiBxYVECsBIi4DNTQzIyImJyY2NwE2HwEeAQ4BLwEHIScHBi4BNgLpRRkUASoLCAYFGg8IAQQNGyc%2FKZK4ChRUFQu4jjBJJxkHAgcPGQYGCAsBKhQaTBQVCiMUM7YDe7YsFCMKFgNuEwYS%2FtkLHw8OEw0dNkY4MhwBIBgXBAQYF%2F7gKjxTQyMNEw4PHwoBKBIHEwUjKBYGDMHBDAUWKCMAAAAAAgAAAAAEsASwACUAQwAAASM0LgUrAREUFh8BFSE1Mj4DNREjIg4FFSMRIQEjNC4DKwERFBYXMxUjNTI1ESMiDgMVIzUhBLAyCAsZEyYYGcgyGRn%2BcAQOIhoWyBkYJhMZCwgyA%2Bj9RBkIChgQEWQZDQzIMmQREBgKCBkB9AOEFSAVDggDAfyuFhkBAmRkAQUJFQ4DUgEDCA4VIBUBLP0SDxMKBQH%2BVwsNATIyGQGpAQUKEw%2BWAAAAAAMAAAAABEwErgAdACAAMAAAATUiJy4BLwEBIwEGBw4BDwEVITUiJj8BIRcWBiMVARsBARUUBiMhIiY9ATQ2MyEyFgPoGR4OFgUE%2Ft9F%2FtQSFQkfCwsBETE7EkUBJT0NISf%2B7IZ5AbEdFfwYFR0dFQPoFR0BLDIgDiIKCwLr%2FQ4jFQkTBQUyMisusKYiQTIBhwFW%2Fqr942QVHR0VZBUdHQADAAAAAASwBLAADwBHAEoAABMhMhYVERQGIyEiJjURNDYFIyIHAQYHBgcGHQEUFjMhMjY9ATQmIyInJj8BIRcWBwYjIgYdARQWMyEyNj0BNCYnIicmJyMBJhMjEzIETBUdHRX7tBUdHQJGRg0F%2FtUREhImDAsJAREIDAwINxAKCj8BCjkLEQwYCAwMCAE5CAwLCBEZGQ8B%2FuAFDsVnBLAdFfu0FR0dFQRMFR1SDP0PIBMSEAUNMggMDAgyCAwXDhmjmR8YEQwIMggMDAgyBwwBGRskAuwM%2FgUBCAAABAAAAAAEsASwAAMAEwAjACcAAAEhNSEFITIWFREUBiMhIiY1ETQ2KQEyFhURFAYjISImNRE0NhcRIREEsPtQBLD7ggGQFR0dFf5wFR0dAm0BkBUdHRX%2BcBUdHUcBLARMZMgdFfx8FR0dFQOEFR0dFf5wFR0dFQGQFR1k%2FtQBLAAEAAAAAASwBLAADwAfACMAJwAAEyEyFhURFAYjISImNRE0NgEhMhYVERQGIyEiJjURNDYXESEREyE1ITIBkBUdHRX%2BcBUdHQJtAZAVHR0V%2FnAVHR1HASzI%2B1AEsASwHRX8fBUdHRUDhBUd%2FgwdFf5wFR0dFQGQFR1k%2FtQBLP2oZAAAAAACAAAAZASwA%2BgAJwArAAATITIWFREzNTQ2MyEyFh0BMxUjFRQGIyEiJj0BIxEUBiMhIiY1ETQ2AREhETIBkBUdZB0VAZAVHWRkHRX%2BcBUdZB0V%2FnAVHR0CnwEsA%2BgdFf6ilhUdHRWWZJYVHR0Vlv6iFR0dFQMgFR3%2B1P7UASwAAAQAAAAABLAEsAADABMAFwAnAAAzIxEzFyEyFhURFAYjISImNRE0NhcRIREBITIWFREUBiMhIiY1ETQ2ZGRklgGQFR0dFf5wFR0dRwEs%2FqIDhBUdHRX8fBUdHQSwZB0V%2FnAVHR0VAZAVHWT%2B1AEs%2FgwdFf5wFR0dFQGQFR0AAAAAAgBkAAAETASwACcAKwAAATMyFhURFAYrARUhMhYVERQGIyEiJjURNDYzITUjIiY1ETQ2OwE1MwcRIRECWJYVHR0VlgHCFR0dFfx8FR0dFQFelhUdHRWWZMgBLARMHRX%2BcBUdZB0V%2FnAVHR0VAZAVHWQdFQGQFR1kyP7UASwAAAAEAAAAAASwBLAAAwATABcAJwAAISMRMwUhMhYVERQGIyEiJjURNDYXESERASEyFhURFAYjISImNRE0NgSwZGT9dgGQFR0dFf5wFR0dRwEs%2FK4DhBUdHRX8fBUdHQSwZB0V%2FnAVHR0VAZAVHWT%2B1AEs%2FgwdFf5wFR0dFQGQFR0AAAEBLAAwA28EgAAPAAAJAQYjIiY1ETQ2MzIXARYUA2H%2BEhcSDhAQDhIXAe4OAjX%2BEhcbGQPoGRsX%2FhIOKgAAAAABAUEAMgOEBH4ACwAACQE2FhURFAYnASY0AU8B7h0qKh3%2BEg4CewHuHREp%2FBgpER0B7g4qAAAAAAEAMgFBBH4DhAALAAATITIWBwEGIicBJjZkA%2BgpER3%2BEg4qDv4SHREDhCod%2FhIODgHuHSoAAAAAAQAyASwEfgNvAAsAAAkBFgYjISImNwE2MgJ7Ae4dESn8GCkRHQHuDioDYf4SHSoqHQHuDgAAAAACAAgAAASwBCgABgAKAAABFQE1LQE1ASE1IQK8%2FUwBnf5jBKj84AMgAuW2%2Fr3dwcHd%2B9jIAAAAAAIAAABkBLAEsAALADEAAAEjFTMVIREzNSM1IQEzND4FOwERFAYPARUhNSIuAzURMzIeBRUzESEEsMjI%2FtTIyAEs%2B1AyCAsZEyYYGWQyGRkBkAQOIhoWZBkYJhMZCwgy%2FOADhGRkASxkZP4MFSAVDggDAf3aFhkBAmRkAQUJFQ4CJgEDCA4VIBUBLAAAAgAAAAAETAPoACUAMQAAASM0LgUrAREUFh8BFSE1Mj4DNREjIg4FFSMRIQEjFTMVIREzNSM1IQMgMggLGRMmGBlkMhkZ%2FnAEDiIaFmQZGCYTGQsIMgMgASzIyP7UyMgBLAK8FSAVDggDAf3aFhkCAWRkAQUJFQ4CJgEDCA4VIBUBLPzgZGQBLGRkAAABAMgAZgNyBEoAEgAAATMyFgcJARYGKwEiJwEmNDcBNgK9oBAKDP4wAdAMChCgDQr%2BKQcHAdcKBEoWDP4w%2FjAMFgkB1wgUCAHXCQAAAQE%2BAGYD6ARKABIAAAEzMhcBFhQHAQYrASImNwkBJjYBU6ANCgHXBwf%2BKQoNoBAKDAHQ%2FjAMCgRKCf4pCBQI%2FikJFgwB0AHQDBYAAAEAZgDIBEoDcgASAAAAFh0BFAcBBiInASY9ATQ2FwkBBDQWCf4pCBQI%2FikJFgwB0AHQA3cKEKANCv4pBwcB1woNoBAKDP4wAdAAAAABAGYBPgRKA%2BgAEgAACQEWHQEUBicJAQYmPQE0NwE2MgJqAdcJFgz%2BMP4wDBYJAdcIFAPh%2FikKDaAQCgwB0P4wDAoQoA0KAdcHAAAAAgDZ%2F%2FkEPQSwAAUAOgAAARQGIzQ2BTMyFh8BNjc%2BAh4EBgcOBgcGIiYjIgYiJy4DLwEuAT4EHgEXJyY2A%2BiwfLD%2BVmQVJgdPBQsiKFAzRyorDwURAQQSFyozTSwNOkkLDkc3EDlfNyYHBw8GDyUqPjdGMR%2BTDA0EsHywfLDIHBPCAQIGBwcFDx81S21DBxlLR1xKQhEFBQcHGWt0bCQjP2hJNyATBwMGBcASGAAAAAACAMgAFQOEBLAAFgAaAAATITIWFREUBisBEQcGJjURIyImNRE0NhcVITX6AlgVHR0Vlv8TGpYVHR2rASwEsB0V%2FnAVHf4MsgkQFQKKHRUBkBUdZGRkAAAAAgDIABkETASwAA4AEgAAEyEyFhURBRElIREjETQ2ARU3NfoC7ic9%2FUQCWP1EZB8BDWQEsFEs%2FFt1A7Z9%2FBgEARc0%2FV1kFGQAAQAAAAECTW%2FDBF9fDzz1AB8EsAAAAADQdnOXAAAAANB2c5f%2FUf%2BcBdwFFAAAAAgAAgAAAAAAAAABAAAFFP%2BFAAAFFP9R%2FtQF3AABAAAAAAAAAAAAAAAAAAAAowG4ACgAAAAAAZAAAASwAAAEsABkBLAAAASwAAAEsABwAooAAAUUAAACigAABRQAAAGxAAABRQAAANgAAADYAAAAogAAAQQAAABIAAABBAAAAUUAAASwAGQEsAB7BLAAyASwAMgB9AAABLD%2F8gSwAAAEsAAABLD%2F8ASwAAAEsAAOBLAACQSwAGQEsP%2FTBLD%2F0wSwAAAEsAAABLAAAASwAAAEsAAABLAAJgSwAG4EsAAXBLAAFwSwABcEsABkBLAAGgSwAGQEsAAMBLAAZASwABcEsP%2BcBLAAZASwABcEsAAXBLAAAASwABcEsAAXBLAAFwSwAGQEsAAABLAAZASwAAAEsAAABLAAAASwAAAEsAAABLAAAASwAAAEsAAABLAAZASwAMgEsAAABLAAAASwADUEsABkBLAAyASw%2F7UEsAAhBLAAAASwAAAEsAAABLAAAASwAAAEsP%2BcBLAAAASwAAAEsAAABLAA2wSwABcEsAB1BLAAAASwAAAEsAAABLAACgSwAMgEsAAABLAAnQSwAMgEsADIBLAAyASwAAAEsP%2F%2BBLABLASwAGQEsACIBLABOwSwABcEsAAXBLAAFwSwABcEsAAXBLAAFwSwAAAEsAAXBLAAFwSwABcEsAAXBLAAAASwALcEsAC3BLAAAASwAAAEsABJBLAAFwSwAAAEsAAABLAAXQSw%2F9wEsP%2FcBLD%2FnwSwAGQEsAAABLAAAASwAAAEsABkBLD%2F%2FwSwAAAEsP9RBLAABgSwAAAEsAAABLABRQSwAAEEsAAABLD%2FnASwAEoEsAAUBLAAAASwAAAEsAAABLD%2FnASwAGEEsP%2F9BLAAFgSwABYEsAAWBLAAFgSwABgEsAAABMQAAASwAGQAAAAAAAD%2F2ABkADkAyAAAAScAZAAZABkAGQAZABkAGQAZAAAAAAAAAAAAAADZAAAAAAAOAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAMAZABkAAAAEAAAAAAAZP%2Bc%2F5z%2FnP%2Bc%2F5z%2FnP%2Bc%2F5wACQAJ%2F%2FL%2F8gBkAHkAJwBkAGQAAAAAAGT%2FogAAAAAAAAAAAAAAAADIAGQAAAABAI8AAP%2Bc%2F5wAZAAEAMgAyAAAAGQBkABkAAAAZAEs%2F7UAAAAAAAAAAAAAAAAAAABkAAABLAFBADIAMgAIAAAAAADIAT4AZgBmANkAyADIAAAAKgAqACoAKgCyAOgA6AFOAU4BTgFOAU4BTgFOAU4BTgFOAU4BTgFOAU4BpAIGAiICfgKGAqwC5ANGA24DjAPEBAgEMgRiBKIE3AVcBboGcgb0ByAHYgfKCB4IYgi%2BCTYJhAm2Cd4KKApMCpQK4gswC4oLygwIDFgNKg1eDbAODg5oDrQPKA%2BmD%2BYQEhBUEJAQqhEqEXYRthIKEjgSfBLAExoTdBPQFCoU1BU8FagVzBYEFjYWYBawFv4XUhemGAIYLhhqGJYYsBjgGP4ZKBloGZQZxBnaGe4aNhpoGrga9hteG7QcMhyUHOIdHB1EHWwdlB28HeYeLh52HsAfYh%2FSIEYgviEyIXYhuCJAIpYiuCMOIyIjOCN6I8Ij4CQCJDAkXiSWJOIlNCVgJbwmFCZ%2BJuYnUCe8J%2FgoNChwKKwpoCnMKiYqSiqEKworeiwILGgsuizsLRwtiC30LiguZi6iLtgvDi9GL34vsi%2F4MD4whDDSMRIxYDGuMegyJDJeMpoy3jMiMz4zaDO2NBg0YDSoNNI1LDWeNeg2PjZ8Ntw3GjdON5I31DgQOEI4hjjIOQo5SjmIOcw6HDpsOpo63jugO9w8GDxQPKI8%2BD0yPew%2BOj6MPtQ%2FKD9uP6o%2F%2BkBIQIBAxkECQX5CGEKoQu5DGENCQ3ZDoEPKRBBEYESuRPZFWkW2RgZGdEa0RvZHNkd2R7ZH9kgWSDJITkhqSIZIzEkSSThJXkmESapKAkouSlIAAQAAARcApwARAAAAAAACAAAAAQABAAAAQAAuAAAAAAAAABAAxgABAAAAAAATABIAAAADAAEECQAAAGoAEgADAAEECQABACgAfAADAAEECQACAA4ApAADAAEECQADAEwAsgADAAEECQAEADgA%2FgADAAEECQAFAHgBNgADAAEECQAGADYBrgADAAEECQAIABYB5AADAAEECQAJABYB%2BgADAAEECQALACQCEAADAAEECQAMACQCNAADAAEECQATACQCWAADAAEECQDIABYCfAADAAEECQDJADACkgADAAEECdkDABoCwnd3dy5nbHlwaGljb25zLmNvbQBDAG8AcAB5AHIAaQBnAGgAdAAgAKkAIAAyADAAMQA0ACAAYgB5ACAASgBhAG4AIABLAG8AdgBhAHIAaQBrAC4AIABBAGwAbAAgAHIAaQBnAGgAdABzACAAcgBlAHMAZQByAHYAZQBkAC4ARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAFIAZQBnAHUAbABhAHIAMQAuADAAMAA5ADsAVQBLAFcATgA7AEcATABZAFAASABJAEMATwBOAFMASABhAGwAZgBsAGkAbgBnAHMALQBSAGUAZwB1AGwAYQByAEcATABZAFAASABJAEMATwBOAFMAIABIAGEAbABmAGwAaQBuAGcAcwAgAFIAZQBnAHUAbABhAHIAVgBlAHIAcwBpAG8AbgAgADEALgAwADAAOQA7AFAAUwAgADAAMAAxAC4AMAAwADkAOwBoAG8AdABjAG8AbgB2ACAAMQAuADAALgA3ADAAOwBtAGEAawBlAG8AdABmAC4AbABpAGIAMgAuADUALgA1ADgAMwAyADkARwBMAFkAUABIAEkAQwBPAE4AUwBIAGEAbABmAGwAaQBuAGcAcwAtAFIAZQBnAHUAbABhAHIASgBhAG4AIABLAG8AdgBhAHIAaQBrAEoAYQBuACAASwBvAHYAYQByAGkAawB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQBXAGUAYgBmAG8AbgB0ACAAMQAuADAAVwBlAGQAIABPAGMAdAAgADIAOQAgADAANgA6ADMANgA6ADAANwAgADIAMAAxADQARgBvAG4AdAAgAFMAcQB1AGkAcgByAGUAbAAAAAIAAAAAAAD%2FtQAyAAAAAAAAAAAAAAAAAAAAAAAAAAABFwAAAQIBAwADAA0ADgEEAJYBBQEGAQcBCAEJAQoBCwEMAQ0BDgEPARABEQESARMA7wEUARUBFgEXARgBGQEaARsBHAEdAR4BHwEgASEBIgEjASQBJQEmAScBKAEpASoBKwEsAS0BLgEvATABMQEyATMBNAE1ATYBNwE4ATkBOgE7ATwBPQE%2BAT8BQAFBAUIBQwFEAUUBRgFHAUgBSQFKAUsBTAFNAU4BTwFQAVEBUgFTAVQBVQFWAVcBWAFZAVoBWwFcAV0BXgFfAWABYQFiAWMBZAFlAWYBZwFoAWkBagFrAWwBbQFuAW8BcAFxAXIBcwF0AXUBdgF3AXgBeQF6AXsBfAF9AX4BfwGAAYEBggGDAYQBhQGGAYcBiAGJAYoBiwGMAY0BjgGPAZABkQGSAZMBlAGVAZYBlwGYAZkBmgGbAZwBnQGeAZ8BoAGhAaIBowGkAaUBpgGnAagBqQGqAasBrAGtAa4BrwGwAbEBsgGzAbQBtQG2AbcBuAG5AboBuwG8Ab0BvgG%2FAcABwQHCAcMBxAHFAcYBxwHIAckBygHLAcwBzQHOAc8B0AHRAdIB0wHUAdUB1gHXAdgB2QHaAdsB3AHdAd4B3wHgAeEB4gHjAeQB5QHmAecB6AHpAeoB6wHsAe0B7gHvAfAB8QHyAfMB9AH1AfYB9wH4AfkB%2BgH7AfwB%2FQH%2BAf8CAAIBAgICAwIEAgUCBgIHAggCCQIKAgsCDAINAg4CDwIQAhECEgZnbHlwaDEGZ2x5cGgyB3VuaTAwQTAHdW5pMjAwMAd1bmkyMDAxB3VuaTIwMDIHdW5pMjAwMwd1bmkyMDA0B3VuaTIwMDUHdW5pMjAwNgd1bmkyMDA3B3VuaTIwMDgHdW5pMjAwOQd1bmkyMDBBB3VuaTIwMkYHdW5pMjA1RgRFdXJvB3VuaTIwQkQHdW5pMjMxQgd1bmkyNUZDB3VuaTI2MDEHdW5pMjZGQQd1bmkyNzA5B3VuaTI3MEYHdW5pRTAwMQd1bmlFMDAyB3VuaUUwMDMHdW5pRTAwNQd1bmlFMDA2B3VuaUUwMDcHdW5pRTAwOAd1bmlFMDA5B3VuaUUwMTAHdW5pRTAxMQd1bmlFMDEyB3VuaUUwMTMHdW5pRTAxNAd1bmlFMDE1B3VuaUUwMTYHdW5pRTAxNwd1bmlFMDE4B3VuaUUwMTkHdW5pRTAyMAd1bmlFMDIxB3VuaUUwMjIHdW5pRTAyMwd1bmlFMDI0B3VuaUUwMjUHdW5pRTAyNgd1bmlFMDI3B3VuaUUwMjgHdW5pRTAyOQd1bmlFMDMwB3VuaUUwMzEHdW5pRTAzMgd1bmlFMDMzB3VuaUUwMzQHdW5pRTAzNQd1bmlFMDM2B3VuaUUwMzcHdW5pRTAzOAd1bmlFMDM5B3VuaUUwNDAHdW5pRTA0MQd1bmlFMDQyB3VuaUUwNDMHdW5pRTA0NAd1bmlFMDQ1B3VuaUUwNDYHdW5pRTA0Nwd1bmlFMDQ4B3VuaUUwNDkHdW5pRTA1MAd1bmlFMDUxB3VuaUUwNTIHdW5pRTA1Mwd1bmlFMDU0B3VuaUUwNTUHdW5pRTA1Ngd1bmlFMDU3B3VuaUUwNTgHdW5pRTA1OQd1bmlFMDYwB3VuaUUwNjIHdW5pRTA2Mwd1bmlFMDY0B3VuaUUwNjUHdW5pRTA2Ngd1bmlFMDY3B3VuaUUwNjgHdW5pRTA2OQd1bmlFMDcwB3VuaUUwNzEHdW5pRTA3Mgd1bmlFMDczB3VuaUUwNzQHdW5pRTA3NQd1bmlFMDc2B3VuaUUwNzcHdW5pRTA3OAd1bmlFMDc5B3VuaUUwODAHdW5pRTA4MQd1bmlFMDgyB3VuaUUwODMHdW5pRTA4NAd1bmlFMDg1B3VuaUUwODYHdW5pRTA4Nwd1bmlFMDg4B3VuaUUwODkHdW5pRTA5MAd1bmlFMDkxB3VuaUUwOTIHdW5pRTA5Mwd1bmlFMDk0B3VuaUUwOTUHdW5pRTA5Ngd1bmlFMDk3B3VuaUUxMDEHdW5pRTEwMgd1bmlFMTAzB3VuaUUxMDQHdW5pRTEwNQd1bmlFMTA2B3VuaUUxMDcHdW5pRTEwOAd1bmlFMTA5B3VuaUUxMTAHdW5pRTExMQd1bmlFMTEyB3VuaUUxMTMHdW5pRTExNAd1bmlFMTE1B3VuaUUxMTYHdW5pRTExNwd1bmlFMTE4B3VuaUUxMTkHdW5pRTEyMAd1bmlFMTIxB3VuaUUxMjIHdW5pRTEyMwd1bmlFMTI0B3VuaUUxMjUHdW5pRTEyNgd1bmlFMTI3B3VuaUUxMjgHdW5pRTEyOQd1bmlFMTMwB3VuaUUxMzEHdW5pRTEzMgd1bmlFMTMzB3VuaUUxMzQHdW5pRTEzNQd1bmlFMTM2B3VuaUUxMzcHdW5pRTEzOAd1bmlFMTM5B3VuaUUxNDAHdW5pRTE0MQd1bmlFMTQyB3VuaUUxNDMHdW5pRTE0NAd1bmlFMTQ1B3VuaUUxNDYHdW5pRTE0OAd1bmlFMTQ5B3VuaUUxNTAHdW5pRTE1MQd1bmlFMTUyB3VuaUUxNTMHdW5pRTE1NAd1bmlFMTU1B3VuaUUxNTYHdW5pRTE1Nwd1bmlFMTU4B3VuaUUxNTkHdW5pRTE2MAd1bmlFMTYxB3VuaUUxNjIHdW5pRTE2Mwd1bmlFMTY0B3VuaUUxNjUHdW5pRTE2Ngd1bmlFMTY3B3VuaUUxNjgHdW5pRTE2OQd1bmlFMTcwB3VuaUUxNzEHdW5pRTE3Mgd1bmlFMTczB3VuaUUxNzQHdW5pRTE3NQd1bmlFMTc2B3VuaUUxNzcHdW5pRTE3OAd1bmlFMTc5B3VuaUUxODAHdW5pRTE4MQd1bmlFMTgyB3VuaUUxODMHdW5pRTE4NAd1bmlFMTg1B3VuaUUxODYHdW5pRTE4Nwd1bmlFMTg4B3VuaUUxODkHdW5pRTE5MAd1bmlFMTkxB3VuaUUxOTIHdW5pRTE5Mwd1bmlFMTk0B3VuaUUxOTUHdW5pRTE5Nwd1bmlFMTk4B3VuaUUxOTkHdW5pRTIwMAd1bmlFMjAxB3VuaUUyMDIHdW5pRTIwMwd1bmlFMjA0B3VuaUUyMDUHdW5pRTIwNgd1bmlFMjA5B3VuaUUyMTAHdW5pRTIxMQd1bmlFMjEyB3VuaUUyMTMHdW5pRTIxNAd1bmlFMjE1B3VuaUUyMTYHdW5pRTIxOAd1bmlFMjE5B3VuaUUyMjEHdW5pRTIyMwd1bmlFMjI0B3VuaUUyMjUHdW5pRTIyNgd1bmlFMjI3B3VuaUUyMzAHdW5pRTIzMQd1bmlFMjMyB3VuaUUyMzMHdW5pRTIzNAd1bmlFMjM1B3VuaUUyMzYHdW5pRTIzNwd1bmlFMjM4B3VuaUUyMzkHdW5pRTI0MAd1bmlFMjQxB3VuaUUyNDIHdW5pRTI0Mwd1bmlFMjQ0B3VuaUUyNDUHdW5pRTI0Ngd1bmlFMjQ3B3VuaUUyNDgHdW5pRTI0OQd1bmlFMjUwB3VuaUUyNTEHdW5pRTI1Mgd1bmlFMjUzB3VuaUUyNTQHdW5pRTI1NQd1bmlFMjU2B3VuaUUyNTcHdW5pRTI1OAd1bmlFMjU5B3VuaUUyNjAHdW5pRjhGRgZ1MUY1MTEGdTFGNkFBAAAAAAFUUMMXAAA%3D%29%20format%28%27truetype%27%29%2Curl%28data%3Aimage%2Fsvg%2Bxml%3Bbase64%2CPD94bWwgdmVyc2lvbj0iMS4wIiBzdGFuZGFsb25lPSJubyI%2FPgo8IURPQ1RZUEUgc3ZnIFBVQkxJQyAiLS8vVzNDLy9EVEQgU1ZHIDEuMS8vRU4iICJodHRwOi8vd3d3LnczLm9yZy9HcmFwaGljcy9TVkcvMS4xL0RURC9zdmcxMS5kdGQiID4KPHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciPgo8bWV0YWRhdGE%2BPC9tZXRhZGF0YT4KPGRlZnM%2BCjxmb250IGlkPSJnbHlwaGljb25zX2hhbGZsaW5nc3JlZ3VsYXIiIGhvcml6LWFkdi14PSIxMjAwIiA%2BCjxmb250LWZhY2UgdW5pdHMtcGVyLWVtPSIxMjAwIiBhc2NlbnQ9Ijk2MCIgZGVzY2VudD0iLTI0MCIgLz4KPG1pc3NpbmctZ2x5cGggaG9yaXotYWR2LXg9IjUwMCIgLz4KPGdseXBoIGhvcml6LWFkdi14PSIwIiAvPgo8Z2x5cGggaG9yaXotYWR2LXg9IjQwMCIgLz4KPGdseXBoIHVuaWNvZGU9IiAiIC8%2BCjxnbHlwaCB1bmljb2RlPSIqIiBkPSJNNjAwIDExMDBxMTUgMCAzNCAtMS41dDMwIC0zLjVsMTEgLTFxMTAgLTIgMTcuNSAtMTAuNXQ3LjUgLTE4LjV2LTIyNGwxNTggMTU4cTcgNyAxOCA4dDE5IC02bDEwNiAtMTA2cTcgLTggNiAtMTl0LTggLTE4bC0xNTggLTE1OGgyMjRxMTAgMCAxOC41IC03LjV0MTAuNSAtMTcuNXE2IC00MSA2IC03NXEwIC0xNSAtMS41IC0zNHQtMy41IC0zMGwtMSAtMTFxLTIgLTEwIC0xMC41IC0xNy41dC0xOC41IC03LjVoLTIyNGwxNTggLTE1OCBxNyAtNyA4IC0xOHQtNiAtMTlsLTEwNiAtMTA2cS04IC03IC0xOSAtNnQtMTggOGwtMTU4IDE1OHYtMjI0cTAgLTEwIC03LjUgLTE4LjV0LTE3LjUgLTEwLjVxLTQxIC02IC03NSAtNnEtMTUgMCAtMzQgMS41dC0zMCAzLjVsLTExIDFxLTEwIDIgLTE3LjUgMTAuNXQtNy41IDE4LjV2MjI0bC0xNTggLTE1OHEtNyAtNyAtMTggLTh0LTE5IDZsLTEwNiAxMDZxLTcgOCAtNiAxOXQ4IDE4bDE1OCAxNThoLTIyNHEtMTAgMCAtMTguNSA3LjUgdC0xMC41IDE3LjVxLTYgNDEgLTYgNzVxMCAxNSAxLjUgMzR0My41IDMwbDEgMTFxMiAxMCAxMC41IDE3LjV0MTguNSA3LjVoMjI0bC0xNTggMTU4cS03IDcgLTggMTh0NiAxOWwxMDYgMTA2cTggNyAxOSA2dDE4IC04bDE1OCAtMTU4djIyNHEwIDEwIDcuNSAxOC41dDE3LjUgMTAuNXE0MSA2IDc1IDZ6IiAvPgo8Z2x5cGggdW5pY29kZT0iKyIgZD0iTTQ1MCAxMTAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMzUwaDM1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0zNTB2LTM1MHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMjAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYzNTBoLTM1MHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNSBoMzUwdjM1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4YTA7IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4YTU7IiBkPSJNODI1IDExMDBoMjUwcTEwIDAgMTIuNSAtNXQtNS41IC0xM2wtMzY0IC0zNjRxLTYgLTYgLTExIC0xOGgyNjhxMTAgMCAxMyAtNnQtMyAtMTRsLTEyMCAtMTYwcS02IC04IC0xOCAtMTR0LTIyIC02aC0xMjV2LTEwMGgyNzVxMTAgMCAxMyAtNnQtMyAtMTRsLTEyMCAtMTYwcS02IC04IC0xOCAtMTR0LTIyIC02aC0xMjV2LTE3NHEwIC0xMSAtNy41IC0xOC41dC0xOC41IC03LjVoLTE0OHEtMTEgMCAtMTguNSA3LjV0LTcuNSAxOC41djE3NCBoLTI3NXEtMTAgMCAtMTMgNnQzIDE0bDEyMCAxNjBxNiA4IDE4IDE0dDIyIDZoMTI1djEwMGgtMjc1cS0xMCAwIC0xMyA2dDMgMTRsMTIwIDE2MHE2IDggMTggMTR0MjIgNmgxMThxLTUgMTIgLTExIDE4bC0zNjQgMzY0cS04IDggLTUuNSAxM3QxMi41IDVoMjUwcTI1IDAgNDMgLTE4bDE2NCAtMTY0cTggLTggMTggLTh0MTggOGwxNjQgMTY0cTE4IDE4IDQzIDE4eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDIwMDA7IiBob3Jpei1hZHYteD0iNjUwIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjAwMTsiIGhvcml6LWFkdi14PSIxMzAwIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjAwMjsiIGhvcml6LWFkdi14PSI2NTAiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyMDAzOyIgaG9yaXotYWR2LXg9IjEzMDAiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyMDA0OyIgaG9yaXotYWR2LXg9IjQzMyIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDIwMDU7IiBob3Jpei1hZHYteD0iMzI1IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjAwNjsiIGhvcml6LWFkdi14PSIyMTYiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyMDA3OyIgaG9yaXotYWR2LXg9IjIxNiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDIwMDg7IiBob3Jpei1hZHYteD0iMTYyIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjAwOTsiIGhvcml6LWFkdi14PSIyNjAiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyMDBhOyIgaG9yaXotYWR2LXg9IjcyIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjAyZjsiIGhvcml6LWFkdi14PSIyNjAiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyMDVmOyIgaG9yaXotYWR2LXg9IjMyNSIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDIwYWM7IiBkPSJNNzQ0IDExOThxMjQyIDAgMzU0IC0xODlxNjAgLTEwNCA2NiAtMjA5aC0xODFxMCA0NSAtMTcuNSA4Mi41dC00My41IDYxLjV0LTU4IDQwLjV0LTYwLjUgMjR0LTUxLjUgNy41cS0xOSAwIC00MC41IC01LjV0LTQ5LjUgLTIwLjV0LTUzIC0zOHQtNDkgLTYyLjV0LTM5IC04OS41aDM3OWwtMTAwIC0xMDBoLTMwMHEtNiAtNTAgLTYgLTEwMGg0MDZsLTEwMCAtMTAwaC0zMDBxOSAtNzQgMzMgLTEzMnQ1Mi41IC05MXQ2MS41IC01NC41dDU5IC0yOSB0NDcgLTcuNXEyMiAwIDUwLjUgNy41dDYwLjUgMjQuNXQ1OCA0MXQ0My41IDYxdDE3LjUgODBoMTc0cS0zMCAtMTcxIC0xMjggLTI3OHEtMTA3IC0xMTcgLTI3NCAtMTE3cS0yMDYgMCAtMzI0IDE1OHEtMzYgNDggLTY5IDEzM3QtNDUgMjA0aC0yMTdsMTAwIDEwMGgxMTJxMSA0NyA2IDEwMGgtMjE4bDEwMCAxMDBoMTM0cTIwIDg3IDUxIDE1My41dDYyIDEwMy41cTExNyAxNDEgMjk3IDE0MXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyMGJkOyIgZD0iTTQyOCAxMjAwaDM1MHE2NyAwIDEyMCAtMTN0ODYgLTMxdDU3IC00OS41dDM1IC01Ni41dDE3IC02NC41dDYuNSAtNjAuNXQwLjUgLTU3di0xNi41di0xNi41cTAgLTM2IC0wLjUgLTU3dC02LjUgLTYxdC0xNyAtNjV0LTM1IC01N3QtNTcgLTUwLjV0LTg2IC0zMS41dC0xMjAgLTEzaC0xNzhsLTIgLTEwMGgyODhxMTAgMCAxMyAtNnQtMyAtMTRsLTEyMCAtMTYwcS02IC04IC0xOCAtMTR0LTIyIC02aC0xMzh2LTE3NXEwIC0xMSAtNS41IC0xOCB0LTE1LjUgLTdoLTE0OXEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE3NWgtMjY3cS0xMCAwIC0xMyA2dDMgMTRsMTIwIDE2MHE2IDggMTggMTR0MjIgNmgxMTd2MTAwaC0yNjdxLTEwIDAgLTEzIDZ0MyAxNGwxMjAgMTYwcTYgOCAxOCAxNHQyMiA2aDExN3Y0NzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNNjAwIDEwMDB2LTMwMGgyMDNxNjQgMCA4Ni41IDMzdDIyLjUgMTE5cTAgODQgLTIyLjUgMTE2dC04Ni41IDMyaC0yMDN6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjIxMjsiIGQ9Ik0yNTAgNzAwaDgwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC04MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjMxYjsiIGQ9Ik0xMDAwIDEyMDB2LTE1MHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTB2LTEwMHEwIC05MSAtNDkuNSAtMTY1LjV0LTEzMC41IC0xMDkuNXE4MSAtMzUgMTMwLjUgLTEwOS41dDQ5LjUgLTE2NS41di0xNTBoNTBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTE1MGgtODAwdjE1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoNTB2MTUwcTAgOTEgNDkuNSAxNjUuNXQxMzAuNSAxMDkuNXEtODEgMzUgLTEzMC41IDEwOS41IHQtNDkuNSAxNjUuNXYxMDBoLTUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxNTBoODAwek00MDAgMTAwMHYtMTAwcTAgLTYwIDMyLjUgLTEwOS41dDg3LjUgLTczLjVxMjggLTEyIDQ0IC0zN3QxNiAtNTV0LTE2IC01NXQtNDQgLTM3cS01NSAtMjQgLTg3LjUgLTczLjV0LTMyLjUgLTEwOS41di0xNTBoNDAwdjE1MHEwIDYwIC0zMi41IDEwOS41dC04Ny41IDczLjVxLTI4IDEyIC00NCAzN3QtMTYgNTV0MTYgNTV0NDQgMzcgcTU1IDI0IDg3LjUgNzMuNXQzMi41IDEwOS41djEwMGgtNDAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDI1ZmM7IiBob3Jpei1hZHYteD0iNTAwIiBkPSJNMCAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDI2MDE7IiBkPSJNNTAzIDEwODlxMTEwIDAgMjAwLjUgLTU5LjV0MTM0LjUgLTE1Ni41cTQ0IDE0IDkwIDE0cTEyMCAwIDIwNSAtODYuNXQ4NSAtMjA2LjVxMCAtMTIxIC04NSAtMjA3LjV0LTIwNSAtODYuNWgtNzUwcS03OSAwIC0xMzUuNSA1N3QtNTYuNSAxMzdxMCA2OSA0Mi41IDEyMi41dDEwOC41IDY3LjVxLTIgMTIgLTIgMzdxMCAxNTMgMTA4IDI2MC41dDI2MCAxMDcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyNmZhOyIgZD0iTTc3NCAxMTkzLjVxMTYgLTkuNSAyMC41IC0yN3QtNS41IC0zMy41bC0xMzYgLTE4N2w0NjcgLTc0NmgzMHEyMCAwIDM1IC0xOC41dDE1IC0zOS41di00MmgtMTIwMHY0MnEwIDIxIDE1IDM5LjV0MzUgMTguNWgzMGw0NjggNzQ2bC0xMzUgMTgzcS0xMCAxNiAtNS41IDM0dDIwLjUgMjh0MzQgNS41dDI4IC0yMC41bDExMSAtMTQ4bDExMiAxNTBxOSAxNiAyNyAyMC41dDM0IC01ek02MDAgMjAwaDM3N2wtMTgyIDExMmwtMTk1IDUzNHYtNjQ2eiAiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyNzA5OyIgZD0iTTI1IDExMDBoMTE1MHExMCAwIDEyLjUgLTV0LTUuNSAtMTNsLTU2NCAtNTY3cS04IC04IC0xOCAtOHQtMTggOGwtNTY0IDU2N3EtOCA4IC01LjUgMTN0MTIuNSA1ek0xOCA4ODJsMjY0IC0yNjRxOCAtOCA4IC0xOHQtOCAtMThsLTI2NCAtMjY0cS04IC04IC0xMyAtNS41dC01IDEyLjV2NTUwcTAgMTAgNSAxMi41dDEzIC01LjV6TTkxOCA2MThsMjY0IDI2NHE4IDggMTMgNS41dDUgLTEyLjV2LTU1MHEwIC0xMCAtNSAtMTIuNXQtMTMgNS41IGwtMjY0IDI2NHEtOCA4IC04IDE4dDggMTh6TTgxOCA0ODJsMzY0IC0zNjRxOCAtOCA1LjUgLTEzdC0xMi41IC01aC0xMTUwcS0xMCAwIC0xMi41IDV0NS41IDEzbDM2NCAzNjRxOCA4IDE4IDh0MTggLThsMTY0IC0xNjRxOCAtOCAxOCAtOHQxOCA4bDE2NCAxNjRxOCA4IDE4IDh0MTggLTh6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjcwZjsiIGQ9Ik0xMDExIDEyMTBxMTkgMCAzMyAtMTNsMTUzIC0xNTNxMTMgLTE0IDEzIC0zM3QtMTMgLTMzbC05OSAtOTJsLTIxNCAyMTRsOTUgOTZxMTMgMTQgMzIgMTR6TTEwMTMgODAwbC02MTUgLTYxNGwtMjE0IDIxNGw2MTQgNjE0ek0zMTcgOTZsLTMzMyAtMTEybDExMCAzMzV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAwMTsiIGQ9Ik03MDAgNjUwdi01NTBoMjUwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGgtODAwdjUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWgyNTB2NTUwbC01MDAgNTUwaDEyMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAwMjsiIGQ9Ik0zNjggMTAxN2w2NDUgMTYzcTM5IDE1IDYzIDB0MjQgLTQ5di04MzFxMCAtNTUgLTQxLjUgLTk1LjV0LTExMS41IC02My41cS03OSAtMjUgLTE0NyAtNC41dC04NiA3NXQyNS41IDExMS41dDEyMi41IDgycTcyIDI0IDEzOCA4djUyMWwtNjAwIC0xNTV2LTYwNnEwIC00MiAtNDQgLTkwdC0xMDkgLTY5cS03OSAtMjYgLTE0NyAtNS41dC04NiA3NS41dDI1LjUgMTExLjV0MTIyLjUgODIuNXE3MiAyNCAxMzggN3Y2MzlxMCAzOCAxNC41IDU5IHQ1My41IDM0eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMDM7IiBkPSJNNTAwIDExOTFxMTAwIDAgMTkxIC0zOXQxNTYuNSAtMTA0LjV0MTA0LjUgLTE1Ni41dDM5IC0xOTFsLTEgLTJsMSAtNXEwIC0xNDEgLTc4IC0yNjJsMjc1IC0yNzRxMjMgLTI2IDIyLjUgLTQ0LjV0LTIyLjUgLTQyLjVsLTU5IC01OHEtMjYgLTIwIC00Ni41IC0yMHQtMzkuNSAyMGwtMjc1IDI3NHEtMTE5IC03NyAtMjYxIC03N2wtNSAxbC0yIC0xcS0xMDAgMCAtMTkxIDM5dC0xNTYuNSAxMDQuNXQtMTA0LjUgMTU2LjV0LTM5IDE5MSB0MzkgMTkxdDEwNC41IDE1Ni41dDE1Ni41IDEwNC41dDE5MSAzOXpNNTAwIDEwMjJxLTg4IDAgLTE2MiAtNDN0LTExNyAtMTE3dC00MyAtMTYydDQzIC0xNjJ0MTE3IC0xMTd0MTYyIC00M3QxNjIgNDN0MTE3IDExN3Q0MyAxNjJ0LTQzIDE2MnQtMTE3IDExN3QtMTYyIDQzeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMDU7IiBkPSJNNjQ5IDk0OXE0OCA2OCAxMDkuNSAxMDR0MTIxLjUgMzguNXQxMTguNSAtMjB0MTAyLjUgLTY0dDcxIC0xMDAuNXQyNyAtMTIzcTAgLTU3IC0zMy41IC0xMTcuNXQtOTQgLTEyNC41dC0xMjYuNSAtMTI3LjV0LTE1MCAtMTUyLjV0LTE0NiAtMTc0cS02MiA4NSAtMTQ1LjUgMTc0dC0xNTAgMTUyLjV0LTEyNi41IDEyNy41dC05My41IDEyNC41dC0zMy41IDExNy41cTAgNjQgMjggMTIzdDczIDEwMC41dDEwNCA2NHQxMTkgMjAgdDEyMC41IC0zOC41dDEwNC41IC0xMDR6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAwNjsiIGQ9Ik00MDcgODAwbDEzMSAzNTNxNyAxOSAxNy41IDE5dDE3LjUgLTE5bDEyOSAtMzUzaDQyMXEyMSAwIDI0IC04LjV0LTE0IC0yMC41bC0zNDIgLTI0OWwxMzAgLTQwMXE3IC0yMCAtMC41IC0yNS41dC0yNC41IDYuNWwtMzQzIDI0NmwtMzQyIC0yNDdxLTE3IC0xMiAtMjQuNSAtNi41dC0wLjUgMjUuNWwxMzAgNDAwbC0zNDcgMjUxcS0xNyAxMiAtMTQgMjAuNXQyMyA4LjVoNDI5eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMDc7IiBkPSJNNDA3IDgwMGwxMzEgMzUzcTcgMTkgMTcuNSAxOXQxNy41IC0xOWwxMjkgLTM1M2g0MjFxMjEgMCAyNCAtOC41dC0xNCAtMjAuNWwtMzQyIC0yNDlsMTMwIC00MDFxNyAtMjAgLTAuNSAtMjUuNXQtMjQuNSA2LjVsLTM0MyAyNDZsLTM0MiAtMjQ3cS0xNyAtMTIgLTI0LjUgLTYuNXQtMC41IDI1LjVsMTMwIDQwMGwtMzQ3IDI1MXEtMTcgMTIgLTE0IDIwLjV0MjMgOC41aDQyOXpNNDc3IDcwMGgtMjQwbDE5NyAtMTQybC03NCAtMjI2IGwxOTMgMTM5bDE5NSAtMTQwbC03NCAyMjlsMTkyIDE0MGgtMjM0bC03OCAyMTF6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAwODsiIGQ9Ik02MDAgMTIwMHExMjQgMCAyMTIgLTg4dDg4IC0yMTJ2LTI1MHEwIC00NiAtMzEgLTk4dC02OSAtNTJ2LTc1cTAgLTEwIDYgLTIxLjV0MTUgLTE3LjVsMzU4IC0yMzBxOSAtNSAxNSAtMTYuNXQ2IC0yMS41di05M3EwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTExNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY5M3EwIDEwIDYgMjEuNXQxNSAxNi41bDM1OCAyMzBxOSA2IDE1IDE3LjV0NiAyMS41djc1cS0zOCAwIC02OSA1MiB0LTMxIDk4djI1MHEwIDEyNCA4OCAyMTJ0MjEyIDg4eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMDk7IiBkPSJNMjUgMTEwMGgxMTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTA1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTExNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxMDUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTEwMCAxMDAwdi0xMDBoMTAwdjEwMGgtMTAwek04NzUgMTAwMGgtNTUwcS0xMCAwIC0xNy41IC03LjV0LTcuNSAtMTcuNXYtMzUwcTAgLTEwIDcuNSAtMTcuNXQxNy41IC03LjVoNTUwIHExMCAwIDE3LjUgNy41dDcuNSAxNy41djM1MHEwIDEwIC03LjUgMTcuNXQtMTcuNSA3LjV6TTEwMDAgMTAwMHYtMTAwaDEwMHYxMDBoLTEwMHpNMTAwIDgwMHYtMTAwaDEwMHYxMDBoLTEwMHpNMTAwMCA4MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTEwMCA2MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTEwMDAgNjAwdi0xMDBoMTAwdjEwMGgtMTAwek04NzUgNTAwaC01NTBxLTEwIDAgLTE3LjUgLTcuNXQtNy41IC0xNy41di0zNTBxMCAtMTAgNy41IC0xNy41IHQxNy41IC03LjVoNTUwcTEwIDAgMTcuNSA3LjV0Ny41IDE3LjV2MzUwcTAgMTAgLTcuNSAxNy41dC0xNy41IDcuNXpNMTAwIDQwMHYtMTAwaDEwMHYxMDBoLTEwMHpNMTAwMCA0MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTEwMCAyMDB2LTEwMGgxMDB2MTAwaC0xMDB6TTEwMDAgMjAwdi0xMDBoMTAwdjEwMGgtMTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMTA7IiBkPSJNNTAgMTEwMGg0MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNDAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY0MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek02NTAgMTEwMGg0MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNDAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY0MDAgcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgNTAwaDQwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC00MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djQwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTY1MCA1MDBoNDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di00MDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTQwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djQwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAxMTsiIGQ9Ik01MCAxMTAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTQ1MCAxMTAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek04NTAgMTEwMGgyMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTIwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMjAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYyMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCA3MDBoMjAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTQ1MCA3MDBoMjAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNODUwIDcwMGgyMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTIwMCBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgMzAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTQ1MCAzMDBoMjAwIHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTg1MCAzMDBoMjAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjAwcTAgMjEgMTQuNSAzNS41IHQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAxMjsiIGQ9Ik01MCAxMTAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTQ1MCAxMTAwaDcwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC03MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCA3MDBoMjAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNDUwIDcwMGg3MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTIwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNzAwIHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgMzAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTQ1MCAzMDBoNzAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yMDAgcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC03MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAxMzsiIGQ9Ik00NjUgNDc3bDU3MSA1NzFxOCA4IDE4IDh0MTcgLThsMTc3IC0xNzdxOCAtNyA4IC0xN3QtOCAtMThsLTc4MyAtNzg0cS03IC04IC0xNy41IC04dC0xNy41IDhsLTM4NCAzODRxLTggOCAtOCAxOHQ4IDE3bDE3NyAxNzdxNyA4IDE3IDh0MTggLThsMTcxIC0xNzFxNyAtNyAxOCAtN3QxOCA3eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMTQ7IiBkPSJNOTA0IDEwODNsMTc4IC0xNzlxOCAtOCA4IC0xOC41dC04IC0xNy41bC0yNjcgLTI2OGwyNjcgLTI2OHE4IC03IDggLTE3LjV0LTggLTE4LjVsLTE3OCAtMTc4cS04IC04IC0xOC41IC04dC0xNy41IDhsLTI2OCAyNjdsLTI2OCAtMjY3cS03IC04IC0xNy41IC04dC0xOC41IDhsLTE3OCAxNzhxLTggOCAtOCAxOC41dDggMTcuNWwyNjcgMjY4bC0yNjcgMjY4cS04IDcgLTggMTcuNXQ4IDE4LjVsMTc4IDE3OHE4IDggMTguNSA4dDE3LjUgLTggbDI2OCAtMjY3bDI2OCAyNjhxNyA3IDE3LjUgN3QxOC41IC03eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMTU7IiBkPSJNNTA3IDExNzdxOTggMCAxODcuNSAtMzguNXQxNTQuNSAtMTAzLjV0MTAzLjUgLTE1NC41dDM4LjUgLTE4Ny41cTAgLTE0MSAtNzggLTI2MmwzMDAgLTI5OXE4IC04IDggLTE4LjV0LTggLTE4LjVsLTEwOSAtMTA4cS03IC04IC0xNy41IC04dC0xOC41IDhsLTMwMCAyOTlxLTExOSAtNzcgLTI2MSAtNzdxLTk4IDAgLTE4OCAzOC41dC0xNTQuNSAxMDN0LTEwMyAxNTQuNXQtMzguNSAxODh0MzguNSAxODcuNXQxMDMgMTU0LjUgdDE1NC41IDEwMy41dDE4OCAzOC41ek01MDYuNSAxMDIzcS04OS41IDAgLTE2NS41IC00NHQtMTIwIC0xMjAuNXQtNDQgLTE2NnQ0NCAtMTY1LjV0MTIwIC0xMjB0MTY1LjUgLTQ0dDE2NiA0NHQxMjAuNSAxMjB0NDQgMTY1LjV0LTQ0IDE2NnQtMTIwLjUgMTIwLjV0LTE2NiA0NHpNNDI1IDkwMGgxNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di03NWg3NXExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCAtNy41IC0xNy41IHQtMTcuNSAtNy41aC03NXYtNzVxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0xNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY3NWgtNzVxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWg3NXY3NXEwIDEwIDcuNSAxNy41dDE3LjUgNy41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMTY7IiBkPSJNNTA3IDExNzdxOTggMCAxODcuNSAtMzguNXQxNTQuNSAtMTAzLjV0MTAzLjUgLTE1NC41dDM4LjUgLTE4Ny41cTAgLTE0MSAtNzggLTI2MmwzMDAgLTI5OXE4IC04IDggLTE4LjV0LTggLTE4LjVsLTEwOSAtMTA4cS03IC04IC0xNy41IC04dC0xOC41IDhsLTMwMCAyOTlxLTExOSAtNzcgLTI2MSAtNzdxLTk4IDAgLTE4OCAzOC41dC0xNTQuNSAxMDN0LTEwMyAxNTQuNXQtMzguNSAxODh0MzguNSAxODcuNXQxMDMgMTU0LjUgdDE1NC41IDEwMy41dDE4OCAzOC41ek01MDYuNSAxMDIzcS04OS41IDAgLTE2NS41IC00NHQtMTIwIC0xMjAuNXQtNDQgLTE2NnQ0NCAtMTY1LjV0MTIwIC0xMjB0MTY1LjUgLTQ0dDE2NiA0NHQxMjAuNSAxMjB0NDQgMTY1LjV0LTQ0IDE2NnQtMTIwLjUgMTIwLjV0LTE2NiA0NHpNMzI1IDgwMGgzNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0zNTBxLTEwIDAgLTE3LjUgNy41IHQtNy41IDE3LjV2MTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAxNzsiIGQ9Ik01NTAgMTIwMGgxMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY0MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek04MDAgOTc1djE2NnExNjcgLTYyIDI3MiAtMjA5LjV0MTA1IC0zMzEuNXEwIC0xMTcgLTQ1LjUgLTIyNHQtMTIzIC0xODQuNXQtMTg0LjUgLTEyM3QtMjI0IC00NS41dC0yMjQgNDUuNSB0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHEwIDE4NCAxMDUgMzMxLjV0MjcyIDIwOS41di0xNjZxLTEwMyAtNTUgLTE2NSAtMTU1dC02MiAtMjIwcTAgLTExNiA1NyAtMjE0LjV0MTU1LjUgLTE1NS41dDIxNC41IC01N3QyMTQuNSA1N3QxNTUuNSAxNTUuNXQ1NyAyMTQuNXEwIDEyMCAtNjIgMjIwdC0xNjUgMTU1eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMTg7IiBkPSJNMTAyNSAxMjAwaDE1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTExNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0xNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxMTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTcyNSA4MDBoMTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtNzUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMTUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2NzUwIHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek00MjUgNTAwaDE1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTQ1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTE1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djQ1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek0xMjUgMzAwaDE1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTI1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTE1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41IHYyNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDE5OyIgZD0iTTYwMCAxMTc0cTMzIDAgNzQgLTVsMzggLTE1Mmw1IC0xcTQ5IC0xNCA5NCAtMzlsNSAtMmwxMzQgODBxNjEgLTQ4IDEwNCAtMTA1bC04MCAtMTM0bDMgLTVxMjUgLTQ0IDM5IC05M2wxIC02bDE1MiAtMzhxNSAtNDMgNSAtNzNxMCAtMzQgLTUgLTc0bC0xNTIgLTM4bC0xIC02cS0xNSAtNDkgLTM5IC05M2wtMyAtNWw4MCAtMTM0cS00OCAtNjEgLTEwNCAtMTA1bC0xMzQgODFsLTUgLTNxLTQ0IC0yNSAtOTQgLTM5bC01IC0ybC0zOCAtMTUxIHEtNDMgLTUgLTc0IC01cS0zMyAwIC03NCA1bC0zOCAxNTFsLTUgMnEtNDkgMTQgLTk0IDM5bC01IDNsLTEzNCAtODFxLTYwIDQ4IC0xMDQgMTA1bDgwIDEzNGwtMyA1cS0yNSA0NSAtMzggOTNsLTIgNmwtMTUxIDM4cS02IDQyIC02IDc0cTAgMzMgNiA3M2wxNTEgMzhsMiA2cTEzIDQ4IDM4IDkzbDMgNWwtODAgMTM0cTQ3IDYxIDEwNSAxMDVsMTMzIC04MGw1IDJxNDUgMjUgOTQgMzlsNSAxbDM4IDE1MnE0MyA1IDc0IDV6TTYwMCA4MTUgcS04OSAwIC0xNTIgLTYzdC02MyAtMTUxLjV0NjMgLTE1MS41dDE1MiAtNjN0MTUyIDYzdDYzIDE1MS41dC02MyAxNTEuNXQtMTUyIDYzeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMjA7IiBkPSJNNTAwIDEzMDBoMzAwcTQxIDAgNzAuNSAtMjkuNXQyOS41IC03MC41di0xMDBoMjc1cTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtNzVoLTExMDB2NzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgyNzV2MTAwcTAgNDEgMjkuNSA3MC41dDcwLjUgMjkuNXpNNTAwIDEyMDB2LTEwMGgzMDB2MTAwaC0zMDB6TTExMDAgOTAwdi04MDBxMCAtNDEgLTI5LjUgLTcwLjV0LTcwLjUgLTI5LjVoLTcwMHEtNDEgMCAtNzAuNSAyOS41dC0yOS41IDcwLjUgdjgwMGg5MDB6TTMwMCA4MDB2LTcwMGgxMDB2NzAwaC0xMDB6TTUwMCA4MDB2LTcwMGgxMDB2NzAwaC0xMDB6TTcwMCA4MDB2LTcwMGgxMDB2NzAwaC0xMDB6TTkwMCA4MDB2LTcwMGgxMDB2NzAwaC0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAyMTsiIGQ9Ik0xOCA2MThsNjIwIDYwOHE4IDcgMTguNSA3dDE3LjUgLTdsNjA4IC02MDhxOCAtOCA1LjUgLTEzdC0xMi41IC01aC0xNzV2LTU3NXEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTI1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djM3NWgtMzAwdi0zNzVxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY1NzVoLTE3NXEtMTAgMCAtMTIuNSA1dDUuNSAxM3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDIyOyIgZD0iTTYwMCAxMjAwdi00MDBxMCAtNDEgMjkuNSAtNzAuNXQ3MC41IC0yOS41aDMwMHYtNjUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC04MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djExMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDQ1MHpNMTAwMCA4MDBoLTI1MHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjUweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMjM7IiBkPSJNNjAwIDExNzdxMTE3IDAgMjI0IC00NS41dDE4NC41IC0xMjN0MTIzIC0xODQuNXQ0NS41IC0yMjR0LTQ1LjUgLTIyNHQtMTIzIC0xODQuNXQtMTg0LjUgLTEyM3QtMjI0IC00NS41dC0yMjQgNDUuNXQtMTg0LjUgMTIzdC0xMjMgMTg0LjV0LTQ1LjUgMjI0dDQ1LjUgMjI0dDEyMyAxODQuNXQxODQuNSAxMjN0MjI0IDQ1LjV6TTYwMCAxMDI3cS0xMTYgMCAtMjE0LjUgLTU3dC0xNTUuNSAtMTU1LjV0LTU3IC0yMTQuNXQ1NyAtMjE0LjUgdDE1NS41IC0xNTUuNXQyMTQuNSAtNTd0MjE0LjUgNTd0MTU1LjUgMTU1LjV0NTcgMjE0LjV0LTU3IDIxNC41dC0xNTUuNSAxNTUuNXQtMjE0LjUgNTd6TTUyNSA5MDBoNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0yNzVoMTc1cTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYzNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDI0OyIgZD0iTTEzMDAgMGgtNTM4bC00MSA0MDBoLTI0MmwtNDEgLTQwMGgtNTM4bDQzMSAxMjAwaDIwOWwtMjEgLTMwMGgxNjJsLTIwIDMwMGgyMDh6TTUxNSA4MDBsLTI3IC0zMDBoMjI0bC0yNyAzMDBoLTE3MHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDI1OyIgZD0iTTU1MCAxMjAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDUwaDE5MXEyMCAwIDI1LjUgLTExLjV0LTcuNSAtMjcuNWwtMzI3IC00MDBxLTEzIC0xNiAtMzIgLTE2dC0zMiAxNmwtMzI3IDQwMHEtMTMgMTYgLTcuNSAyNy41dDI1LjUgMTEuNWgxOTF2NDUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNMTEyNSA0MDBoNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0zNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41IGgtMTA1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djM1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41aDUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTc1aDkwMHYxNzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDI2OyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek02MDAgMTAyN3EtMTE2IDAgLTIxNC41IC01N3QtMTU1LjUgLTE1NS41dC01NyAtMjE0LjV0NTcgLTIxNC41IHQxNTUuNSAtMTU1LjV0MjE0LjUgLTU3dDIxNC41IDU3dDE1NS41IDE1NS41dDU3IDIxNC41dC01NyAyMTQuNXQtMTU1LjUgMTU1LjV0LTIxNC41IDU3ek01MjUgOTAwaDE1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTI3NWgxMzdxMjEgMCAyNiAtMTEuNXQtOCAtMjcuNWwtMjIzIC0yNzVxLTEzIC0xNiAtMzIgLTE2dC0zMiAxNmwtMjIzIDI3NXEtMTMgMTYgLTggMjcuNXQyNiAxMS41aDEzN3YyNzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXogIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAyNzsiIGQ9Ik02MDAgMTE3N3ExMTcgMCAyMjQgLTQ1LjV0MTg0LjUgLTEyM3QxMjMgLTE4NC41dDQ1LjUgLTIyNHQtNDUuNSAtMjI0dC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjQgLTQ1LjV0LTIyNCA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjR0NDUuNSAyMjR0MTIzIDE4NC41dDE4NC41IDEyM3QyMjQgNDUuNXpNNjAwIDEwMjdxLTExNiAwIC0yMTQuNSAtNTd0LTE1NS41IC0xNTUuNXQtNTcgLTIxNC41dDU3IC0yMTQuNSB0MTU1LjUgLTE1NS41dDIxNC41IC01N3QyMTQuNSA1N3QxNTUuNSAxNTUuNXQ1NyAyMTQuNXQtNTcgMjE0LjV0LTE1NS41IDE1NS41dC0yMTQuNSA1N3pNNjMyIDkxNGwyMjMgLTI3NXExMyAtMTYgOCAtMjcuNXQtMjYgLTExLjVoLTEzN3YtMjc1cTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMTUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2Mjc1aC0xMzdxLTIxIDAgLTI2IDExLjV0OCAyNy41bDIyMyAyNzVxMTMgMTYgMzIgMTYgdDMyIC0xNnoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDI4OyIgZD0iTTIyNSAxMjAwaDc1MHExMCAwIDE5LjUgLTd0MTIuNSAtMTdsMTg2IC02NTJxNyAtMjQgNyAtNDl2LTQyNXEwIC0xMiAtNCAtMjd0LTkgLTE3cS0xMiAtNiAtMzcgLTZoLTExMDBxLTEyIDAgLTI3IDR0LTE3IDhxLTYgMTMgLTYgMzhsMSA0MjVxMCAyNSA3IDQ5bDE4NSA2NTJxMyAxMCAxMi41IDE3dDE5LjUgN3pNODc4IDEwMDBoLTU1NnEtMTAgMCAtMTkgLTd0LTExIC0xOGwtODcgLTQ1MHEtMiAtMTEgNCAtMTh0MTYgLTdoMTUwIHExMCAwIDE5LjUgLTd0MTEuNSAtMTdsMzggLTE1MnEyIC0xMCAxMS41IC0xN3QxOS41IC03aDI1MHExMCAwIDE5LjUgN3QxMS41IDE3bDM4IDE1MnEyIDEwIDExLjUgMTd0MTkuNSA3aDE1MHExMCAwIDE2IDd0NCAxOGwtODcgNDUwcS0yIDExIC0xMSAxOHQtMTkgN3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDI5OyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek02MDAgMTAyN3EtMTE2IDAgLTIxNC41IC01N3QtMTU1LjUgLTE1NS41dC01NyAtMjE0LjV0NTcgLTIxNC41IHQxNTUuNSAtMTU1LjV0MjE0LjUgLTU3dDIxNC41IDU3dDE1NS41IDE1NS41dDU3IDIxNC41dC01NyAyMTQuNXQtMTU1LjUgMTU1LjV0LTIxNC41IDU3ek01NDAgODIwbDI1MyAtMTkwcTE3IC0xMiAxNyAtMzB0LTE3IC0zMGwtMjUzIC0xOTBxLTE2IC0xMiAtMjggLTYuNXQtMTIgMjYuNXY0MDBxMCAyMSAxMiAyNi41dDI4IC02LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAzMDsiIGQ9Ik05NDcgMTA2MGwxMzUgMTM1cTcgNyAxMi41IDV0NS41IC0xM3YtMzYycTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMzYycS0xMSAwIC0xMyA1LjV0NSAxMi41bDEzMyAxMzNxLTEwOSA3NiAtMjM4IDc2cS0xMTYgMCAtMjE0LjUgLTU3dC0xNTUuNSAtMTU1LjV0LTU3IC0yMTQuNXQ1NyAtMjE0LjV0MTU1LjUgLTE1NS41dDIxNC41IC01N3QyMTQuNSA1N3QxNTUuNSAxNTUuNXQ1NyAyMTQuNWgxNTBxMCAtMTE3IC00NS41IC0yMjQgdC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjQgLTQ1LjV0LTIyNCA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjR0NDUuNSAyMjR0MTIzIDE4NC41dDE4NC41IDEyM3QyMjQgNDUuNXExOTIgMCAzNDcgLTExN3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDMxOyIgZD0iTTk0NyAxMDYwbDEzNSAxMzVxNyA3IDEyLjUgNXQ1LjUgLTEzdi0zNjFxMCAtMTEgLTcuNSAtMTguNXQtMTguNSAtNy41aC0zNjFxLTExIDAgLTEzIDUuNXQ1IDEyLjVsMTM0IDEzNHEtMTEwIDc1IC0yMzkgNzVxLTExNiAwIC0yMTQuNSAtNTd0LTE1NS41IC0xNTUuNXQtNTcgLTIxNC41aC0xNTBxMCAxMTcgNDUuNSAyMjR0MTIzIDE4NC41dDE4NC41IDEyM3QyMjQgNDUuNXExOTIgMCAzNDcgLTExN3pNMTAyNyA2MDBoMTUwIHEwIC0xMTcgLTQ1LjUgLTIyNHQtMTIzIC0xODQuNXQtMTg0LjUgLTEyM3QtMjI0IC00NS41cS0xOTIgMCAtMzQ4IDExOGwtMTM0IC0xMzRxLTcgLTggLTEyLjUgLTUuNXQtNS41IDEyLjV2MzYwcTAgMTEgNy41IDE4LjV0MTguNSA3LjVoMzYwcTEwIDAgMTIuNSAtNS41dC01LjUgLTEyLjVsLTEzMyAtMTMzcTExMCAtNzYgMjQwIC03NnExMTYgMCAyMTQuNSA1N3QxNTUuNSAxNTUuNXQ1NyAyMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDMyOyIgZD0iTTEyNSAxMjAwaDEwNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xMTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMTA1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djExNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNMTA3NSAxMDAwaC04NTBxLTEwIDAgLTE3LjUgLTcuNXQtNy41IC0xNy41di04NTBxMCAtMTAgNy41IC0xNy41dDE3LjUgLTcuNWg4NTBxMTAgMCAxNy41IDcuNXQ3LjUgMTcuNXY4NTAgcTAgMTAgLTcuNSAxNy41dC0xNy41IDcuNXpNMzI1IDkwMGg1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek01MjUgOTAwaDQ1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtNDUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2NTAgcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTMyNSA3MDBoNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di01MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2NTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNNTI1IDcwMGg0NTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di01MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTQ1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djUwIHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek0zMjUgNTAwaDUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC01MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTUyNSA1MDBoNDUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC00NTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY1MCBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNMzI1IDMwMGg1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek01MjUgMzAwaDQ1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtNDUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2NTAgcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAzMzsiIGQ9Ik05MDAgODAwdjIwMHEwIDgzIC01OC41IDE0MS41dC0xNDEuNSA1OC41aC0zMDBxLTgyIDAgLTE0MSAtNTl0LTU5IC0xNDF2LTIwMGgtMTAwcS00MSAwIC03MC41IC0yOS41dC0yOS41IC03MC41di02MDBxMCAtNDEgMjkuNSAtNzAuNXQ3MC41IC0yOS41aDkwMHE0MSAwIDcwLjUgMjkuNXQyOS41IDcwLjV2NjAwcTAgNDEgLTI5LjUgNzAuNXQtNzAuNSAyOS41aC0xMDB6TTQwMCA4MDB2MTUwcTAgMjEgMTUgMzUuNXQzNSAxNC41aDIwMCBxMjAgMCAzNSAtMTQuNXQxNSAtMzUuNXYtMTUwaC0zMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAzNDsiIGQ9Ik0xMjUgMTEwMGg1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTEwNzVoLTEwMHYxMDc1cTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTEwNzUgMTA1MnE0IDAgOSAtMnExNiAtNiAxNiAtMjN2LTQyMXEwIC02IC0zIC0xMnEtMzMgLTU5IC02Ni41IC05OXQtNjUuNSAtNTh0LTU2LjUgLTI0LjV0LTUyLjUgLTYuNXEtMjYgMCAtNTcuNSA2LjV0LTUyLjUgMTMuNXQtNjAgMjFxLTQxIDE1IC02MyAyMi41dC01Ny41IDE1dC02NS41IDcuNSBxLTg1IDAgLTE2MCAtNTdxLTcgLTUgLTE1IC01cS02IDAgLTExIDNxLTE0IDcgLTE0IDIydjQzOHEyMiA1NSA4MiA5OC41dDExOSA0Ni41cTIzIDIgNDMgMC41dDQzIC03dDMyLjUgLTguNXQzOCAtMTN0MzIuNSAtMTFxNDEgLTE0IDYzLjUgLTIxdDU3IC0xNHQ2My41IC03cTEwMyAwIDE4MyA4N3E3IDggMTggOHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDM1OyIgZD0iTTYwMCAxMTc1cTExNiAwIDIyNyAtNDkuNXQxOTIuNSAtMTMxdDEzMSAtMTkyLjV0NDkuNSAtMjI3di0zMDBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC01MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djMwMHEwIDEyNyAtNzAuNSAyMzEuNXQtMTg0LjUgMTYxLjV0LTI0NSA1N3QtMjQ1IC01N3QtMTg0LjUgLTE2MS41dC03MC41IC0yMzEuNXYtMzAwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtNTAgcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2MzAwcTAgMTE2IDQ5LjUgMjI3dDEzMSAxOTIuNXQxOTIuNSAxMzF0MjI3IDQ5LjV6TTIyMCA1MDBoMTYwcTggMCAxNCAtNnQ2IC0xNHYtNDYwcTAgLTggLTYgLTE0dC0xNCAtNmgtMTYwcS04IDAgLTE0IDZ0LTYgMTR2NDYwcTAgOCA2IDE0dDE0IDZ6TTgyMCA1MDBoMTYwcTggMCAxNCAtNnQ2IC0xNHYtNDYwcTAgLTggLTYgLTE0dC0xNCAtNmgtMTYwcS04IDAgLTE0IDZ0LTYgMTR2NDYwIHEwIDggNiAxNHQxNCA2eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMzY7IiBkPSJNMzIxIDgxNGwyNTggMTcycTkgNiAxNSAyLjV0NiAtMTMuNXYtNzUwcTAgLTEwIC02IC0xMy41dC0xNSAyLjVsLTI1OCAxNzJxLTIxIDE0IC00NiAxNGgtMjUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2MzUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjVoMjUwcTI1IDAgNDYgMTR6TTkwMCA2NjhsMTIwIDEyMHE3IDcgMTcgN3QxNyAtN2wzNCAtMzRxNyAtNyA3IC0xN3QtNyAtMTdsLTEyMCAtMTIwbDEyMCAtMTIwcTcgLTcgNyAtMTcgdC03IC0xN2wtMzQgLTM0cS03IC03IC0xNyAtN3QtMTcgN2wtMTIwIDExOWwtMTIwIC0xMTlxLTcgLTcgLTE3IC03dC0xNyA3bC0zNCAzNHEtNyA3IC03IDE3dDcgMTdsMTE5IDEyMGwtMTE5IDEyMHEtNyA3IC03IDE3dDcgMTdsMzQgMzRxNyA4IDE3IDh0MTcgLTh6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAzNzsiIGQ9Ik0zMjEgODE0bDI1OCAxNzJxOSA2IDE1IDIuNXQ2IC0xMy41di03NTBxMCAtMTAgLTYgLTEzLjV0LTE1IDIuNWwtMjU4IDE3MnEtMjEgMTQgLTQ2IDE0aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYzNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgyNTBxMjUgMCA0NiAxNHpNNzY2IDkwMGg0cTEwIC0xIDE2IC0xMHE5NiAtMTI5IDk2IC0yOTBxMCAtMTU0IC05MCAtMjgxcS02IC05IC0xNyAtMTBsLTMgLTFxLTkgMCAtMTYgNiBsLTI5IDIzcS03IDcgLTguNSAxNi41dDQuNSAxNy41cTcyIDEwMyA3MiAyMjlxMCAxMzIgLTc4IDIzOHEtNiA4IC00LjUgMTh0OS41IDE3bDI5IDIycTcgNSAxNSA1eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMzg7IiBkPSJNOTY3IDEwMDRoM3ExMSAtMSAxNyAtMTBxMTM1IC0xNzkgMTM1IC0zOTZxMCAtMTA1IC0zNCAtMjA2LjV0LTk4IC0xODUuNXEtNyAtOSAtMTcgLTEwaC0zcS05IDAgLTE2IDZsLTQyIDM0cS04IDYgLTkgMTZ0NSAxOHExMTEgMTUwIDExMSAzMjhxMCA5MCAtMjkuNSAxNzZ0LTg0LjUgMTU3cS02IDkgLTUgMTl0MTAgMTZsNDIgMzNxNyA1IDE1IDV6TTMyMSA4MTRsMjU4IDE3MnE5IDYgMTUgMi41dDYgLTEzLjV2LTc1MHEwIC0xMCAtNiAtMTMuNSB0LTE1IDIuNWwtMjU4IDE3MnEtMjEgMTQgLTQ2IDE0aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYzNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgyNTBxMjUgMCA0NiAxNHpNNzY2IDkwMGg0cTEwIC0xIDE2IC0xMHE5NiAtMTI5IDk2IC0yOTBxMCAtMTU0IC05MCAtMjgxcS02IC05IC0xNyAtMTBsLTMgLTFxLTkgMCAtMTYgNmwtMjkgMjNxLTcgNyAtOC41IDE2LjV0NC41IDE3LjVxNzIgMTAzIDcyIDIyOXEwIDEzMiAtNzggMjM4IHEtNiA4IC00LjUgMTguNXQ5LjUgMTYuNWwyOSAyMnE3IDUgMTUgNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDM5OyIgZD0iTTUwMCA5MDBoMTAwdi0xMDBoLTEwMHYtMTAwaC00MDB2LTEwMGgtMTAwdjYwMGg1MDB2LTMwMHpNMTIwMCA3MDBoLTIwMHYtMTAwaDIwMHYtMjAwaC0zMDB2MzAwaC0yMDB2MzAwaC0xMDB2MjAwaDYwMHYtNTAwek0xMDAgMTEwMHYtMzAwaDMwMHYzMDBoLTMwMHpNODAwIDExMDB2LTMwMGgzMDB2MzAwaC0zMDB6TTMwMCA5MDBoLTEwMHYxMDBoMTAwdi0xMDB6TTEwMDAgOTAwaC0xMDB2MTAwaDEwMHYtMTAwek0zMDAgNTAwaDIwMHYtNTAwIGgtNTAwdjUwMGgyMDB2MTAwaDEwMHYtMTAwek04MDAgMzAwaDIwMHYtMTAwaC0xMDB2LTEwMGgtMjAwdjEwMGgtMTAwdjEwMGgxMDB2MjAwaC0yMDB2MTAwaDMwMHYtMzAwek0xMDAgNDAwdi0zMDBoMzAwdjMwMGgtMzAwek0zMDAgMjAwaC0xMDB2MTAwaDEwMHYtMTAwek0xMjAwIDIwMGgtMTAwdjEwMGgxMDB2LTEwMHpNNzAwIDBoLTEwMHYxMDBoMTAwdi0xMDB6TTEyMDAgMGgtMzAwdjEwMGgzMDB2LTEwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDQwOyIgZD0iTTEwMCAyMDBoLTEwMHYxMDAwaDEwMHYtMTAwMHpNMzAwIDIwMGgtMTAwdjEwMDBoMTAwdi0xMDAwek03MDAgMjAwaC0yMDB2MTAwMGgyMDB2LTEwMDB6TTkwMCAyMDBoLTEwMHYxMDAwaDEwMHYtMTAwMHpNMTIwMCAyMDBoLTIwMHYxMDAwaDIwMHYtMTAwMHpNNDAwIDBoLTMwMHYxMDBoMzAwdi0xMDB6TTYwMCAwaC0xMDB2OTFoMTAwdi05MXpNODAwIDBoLTEwMHY5MWgxMDB2LTkxek0xMTAwIDBoLTIwMHY5MWgyMDB2LTkxeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNDE7IiBkPSJNNTAwIDEyMDBsNjgyIC02ODJxOCAtOCA4IC0xOHQtOCAtMThsLTQ2NCAtNDY0cS04IC04IC0xOCAtOHQtMTggOGwtNjgyIDY4MmwxIDQ3NXEwIDEwIDcuNSAxNy41dDE3LjUgNy41aDQ3NHpNMzE5LjUgMTAyNC41cS0yOS41IDI5LjUgLTcxIDI5LjV0LTcxIC0yOS41dC0yOS41IC03MS41dDI5LjUgLTcxLjV0NzEgLTI5LjV0NzEgMjkuNXQyOS41IDcxLjV0LTI5LjUgNzEuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDQyOyIgZD0iTTUwMCAxMjAwbDY4MiAtNjgycTggLTggOCAtMTh0LTggLTE4bC00NjQgLTQ2NHEtOCAtOCAtMTggLTh0LTE4IDhsLTY4MiA2ODJsMSA0NzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWg0NzR6TTgwMCAxMjAwbDY4MiAtNjgycTggLTggOCAtMTh0LTggLTE4bC00NjQgLTQ2NHEtOCAtOCAtMTggLTh0LTE4IDhsLTU2IDU2bDQyNCA0MjZsLTcwMCA3MDBoMTUwek0zMTkuNSAxMDI0LjVxLTI5LjUgMjkuNSAtNzEgMjkuNXQtNzEgLTI5LjUgdC0yOS41IC03MS41dDI5LjUgLTcxLjV0NzEgLTI5LjV0NzEgMjkuNXQyOS41IDcxLjV0LTI5LjUgNzEuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDQzOyIgZD0iTTMwMCAxMjAwaDgyNXE3NSAwIDc1IC03NXYtOTAwcTAgLTI1IC0xOCAtNDNsLTY0IC02NHEtOCAtOCAtMTMgLTUuNXQtNSAxMi41djk1MHEwIDEwIC03LjUgMTcuNXQtMTcuNSA3LjVoLTcwMHEtMjUgMCAtNDMgLTE4bC02NCAtNjRxLTggLTggLTUuNSAtMTN0MTIuNSAtNWg3MDBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di05NTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC04NTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY5NzUgcTAgMjUgMTggNDNsMTM5IDEzOXExOCAxOCA0MyAxOHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDQ0OyIgZD0iTTI1MCAxMjAwaDgwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTE1MGwtNDUwIDQ0NGwtNDUwIC00NDV2MTE1MXEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA0NTsiIGQ9Ik04MjIgMTIwMGgtNDQ0cS0xMSAwIC0xOSAtNy41dC05IC0xNy41bC03OCAtMzAxcS03IC0yNCA3IC00NWw1NyAtMTA4cTYgLTkgMTcuNSAtMTV0MjEuNSAtNmg0NTBxMTAgMCAyMS41IDZ0MTcuNSAxNWw2MiAxMDhxMTQgMjEgNyA0NWwtODMgMzAxcS0xIDEwIC05IDE3LjV0LTE5IDcuNXpNMTE3NSA4MDBoLTE1MHEtMTAgMCAtMjEgLTYuNXQtMTUgLTE1LjVsLTc4IC0xNTZxLTQgLTkgLTE1IC0xNS41dC0yMSAtNi41aC01NTAgcS0xMCAwIC0yMSA2LjV0LTE1IDE1LjVsLTc4IDE1NnEtNCA5IC0xNSAxNS41dC0yMSA2LjVoLTE1MHEtMTAgMCAtMTcuNSAtNy41dC03LjUgLTE3LjV2LTY1MHEwIC0xMCA3LjUgLTE3LjV0MTcuNSAtNy41aDE1MHExMCAwIDE3LjUgNy41dDcuNSAxNy41djE1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41aDc1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCA3LjUgLTE3LjV0MTcuNSAtNy41aDE1MHExMCAwIDE3LjUgNy41IHQ3LjUgMTcuNXY2NTBxMCAxMCAtNy41IDE3LjV0LTE3LjUgNy41ek04NTAgMjAwaC01MDBxLTEwIDAgLTE5LjUgLTd0LTExLjUgLTE3bC0zOCAtMTUycS0yIC0xMCAzLjUgLTE3dDE1LjUgLTdoNjAwcTEwIDAgMTUuNSA3dDMuNSAxN2wtMzggMTUycS0yIDEwIC0xMS41IDE3dC0xOS41IDd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA0NjsiIGQ9Ik01MDAgMTEwMGgyMDBxNTYgMCAxMDIuNSAtMjAuNXQ3Mi41IC01MHQ0NCAtNTl0MjUgLTUwLjVsNiAtMjBoMTUwcTQxIDAgNzAuNSAtMjkuNXQyOS41IC03MC41di02MDBxMCAtNDEgLTI5LjUgLTcwLjV0LTcwLjUgLTI5LjVoLTEwMDBxLTQxIDAgLTcwLjUgMjkuNXQtMjkuNSA3MC41djYwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjVoMTUwcTIgOCA2LjUgMjEuNXQyNCA0OHQ0NSA2MXQ3MiA0OHQxMDIuNSAyMS41ek05MDAgODAwdi0xMDAgaDEwMHYxMDBoLTEwMHpNNjAwIDczMHEtOTUgMCAtMTYyLjUgLTY3LjV0LTY3LjUgLTE2Mi41dDY3LjUgLTE2Mi41dDE2Mi41IC02Ny41dDE2Mi41IDY3LjV0NjcuNSAxNjIuNXQtNjcuNSAxNjIuNXQtMTYyLjUgNjcuNXpNNjAwIDYwM3E0MyAwIDczIC0zMHQzMCAtNzN0LTMwIC03M3QtNzMgLTMwdC03MyAzMHQtMzAgNzN0MzAgNzN0NzMgMzB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA0NzsiIGQ9Ik02ODEgMTE5OWwzODUgLTk5OHEyMCAtNTAgNjAgLTkycTE4IC0xOSAzNi41IC0yOS41dDI3LjUgLTExLjVsMTAgLTJ2LTY2aC00MTd2NjZxNTMgMCA3NSA0My41dDUgODguNWwtODIgMjIyaC0zOTFxLTU4IC0xNDUgLTkyIC0yMzRxLTExIC0zNCAtNi41IC01N3QyNS41IC0zN3Q0NiAtMjB0NTUgLTZ2LTY2aC0zNjV2NjZxNTYgMjQgODQgNTJxMTIgMTIgMjUgMzAuNXQyMCAzMS41bDcgMTNsMzk5IDEwMDZoOTN6TTQxNiA1MjFoMzQwIGwtMTYyIDQ1N3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDQ4OyIgZD0iTTc1MyA2NDFxNSAtMSAxNC41IC00LjV0MzYgLTE1LjV0NTAuNSAtMjYuNXQ1My41IC00MHQ1MC41IC01NC41dDM1LjUgLTcwdDE0LjUgLTg3cTAgLTY3IC0yNy41IC0xMjUuNXQtNzEuNSAtOTcuNXQtOTguNSAtNjYuNXQtMTA4LjUgLTQwLjV0LTEwMiAtMTNoLTUwMHY4OXE0MSA3IDcwLjUgMzIuNXQyOS41IDY1LjV2ODI3cTAgMjQgLTAuNSAzNHQtMy41IDI0dC04LjUgMTkuNXQtMTcgMTMuNXQtMjggMTIuNXQtNDIuNSAxMS41djcxIGw0NzEgLTFxNTcgMCAxMTUuNSAtMjAuNXQxMDggLTU3dDgwLjUgLTk0dDMxIC0xMjQuNXEwIC01MSAtMTUuNSAtOTYuNXQtMzggLTc0LjV0LTQ1IC01MC41dC0zOC41IC0zMC41ek00MDAgNzAwaDEzOXE3OCAwIDEzMC41IDQ4LjV0NTIuNSAxMjIuNXEwIDQxIC04LjUgNzAuNXQtMjkuNSA1NS41dC02Mi41IDM5LjV0LTEwMy41IDEzLjVoLTExOHYtMzUwek00MDAgMjAwaDIxNnE4MCAwIDEyMSA1MC41dDQxIDEzMC41cTAgOTAgLTYyLjUgMTU0LjUgdC0xNTYuNSA2NC41aC0xNTl2LTQwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDQ5OyIgZD0iTTg3NyAxMjAwbDIgLTU3cS04MyAtMTkgLTExNiAtNDUuNXQtNDAgLTY2LjVsLTEzMiAtODM5cS05IC00OSAxMyAtNjl0OTYgLTI2di05N2gtNTAwdjk3cTE4NiAxNiAyMDAgOThsMTczIDgzMnEzIDE3IDMgMzB0LTEuNSAyMi41dC05IDE3LjV0LTEzLjUgMTIuNXQtMjEuNSAxMHQtMjYgOC41dC0zMy41IDEwcS0xMyAzIC0xOSA1djU3aDQyNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDUwOyIgZD0iTTEzMDAgOTAwaC01MHEwIDIxIC00IDM3dC05LjUgMjYuNXQtMTggMTcuNXQtMjIgMTF0LTI4LjUgNS41dC0zMSAydC0zNyAwLjVoLTIwMHYtODUwcTAgLTIyIDI1IC0zNC41dDUwIC0xMy41bDI1IC0ydi0xMDBoLTQwMHYxMDBxNCAwIDExIDAuNXQyNCAzdDMwIDd0MjQgMTV0MTEgMjQuNXY4NTBoLTIwMHEtMjUgMCAtMzcgLTAuNXQtMzEgLTJ0LTI4LjUgLTUuNXQtMjIgLTExdC0xOCAtMTcuNXQtOS41IC0yNi41dC00IC0zN2gtNTB2MzAwIGgxMDAwdi0zMDB6TTE3NSAxMDAwaC03NXYtODAwaDc1bC0xMjUgLTE2N2wtMTI1IDE2N2g3NXY4MDBoLTc1bDEyNSAxNjd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA1MTsiIGQ9Ik0xMTAwIDkwMGgtNTBxMCAyMSAtNCAzN3QtOS41IDI2LjV0LTE4IDE3LjV0LTIyIDExdC0yOC41IDUuNXQtMzEgMnQtMzcgMC41aC0yMDB2LTY1MHEwIC0yMiAyNSAtMzQuNXQ1MCAtMTMuNWwyNSAtMnYtMTAwaC00MDB2MTAwcTQgMCAxMSAwLjV0MjQgM3QzMCA3dDI0IDE1dDExIDI0LjV2NjUwaC0yMDBxLTI1IDAgLTM3IC0wLjV0LTMxIC0ydC0yOC41IC01LjV0LTIyIC0xMXQtMTggLTE3LjV0LTkuNSAtMjYuNXQtNCAtMzdoLTUwdjMwMCBoMTAwMHYtMzAwek0xMTY3IDUwbC0xNjcgLTEyNXY3NWgtODAwdi03NWwtMTY3IDEyNWwxNjcgMTI1di03NWg4MDB2NzV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA1MjsiIGQ9Ik01MCAxMTAwaDYwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC02MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTUwIDgwMGgxMDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCA1MDBoODAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTgwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgMjAwaDExMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTEwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA1MzsiIGQ9Ik0yNTAgMTEwMGg3MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNzAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCA4MDBoMTEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDAgcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNMjUwIDUwMGg3MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNzAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCAyMDBoMTEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwIHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDU0OyIgZD0iTTUwMCA5NTB2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWg2MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNjAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXpNMTAwIDY1MHYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDEwMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTAwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41ek0zMDAgMzUwdjEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoODAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTgwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV6TTAgNTB2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWgxMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDAgcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDU1OyIgZD0iTTUwIDExMDBoMTEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCA4MDBoMTEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDAgcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgNTAwaDExMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgMjAwaDExMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTEwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA1NjsiIGQ9Ik01MCAxMTAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTM1MCAxMTAwaDgwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC04MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCA4MDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNMzUwIDgwMGg4MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtODAwIHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgNTAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTM1MCA1MDBoODAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDAgcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC04MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTUwIDIwMGgxMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0zNTAgMjAwaDgwMCBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtODAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNTc7IiBkPSJNNDAwIDBoLTEwMHYxMTAwaDEwMHYtMTEwMHpNNTUwIDExMDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTUwIDgwMGg1MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTAwIHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNMjY3IDU1MGwtMTY3IC0xMjV2NzVoLTIwMHYxMDBoMjAwdjc1ek01NTAgNTAwaDMwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0zMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTU1MCAyMDBoNjAwIHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC02MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA1ODsiIGQ9Ik01MCAxMTAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTkwMCAwaC0xMDB2MTEwMGgxMDB2LTExMDB6TTUwIDgwMGg1MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTAwIHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNMTEwMCA2MDBoMjAwdi0xMDBoLTIwMHYtNzVsLTE2NyAxMjVsMTY3IDEyNXYtNzV6TTUwIDUwMGgzMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMzAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCAyMDBoNjAwIHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC02MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA1OTsiIGQ9Ik03NSAxMDAwaDc1MHEzMSAwIDUzIC0yMnQyMiAtNTN2LTY1MHEwIC0zMSAtMjIgLTUzdC01MyAtMjJoLTc1MHEtMzEgMCAtNTMgMjJ0LTIyIDUzdjY1MHEwIDMxIDIyIDUzdDUzIDIyek0xMjAwIDMwMGwtMzAwIDMwMGwzMDAgMzAwdi02MDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA2MDsiIGQ9Ik00NCAxMTAwaDExMTJxMTggMCAzMSAtMTN0MTMgLTMxdi0xMDEycTAgLTE4IC0xMyAtMzF0LTMxIC0xM2gtMTExMnEtMTggMCAtMzEgMTN0LTEzIDMxdjEwMTJxMCAxOCAxMyAzMXQzMSAxM3pNMTAwIDEwMDB2LTczN2wyNDcgMTgybDI5OCAtMTMxbC03NCAxNTZsMjkzIDMxOGwyMzYgLTI4OHY1MDBoLTEwMDB6TTM0MiA4ODRxNTYgMCA5NSAtMzl0MzkgLTk0LjV0LTM5IC05NXQtOTUgLTM5LjV0LTk1IDM5LjV0LTM5IDk1dDM5IDk0LjUgdDk1IDM5eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNjI7IiBkPSJNNjQ4IDExNjlxMTE3IDAgMjE2IC02MHQxNTYuNSAtMTYxdDU3LjUgLTIxOHEwIC0xMTUgLTcwIC0yNThxLTY5IC0xMDkgLTE1OCAtMjI1LjV0LTE0MyAtMTc5LjVsLTU0IC02MnEtOSA4IC0yNS41IDI0LjV0LTYzLjUgNjcuNXQtOTEgMTAzdC05OC41IDEyOHQtOTUuNSAxNDhxLTYwIDEzMiAtNjAgMjQ5cTAgODggMzQgMTY5LjV0OTEuNSAxNDJ0MTM3IDk2LjV0MTY2LjUgMzZ6TTY1Mi41IDk3NHEtOTEuNSAwIC0xNTYuNSAtNjUgdC02NSAtMTU3dDY1IC0xNTYuNXQxNTYuNSAtNjQuNXQxNTYuNSA2NC41dDY1IDE1Ni41dC02NSAxNTd0LTE1Ni41IDY1eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNjM7IiBkPSJNNjAwIDExNzdxMTE3IDAgMjI0IC00NS41dDE4NC41IC0xMjN0MTIzIC0xODQuNXQ0NS41IC0yMjR0LTQ1LjUgLTIyNHQtMTIzIC0xODQuNXQtMTg0LjUgLTEyM3QtMjI0IC00NS41dC0yMjQgNDUuNXQtMTg0LjUgMTIzdC0xMjMgMTg0LjV0LTQ1LjUgMjI0dDQ1LjUgMjI0dDEyMyAxODQuNXQxODQuNSAxMjN0MjI0IDQ1LjV6TTYwMCAxNzN2ODU0cS0xMTYgMCAtMjE0LjUgLTU3dC0xNTUuNSAtMTU1LjV0LTU3IC0yMTQuNXQ1NyAtMjE0LjUgdDE1NS41IC0xNTUuNXQyMTQuNSAtNTd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA2NDsiIGQ9Ik01NTQgMTI5NXEyMSAtNzIgNTcuNSAtMTQzLjV0NzYgLTEzMHQ4MyAtMTE4dDgyLjUgLTExN3Q3MCAtMTE2dDQ5LjUgLTEyNnQxOC41IC0xMzYuNXEwIC03MSAtMjUuNSAtMTM1dC02OC41IC0xMTF0LTk5IC04MnQtMTE4LjUgLTU0dC0xMjUuNSAtMjNxLTg0IDUgLTE2MS41IDM0dC0xMzkuNSA3OC41dC05OSAxMjV0LTM3IDE2NC41cTAgNjkgMTggMTM2LjV0NDkuNSAxMjYuNXQ2OS41IDExNi41dDgxLjUgMTE3LjV0ODMuNSAxMTkgdDc2LjUgMTMxdDU4LjUgMTQzek0zNDQgNzEwcS0yMyAtMzMgLTQzLjUgLTcwLjV0LTQwLjUgLTEwMi41dC0xNyAtMTIzcTEgLTM3IDE0LjUgLTY5LjV0MzAgLTUydDQxIC0zN3QzOC41IC0yNC41dDMzIC0xNXEyMSAtNyAzMiAtMXQxMyAyMmw2IDM0cTIgMTAgLTIuNSAyMnQtMTMuNSAxOXEtNSA0IC0xNCAxMnQtMjkuNSA0MC41dC0zMi41IDczLjVxLTI2IDg5IDYgMjcxcTIgMTEgLTYgMTFxLTggMSAtMTUgLTEweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNjU7IiBkPSJNMTAwMCAxMDEzbDEwOCAxMTVxMiAxIDUgMnQxMyAydDIwLjUgLTF0MjUgLTkuNXQyOC41IC0yMS41cTIyIC0yMiAyNyAtNDN0MCAtMzJsLTYgLTEwbC0xMDggLTExNXpNMzUwIDExMDBoNDAwcTUwIDAgMTA1IC0xM2wtMTg3IC0xODdoLTM2OHEtNDEgMCAtNzAuNSAtMjkuNXQtMjkuNSAtNzAuNXYtNTAwcTAgLTQxIDI5LjUgLTcwLjV0NzAuNSAtMjkuNWg1MDBxNDEgMCA3MC41IDI5LjV0MjkuNSA3MC41djE4MmwyMDAgMjAwdi0zMzIgcTAgLTE2NSAtOTMuNSAtMjU3LjV0LTI1Ni41IC05Mi41aC00MDBxLTE2NSAwIC0yNTcuNSA5Mi41dC05Mi41IDI1Ny41djQwMHEwIDE2NSA5Mi41IDI1Ny41dDI1Ny41IDkyLjV6TTEwMDkgODAzbC0zNjIgLTM2MmwtMTYxIC01MGw1NSAxNzBsMzU1IDM1NXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDY2OyIgZD0iTTM1MCAxMTAwaDM2MXEtMTY0IC0xNDYgLTIxNiAtMjAwaC0xOTVxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTUwMHEwIC00MSAyOS41IC03MC41dDcwLjUgLTI5LjVoNTAwcTQxIDAgNzAuNSAyOS41dDI5LjUgNzAuNWwyMDAgMTUzdi0xMDNxMCAtMTY1IC05Mi41IC0yNTcuNXQtMjU3LjUgLTkyLjVoLTQwMHEtMTY1IDAgLTI1Ny41IDkyLjV0LTkyLjUgMjU3LjV2NDAwcTAgMTY1IDkyLjUgMjU3LjV0MjU3LjUgOTIuNXogTTgyNCAxMDczbDMzOSAtMzAxcTggLTcgOCAtMTcuNXQtOCAtMTcuNWwtMzQwIC0zMDZxLTcgLTYgLTEyLjUgLTR0LTYuNSAxMXYyMDNxLTI2IDEgLTU0LjUgMHQtNzguNSAtNy41dC05MiAtMTcuNXQtODYgLTM1dC03MCAtNTdxMTAgNTkgMzMgMTA4dDUxLjUgODEuNXQ2NSA1OC41dDY4LjUgNDAuNXQ2NyAyNC41dDU2IDEzLjV0NDAgNC41djIxMHExIDEwIDYuNSAxMi41dDEzLjUgLTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDY3OyIgZD0iTTM1MCAxMTAwaDM1MHE2MCAwIDEyNyAtMjNsLTE3OCAtMTc3aC0zNDlxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTUwMHEwIC00MSAyOS41IC03MC41dDcwLjUgLTI5LjVoNTAwcTQxIDAgNzAuNSAyOS41dDI5LjUgNzAuNXY2OWwyMDAgMjAwdi0yMTlxMCAtMTY1IC05Mi41IC0yNTcuNXQtMjU3LjUgLTkyLjVoLTQwMHEtMTY1IDAgLTI1Ny41IDkyLjV0LTkyLjUgMjU3LjV2NDAwcTAgMTY1IDkyLjUgMjU3LjV0MjU3LjUgOTIuNXogTTY0MyA2MzlsMzk1IDM5NXE3IDcgMTcuNSA3dDE3LjUgLTdsMTAxIC0xMDFxNyAtNyA3IC0xNy41dC03IC0xNy41bC01MzEgLTUzMnEtNyAtNyAtMTcuNSAtN3QtMTcuNSA3bC0yNDggMjQ4cS03IDcgLTcgMTcuNXQ3IDE3LjVsMTAxIDEwMXE3IDcgMTcuNSA3dDE3LjUgLTdsMTExIC0xMTFxOCAtNyAxOCAtN3QxOCA3eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNjg7IiBkPSJNMzE4IDkxOGwyNjQgMjY0cTggOCAxOCA4dDE4IC04bDI2MCAtMjY0cTcgLTggNC41IC0xM3QtMTIuNSAtNWgtMTcwdi0yMDBoMjAwdjE3M3EwIDEwIDUgMTJ0MTMgLTVsMjY0IC0yNjBxOCAtNyA4IC0xNy41dC04IC0xNy41bC0yNjQgLTI2NXEtOCAtNyAtMTMgLTV0LTUgMTJ2MTczaC0yMDB2LTIwMGgxNzBxMTAgMCAxMi41IC01dC00LjUgLTEzbC0yNjAgLTI2NHEtOCAtOCAtMTggLTh0LTE4IDhsLTI2NCAyNjRxLTggOCAtNS41IDEzIHQxMi41IDVoMTc1djIwMGgtMjAwdi0xNzNxMCAtMTAgLTUgLTEydC0xMyA1bC0yNjQgMjY1cS04IDcgLTggMTcuNXQ4IDE3LjVsMjY0IDI2MHE4IDcgMTMgNXQ1IC0xMnYtMTczaDIwMHYyMDBoLTE3NXEtMTAgMCAtMTIuNSA1dDUuNSAxM3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDY5OyIgZD0iTTI1MCAxMTAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDM4bDQ2NCA0NTNxMTUgMTQgMjUuNSAxMHQxMC41IC0yNXYtMTAwMHEwIC0yMSAtMTAuNSAtMjV0LTI1LjUgMTBsLTQ2NCA0NTN2LTQzOHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDcwOyIgZD0iTTUwIDExMDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di00MzhsNDY0IDQ1M3ExNSAxNCAyNS41IDEwdDEwLjUgLTI1di00MzhsNDY0IDQ1M3ExNSAxNCAyNS41IDEwdDEwLjUgLTI1di0xMDAwcTAgLTIxIC0xMC41IC0yNXQtMjUuNSAxMGwtNDY0IDQ1M3YtNDM4cTAgLTIxIC0xMC41IC0yNXQtMjUuNSAxMGwtNDY0IDQ1M3YtNDM4cTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNSB0LTE0LjUgMzUuNXYxMDAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDcxOyIgZD0iTTEyMDAgMTA1MHYtMTAwMHEwIC0yMSAtMTAuNSAtMjV0LTI1LjUgMTBsLTQ2NCA0NTN2LTQzOHEwIC0yMSAtMTAuNSAtMjV0LTI1LjUgMTBsLTQ5MiA0ODBxLTE1IDE0IC0xNSAzNXQxNSAzNWw0OTIgNDgwcTE1IDE0IDI1LjUgMTB0MTAuNSAtMjV2LTQzOGw0NjQgNDUzcTE1IDE0IDI1LjUgMTB0MTAuNSAtMjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA3MjsiIGQ9Ik0yNDMgMTA3NGw4MTQgLTQ5OHExOCAtMTEgMTggLTI2dC0xOCAtMjZsLTgxNCAtNDk4cS0xOCAtMTEgLTMwLjUgLTR0LTEyLjUgMjh2MTAwMHEwIDIxIDEyLjUgMjh0MzAuNSAtNHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDczOyIgZD0iTTI1MCAxMDAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtODAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djgwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTY1MCAxMDAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtODAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djgwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNzQ7IiBkPSJNMTEwMCA5NTB2LTgwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtODAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY4MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDgwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDc1OyIgZD0iTTUwMCA2MTJ2NDM4cTAgMjEgMTAuNSAyNXQyNS41IC0xMGw0OTIgLTQ4MHExNSAtMTQgMTUgLTM1dC0xNSAtMzVsLTQ5MiAtNDgwcS0xNSAtMTQgLTI1LjUgLTEwdC0xMC41IDI1djQzOGwtNDY0IC00NTNxLTE1IC0xNCAtMjUuNSAtMTB0LTEwLjUgMjV2MTAwMHEwIDIxIDEwLjUgMjV0MjUuNSAtMTB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA3NjsiIGQ9Ik0xMDQ4IDExMDJsMTAwIDFxMjAgMCAzNSAtMTQuNXQxNSAtMzUuNWw1IC0xMDAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41bC0xMDAgLTFxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41bC0yIDQzN2wtNDYzIC00NTRxLTE0IC0xNSAtMjQuNSAtMTAuNXQtMTAuNSAyNS41bC0yIDQzN2wtNDYyIC00NTVxLTE1IC0xNCAtMjUuNSAtOS41dC0xMC41IDI0LjVsLTUgMTAwMHEwIDIxIDEwLjUgMjUuNXQyNS41IC0xMC41bDQ2NiAtNDUwIGwtMiA0MzhxMCAyMCAxMC41IDI0LjV0MjUuNSAtOS41bDQ2NiAtNDUxbC0yIDQzOHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA3NzsiIGQ9Ik04NTAgMTEwMGgxMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NDM4bC00NjQgLTQ1M3EtMTUgLTE0IC0yNS41IC0xMHQtMTAuNSAyNXYxMDAwcTAgMjEgMTAuNSAyNXQyNS41IC0xMGw0NjQgLTQ1M3Y0MzhxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNzg7IiBkPSJNNjg2IDEwODFsNTAxIC01NDBxMTUgLTE1IDEwLjUgLTI2dC0yNi41IC0xMWgtMTA0MnEtMjIgMCAtMjYuNSAxMXQxMC41IDI2bDUwMSA1NDBxMTUgMTUgMzYgMTV0MzYgLTE1ek0xNTAgNDAwaDEwMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTAwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDc5OyIgZD0iTTg4NSA5MDBsLTM1MiAtMzUzbDM1MiAtMzUzbC0xOTcgLTE5OGwtNTUyIDU1Mmw1NTIgNTUweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwODA7IiBkPSJNMTA2NCA1NDdsLTU1MSAtNTUxbC0xOTggMTk4bDM1MyAzNTNsLTM1MyAzNTNsMTk4IDE5OHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDgxOyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek02NTAgOTAwaC0xMDBxLTIxIDAgLTM1LjUgLTE0LjV0LTE0LjUgLTM1LjV2LTE1MGgtMTUwIHEtMjEgMCAtMzUuNSAtMTQuNXQtMTQuNSAtMzUuNXYtMTAwcTAgLTIxIDE0LjUgLTM1LjV0MzUuNSAtMTQuNWgxNTB2LTE1MHEwIC0yMSAxNC41IC0zNS41dDM1LjUgLTE0LjVoMTAwcTIxIDAgMzUuNSAxNC41dDE0LjUgMzUuNXYxNTBoMTUwcTIxIDAgMzUuNSAxNC41dDE0LjUgMzUuNXYxMDBxMCAyMSAtMTQuNSAzNS41dC0zNS41IDE0LjVoLTE1MHYxNTBxMCAyMSAtMTQuNSAzNS41dC0zNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA4MjsiIGQ9Ik02MDAgMTE3N3ExMTcgMCAyMjQgLTQ1LjV0MTg0LjUgLTEyM3QxMjMgLTE4NC41dDQ1LjUgLTIyNHQtNDUuNSAtMjI0dC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjQgLTQ1LjV0LTIyNCA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjR0NDUuNSAyMjR0MTIzIDE4NC41dDE4NC41IDEyM3QyMjQgNDUuNXpNODUwIDcwMGgtNTAwcS0yMSAwIC0zNS41IC0xNC41dC0xNC41IC0zNS41di0xMDBxMCAtMjEgMTQuNSAtMzUuNSB0MzUuNSAtMTQuNWg1MDBxMjEgMCAzNS41IDE0LjV0MTQuNSAzNS41djEwMHEwIDIxIC0xNC41IDM1LjV0LTM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDgzOyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek03NDEuNSA5MTNxLTEyLjUgMCAtMjEuNSAtOWwtMTIwIC0xMjBsLTEyMCAxMjBxLTkgOSAtMjEuNSA5IHQtMjEuNSAtOWwtMTQxIC0xNDFxLTkgLTkgLTkgLTIxLjV0OSAtMjEuNWwxMjAgLTEyMGwtMTIwIC0xMjBxLTkgLTkgLTkgLTIxLjV0OSAtMjEuNWwxNDEgLTE0MXE5IC05IDIxLjUgLTl0MjEuNSA5bDEyMCAxMjBsMTIwIC0xMjBxOSAtOSAyMS41IC05dDIxLjUgOWwxNDEgMTQxcTkgOSA5IDIxLjV0LTkgMjEuNWwtMTIwIDEyMGwxMjAgMTIwcTkgOSA5IDIxLjV0LTkgMjEuNWwtMTQxIDE0MXEtOSA5IC0yMS41IDl6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA4NDsiIGQ9Ik02MDAgMTE3N3ExMTcgMCAyMjQgLTQ1LjV0MTg0LjUgLTEyM3QxMjMgLTE4NC41dDQ1LjUgLTIyNHQtNDUuNSAtMjI0dC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjQgLTQ1LjV0LTIyNCA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjR0NDUuNSAyMjR0MTIzIDE4NC41dDE4NC41IDEyM3QyMjQgNDUuNXpNNTQ2IDYyM2wtODQgODVxLTcgNyAtMTcuNSA3dC0xOC41IC03bC0xMzkgLTEzOXEtNyAtOCAtNyAtMTh0NyAtMTggbDI0MiAtMjQxcTcgLTggMTcuNSAtOHQxNy41IDhsMzc1IDM3NXE3IDcgNyAxNy41dC03IDE4LjVsLTEzOSAxMzlxLTcgNyAtMTcuNSA3dC0xNy41IC03eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwODU7IiBkPSJNNjAwIDExNzdxMTE3IDAgMjI0IC00NS41dDE4NC41IC0xMjN0MTIzIC0xODQuNXQ0NS41IC0yMjR0LTQ1LjUgLTIyNHQtMTIzIC0xODQuNXQtMTg0LjUgLTEyM3QtMjI0IC00NS41dC0yMjQgNDUuNXQtMTg0LjUgMTIzdC0xMjMgMTg0LjV0LTQ1LjUgMjI0dDQ1LjUgMjI0dDEyMyAxODQuNXQxODQuNSAxMjN0MjI0IDQ1LjV6TTU4OCA5NDFxLTI5IDAgLTU5IC01LjV0LTYzIC0yMC41dC01OCAtMzguNXQtNDEuNSAtNjN0LTE2LjUgLTg5LjUgcTAgLTI1IDIwIC0yNWgxMzFxMzAgLTUgMzUgMTFxNiAyMCAyMC41IDI4dDQ1LjUgOHEyMCAwIDMxLjUgLTEwLjV0MTEuNSAtMjguNXEwIC0yMyAtNyAtMzR0LTI2IC0xOHEtMSAwIC0xMy41IC00dC0xOS41IC03LjV0LTIwIC0xMC41dC0yMiAtMTd0LTE4LjUgLTI0dC0xNS41IC0zNXQtOCAtNDZxLTEgLTggNS41IC0xNi41dDIwLjUgLTguNWgxNzNxNyAwIDIyIDh0MzUgMjh0MzcuNSA0OHQyOS41IDc0dDEyIDEwMHEwIDQ3IC0xNyA4MyB0LTQyLjUgNTd0LTU5LjUgMzQuNXQtNjQgMTh0LTU5IDQuNXpNNjc1IDQwMGgtMTUwcS0xMCAwIC0xNy41IC03LjV0LTcuNSAtMTcuNXYtMTUwcTAgLTEwIDcuNSAtMTcuNXQxNy41IC03LjVoMTUwcTEwIDAgMTcuNSA3LjV0Ny41IDE3LjV2MTUwcTAgMTAgLTcuNSAxNy41dC0xNy41IDcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDg2OyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek02NzUgMTAwMGgtMTUwcS0xMCAwIC0xNy41IC03LjV0LTcuNSAtMTcuNXYtMTUwcTAgLTEwIDcuNSAtMTcuNSB0MTcuNSAtNy41aDE1MHExMCAwIDE3LjUgNy41dDcuNSAxNy41djE1MHEwIDEwIC03LjUgMTcuNXQtMTcuNSA3LjV6TTY3NSA3MDBoLTI1MHEtMTAgMCAtMTcuNSAtNy41dC03LjUgLTE3LjV2LTUwcTAgLTEwIDcuNSAtMTcuNXQxNy41IC03LjVoNzV2LTIwMGgtNzVxLTEwIDAgLTE3LjUgLTcuNXQtNy41IC0xNy41di01MHEwIC0xMCA3LjUgLTE3LjV0MTcuNSAtNy41aDM1MHExMCAwIDE3LjUgNy41dDcuNSAxNy41djUwcTAgMTAgLTcuNSAxNy41IHQtMTcuNSA3LjVoLTc1djI3NXEwIDEwIC03LjUgMTcuNXQtMTcuNSA3LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA4NzsiIGQ9Ik01MjUgMTIwMGgxNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xOTRxMTAzIC0yNyAxNzguNSAtMTAyLjV0MTAyLjUgLTE3OC41aDE5NHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTE5NHEtMjcgLTEwMyAtMTAyLjUgLTE3OC41dC0xNzguNSAtMTAyLjV2LTE5NHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTE1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE5NCBxLTEwMyAyNyAtMTc4LjUgMTAyLjV0LTEwMi41IDE3OC41aC0xOTRxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgxOTRxMjcgMTAzIDEwMi41IDE3OC41dDE3OC41IDEwMi41djE5NHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek03MDAgODkzdi0xNjhxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0xNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxNjhxLTY4IC0yMyAtMTE5IC03NCB0LTc0IC0xMTloMTY4cTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMTY4cTIzIC02OCA3NCAtMTE5dDExOSAtNzR2MTY4cTAgMTAgNy41IDE3LjV0MTcuNSA3LjVoMTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTY4cTY4IDIzIDExOSA3NHQ3NCAxMTloLTE2OHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41aDE2OCBxLTIzIDY4IC03NCAxMTl0LTExOSA3NHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDg4OyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek02MDAgMTAyN3EtMTE2IDAgLTIxNC41IC01N3QtMTU1LjUgLTE1NS41dC01NyAtMjE0LjV0NTcgLTIxNC41IHQxNTUuNSAtMTU1LjV0MjE0LjUgLTU3dDIxNC41IDU3dDE1NS41IDE1NS41dDU3IDIxNC41dC01NyAyMTQuNXQtMTU1LjUgMTU1LjV0LTIxNC41IDU3ek03NTkgODIzbDY0IC02NHE3IC03IDcgLTE3LjV0LTcgLTE3LjVsLTEyNCAtMTI0bDEyNCAtMTI0cTcgLTcgNyAtMTcuNXQtNyAtMTcuNWwtNjQgLTY0cS03IC03IC0xNy41IC03dC0xNy41IDdsLTEyNCAxMjRsLTEyNCAtMTI0cS03IC03IC0xNy41IC03dC0xNy41IDdsLTY0IDY0IHEtNyA3IC03IDE3LjV0NyAxNy41bDEyNCAxMjRsLTEyNCAxMjRxLTcgNyAtNyAxNy41dDcgMTcuNWw2NCA2NHE3IDcgMTcuNSA3dDE3LjUgLTdsMTI0IC0xMjRsMTI0IDEyNHE3IDcgMTcuNSA3dDE3LjUgLTd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA4OTsiIGQ9Ik02MDAgMTE3N3ExMTcgMCAyMjQgLTQ1LjV0MTg0LjUgLTEyM3QxMjMgLTE4NC41dDQ1LjUgLTIyNHQtNDUuNSAtMjI0dC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjQgLTQ1LjV0LTIyNCA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjR0NDUuNSAyMjR0MTIzIDE4NC41dDE4NC41IDEyM3QyMjQgNDUuNXpNNjAwIDEwMjdxLTExNiAwIC0yMTQuNSAtNTd0LTE1NS41IC0xNTUuNXQtNTcgLTIxNC41dDU3IC0yMTQuNSB0MTU1LjUgLTE1NS41dDIxNC41IC01N3QyMTQuNSA1N3QxNTUuNSAxNTUuNXQ1NyAyMTQuNXQtNTcgMjE0LjV0LTE1NS41IDE1NS41dC0yMTQuNSA1N3pNNzgyIDc4OGwxMDYgLTEwNnE3IC03IDcgLTE3LjV0LTcgLTE3LjVsLTMyMCAtMzIxcS04IC03IC0xOCAtN3QtMTggN2wtMjAyIDIwM3EtOCA3IC04IDE3LjV0OCAxNy41bDEwNiAxMDZxNyA4IDE3LjUgOHQxNy41IC04bDc5IC03OWwxOTcgMTk3cTcgNyAxNy41IDd0MTcuNSAtN3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDkwOyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek02MDAgMTAyN3EtMTE2IDAgLTIxNC41IC01N3QtMTU1LjUgLTE1NS41dC01NyAtMjE0LjVxMCAtMTIwIDY1IC0yMjUgbDU4NyA1ODdxLTEwNSA2NSAtMjI1IDY1ek05NjUgODE5bC01ODQgLTU4NHExMDQgLTYyIDIxOSAtNjJxMTE2IDAgMjE0LjUgNTd0MTU1LjUgMTU1LjV0NTcgMjE0LjVxMCAxMTUgLTYyIDIxOXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDkxOyIgZD0iTTM5IDU4Mmw1MjIgNDI3cTE2IDEzIDI3LjUgOHQxMS41IC0yNnYtMjkxaDU1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC01NTB2LTI5MXEwIC0yMSAtMTEuNSAtMjZ0LTI3LjUgOGwtNTIyIDQyN3EtMTYgMTMgLTE2IDMydDE2IDMyeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwOTI7IiBkPSJNNjM5IDEwMDlsNTIyIC00MjdxMTYgLTEzIDE2IC0zMnQtMTYgLTMybC01MjIgLTQyN3EtMTYgLTEzIC0yNy41IC04dC0xMS41IDI2djI5MWgtNTUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYyMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDU1MHYyOTFxMCAyMSAxMS41IDI2dDI3LjUgLTh6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA5MzsiIGQ9Ik02ODIgMTE2MWw0MjcgLTUyMnExMyAtMTYgOCAtMjcuNXQtMjYgLTExLjVoLTI5MXYtNTUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djU1MGgtMjkxcS0yMSAwIC0yNiAxMS41dDggMjcuNWw0MjcgNTIycTEzIDE2IDMyIDE2dDMyIC0xNnoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDk0OyIgZD0iTTU1MCAxMjAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTUwaDI5MXEyMSAwIDI2IC0xMS41dC04IC0yNy41bC00MjcgLTUyMnEtMTMgLTE2IC0zMiAtMTZ0LTMyIDE2bC00MjcgNTIycS0xMyAxNiAtOCAyNy41dDI2IDExLjVoMjkxdjU1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA5NTsiIGQ9Ik02MzkgMTEwOWw1MjIgLTQyN3ExNiAtMTMgMTYgLTMydC0xNiAtMzJsLTUyMiAtNDI3cS0xNiAtMTMgLTI3LjUgLTh0LTExLjUgMjZ2MjkxcS05NCAtMiAtMTgyIC0yMHQtMTcwLjUgLTUydC0xNDcgLTkyLjV0LTEwMC41IC0xMzUuNXE1IDEwNSAyNyAxOTMuNXQ2Ny41IDE2N3QxMTMgMTM1dDE2NyA5MS41dDIyNS41IDQydjI2MnEwIDIxIDExLjUgMjZ0MjcuNSAtOHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDk2OyIgZD0iTTg1MCAxMjAwaDMwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMzAwcTAgLTIxIC0xMC41IC0yNXQtMjQuNSAxMGwtOTQgOTRsLTI0OSAtMjQ5cS04IC03IC0xOCAtN3QtMTggN2wtMTA2IDEwNnEtNyA4IC03IDE4dDcgMThsMjQ5IDI0OWwtOTQgOTRxLTE0IDE0IC0xMCAyNC41dDI1IDEwLjV6TTM1MCAwaC0zMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djMwMHEwIDIxIDEwLjUgMjV0MjQuNSAtMTBsOTQgLTk0bDI0OSAyNDkgcTggNyAxOCA3dDE4IC03bDEwNiAtMTA2cTcgLTggNyAtMTh0LTcgLTE4bC0yNDkgLTI0OWw5NCAtOTRxMTQgLTE0IDEwIC0yNC41dC0yNSAtMTAuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDk3OyIgZD0iTTEwMTQgMTEyMGwxMDYgLTEwNnE3IC04IDcgLTE4dC03IC0xOGwtMjQ5IC0yNDlsOTQgLTk0cTE0IC0xNCAxMCAtMjQuNXQtMjUgLTEwLjVoLTMwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MzAwcTAgMjEgMTAuNSAyNXQyNC41IC0xMGw5NCAtOTRsMjQ5IDI0OXE4IDcgMTggN3QxOCAtN3pNMjUwIDYwMGgzMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTMwMHEwIC0yMSAtMTAuNSAtMjV0LTI0LjUgMTBsLTk0IDk0IGwtMjQ5IC0yNDlxLTggLTcgLTE4IC03dC0xOCA3bC0xMDYgMTA2cS03IDggLTcgMTh0NyAxOGwyNDkgMjQ5bC05NCA5NHEtMTQgMTQgLTEwIDI0LjV0MjUgMTAuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTAxOyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek03MDQgOTAwaC0yMDhxLTIwIDAgLTMyIC0xNC41dC04IC0zNC41bDU4IC0zMDJxNCAtMjAgMjEuNSAtMzQuNSB0MzcuNSAtMTQuNWg1NHEyMCAwIDM3LjUgMTQuNXQyMS41IDM0LjVsNTggMzAycTQgMjAgLTggMzQuNXQtMzIgMTQuNXpNNjc1IDQwMGgtMTUwcS0xMCAwIC0xNy41IC03LjV0LTcuNSAtMTcuNXYtMTUwcTAgLTEwIDcuNSAtMTcuNXQxNy41IC03LjVoMTUwcTEwIDAgMTcuNSA3LjV0Ny41IDE3LjV2MTUwcTAgMTAgLTcuNSAxNy41dC0xNy41IDcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTAyOyIgZD0iTTI2MCAxMjAwcTkgMCAxOSAtMnQxNSAtNGw1IC0ycTIyIC0xMCA0NCAtMjNsMTk2IC0xMThxMjEgLTEzIDM2IC0yNHEyOSAtMjEgMzcgLTEycTExIDEzIDQ5IDM1bDE5NiAxMThxMjIgMTMgNDUgMjNxMTcgNyAzOCA3cTIzIDAgNDcgLTE2LjV0MzcgLTMzLjVsMTMgLTE2cTE0IC0yMSAxOCAtNDVsMjUgLTEyM2w4IC00NHExIC05IDguNSAtMTQuNXQxNy41IC01LjVoNjFxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di01MCBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC01MHEtMTAgMCAtMTcuNSAtNy41dC03LjUgLTE3LjV2LTE3NWgtNDAwdjMwMGgtMjAwdi0zMDBoLTQwMHYxNzVxMCAxMCAtNy41IDE3LjV0LTE3LjUgNy41aC01MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjVoNjFxMTEgMCAxOCAzdDcgOHEwIDQgOSA1MmwyNSAxMjhxNSAyNSAxOSA0NXEyIDMgNSA3dDEzLjUgMTV0MjEuNSAxOS41dDI2LjUgMTUuNSB0MjkuNSA3ek05MTUgMTA3OWwtMTY2IC0xNjJxLTcgLTcgLTUgLTEydDEyIC01aDIxOXExMCAwIDE1IDd0MiAxN2wtNTEgMTQ5cS0zIDEwIC0xMSAxMnQtMTUgLTZ6TTQ2MyA5MTdsLTE3NyAxNTdxLTggNyAtMTYgNXQtMTEgLTEybC01MSAtMTQzcS0zIC0xMCAyIC0xN3QxNSAtN2gyMzFxMTEgMCAxMi41IDV0LTUuNSAxMnpNNTAwIDBoLTM3NXEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djM3NWg0MDB2LTQwMHpNMTEwMCA0MDB2LTM3NSBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0zNzV2NDAwaDQwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTAzOyIgZD0iTTExNjUgMTE5MHE4IDMgMjEgLTYuNXQxMyAtMTcuNXEtMiAtMTc4IC0yNC41IC0zMjMuNXQtNTUuNSAtMjQ1LjV0LTg3IC0xNzQuNXQtMTAyLjUgLTExOC41dC0xMTggLTY4LjV0LTExOC41IC0zM3QtMTIwIC00LjV0LTEwNSA5LjV0LTkwIDE2LjVxLTYxIDEyIC03OCAxMXEtNCAxIC0xMi41IDB0LTM0IC0xNC41dC01Mi41IC00MC41bC0xNTMgLTE1M3EtMjYgLTI0IC0zNyAtMTQuNXQtMTEgNDMuNXEwIDY0IDQyIDEwMnE4IDggNTAuNSA0NSB0NjYuNSA1OHExOSAxNyAzNSA0N3QxMyA2MXEtOSA1NSAtMTAgMTAyLjV0NyAxMTF0MzcgMTMwdDc4IDEyOS41cTM5IDUxIDgwIDg4dDg5LjUgNjMuNXQ5NC41IDQ1dDExMy41IDM2dDEyOSAzMXQxNTcuNSAzN3QxODIgNDcuNXpNMTExNiAxMDk4cS04IDkgLTIyLjUgLTN0LTQ1LjUgLTUwcS0zOCAtNDcgLTExOSAtMTAzLjV0LTE0MiAtODkuNWwtNjIgLTMzcS01NiAtMzAgLTEwMiAtNTd0LTEwNCAtNjh0LTEwMi41IC04MC41dC04NS41IC05MSB0LTY0IC0xMDQuNXEtMjQgLTU2IC0zMSAtODZ0MiAtMzJ0MzEuNSAxNy41dDU1LjUgNTkuNXEyNSAzMCA5NCA3NS41dDEyNS41IDc3LjV0MTQ3LjUgODFxNzAgMzcgMTE4LjUgNjl0MTAyIDc5LjV0OTkgMTExdDg2LjUgMTQ4LjVxMjIgNTAgMjQgNjB0LTYgMTl6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEwNDsiIGQ9Ik02NTMgMTIzMXEtMzkgLTY3IC01NC41IC0xMzF0LTEwLjUgLTExNC41dDI0LjUgLTk2LjV0NDcuNSAtODB0NjMuNSAtNjIuNXQ2OC41IC00Ni41dDY1IC0zMHEtNCA3IC0xNy41IDM1dC0xOC41IDM5LjV0LTE3IDM5LjV0LTE3IDQzdC0xMyA0MnQtOS41IDQ0LjV0LTIgNDJ0NCA0M3QxMy41IDM5dDIzIDM4LjVxOTYgLTQyIDE2NSAtMTA3LjV0MTA1IC0xMzh0NTIgLTE1NnQxMyAtMTU5dC0xOSAtMTQ5LjVxLTEzIC01NSAtNDQgLTEwNi41IHQtNjggLTg3dC03OC41IC02NC41dC03Mi41IC00NXQtNTMgLTIycS03MiAtMjIgLTEyNyAtMTFxLTMxIDYgLTEzIDE5cTYgMyAxNyA3cTEzIDUgMzIuNSAyMXQ0MSA0NHQzOC41IDYzLjV0MjEuNSA4MS41dC02LjUgOTQuNXQtNTAgMTA3dC0xMDQgMTE1LjVxMTAgLTEwNCAtMC41IC0xODl0LTM3IC0xNDAuNXQtNjUgLTkzdC04NCAtNTJ0LTkzLjUgLTExdC05NSAyNC41cS04MCAzNiAtMTMxLjUgMTE0dC01My41IDE3MXEtMiAyMyAwIDQ5LjUgdDQuNSA1Mi41dDEzLjUgNTZ0MjcuNSA2MHQ0NiA2NC41dDY5LjUgNjguNXEtOCAtNTMgLTUgLTEwMi41dDE3LjUgLTkwdDM0IC02OC41dDQ0LjUgLTM5dDQ5IC0ycTMxIDEzIDM4LjUgMzZ0LTQuNSA1NXQtMjkgNjQuNXQtMzYgNzV0LTI2IDc1LjVxLTE1IDg1IDIgMTYxLjV0NTMuNSAxMjguNXQ4NS41IDkyLjV0OTMuNSA2MXQ4MS41IDI1LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEwNTsiIGQ9Ik02MDAgMTA5NHE4MiAwIDE2MC41IC0yMi41dDE0MCAtNTl0MTE2LjUgLTgyLjV0OTQuNSAtOTV0NjggLTk1dDQyLjUgLTgyLjV0MTQgLTU3LjV0LTE0IC01Ny41dC00MyAtODIuNXQtNjguNSAtOTV0LTk0LjUgLTk1dC0xMTYuNSAtODIuNXQtMTQwIC01OXQtMTU5LjUgLTIyLjV0LTE1OS41IDIyLjV0LTE0MCA1OXQtMTE2LjUgODIuNXQtOTQuNSA5NXQtNjguNSA5NXQtNDMgODIuNXQtMTQgNTcuNXQxNCA1Ny41dDQyLjUgODIuNXQ2OCA5NSB0OTQuNSA5NXQxMTYuNSA4Mi41dDE0MCA1OXQxNjAuNSAyMi41ek04ODggODI5cS0xNSAxNSAtMTggMTJ0NSAtMjJxMjUgLTU3IDI1IC0xMTlxMCAtMTI0IC04OCAtMjEydC0yMTIgLTg4dC0yMTIgODh0LTg4IDIxMnEwIDU5IDIzIDExNHE4IDE5IDQuNSAyMnQtMTcuNSAtMTJxLTcwIC02OSAtMTYwIC0xODRxLTEzIC0xNiAtMTUgLTQwLjV0OSAtNDIuNXEyMiAtMzYgNDcgLTcxdDcwIC04MnQ5Mi41IC04MXQxMTMgLTU4LjV0MTMzLjUgLTI0LjUgdDEzMy41IDI0dDExMyA1OC41dDkyLjUgODEuNXQ3MCA4MS41dDQ3IDcwLjVxMTEgMTggOSA0Mi41dC0xNCA0MS41cS05MCAxMTcgLTE2MyAxODl6TTQ0OCA3MjdsLTM1IC0zNnEtMTUgLTE1IC0xOS41IC0zOC41dDQuNSAtNDEuNXEzNyAtNjggOTMgLTExNnExNiAtMTMgMzguNSAtMTF0MzYuNSAxN2wzNSAzNHExNCAxNSAxMi41IDMzLjV0LTE2LjUgMzMuNXEtNDQgNDQgLTg5IDExN3EtMTEgMTggLTI4IDIwdC0zMiAtMTJ6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEwNjsiIGQ9Ik01OTIgMGgtMTQ4bDMxIDEyMHEtOTEgMjAgLTE3NS41IDY4LjV0LTE0My41IDEwNi41dC0xMDMuNSAxMTl0LTY2LjUgMTEwdC0yMiA3NnEwIDIxIDE0IDU3LjV0NDIuNSA4Mi41dDY4IDk1dDk0LjUgOTV0MTE2LjUgODIuNXQxNDAgNTl0MTYwLjUgMjIuNXE2MSAwIDEyNiAtMTVsMzIgMTIxaDE0OHpNOTQ0IDc3MGw0NyAxODFxMTA4IC04NSAxNzYuNSAtMTkydDY4LjUgLTE1OXEwIC0yNiAtMTkuNSAtNzF0LTU5LjUgLTEwMnQtOTMgLTExMiB0LTEyOSAtMTA0LjV0LTE1OCAtNzUuNWw0NiAxNzNxNzcgNDkgMTM2IDExN3Q5NyAxMzFxMTEgMTggOSA0Mi41dC0xNCA0MS41cS01NCA3MCAtMTA3IDEzMHpNMzEwIDgyNHEtNzAgLTY5IC0xNjAgLTE4NHEtMTMgLTE2IC0xNSAtNDAuNXQ5IC00Mi41cTE4IC0zMCAzOSAtNjB0NTcgLTcwLjV0NzQgLTczdDkwIC02MXQxMDUgLTQxLjVsNDEgMTU0cS0xMDcgMTggLTE3OC41IDEwMS41dC03MS41IDE5My41cTAgNTkgMjMgMTE0cTggMTkgNC41IDIyIHQtMTcuNSAtMTJ6TTQ0OCA3MjdsLTM1IC0zNnEtMTUgLTE1IC0xOS41IC0zOC41dDQuNSAtNDEuNXEzNyAtNjggOTMgLTExNnExNiAtMTMgMzguNSAtMTF0MzYuNSAxN2wxMiAxMWwyMiA4NmwtMyA0cS00NCA0NCAtODkgMTE3cS0xMSAxOCAtMjggMjB0LTMyIC0xMnoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTA3OyIgZD0iTS05MCAxMDBsNjQyIDEwNjZxMjAgMzEgNDggMjguNXQ0OCAtMzUuNWw2NDIgLTEwNTZxMjEgLTMyIDcuNSAtNjcuNXQtNTAuNSAtMzUuNWgtMTI5NHEtMzcgMCAtNTAuNSAzNHQ3LjUgNjZ6TTE1NSAyMDBoMzQ1djc1cTAgMTAgNy41IDE3LjV0MTcuNSA3LjVoMTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtNzVoMzQ1bC00NDUgNzIzek00OTYgNzAwaDIwOHEyMCAwIDMyIC0xNC41dDggLTM0LjVsLTU4IC0yNTIgcS00IC0yMCAtMjEuNSAtMzQuNXQtMzcuNSAtMTQuNWgtNTRxLTIwIDAgLTM3LjUgMTQuNXQtMjEuNSAzNC41bC01OCAyNTJxLTQgMjAgOCAzNC41dDMyIDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEwODsiIGQ9Ik02NTAgMTIwMHE2MiAwIDEwNiAtNDR0NDQgLTEwNnYtMzM5bDM2MyAtMzI1cTE1IC0xNCAyNiAtMzguNXQxMSAtNDQuNXYtNDFxMCAtMjAgLTEyIC0yNi41dC0yOSA1LjVsLTM1OSAyNDl2LTI2M3ExMDAgLTkzIDEwMCAtMTEzdi02NHEwIC0yMSAtMTMgLTI5dC0zMiAxbC0yMDUgMTI4bC0yMDUgLTEyOHEtMTkgLTkgLTMyIC0xdC0xMyAyOXY2NHEwIDIwIDEwMCAxMTN2MjYzbC0zNTkgLTI0OXEtMTcgLTEyIC0yOSAtNS41dC0xMiAyNi41djQxIHEwIDIwIDExIDQ0LjV0MjYgMzguNWwzNjMgMzI1djMzOXEwIDYyIDQ0IDEwNnQxMDYgNDR6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEwOTsiIGQ9Ik04NTAgMTIwMGgxMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTUwaDUwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xNTBoLTExMDB2MTUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWg1MHY1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGg1MDB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0xMTAwIDgwMHYtNzUwcTAgLTIxIC0xNC41IC0zNS41IHQtMzUuNSAtMTQuNWgtMTAwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NzUwaDExMDB6TTEwMCA2MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTMwMCA2MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTUwMCA2MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTcwMCA2MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTkwMCA2MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTEwMCA0MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTMwMCA0MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTUwMCA0MDAgdi0xMDBoMTAwdjEwMGgtMTAwek03MDAgNDAwdi0xMDBoMTAwdjEwMGgtMTAwek05MDAgNDAwdi0xMDBoMTAwdjEwMGgtMTAwek0xMDAgMjAwdi0xMDBoMTAwdjEwMGgtMTAwek0zMDAgMjAwdi0xMDBoMTAwdjEwMGgtMTAwek01MDAgMjAwdi0xMDBoMTAwdjEwMGgtMTAwek03MDAgMjAwdi0xMDBoMTAwdjEwMGgtMTAwek05MDAgMjAwdi0xMDBoMTAwdjEwMGgtMTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTA7IiBkPSJNMTEzNSAxMTY1bDI0OSAtMjMwcTE1IC0xNCAxNSAtMzV0LTE1IC0zNWwtMjQ5IC0yMzBxLTE0IC0xNCAtMjQuNSAtMTB0LTEwLjUgMjV2MTUwaC0xNTlsLTYwMCAtNjAwaC0yOTFxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoMjA5bDYwMCA2MDBoMjQxdjE1MHEwIDIxIDEwLjUgMjV0MjQuNSAtMTB6TTUyMiA4MTlsLTE0MSAtMTQxbC0xMjIgMTIyaC0yMDlxLTIxIDAgLTM1LjUgMTQuNSB0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDI5MXpNMTEzNSA1NjVsMjQ5IC0yMzBxMTUgLTE0IDE1IC0zNXQtMTUgLTM1bC0yNDkgLTIzMHEtMTQgLTE0IC0yNC41IC0xMHQtMTAuNSAyNXYxNTBoLTI0MWwtMTgxIDE4MWwxNDEgMTQxbDEyMiAtMTIyaDE1OXYxNTBxMCAyMSAxMC41IDI1dDI0LjUgLTEweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTE7IiBkPSJNMTAwIDExMDBoMTAwMHE0MSAwIDcwLjUgLTI5LjV0MjkuNSAtNzAuNXYtNjAwcTAgLTQxIC0yOS41IC03MC41dC03MC41IC0yOS41aC01OTZsLTMwNCAtMzAwdjMwMGgtMTAwcS00MSAwIC03MC41IDI5LjV0LTI5LjUgNzAuNXY2MDBxMCA0MSAyOS41IDcwLjV0NzAuNSAyOS41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTI7IiBkPSJNMTUwIDEyMDBoMjAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yNTBoLTMwMHYyNTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek04NTAgMTIwMGgyMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTI1MGgtMzAwdjI1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTExMDAgODAwdi0zMDBxMCAtNDEgLTMgLTc3LjV0LTE1IC04OS41dC0zMiAtOTZ0LTU4IC04OXQtODkgLTc3dC0xMjkgLTUxdC0xNzQgLTIwdC0xNzQgMjAgdC0xMjkgNTF0LTg5IDc3dC01OCA4OXQtMzIgOTZ0LTE1IDg5LjV0LTMgNzcuNXYzMDBoMzAwdi0yNTB2LTI3di00Mi41dDEuNSAtNDF0NSAtMzh0MTAgLTM1dDE2LjUgLTMwdDI1LjUgLTI0LjV0MzUgLTE5dDQ2LjUgLTEydDYwIC00dDYwIDQuNXQ0Ni41IDEyLjV0MzUgMTkuNXQyNSAyNS41dDE3IDMwLjV0MTAgMzV0NSAzOHQyIDQwLjV0LTAuNSA0MnYyNXYyNTBoMzAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTM7IiBkPSJNMTEwMCA0MTFsLTE5OCAtMTk5bC0zNTMgMzUzbC0zNTMgLTM1M2wtMTk3IDE5OWw1NTEgNTUxeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTQ7IiBkPSJNMTEwMSA3ODlsLTU1MCAtNTUxbC01NTEgNTUxbDE5OCAxOTlsMzUzIC0zNTNsMzUzIDM1M3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTE1OyIgZD0iTTQwNCAxMDAwaDc0NnEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTUxaDE1MHEyMSAwIDI1IC0xMC41dC0xMCAtMjQuNWwtMjMwIC0yNDlxLTE0IC0xNSAtMzUgLTE1dC0zNSAxNWwtMjMwIDI0OXEtMTQgMTQgLTEwIDI0LjV0MjUgMTAuNWgxNTB2NDAxaC0zODF6TTEzNSA5ODRsMjMwIC0yNDlxMTQgLTE0IDEwIC0yNC41dC0yNSAtMTAuNWgtMTUwdi00MDBoMzg1bDIxNSAtMjAwaC03NTBxLTIxIDAgLTM1LjUgMTQuNSB0LTE0LjUgMzUuNXY1NTBoLTE1MHEtMjEgMCAtMjUgMTAuNXQxMCAyNC41bDIzMCAyNDlxMTQgMTUgMzUgMTV0MzUgLTE1eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTY7IiBkPSJNNTYgMTIwMGg5NHExNyAwIDMxIC0xMXQxOCAtMjdsMzggLTE2Mmg4OTZxMjQgMCAzOSAtMTguNXQxMCAtNDIuNWwtMTAwIC00NzVxLTUgLTIxIC0yNyAtNDIuNXQtNTUgLTIxLjVoLTYzM2w0OCAtMjAwaDUzNXEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTB2LTUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41dC0zNS41IDE0LjV0LTE0LjUgMzUuNXY1MGgtMzAwdi01MCBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjV0LTM1LjUgMTQuNXQtMTQuNSAzNS41djUwaC0zMXEtMTggMCAtMzIuNSAxMHQtMjAuNSAxOWwtNSAxMGwtMjAxIDk2MWgtNTRxLTIwIDAgLTM1IDE0LjV0LTE1IDM1LjV0MTUgMzUuNXQzNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTc7IiBkPSJNMTIwMCAxMDAwdi0xMDBoLTEyMDB2MTAwaDIwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjVoMzAwcTQxIDAgNzAuNSAtMjkuNXQyOS41IC03MC41aDUwMHpNMCA4MDBoMTIwMHYtODAwaC0xMjAwdjgwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTE4OyIgZD0iTTIwMCA4MDBsLTIwMCAtNDAwdjYwMGgyMDBxMCA0MSAyOS41IDcwLjV0NzAuNSAyOS41aDMwMHE0MiAwIDcxIC0yOS41dDI5IC03MC41aDUwMHYtMjAwaC0xMDAwek0xNTAwIDcwMGwtMzAwIC03MDBoLTEyMDBsMzAwIDcwMGgxMjAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTk7IiBkPSJNNjM1IDExODRsMjMwIC0yNDlxMTQgLTE0IDEwIC0yNC41dC0yNSAtMTAuNWgtMTUwdi02MDFoMTUwcTIxIDAgMjUgLTEwLjV0LTEwIC0yNC41bC0yMzAgLTI0OXEtMTQgLTE1IC0zNSAtMTV0LTM1IDE1bC0yMzAgMjQ5cS0xNCAxNCAtMTAgMjQuNXQyNSAxMC41aDE1MHY2MDFoLTE1MHEtMjEgMCAtMjUgMTAuNXQxMCAyNC41bDIzMCAyNDlxMTQgMTUgMzUgMTV0MzUgLTE1eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMjA7IiBkPSJNOTM2IDg2NGwyNDkgLTIyOXExNCAtMTUgMTQgLTM1LjV0LTE0IC0zNS41bC0yNDkgLTIyOXEtMTUgLTE1IC0yNS41IC0xMC41dC0xMC41IDI0LjV2MTUxaC02MDB2LTE1MXEwIC0yMCAtMTAuNSAtMjQuNXQtMjUuNSAxMC41bC0yNDkgMjI5cS0xNCAxNSAtMTQgMzUuNXQxNCAzNS41bDI0OSAyMjlxMTUgMTUgMjUuNSAxMC41dDEwLjUgLTI1LjV2LTE0OWg2MDB2MTQ5cTAgMjEgMTAuNSAyNS41dDI1LjUgLTEwLjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEyMTsiIGQ9Ik0xMTY5IDQwMGwtMTcyIDczMnEtNSAyMyAtMjMgNDUuNXQtMzggMjIuNWgtNjcycS0yMCAwIC0zOCAtMjB0LTIzIC00MWwtMTcyIC03MzloMTEzOHpNMTEwMCAzMDBoLTEwMDBxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTEwMHEwIC00MSAyOS41IC03MC41dDcwLjUgLTI5LjVoMTAwMHE0MSAwIDcwLjUgMjkuNXQyOS41IDcwLjV2MTAwcTAgNDEgLTI5LjUgNzAuNXQtNzAuNSAyOS41ek04MDAgMTAwdjEwMGgxMDB2LTEwMGgtMTAwIHpNMTAwMCAxMDB2MTAwaDEwMHYtMTAwaC0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEyMjsiIGQ9Ik0xMTUwIDExMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTg1MHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNXQtMzUuNSAxNC41dC0xNC41IDM1LjV2ODUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNMTAwMCAyMDBsLTY3NSAyMDBoLTM4bDQ3IC0yNzZxMyAtMTYgLTUuNSAtMjB0LTI5LjUgLTRoLTdoLTg0cS0yMCAwIC0zNC41IDE0dC0xOC41IDM1cS01NSAzMzcgLTU1IDM1MXYyNTB2NnEwIDE2IDEgMjMuNXQ2LjUgMTQgdDE3LjUgNi41aDIwMGw2NzUgMjUwdi04NTB6TTAgNzUwdi0yNTBxLTQgMCAtMTEgMC41dC0yNCA2dC0zMCAxNXQtMjQgMzB0LTExIDQ4LjV2NTBxMCAyNiAxMC41IDQ2dDI1IDMwdDI5IDE2dDI1LjUgN3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTIzOyIgZD0iTTU1MyAxMjAwaDk0cTIwIDAgMjkgLTEwLjV0MyAtMjkuNWwtMTggLTM3cTgzIC0xOSAxNDQgLTgyLjV0NzYgLTE0MC41bDYzIC0zMjdsMTE4IC0xNzNoMTdxMTkgMCAzMyAtMTQuNXQxNCAtMzV0LTEzIC00MC41dC0zMSAtMjdxLTggLTQgLTIzIC05LjV0LTY1IC0xOS41dC0xMDMgLTI1dC0xMzIuNSAtMjB0LTE1OC41IC05cS01NyAwIC0xMTUgNXQtMTA0IDEydC04OC41IDE1LjV0LTczLjUgMTcuNXQtNTQuNSAxNnQtMzUuNSAxMmwtMTEgNCBxLTE4IDggLTMxIDI4dC0xMyA0MC41dDE0IDM1dDMzIDE0LjVoMTdsMTE4IDE3M2w2MyAzMjdxMTUgNzcgNzYgMTQwdDE0NCA4M2wtMTggMzJxLTYgMTkgMy41IDMydDI4LjUgMTN6TTQ5OCAxMTBxNTAgLTYgMTAyIC02cTUzIDAgMTAyIDZxLTEyIC00OSAtMzkuNSAtNzkuNXQtNjIuNSAtMzAuNXQtNjMgMzAuNXQtMzkgNzkuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTI0OyIgZD0iTTgwMCA5NDZsMjI0IDc4bC03OCAtMjI0bDIzNCAtNDVsLTE4MCAtMTU1bDE4MCAtMTU1bC0yMzQgLTQ1bDc4IC0yMjRsLTIyNCA3OGwtNDUgLTIzNGwtMTU1IDE4MGwtMTU1IC0xODBsLTQ1IDIzNGwtMjI0IC03OGw3OCAyMjRsLTIzNCA0NWwxODAgMTU1bC0xODAgMTU1bDIzNCA0NWwtNzggMjI0bDIyNCAtNzhsNDUgMjM0bDE1NSAtMTgwbDE1NSAxODB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEyNTsiIGQ9Ik02NTAgMTIwMGg1MHE0MCAwIDcwIC00MC41dDMwIC04NC41di0xNTBsLTI4IC0xMjVoMzI4cTQwIDAgNzAgLTQwLjV0MzAgLTg0LjV2LTEwMHEwIC00NSAtMjkgLTc0bC0yMzggLTM0NHEtMTYgLTI0IC0zOCAtNDAuNXQtNDUgLTE2LjVoLTI1MHEtNyAwIC00MiAyNXQtNjYgNTBsLTMxIDI1aC02MXEtNDUgMCAtNzIuNSAxOHQtMjcuNSA1N3Y0MDBxMCAzNiAyMCA2M2wxNDUgMTk2bDk2IDE5OHExMyAyOCAzNy41IDQ4dDUxLjUgMjB6IE02NTAgMTEwMGwtMTAwIC0yMTJsLTE1MCAtMjEzdi0zNzVoMTAwbDEzNiAtMTAwaDIxNGwyNTAgMzc1djEyNWgtNDUwbDUwIDIyNXYxNzVoLTUwek01MCA4MDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTI2OyIgZD0iTTYwMCAxMTAwaDI1MHEyMyAwIDQ1IC0xNi41dDM4IC00MC41bDIzOCAtMzQ0cTI5IC0yOSAyOSAtNzR2LTEwMHEwIC00NCAtMzAgLTg0LjV0LTcwIC00MC41aC0zMjhxMjggLTExOCAyOCAtMTI1di0xNTBxMCAtNDQgLTMwIC04NC41dC03MCAtNDAuNWgtNTBxLTI3IDAgLTUxLjUgMjB0LTM3LjUgNDhsLTk2IDE5OGwtMTQ1IDE5NnEtMjAgMjcgLTIwIDYzdjQwMHEwIDM5IDI3LjUgNTd0NzIuNSAxOGg2MXExMjQgMTAwIDEzOSAxMDB6IE01MCAxMDAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djUwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTYzNiAxMDAwbC0xMzYgLTEwMGgtMTAwdi0zNzVsMTUwIC0yMTNsMTAwIC0yMTJoNTB2MTc1bC01MCAyMjVoNDUwdjEyNWwtMjUwIDM3NWgtMjE0eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMjc7IiBkPSJNMzU2IDg3M2wzNjMgMjMwcTMxIDE2IDUzIC02bDExMCAtMTEycTEzIC0xMyAxMy41IC0zMnQtMTEuNSAtMzRsLTg0IC0xMjFoMzAycTg0IDAgMTM4IC0zOHQ1NCAtMTEwdC01NSAtMTExdC0xMzkgLTM5aC0xMDZsLTEzMSAtMzM5cS02IC0yMSAtMTkuNSAtNDF0LTI4LjUgLTIwaC0zNDJxLTcgMCAtOTAgODF0LTgzIDk0djUyNXEwIDE3IDE0IDM1LjV0MjggMjguNXpNNDAwIDc5MnYtNTAzbDEwMCAtODloMjkzbDEzMSAzMzkgcTYgMjEgMTkuNSA0MXQyOC41IDIwaDIwM3EyMSAwIDMwLjUgMjV0MC41IDUwdC0zMSAyNWgtNDU2aC03aC02aC01LjV0LTYgMC41dC01IDEuNXQtNSAydC00IDIuNXQtNCA0dC0yLjUgNC41cS0xMiAyNSA1IDQ3bDE0NiAxODNsLTg2IDgzek01MCA4MDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NTAwIHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEyODsiIGQ9Ik00NzUgMTEwM2wzNjYgLTIzMHEyIC0xIDYgLTMuNXQxNCAtMTAuNXQxOCAtMTYuNXQxNC41IC0yMHQ2LjUgLTIyLjV2LTUyNXEwIC0xMyAtODYgLTk0dC05MyAtODFoLTM0MnEtMTUgMCAtMjguNSAyMHQtMTkuNSA0MWwtMTMxIDMzOWgtMTA2cS04NSAwIC0xMzkuNSAzOXQtNTQuNSAxMTF0NTQgMTEwdDEzOCAzOGgzMDJsLTg1IDEyMXEtMTEgMTUgLTEwLjUgMzR0MTMuNSAzMmwxMTAgMTEycTIyIDIyIDUzIDZ6TTM3MCA5NDVsMTQ2IC0xODMgcTE3IC0yMiA1IC00N3EtMiAtMiAtMy41IC00LjV0LTQgLTR0LTQgLTIuNXQtNSAtMnQtNSAtMS41dC02IC0wLjVoLTZoLTYuNWgtNmgtNDc1di0xMDBoMjIxcTE1IDAgMjkgLTIwdDIwIC00MWwxMzAgLTMzOWgyOTRsMTA2IDg5djUwM2wtMzQyIDIzNnpNMTA1MCA4MDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjUgdjUwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEyOTsiIGQ9Ik01NTAgMTI5NHE3MiAwIDExMSAtNTV0MzkgLTEzOXYtMTA2bDMzOSAtMTMxcTIxIC02IDQxIC0xOS41dDIwIC0yOC41di0zNDJxMCAtNyAtODEgLTkwdC05NCAtODNoLTUyNXEtMTcgMCAtMzUuNSAxNHQtMjguNSAyOGwtOSAxNGwtMjMwIDM2M3EtMTYgMzEgNiA1M2wxMTIgMTEwcTEzIDEzIDMyIDEzLjV0MzQgLTExLjVsMTIxIC04NHYzMDJxMCA4NCAzOCAxMzh0MTEwIDU0ek02MDAgOTcydjIwM3EwIDIxIC0yNSAzMC41dC01MCAwLjUgdC0yNSAtMzF2LTQ1NnYtN3YtNnYtNS41dC0wLjUgLTZ0LTEuNSAtNXQtMiAtNXQtMi41IC00dC00IC00dC00LjUgLTIuNXEtMjUgLTEyIC00NyA1bC0xODMgMTQ2bC04MyAtODZsMjM2IC0zMzloNTAzbDg5IDEwMHYyOTNsLTMzOSAxMzFxLTIxIDYgLTQxIDE5LjV0LTIwIDI4LjV6TTQ1MCAyMDBoNTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTUwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEzMDsiIGQ9Ik0zNTAgMTEwMGg1MDBxMjEgMCAzNS41IDE0LjV0MTQuNSAzNS41djEwMHEwIDIxIC0xNC41IDM1LjV0LTM1LjUgMTQuNWgtNTAwcS0yMSAwIC0zNS41IC0xNC41dC0xNC41IC0zNS41di0xMDBxMCAtMjEgMTQuNSAtMzUuNXQzNS41IC0xNC41ek02MDAgMzA2di0xMDZxMCAtODQgLTM5IC0xMzl0LTExMSAtNTV0LTExMCA1NHQtMzggMTM4djMwMmwtMTIxIC04NHEtMTUgLTEyIC0zNCAtMTEuNXQtMzIgMTMuNWwtMTEyIDExMCBxLTIyIDIyIC02IDUzbDIzMCAzNjNxMSAyIDMuNSA2dDEwLjUgMTMuNXQxNi41IDE3dDIwIDEzLjV0MjIuNSA2aDUyNXExMyAwIDk0IC04M3Q4MSAtOTB2LTM0MnEwIC0xNSAtMjAgLTI4LjV0LTQxIC0xOS41ek0zMDggOTAwbC0yMzYgLTMzOWw4MyAtODZsMTgzIDE0NnEyMiAxNyA0NyA1cTIgLTEgNC41IC0yLjV0NCAtNHQyLjUgLTR0MiAtNXQxLjUgLTV0MC41IC02di01LjV2LTZ2LTd2LTQ1NnEwIC0yMiAyNSAtMzF0NTAgMC41dDI1IDMwLjUgdjIwM3EwIDE1IDIwIDI4LjV0NDEgMTkuNWwzMzkgMTMxdjI5M2wtODkgMTAwaC01MDN6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEzMTsiIGQ9Ik02MDAgMTE3OHExMTggMCAyMjUgLTQ1LjV0MTg0LjUgLTEyM3QxMjMgLTE4NC41dDQ1LjUgLTIyNXQtNDUuNSAtMjI1dC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjUgLTQ1LjV0LTIyNSA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjV0NDUuNSAyMjV0MTIzIDE4NC41dDE4NC41IDEyM3QyMjUgNDUuNXpNOTE0IDYzMmwtMjc1IDIyM3EtMTYgMTMgLTI3LjUgOHQtMTEuNSAtMjZ2LTEzN2gtMjc1IHEtMTAgMCAtMTcuNSAtNy41dC03LjUgLTE3LjV2LTE1MHEwIC0xMCA3LjUgLTE3LjV0MTcuNSAtNy41aDI3NXYtMTM3cTAgLTIxIDExLjUgLTI2dDI3LjUgOGwyNzUgMjIzcTE2IDEzIDE2IDMydC0xNiAzMnoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTMyOyIgZD0iTTYwMCAxMTc4cTExOCAwIDIyNSAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI1dC00NS41IC0yMjV0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNSAtNDUuNXQtMjI1IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNXQ0NS41IDIyNXQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNSA0NS41ek01NjEgODU1bC0yNzUgLTIyM3EtMTYgLTEzIC0xNiAtMzJ0MTYgLTMybDI3NSAtMjIzcTE2IC0xMyAyNy41IC04IHQxMS41IDI2djEzN2gyNzVxMTAgMCAxNy41IDcuNXQ3LjUgMTcuNXYxNTBxMCAxMCAtNy41IDE3LjV0LTE3LjUgNy41aC0yNzV2MTM3cTAgMjEgLTExLjUgMjZ0LTI3LjUgLTh6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEzMzsiIGQ9Ik02MDAgMTE3OHExMTggMCAyMjUgLTQ1LjV0MTg0LjUgLTEyM3QxMjMgLTE4NC41dDQ1LjUgLTIyNXQtNDUuNSAtMjI1dC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjUgLTQ1LjV0LTIyNSA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjV0NDUuNSAyMjV0MTIzIDE4NC41dDE4NC41IDEyM3QyMjUgNDUuNXpNODU1IDYzOWwtMjIzIDI3NXEtMTMgMTYgLTMyIDE2dC0zMiAtMTZsLTIyMyAtMjc1cS0xMyAtMTYgLTggLTI3LjUgdDI2IC0xMS41aDEzN3YtMjc1cTAgLTEwIDcuNSAtMTcuNXQxNy41IC03LjVoMTUwcTEwIDAgMTcuNSA3LjV0Ny41IDE3LjV2Mjc1aDEzN3EyMSAwIDI2IDExLjV0LTggMjcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTM0OyIgZD0iTTYwMCAxMTc4cTExOCAwIDIyNSAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI1dC00NS41IC0yMjV0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNSAtNDUuNXQtMjI1IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNXQ0NS41IDIyNXQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNSA0NS41ek02NzUgOTAwaC0xNTBxLTEwIDAgLTE3LjUgLTcuNXQtNy41IC0xNy41di0yNzVoLTEzN3EtMjEgMCAtMjYgLTExLjUgdDggLTI3LjVsMjIzIC0yNzVxMTMgLTE2IDMyIC0xNnQzMiAxNmwyMjMgMjc1cTEzIDE2IDggMjcuNXQtMjYgMTEuNWgtMTM3djI3NXEwIDEwIC03LjUgMTcuNXQtMTcuNSA3LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEzNTsiIGQ9Ik02MDAgMTE3NnExMTYgMCAyMjIuNSAtNDZ0MTg0IC0xMjMuNXQxMjMuNSAtMTg0dDQ2IC0yMjIuNXQtNDYgLTIyMi41dC0xMjMuNSAtMTg0dC0xODQgLTEyMy41dC0yMjIuNSAtNDZ0LTIyMi41IDQ2dC0xODQgMTIzLjV0LTEyMy41IDE4NHQtNDYgMjIyLjV0NDYgMjIyLjV0MTIzLjUgMTg0dDE4NCAxMjMuNXQyMjIuNSA0NnpNNjI3IDExMDFxLTE1IC0xMiAtMzYuNSAtMjAuNXQtMzUuNSAtMTJ0LTQzIC04dC0zOSAtNi41IHEtMTUgLTMgLTQ1LjUgMHQtNDUuNSAtMnEtMjAgLTcgLTUxLjUgLTI2LjV0LTM0LjUgLTM0LjVxLTMgLTExIDYuNSAtMjIuNXQ4LjUgLTE4LjVxLTMgLTM0IC0yNy41IC05MXQtMjkuNSAtNzlxLTkgLTM0IDUgLTkzdDggLTg3cTAgLTkgMTcgLTQ0LjV0MTYgLTU5LjVxMTIgMCAyMyAtNXQyMy41IC0xNXQxOS41IC0xNHExNiAtOCAzMyAtMTV0NDAuNSAtMTV0MzQuNSAtMTJxMjEgLTkgNTIuNSAtMzJ0NjAgLTM4dDU3LjUgLTExIHE3IC0xNSAtMyAtMzR0LTIyLjUgLTQwdC05LjUgLTM4cTEzIC0yMSAyMyAtMzQuNXQyNy41IC0yNy41dDM2LjUgLTE4cTAgLTcgLTMuNSAtMTZ0LTMuNSAtMTR0NSAtMTdxMTA0IC0yIDIyMSAxMTJxMzAgMjkgNDYuNSA0N3QzNC41IDQ5dDIxIDYzcS0xMyA4IC0zNyA4LjV0LTM2IDcuNXEtMTUgNyAtNDkuNSAxNXQtNTEuNSAxOXEtMTggMCAtNDEgLTAuNXQtNDMgLTEuNXQtNDIgLTYuNXQtMzggLTE2LjVxLTUxIC0zNSAtNjYgLTEyIHEtNCAxIC0zLjUgMjUuNXQwLjUgMjUuNXEtNiAxMyAtMjYuNSAxNy41dC0yNC41IDYuNXExIDE1IC0wLjUgMzAuNXQtNyAyOHQtMTguNSAxMS41dC0zMSAtMjFxLTIzIC0yNSAtNDIgNHEtMTkgMjggLTggNThxNiAxNiAyMiAyMnE2IC0xIDI2IC0xLjV0MzMuNSAtNHQxOS41IC0xMy41cTcgLTEyIDE4IC0yNHQyMS41IC0yMC41dDIwIC0xNXQxNS41IC0xMC41bDUgLTNxMiAxMiA3LjUgMzAuNXQ4IDM0LjV0LTAuNSAzMnEtMyAxOCAzLjUgMjkgdDE4IDIyLjV0MTUuNSAyNC41cTYgMTQgMTAuNSAzNXQ4IDMxdDE1LjUgMjIuNXQzNCAyMi41cS02IDE4IDEwIDM2cTggMCAyNCAtMS41dDI0LjUgLTEuNXQyMCA0LjV0MjAuNSAxNS41cS0xMCAyMyAtMzEgNDIuNXQtMzcuNSAyOS41dC00OSAyN3QtNDMuNSAyM3EwIDEgMiA4dDMgMTEuNXQxLjUgMTAuNXQtMSA5LjV0LTQuNSA0LjVxMzEgLTEzIDU4LjUgLTE0LjV0MzguNSAyLjVsMTIgNXE1IDI4IC05LjUgNDZ0LTM2LjUgMjR0LTUwIDE1IHQtNDEgMjBxLTE4IC00IC0zNyAwek02MTMgOTk0cTAgLTE3IDggLTQydDE3IC00NXQ5IC0yM3EtOCAxIC0zOS41IDUuNXQtNTIuNSAxMHQtMzcgMTYuNXEzIDExIDE2IDI5LjV0MTYgMjUuNXExMCAtMTAgMTkgLTEwdDE0IDZ0MTMuNSAxNC41dDE2LjUgMTIuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTM2OyIgZD0iTTc1NiAxMTU3cTE2NCA5MiAzMDYgLTlsLTI1OSAtMTM4bDE0NSAtMjMybDI1MSAxMjZxNiAtODkgLTM0IC0xNTYuNXQtMTE3IC0xMTAuNXEtNjAgLTM0IC0xMjcgLTM5LjV0LTEyNiAxNi41bC01OTYgLTU5NnEtMTUgLTE2IC0zNi41IC0xNnQtMzYuNSAxNmwtMTExIDExMHEtMTUgMTUgLTE1IDM2LjV0MTUgMzcuNWw2MDAgNTk5cS0zNCAxMDEgNS41IDIwMS41dDEzNS41IDE1NC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMzc7IiBob3Jpei1hZHYteD0iMTIyMCIgZD0iTTEwMCAxMTk2aDEwMDBxNDEgMCA3MC41IC0yOS41dDI5LjUgLTcwLjV2LTEwMHEwIC00MSAtMjkuNSAtNzAuNXQtNzAuNSAtMjkuNWgtMTAwMHEtNDEgMCAtNzAuNSAyOS41dC0yOS41IDcwLjV2MTAwcTAgNDEgMjkuNSA3MC41dDcwLjUgMjkuNXpNMTEwMCAxMDk2aC0yMDB2LTEwMGgyMDB2MTAwek0xMDAgNzk2aDEwMDBxNDEgMCA3MC41IC0yOS41dDI5LjUgLTcwLjV2LTEwMHEwIC00MSAtMjkuNSAtNzAuNXQtNzAuNSAtMjkuNWgtMTAwMCBxLTQxIDAgLTcwLjUgMjkuNXQtMjkuNSA3MC41djEwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjV6TTExMDAgNjk2aC01MDB2LTEwMGg1MDB2MTAwek0xMDAgMzk2aDEwMDBxNDEgMCA3MC41IC0yOS41dDI5LjUgLTcwLjV2LTEwMHEwIC00MSAtMjkuNSAtNzAuNXQtNzAuNSAtMjkuNWgtMTAwMHEtNDEgMCAtNzAuNSAyOS41dC0yOS41IDcwLjV2MTAwcTAgNDEgMjkuNSA3MC41dDcwLjUgMjkuNXpNMTEwMCAyOTZoLTMwMHYtMTAwaDMwMHYxMDB6ICIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMzg7IiBkPSJNMTUwIDEyMDBoOTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41dC0xNC41IC0zNS41dC0zNS41IC0xNC41aC05MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjV6TTcwMCA1MDB2LTMwMGwtMjAwIC0yMDB2NTAwbC0zNTAgNTAwaDkwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTM5OyIgZD0iTTUwMCAxMjAwaDIwMHE0MSAwIDcwLjUgLTI5LjV0MjkuNSAtNzAuNXYtMTAwaDMwMHE0MSAwIDcwLjUgLTI5LjV0MjkuNSAtNzAuNXYtNDAwaC01MDB2MTAwaC0yMDB2LTEwMGgtNTAwdjQwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjVoMzAwdjEwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjV6TTUwMCAxMTAwdi0xMDBoMjAwdjEwMGgtMjAwek0xMjAwIDQwMHYtMjAwcTAgLTQxIC0yOS41IC03MC41dC03MC41IC0yOS41aC0xMDAwIHEtNDEgMCAtNzAuNSAyOS41dC0yOS41IDcwLjV2MjAwaDEyMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE0MDsiIGQ9Ik01MCAxMjAwaDMwMHEyMSAwIDI1IC0xMC41dC0xMCAtMjQuNWwtOTQgLTk0bDE5OSAtMTk5cTcgLTggNyAtMTh0LTcgLTE4bC0xMDYgLTEwNnEtOCAtNyAtMTggLTd0LTE4IDdsLTE5OSAxOTlsLTk0IC05NHEtMTQgLTE0IC0yNC41IC0xMHQtMTAuNSAyNXYzMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek04NTAgMTIwMGgzMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTMwMHEwIC0yMSAtMTAuNSAtMjV0LTI0LjUgMTBsLTk0IDk0IGwtMTk5IC0xOTlxLTggLTcgLTE4IC03dC0xOCA3bC0xMDYgMTA2cS03IDggLTcgMTh0NyAxOGwxOTkgMTk5bC05NCA5NHEtMTQgMTQgLTEwIDI0LjV0MjUgMTAuNXpNMzY0IDQ3MGwxMDYgLTEwNnE3IC04IDcgLTE4dC03IC0xOGwtMTk5IC0xOTlsOTQgLTk0cTE0IC0xNCAxMCAtMjQuNXQtMjUgLTEwLjVoLTMwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MzAwcTAgMjEgMTAuNSAyNXQyNC41IC0xMGw5NCAtOTRsMTk5IDE5OSBxOCA3IDE4IDd0MTggLTd6TTEwNzEgMjcxbDk0IDk0cTE0IDE0IDI0LjUgMTB0MTAuNSAtMjV2LTMwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMzAwcS0yMSAwIC0yNSAxMC41dDEwIDI0LjVsOTQgOTRsLTE5OSAxOTlxLTcgOCAtNyAxOHQ3IDE4bDEwNiAxMDZxOCA3IDE4IDd0MTggLTd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE0MTsiIGQ9Ik01OTYgMTE5MnExMjEgMCAyMzEuNSAtNDcuNXQxOTAgLTEyN3QxMjcgLTE5MHQ0Ny41IC0yMzEuNXQtNDcuNSAtMjMxLjV0LTEyNyAtMTkwLjV0LTE5MCAtMTI3dC0yMzEuNSAtNDd0LTIzMS41IDQ3dC0xOTAuNSAxMjd0LTEyNyAxOTAuNXQtNDcgMjMxLjV0NDcgMjMxLjV0MTI3IDE5MHQxOTAuNSAxMjd0MjMxLjUgNDcuNXpNNTk2IDEwMTBxLTExMiAwIC0yMDcuNSAtNTUuNXQtMTUxIC0xNTF0LTU1LjUgLTIwNy41dDU1LjUgLTIwNy41IHQxNTEgLTE1MXQyMDcuNSAtNTUuNXQyMDcuNSA1NS41dDE1MSAxNTF0NTUuNSAyMDcuNXQtNTUuNSAyMDcuNXQtMTUxIDE1MXQtMjA3LjUgNTUuNXpNNDU0LjUgOTA1cTIyLjUgMCAzOC41IC0xNnQxNiAtMzguNXQtMTYgLTM5dC0zOC41IC0xNi41dC0zOC41IDE2LjV0LTE2IDM5dDE2IDM4LjV0MzguNSAxNnpNNzU0LjUgOTA1cTIyLjUgMCAzOC41IC0xNnQxNiAtMzguNXQtMTYgLTM5dC0zOCAtMTYuNXEtMTQgMCAtMjkgMTBsLTU1IC0xNDUgcTE3IC0yMyAxNyAtNTFxMCAtMzYgLTI1LjUgLTYxLjV0LTYxLjUgLTI1LjV0LTYxLjUgMjUuNXQtMjUuNSA2MS41cTAgMzIgMjAuNSA1Ni41dDUxLjUgMjkuNWwxMjIgMTI2bDEgMXEtOSAxNCAtOSAyOHEwIDIzIDE2IDM5dDM4LjUgMTZ6TTM0NS41IDcwOXEyMi41IDAgMzguNSAtMTZ0MTYgLTM4LjV0LTE2IC0zOC41dC0zOC41IC0xNnQtMzguNSAxNnQtMTYgMzguNXQxNiAzOC41dDM4LjUgMTZ6TTg1NC41IDcwOXEyMi41IDAgMzguNSAtMTYgdDE2IC0zOC41dC0xNiAtMzguNXQtMzguNSAtMTZ0LTM4LjUgMTZ0LTE2IDM4LjV0MTYgMzguNXQzOC41IDE2eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNDI7IiBkPSJNNTQ2IDE3M2w0NjkgNDcwcTkxIDkxIDk5IDE5MnE3IDk4IC01MiAxNzUuNXQtMTU0IDk0LjVxLTIyIDQgLTQ3IDRxLTM0IDAgLTY2LjUgLTEwdC01Ni41IC0yM3QtNTUuNSAtMzh0LTQ4IC00MS41dC00OC41IC00Ny41cS0zNzYgLTM3NSAtMzkxIC0zOTBxLTMwIC0yNyAtNDUgLTQxLjV0LTM3LjUgLTQxdC0zMiAtNDYuNXQtMTYgLTQ3LjV0LTEuNSAtNTYuNXE5IC02MiA1My41IC05NXQ5OS41IC0zM3E3NCAwIDEyNSA1MWw1NDggNTQ4IHEzNiAzNiAyMCA3NXEtNyAxNiAtMjEuNSAyNnQtMzIuNSAxMHEtMjYgMCAtNTAgLTIzcS0xMyAtMTIgLTM5IC0zOGwtMzQxIC0zMzhxLTE1IC0xNSAtMzUuNSAtMTUuNXQtMzQuNSAxMy41dC0xNCAzNC41dDE0IDM0LjVxMzI3IDMzMyAzNjEgMzY3cTM1IDM1IDY3LjUgNTEuNXQ3OC41IDE2LjVxMTQgMCAyOSAtMXE0NCAtOCA3NC41IC0zNS41dDQzLjUgLTY4LjVxMTQgLTQ3IDIgLTk2LjV0LTQ3IC04NC41cS0xMiAtMTEgLTMyIC0zMiB0LTc5LjUgLTgxdC0xMTQuNSAtMTE1dC0xMjQuNSAtMTIzLjV0LTEyMyAtMTE5LjV0LTk2LjUgLTg5dC01NyAtNDVxLTU2IC0yNyAtMTIwIC0yN3EtNzAgMCAtMTI5IDMydC05MyA4OXEtNDggNzggLTM1IDE3M3Q4MSAxNjNsNTExIDUxMXE3MSA3MiAxMTEgOTZxOTEgNTUgMTk4IDU1cTgwIDAgMTUyIC0zM3E3OCAtMzYgMTI5LjUgLTEwM3Q2Ni41IC0xNTRxMTcgLTkzIC0xMSAtMTgzLjV0LTk0IC0xNTYuNWwtNDgyIC00NzYgcS0xNSAtMTUgLTM2IC0xNnQtMzcgMTR0LTE3LjUgMzR0MTQuNSAzNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTQzOyIgZD0iTTY0OSA5NDlxNDggNjggMTA5LjUgMTA0dDEyMS41IDM4LjV0MTE4LjUgLTIwdDEwMi41IC02NHQ3MSAtMTAwLjV0MjcgLTEyM3EwIC01NyAtMzMuNSAtMTE3LjV0LTk0IC0xMjQuNXQtMTI2LjUgLTEyNy41dC0xNTAgLTE1Mi41dC0xNDYgLTE3NHEtNjIgODUgLTE0NS41IDE3NHQtMTUwIDE1Mi41dC0xMjYuNSAxMjcuNXQtOTMuNSAxMjQuNXQtMzMuNSAxMTcuNXEwIDY0IDI4IDEyM3Q3MyAxMDAuNXQxMDQgNjR0MTE5IDIwIHQxMjAuNSAtMzguNXQxMDQuNSAtMTA0ek04OTYgOTcycS0zMyAwIC02NC41IC0xOXQtNTYuNSAtNDZ0LTQ3LjUgLTUzLjV0LTQzLjUgLTQ1LjV0LTM3LjUgLTE5dC0zNiAxOXQtNDAgNDUuNXQtNDMgNTMuNXQtNTQgNDZ0LTY1LjUgMTlxLTY3IDAgLTEyMi41IC01NS41dC01NS41IC0xMzIuNXEwIC0yMyAxMy41IC01MXQ0NiAtNjV0NTcuNSAtNjN0NzYgLTc1bDIyIC0yMnExNSAtMTQgNDQgLTQ0dDUwLjUgLTUxdDQ2IC00NHQ0MSAtMzV0MjMgLTEyIHQyMy41IDEydDQyLjUgMzZ0NDYgNDR0NTIuNSA1MnQ0NCA0M3E0IDQgMTIgMTNxNDMgNDEgNjMuNSA2MnQ1MiA1NXQ0NiA1NXQyNiA0NnQxMS41IDQ0cTAgNzkgLTUzIDEzMy41dC0xMjAgNTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTQ0OyIgZD0iTTc3Ni41IDEyMTRxOTMuNSAwIDE1OS41IC02NmwxNDEgLTE0MXE2NiAtNjYgNjYgLTE2MHEwIC00MiAtMjggLTk1LjV0LTYyIC04Ny41bC0yOSAtMjlxLTMxIDUzIC03NyA5OWwtMTggMThsOTUgOTVsLTI0NyAyNDhsLTM4OSAtMzg5bDIxMiAtMjEybC0xMDUgLTEwNmwtMTkgMThsLTE0MSAxNDFxLTY2IDY2IC02NiAxNTl0NjYgMTU5bDI4MyAyODNxNjUgNjYgMTU4LjUgNjZ6TTYwMCA3MDZsMTA1IDEwNXExMCAtOCAxOSAtMTdsMTQxIC0xNDEgcTY2IC02NiA2NiAtMTU5dC02NiAtMTU5bC0yODMgLTI4M3EtNjYgLTY2IC0xNTkgLTY2dC0xNTkgNjZsLTE0MSAxNDFxLTY2IDY2IC02NiAxNTkuNXQ2NiAxNTkuNWw1NSA1NXEyOSAtNTUgNzUgLTEwMmwxOCAtMTdsLTk1IC05NWwyNDcgLTI0OGwzODkgMzg5eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNDU7IiBkPSJNNjAzIDEyMDBxODUgMCAxNjIgLTE1dDEyNyAtMzh0NzkgLTQ4dDI5IC00NnYtOTUzcTAgLTQxIC0yOS41IC03MC41dC03MC41IC0yOS41aC02MDBxLTQxIDAgLTcwLjUgMjkuNXQtMjkuNSA3MC41djk1M3EwIDIxIDMwIDQ2LjV0ODEgNDh0MTI5IDM3LjV0MTYzIDE1ek0zMDAgMTAwMHYtNzAwaDYwMHY3MDBoLTYwMHpNNjAwIDI1NHEtNDMgMCAtNzMuNSAtMzAuNXQtMzAuNSAtNzMuNXQzMC41IC03My41dDczLjUgLTMwLjV0NzMuNSAzMC41IHQzMC41IDczLjV0LTMwLjUgNzMuNXQtNzMuNSAzMC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNDY7IiBkPSJNOTAyIDExODVsMjgzIC0yODJxMTUgLTE1IDE1IC0zNnQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNXQtMzUgMTVsLTM2IDM1bC0yNzkgLTI2N3YtMzAwbC0yMTIgMjEwbC0zMDggLTMwN2wtMjgwIC0yMDNsMjAzIDI4MGwzMDcgMzA4bC0yMTAgMjEyaDMwMGwyNjcgMjc5bC0zNSAzNnEtMTUgMTQgLTE1IDM1dDE0LjUgMzUuNXQzNS41IDE0LjV0MzUgLTE1eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNDg7IiBkPSJNNzAwIDEyNDh2LTc4cTM4IC01IDcyLjUgLTE0LjV0NzUuNSAtMzEuNXQ3MSAtNTMuNXQ1MiAtODR0MjQgLTExOC41aC0xNTlxLTQgMzYgLTEwLjUgNTl0LTIxIDQ1dC00MCAzNS41dC02NC41IDIwLjV2LTMwN2w2NCAtMTNxMzQgLTcgNjQgLTE2LjV0NzAgLTMydDY3LjUgLTUyLjV0NDcuNSAtODB0MjAgLTExMnEwIC0xMzkgLTg5IC0yMjR0LTI0NCAtOTd2LTc3aC0xMDB2NzlxLTE1MCAxNiAtMjM3IDEwM3EtNDAgNDAgLTUyLjUgOTMuNSB0LTE1LjUgMTM5LjVoMTM5cTUgLTc3IDQ4LjUgLTEyNnQxMTcuNSAtNjV2MzM1bC0yNyA4cS00NiAxNCAtNzkgMjYuNXQtNzIgMzZ0LTYzIDUydC00MCA3Mi41dC0xNiA5OHEwIDcwIDI1IDEyNnQ2Ny41IDkydDk0LjUgNTd0MTEwIDI3djc3aDEwMHpNNjAwIDc1NHYyNzRxLTI5IC00IC01MCAtMTF0LTQyIC0yMS41dC0zMS41IC00MS41dC0xMC41IC02NXEwIC0yOSA3IC01MC41dDE2LjUgLTM0dDI4LjUgLTIyLjV0MzEuNSAtMTR0MzcuNSAtMTAgcTkgLTMgMTMgLTR6TTcwMCA1NDd2LTMxMHEyMiAyIDQyLjUgNi41dDQ1IDE1LjV0NDEuNSAyN3QyOSA0MnQxMiA1OS41dC0xMi41IDU5LjV0LTM4IDQ0LjV0LTUzIDMxdC02Ni41IDI0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE0OTsiIGQ9Ik01NjEgMTE5N3E4NCAwIDE2MC41IC00MHQxMjMuNSAtMTA5LjV0NDcgLTE0Ny41aC0xNTNxMCA0MCAtMTkuNSA3MS41dC00OS41IDQ4LjV0LTU5LjUgMjZ0LTU1LjUgOXEtMzcgMCAtNzkgLTE0LjV0LTYyIC0zNS41cS00MSAtNDQgLTQxIC0xMDFxMCAtMjYgMTMuNSAtNjN0MjYuNSAtNjF0MzcgLTY2cTYgLTkgOSAtMTRoMjQxdi0xMDBoLTE5N3E4IC01MCAtMi41IC0xMTV0LTMxLjUgLTk1cS00NSAtNjIgLTk5IC0xMTIgcTM0IDEwIDgzIDE3LjV0NzEgNy41cTMyIDEgMTAyIC0xNnQxMDQgLTE3cTgzIDAgMTM2IDMwbDUwIC0xNDdxLTMxIC0xOSAtNTggLTMwLjV0LTU1IC0xNS41dC00MiAtNC41dC00NiAtMC41cS0yMyAwIC03NiAxN3QtMTExIDMyLjV0LTk2IDExLjVxLTM5IC0zIC04MiAtMTZ0LTY3IC0yNWwtMjMgLTExbC01NSAxNDVxNCAzIDE2IDExdDE1LjUgMTAuNXQxMyA5dDE1LjUgMTJ0MTQuNSAxNHQxNy41IDE4LjVxNDggNTUgNTQgMTI2LjUgdC0zMCAxNDIuNWgtMjIxdjEwMGgxNjZxLTIzIDQ3IC00NCAxMDRxLTcgMjAgLTEyIDQxLjV0LTYgNTUuNXQ2IDY2LjV0MjkuNSA3MC41dDU4LjUgNzFxOTcgODggMjYzIDg4eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNTA7IiBkPSJNNDAwIDMwMGgxNTBxMjEgMCAyNSAtMTF0LTEwIC0yNWwtMjMwIC0yNTBxLTE0IC0xNSAtMzUgLTE1dC0zNSAxNWwtMjMwIDI1MHEtMTQgMTQgLTEwIDI1dDI1IDExaDE1MHY5MDBoMjAwdi05MDB6TTkzNSAxMTg0bDIzMCAtMjQ5cTE0IC0xNCAxMCAtMjQuNXQtMjUgLTEwLjVoLTE1MHYtOTAwaC0yMDB2OTAwaC0xNTBxLTIxIDAgLTI1IDEwLjV0MTAgMjQuNWwyMzAgMjQ5cTE0IDE1IDM1IDE1dDM1IC0xNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTUxOyIgZD0iTTEwMDAgNzAwaC0xMDB2MTAwaC0xMDB2LTEwMGgtMTAwdjUwMGgzMDB2LTUwMHpNNDAwIDMwMGgxNTBxMjEgMCAyNSAtMTF0LTEwIC0yNWwtMjMwIC0yNTBxLTE0IC0xNSAtMzUgLTE1dC0zNSAxNWwtMjMwIDI1MHEtMTQgMTQgLTEwIDI1dDI1IDExaDE1MHY5MDBoMjAwdi05MDB6TTgwMSAxMTAwdi0yMDBoMTAwdjIwMGgtMTAwek0xMDAwIDM1MGwtMjAwIC0yNTBoMjAwdi0xMDBoLTMwMHYxNTBsMjAwIDI1MGgtMjAwdjEwMGgzMDB2LTE1MHogIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE1MjsiIGQ9Ik00MDAgMzAwaDE1MHEyMSAwIDI1IC0xMXQtMTAgLTI1bC0yMzAgLTI1MHEtMTQgLTE1IC0zNSAtMTV0LTM1IDE1bC0yMzAgMjUwcS0xNCAxNCAtMTAgMjV0MjUgMTFoMTUwdjkwMGgyMDB2LTkwMHpNMTAwMCAxMDUwbC0yMDAgLTI1MGgyMDB2LTEwMGgtMzAwdjE1MGwyMDAgMjUwaC0yMDB2MTAwaDMwMHYtMTUwek0xMDAwIDBoLTEwMHYxMDBoLTEwMHYtMTAwaC0xMDB2NTAwaDMwMHYtNTAwek04MDEgNDAwdi0yMDBoMTAwdjIwMGgtMTAweiAiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTUzOyIgZD0iTTQwMCAzMDBoMTUwcTIxIDAgMjUgLTExdC0xMCAtMjVsLTIzMCAtMjUwcS0xNCAtMTUgLTM1IC0xNXQtMzUgMTVsLTIzMCAyNTBxLTE0IDE0IC0xMCAyNXQyNSAxMWgxNTB2OTAwaDIwMHYtOTAwek0xMDAwIDcwMGgtMTAwdjQwMGgtMTAwdjEwMGgyMDB2LTUwMHpNMTEwMCAwaC0xMDB2MTAwaC0yMDB2NDAwaDMwMHYtNTAwek05MDEgNDAwdi0yMDBoMTAwdjIwMGgtMTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNTQ7IiBkPSJNNDAwIDMwMGgxNTBxMjEgMCAyNSAtMTF0LTEwIC0yNWwtMjMwIC0yNTBxLTE0IC0xNSAtMzUgLTE1dC0zNSAxNWwtMjMwIDI1MHEtMTQgMTQgLTEwIDI1dDI1IDExaDE1MHY5MDBoMjAwdi05MDB6TTExMDAgNzAwaC0xMDB2MTAwaC0yMDB2NDAwaDMwMHYtNTAwek05MDEgMTEwMHYtMjAwaDEwMHYyMDBoLTEwMHpNMTAwMCAwaC0xMDB2NDAwaC0xMDB2MTAwaDIwMHYtNTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNTU7IiBkPSJNNDAwIDMwMGgxNTBxMjEgMCAyNSAtMTF0LTEwIC0yNWwtMjMwIC0yNTBxLTE0IC0xNSAtMzUgLTE1dC0zNSAxNWwtMjMwIDI1MHEtMTQgMTQgLTEwIDI1dDI1IDExaDE1MHY5MDBoMjAwdi05MDB6TTkwMCAxMDAwaC0yMDB2MjAwaDIwMHYtMjAwek0xMDAwIDcwMGgtMzAwdjIwMGgzMDB2LTIwMHpNMTEwMCA0MDBoLTQwMHYyMDBoNDAwdi0yMDB6TTEyMDAgMTAwaC01MDB2MjAwaDUwMHYtMjAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNTY7IiBkPSJNNDAwIDMwMGgxNTBxMjEgMCAyNSAtMTF0LTEwIC0yNWwtMjMwIC0yNTBxLTE0IC0xNSAtMzUgLTE1dC0zNSAxNWwtMjMwIDI1MHEtMTQgMTQgLTEwIDI1dDI1IDExaDE1MHY5MDBoMjAwdi05MDB6TTEyMDAgMTAwMGgtNTAwdjIwMGg1MDB2LTIwMHpNMTEwMCA3MDBoLTQwMHYyMDBoNDAwdi0yMDB6TTEwMDAgNDAwaC0zMDB2MjAwaDMwMHYtMjAwek05MDAgMTAwaC0yMDB2MjAwaDIwMHYtMjAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNTc7IiBkPSJNMzUwIDExMDBoNDAwcTE2MiAwIDI1NiAtOTMuNXQ5NCAtMjU2LjV2LTQwMHEwIC0xNjUgLTkzLjUgLTI1Ny41dC0yNTYuNSAtOTIuNWgtNDAwcS0xNjUgMCAtMjU3LjUgOTIuNXQtOTIuNSAyNTcuNXY0MDBxMCAxNjUgOTIuNSAyNTcuNXQyNTcuNSA5Mi41ek04MDAgOTAwaC01MDBxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTUwMHEwIC00MSAyOS41IC03MC41dDcwLjUgLTI5LjVoNTAwcTQxIDAgNzAuNSAyOS41dDI5LjUgNzAuNSB2NTAwcTAgNDEgLTI5LjUgNzAuNXQtNzAuNSAyOS41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNTg7IiBkPSJNMzUwIDExMDBoNDAwcTE2NSAwIDI1Ny41IC05Mi41dDkyLjUgLTI1Ny41di00MDBxMCAtMTY1IC05Mi41IC0yNTcuNXQtMjU3LjUgLTkyLjVoLTQwMHEtMTYzIDAgLTI1Ni41IDkyLjV0LTkzLjUgMjU3LjV2NDAwcTAgMTYzIDk0IDI1Ni41dDI1NiA5My41ek04MDAgOTAwaC01MDBxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTUwMHEwIC00MSAyOS41IC03MC41dDcwLjUgLTI5LjVoNTAwcTQxIDAgNzAuNSAyOS41dDI5LjUgNzAuNSB2NTAwcTAgNDEgLTI5LjUgNzAuNXQtNzAuNSAyOS41ek00NDAgNzcwbDI1MyAtMTkwcTE3IC0xMiAxNyAtMzB0LTE3IC0zMGwtMjUzIC0xOTBxLTE2IC0xMiAtMjggLTYuNXQtMTIgMjYuNXY0MDBxMCAyMSAxMiAyNi41dDI4IC02LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE1OTsiIGQ9Ik0zNTAgMTEwMGg0MDBxMTYzIDAgMjU2LjUgLTk0dDkzLjUgLTI1NnYtNDAwcTAgLTE2NSAtOTIuNSAtMjU3LjV0LTI1Ny41IC05Mi41aC00MDBxLTE2NSAwIC0yNTcuNSA5Mi41dC05Mi41IDI1Ny41djQwMHEwIDE2MyA5Mi41IDI1Ni41dDI1Ny41IDkzLjV6TTgwMCA5MDBoLTUwMHEtNDEgMCAtNzAuNSAtMjkuNXQtMjkuNSAtNzAuNXYtNTAwcTAgLTQxIDI5LjUgLTcwLjV0NzAuNSAtMjkuNWg1MDBxNDEgMCA3MC41IDI5LjV0MjkuNSA3MC41IHY1MDBxMCA0MSAtMjkuNSA3MC41dC03MC41IDI5LjV6TTM1MCA3MDBoNDAwcTIxIDAgMjYuNSAtMTJ0LTYuNSAtMjhsLTE5MCAtMjUzcS0xMiAtMTcgLTMwIC0xN3QtMzAgMTdsLTE5MCAyNTNxLTEyIDE2IC02LjUgMjh0MjYuNSAxMnoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTYwOyIgZD0iTTM1MCAxMTAwaDQwMHExNjUgMCAyNTcuNSAtOTIuNXQ5Mi41IC0yNTcuNXYtNDAwcTAgLTE2MyAtOTIuNSAtMjU2LjV0LTI1Ny41IC05My41aC00MDBxLTE2MyAwIC0yNTYuNSA5NHQtOTMuNSAyNTZ2NDAwcTAgMTY1IDkyLjUgMjU3LjV0MjU3LjUgOTIuNXpNODAwIDkwMGgtNTAwcS00MSAwIC03MC41IC0yOS41dC0yOS41IC03MC41di01MDBxMCAtNDEgMjkuNSAtNzAuNXQ3MC41IC0yOS41aDUwMHE0MSAwIDcwLjUgMjkuNXQyOS41IDcwLjUgdjUwMHEwIDQxIC0yOS41IDcwLjV0LTcwLjUgMjkuNXpNNTgwIDY5M2wxOTAgLTI1M3ExMiAtMTYgNi41IC0yOHQtMjYuNSAtMTJoLTQwMHEtMjEgMCAtMjYuNSAxMnQ2LjUgMjhsMTkwIDI1M3ExMiAxNyAzMCAxN3QzMCAtMTd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE2MTsiIGQ9Ik01NTAgMTEwMGg0MDBxMTY1IDAgMjU3LjUgLTkyLjV0OTIuNSAtMjU3LjV2LTQwMHEwIC0xNjUgLTkyLjUgLTI1Ny41dC0yNTcuNSAtOTIuNWgtNDAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDQ1MHE0MSAwIDcwLjUgMjkuNXQyOS41IDcwLjV2NTAwcTAgNDEgLTI5LjUgNzAuNXQtNzAuNSAyOS41aC00NTBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0zMzggODY3bDMyNCAtMjg0cTE2IC0xNCAxNiAtMzN0LTE2IC0zM2wtMzI0IC0yODRxLTE2IC0xNCAtMjcgLTl0LTExIDI2djE1MGgtMjUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYyMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDI1MHYxNTBxMCAyMSAxMSAyNnQyNyAtOXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTYyOyIgZD0iTTc5MyAxMTgybDkgLTlxOCAtMTAgNSAtMjdxLTMgLTExIC03OSAtMjI1LjV0LTc4IC0yMjEuNWwzMDAgMXEyNCAwIDMyLjUgLTE3LjV0LTUuNSAtMzUuNXEtMSAwIC0xMzMuNSAtMTU1dC0yNjcgLTMxMi41dC0xMzguNSAtMTYyLjVxLTEyIC0xNSAtMjYgLTE1aC05bC05IDhxLTkgMTEgLTQgMzJxMiA5IDQyIDEyMy41dDc5IDIyNC41bDM5IDExMGgtMzAycS0yMyAwIC0zMSAxOXEtMTAgMjEgNiA0MXE3NSA4NiAyMDkuNSAyMzcuNSB0MjI4IDI1N3Q5OC41IDExMS41cTkgMTYgMjUgMTZoOXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTYzOyIgZD0iTTM1MCAxMTAwaDQwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC00NTBxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTUwMHEwIC00MSAyOS41IC03MC41dDcwLjUgLTI5LjVoNDUwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTQwMHEtMTY1IDAgLTI1Ny41IDkyLjV0LTkyLjUgMjU3LjV2NDAwIHEwIDE2NSA5Mi41IDI1Ny41dDI1Ny41IDkyLjV6TTkzOCA4NjdsMzI0IC0yODRxMTYgLTE0IDE2IC0zM3QtMTYgLTMzbC0zMjQgLTI4NHEtMTYgLTE0IC0yNyAtOXQtMTEgMjZ2MTUwaC0yNTBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoMjUwdjE1MHEwIDIxIDExIDI2dDI3IC05eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNjQ7IiBkPSJNNzUwIDEyMDBoNDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di00MDBxMCAtMjEgLTEwLjUgLTI1dC0yNC41IDEwbC0xMDkgMTA5bC0zMTIgLTMxMnEtMTUgLTE1IC0zNS41IC0xNXQtMzUuNSAxNWwtMTQxIDE0MXEtMTUgMTUgLTE1IDM1LjV0MTUgMzUuNWwzMTIgMzEybC0xMDkgMTA5cS0xNCAxNCAtMTAgMjQuNXQyNSAxMC41ek00NTYgOTAwaC0xNTZxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTUwMCBxMCAtNDEgMjkuNSAtNzAuNXQ3MC41IC0yOS41aDUwMHE0MSAwIDcwLjUgMjkuNXQyOS41IDcwLjV2MTQ4bDIwMCAyMDB2LTI5OHEwIC0xNjUgLTkzLjUgLTI1Ny41dC0yNTYuNSAtOTIuNWgtNDAwcS0xNjUgMCAtMjU3LjUgOTIuNXQtOTIuNSAyNTcuNXY0MDBxMCAxNjUgOTIuNSAyNTcuNXQyNTcuNSA5Mi41aDMwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTY1OyIgZD0iTTYwMCAxMTg2cTExOSAwIDIyNy41IC00Ni41dDE4NyAtMTI1dDEyNSAtMTg3dDQ2LjUgLTIyNy41dC00Ni41IC0yMjcuNXQtMTI1IC0xODd0LTE4NyAtMTI1dC0yMjcuNSAtNDYuNXQtMjI3LjUgNDYuNXQtMTg3IDEyNXQtMTI1IDE4N3QtNDYuNSAyMjcuNXQ0Ni41IDIyNy41dDEyNSAxODd0MTg3IDEyNXQyMjcuNSA0Ni41ek02MDAgMTAyMnEtMTE1IDAgLTIxMiAtNTYuNXQtMTUzLjUgLTE1My41dC01Ni41IC0yMTJ0NTYuNSAtMjEyIHQxNTMuNSAtMTUzLjV0MjEyIC01Ni41dDIxMiA1Ni41dDE1My41IDE1My41dDU2LjUgMjEydC01Ni41IDIxMnQtMTUzLjUgMTUzLjV0LTIxMiA1Ni41ek02MDAgNzk0cTgwIDAgMTM3IC01N3Q1NyAtMTM3dC01NyAtMTM3dC0xMzcgLTU3dC0xMzcgNTd0LTU3IDEzN3Q1NyAxMzd0MTM3IDU3eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNjY7IiBkPSJNNDUwIDEyMDBoMjAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0zNTBoMjQ1cTIwIDAgMjUgLTExdC05IC0yNmwtMzgzIC00MjZxLTE0IC0xNSAtMzMuNSAtMTV0LTMyLjUgMTVsLTM3OSA0MjZxLTEzIDE1IC04LjUgMjZ0MjUuNSAxMWgyNTB2MzUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgMzAwaDEwMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTI1MGgtMTEwMHYyNTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiBNOTAwIDIwMHYtNTBoMTAwdjUwaC0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE2NzsiIGQ9Ik01ODMgMTE4MmwzNzggLTQzNXExNCAtMTUgOSAtMzF0LTI2IC0xNmgtMjQ0di0yNTBxMCAtMjAgLTE3IC0zNXQtMzkgLTE1aC0yMDBxLTIwIDAgLTMyIDE0LjV0LTEyIDM1LjV2MjUwaC0yNTBxLTIwIDAgLTI1LjUgMTYuNXQ4LjUgMzEuNWwzODMgNDMxcTE0IDE2IDMzLjUgMTd0MzMuNSAtMTR6TTUwIDMwMGgxMDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yNTBoLTExMDB2MjUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXogTTkwMCAyMDB2LTUwaDEwMHY1MGgtMTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNjg7IiBkPSJNMzk2IDcyM2wzNjkgMzY5cTcgNyAxNy41IDd0MTcuNSAtN2wxMzkgLTEzOXE3IC04IDcgLTE4LjV0LTcgLTE3LjVsLTUyNSAtNTI1cS03IC04IC0xNy41IC04dC0xNy41IDhsLTI5MiAyOTFxLTcgOCAtNyAxOHQ3IDE4bDEzOSAxMzlxOCA3IDE4LjUgN3QxNy41IC03ek01MCAzMDBoMTAwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjUwaC0xMTAwdjI1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTkwMCAyMDB2LTUwaDEwMHY1MCBoLTEwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTY5OyIgZD0iTTEzNSAxMDIzbDE0MiAxNDJxMTQgMTQgMzUgMTR0MzUgLTE0bDc3IC03N2wtMjEyIC0yMTJsLTc3IDc2cS0xNCAxNSAtMTQgMzZ0MTQgMzV6TTY1NSA4NTVsMjEwIDIxMHExNCAxNCAyNC41IDEwdDEwLjUgLTI1bC0yIC01OTlxLTEgLTIwIC0xNS41IC0zNXQtMzUuNSAtMTVsLTU5NyAtMXEtMjEgMCAtMjUgMTAuNXQxMCAyNC41bDIwOCAyMDhsLTE1NCAxNTVsMjEyIDIxMnpNNTAgMzAwaDEwMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjUgdi0yNTBoLTExMDB2MjUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNOTAwIDIwMHYtNTBoMTAwdjUwaC0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE3MDsiIGQ9Ik0zNTAgMTIwMGw1OTkgLTJxMjAgLTEgMzUgLTE1LjV0MTUgLTM1LjVsMSAtNTk3cTAgLTIxIC0xMC41IC0yNXQtMjQuNSAxMGwtMjA4IDIwOGwtMTU1IC0xNTRsLTIxMiAyMTJsMTU1IDE1NGwtMjEwIDIxMHEtMTQgMTQgLTEwIDI0LjV0MjUgMTAuNXpNNTI0IDUxMmwtNzYgLTc3cS0xNSAtMTQgLTM2IC0xNHQtMzUgMTRsLTE0MiAxNDJxLTE0IDE0IC0xNCAzNXQxNCAzNWw3NyA3N3pNNTAgMzAwaDEwMDBxMjEgMCAzNS41IC0xNC41IHQxNC41IC0zNS41di0yNTBoLTExMDB2MjUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNOTAwIDIwMHYtNTBoMTAwdjUwaC0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE3MTsiIGQ9Ik0xMjAwIDEwM2wtNDgzIDI3NmwtMzE0IC0zOTl2NDIzaC0zOTlsMTE5NiA3OTZ2LTEwOTZ6TTQ4MyA0MjR2LTIzMGw2ODMgOTUzeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNzI7IiBkPSJNMTEwMCAxMDAwdi04NTBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTE1MHY0MDBoLTcwMHYtNDAwaC0xNTBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMDBxMCAyMCAxNC41IDM1dDM1LjUgMTVoMjUwdi0zMDBoNTAwdjMwMGgxMDB6TTcwMCAxMDAwaC0xMDB2MjAwaDEwMHYtMjAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNzM7IiBkPSJNMTEwMCAxMDAwbC0yIC0xNDlsLTI5OSAtMjk5bC05NSA5NXEtOSA5IC0yMS41IDl0LTIxLjUgLTlsLTE0OSAtMTQ3aC0zMTJ2LTQwMGgtMTUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDAwcTAgMjAgMTQuNSAzNXQzNS41IDE1aDI1MHYtMzAwaDUwMHYzMDBoMTAwek03MDAgMTAwMGgtMTAwdjIwMGgxMDB2LTIwMHpNMTEzMiA2MzhsMTA2IC0xMDZxNyAtNyA3IC0xNy41dC03IC0xNy41bC00MjAgLTQyMXEtOCAtNyAtMTggLTcgdC0xOCA3bC0yMDIgMjAzcS04IDcgLTggMTcuNXQ4IDE3LjVsMTA2IDEwNnE3IDggMTcuNSA4dDE3LjUgLThsNzkgLTc5bDI5NyAyOTdxNyA3IDE3LjUgN3QxNy41IC03eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNzQ7IiBkPSJNMTEwMCAxMDAwdi0yNjlsLTEwMyAtMTAzbC0xMzQgMTM0cS0xNSAxNSAtMzMuNSAxNi41dC0zNC41IC0xMi41bC0yNjYgLTI2NmgtMzI5di00MDBoLTE1MHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwMHEwIDIwIDE0LjUgMzV0MzUuNSAxNWgyNTB2LTMwMGg1MDB2MzAwaDEwMHpNNzAwIDEwMDBoLTEwMHYyMDBoMTAwdi0yMDB6TTEyMDIgNTcybDcwIC03MHExNSAtMTUgMTUgLTM1LjV0LTE1IC0zNS41bC0xMzEgLTEzMSBsMTMxIC0xMzFxMTUgLTE1IDE1IC0zNS41dC0xNSAtMzUuNWwtNzAgLTcwcS0xNSAtMTUgLTM1LjUgLTE1dC0zNS41IDE1bC0xMzEgMTMxbC0xMzEgLTEzMXEtMTUgLTE1IC0zNS41IC0xNXQtMzUuNSAxNWwtNzAgNzBxLTE1IDE1IC0xNSAzNS41dDE1IDM1LjVsMTMxIDEzMWwtMTMxIDEzMXEtMTUgMTUgLTE1IDM1LjV0MTUgMzUuNWw3MCA3MHExNSAxNSAzNS41IDE1dDM1LjUgLTE1bDEzMSAtMTMxbDEzMSAxMzFxMTUgMTUgMzUuNSAxNSB0MzUuNSAtMTV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE3NTsiIGQ9Ik0xMTAwIDEwMDB2LTMwMGgtMzUwcS0yMSAwIC0zNS41IC0xNC41dC0xNC41IC0zNS41di0xNTBoLTUwMHYtNDAwaC0xNTBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMDBxMCAyMCAxNC41IDM1dDM1LjUgMTVoMjUwdi0zMDBoNTAwdjMwMGgxMDB6TTcwMCAxMDAwaC0xMDB2MjAwaDEwMHYtMjAwek04NTAgNjAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjUwaDE1MHEyMSAwIDI1IC0xMC41dC0xMCAtMjQuNSBsLTIzMCAtMjMwcS0xNCAtMTQgLTM1IC0xNHQtMzUgMTRsLTIzMCAyMzBxLTE0IDE0IC0xMCAyNC41dDI1IDEwLjVoMTUwdjI1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE3NjsiIGQ9Ik0xMTAwIDEwMDB2LTQwMGwtMTY1IDE2NXEtMTQgMTUgLTM1IDE1dC0zNSAtMTVsLTI2MyAtMjY1aC00MDJ2LTQwMGgtMTUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDAwcTAgMjAgMTQuNSAzNXQzNS41IDE1aDI1MHYtMzAwaDUwMHYzMDBoMTAwek03MDAgMTAwMGgtMTAwdjIwMGgxMDB2LTIwMHpNOTM1IDU2NWwyMzAgLTIyOXExNCAtMTUgMTAgLTI1LjV0LTI1IC0xMC41aC0xNTB2LTI1MHEwIC0yMCAtMTQuNSAtMzUgdC0zNS41IC0xNWgtMTAwcS0yMSAwIC0zNS41IDE1dC0xNC41IDM1djI1MGgtMTUwcS0yMSAwIC0yNSAxMC41dDEwIDI1LjVsMjMwIDIyOXExNCAxNSAzNSAxNXQzNSAtMTV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE3NzsiIGQ9Ik01MCAxMTAwaDExMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTE1MGgtMTIwMHYxNTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0xMjAwIDgwMHYtNTUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY1NTBoMTIwMHpNMTAwIDUwMHYtMjAwaDQwMHYyMDBoLTQwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTc4OyIgZD0iTTkzNSAxMTY1bDI0OCAtMjMwcTE0IC0xNCAxNCAtMzV0LTE0IC0zNWwtMjQ4IC0yMzBxLTE0IC0xNCAtMjQuNSAtMTB0LTEwLjUgMjV2MTUwaC00MDB2MjAwaDQwMHYxNTBxMCAyMSAxMC41IDI1dDI0LjUgLTEwek0yMDAgODAwaC01MHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWg1MHYtMjAwek00MDAgODAwaC0xMDB2MjAwaDEwMHYtMjAwek0xOCA0MzVsMjQ3IDIzMCBxMTQgMTQgMjQuNSAxMHQxMC41IC0yNXYtMTUwaDQwMHYtMjAwaC00MDB2LTE1MHEwIC0yMSAtMTAuNSAtMjV0LTI0LjUgMTBsLTI0NyAyMzBxLTE1IDE0IC0xNSAzNXQxNSAzNXpNOTAwIDMwMGgtMTAwdjIwMGgxMDB2LTIwMHpNMTAwMCA1MDBoNTFxMjAgMCAzNC41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzQuNSAtMTQuNWgtNTF2MjAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNzk7IiBkPSJNODYyIDEwNzNsMjc2IDExNnEyNSAxOCA0My41IDh0MTguNSAtNDF2LTExMDZxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2Mzk3cS00IDEgLTExIDV0LTI0IDE3LjV0LTMwIDI5dC0yNCA0MnQtMTEgNTYuNXYzNTlxMCAzMSAxOC41IDY1dDQzLjUgNTJ6TTU1MCAxMjAwcTIyIDAgMzQuNSAtMTIuNXQxNC41IC0yNC41bDEgLTEzdi00NTBxMCAtMjggLTEwLjUgLTU5LjUgdC0yNSAtNTZ0LTI5IC00NXQtMjUuNSAtMzEuNWwtMTAgLTExdi00NDdxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NDQ3cS00IDQgLTExIDExLjV0LTI0IDMwLjV0LTMwIDQ2dC0yNCA1NXQtMTEgNjB2NDUwcTAgMiAwLjUgNS41dDQgMTJ0OC41IDE1dDE0LjUgMTJ0MjIuNSA1LjVxMjAgMCAzMi41IC0xMi41dDE0LjUgLTI0LjVsMyAtMTN2LTM1MGgxMDB2MzUwdjUuNXQyLjUgMTIgdDcgMTV0MTUgMTJ0MjUuNSA1LjVxMjMgMCAzNS41IC0xMi41dDEzLjUgLTI0LjVsMSAtMTN2LTM1MGgxMDB2MzUwcTAgMiAwLjUgNS41dDMgMTJ0NyAxNXQxNSAxMnQyNC41IDUuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTgwOyIgZD0iTTEyMDAgMTEwMHYtNTZxLTQgMCAtMTEgLTAuNXQtMjQgLTN0LTMwIC03LjV0LTI0IC0xNXQtMTEgLTI0di04ODhxMCAtMjIgMjUgLTM0LjV0NTAgLTEzLjVsMjUgLTJ2LTU2aC00MDB2NTZxNzUgMCA4Ny41IDYuNXQxMi41IDQzLjV2Mzk0aC01MDB2LTM5NHEwIC0zNyAxMi41IC00My41dDg3LjUgLTYuNXYtNTZoLTQwMHY1NnE0IDAgMTEgMC41dDI0IDN0MzAgNy41dDI0IDE1dDExIDI0djg4OHEwIDIyIC0yNSAzNC41dC01MCAxMy41IGwtMjUgMnY1Nmg0MDB2LTU2cS03NSAwIC04Ny41IC02LjV0LTEyLjUgLTQzLjV2LTM5NGg1MDB2Mzk0cTAgMzcgLTEyLjUgNDMuNXQtODcuNSA2LjV2NTZoNDAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxODE7IiBkPSJNNjc1IDEwMDBoMzc1cTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xNTBoLTEwNWwtMjk1IC05OHY5OGwtMjAwIDIwMGgtNDAwbDEwMCAxMDBoMzc1ek0xMDAgOTAwaDMwMHE0MSAwIDcwLjUgLTI5LjV0MjkuNSAtNzAuNXYtNTAwcTAgLTQxIC0yOS41IC03MC41dC03MC41IC0yOS41aC0zMDBxLTQxIDAgLTcwLjUgMjkuNXQtMjkuNSA3MC41djUwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjV6TTEwMCA4MDB2LTIwMGgzMDB2MjAwIGgtMzAwek0xMTAwIDUzNWwtNDAwIC0xMzN2MTYzbDQwMCAxMzN2LTE2M3pNMTAwIDUwMHYtMjAwaDMwMHYyMDBoLTMwMHpNMTEwMCAzOTh2LTI0OHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMzc1bC0xMDAgLTEwMGgtMzc1bC0xMDAgMTAwaDQwMGwyMDAgMjAwaDEwNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTgyOyIgZD0iTTE3IDEwMDdsMTYyIDE2MnExNyAxNyA0MCAxNHQzNyAtMjJsMTM5IC0xOTRxMTQgLTIwIDExIC00NC41dC0yMCAtNDEuNWwtMTE5IC0xMThxMTAyIC0xNDIgMjI4IC0yNjh0MjY3IC0yMjdsMTE5IDExOHExNyAxNyA0Mi41IDE5dDQ0LjUgLTEybDE5MiAtMTM2cTE5IC0xNCAyMi41IC0zNy41dC0xMy41IC00MC41bC0xNjMgLTE2MnEtMyAtMSAtOS41IC0xdC0yOS41IDJ0LTQ3LjUgNnQtNjIuNSAxNC41dC03Ny41IDI2LjV0LTkwIDQyLjUgdC0xMDEuNSA2MHQtMTExIDgzdC0xMTkgMTA4LjVxLTc0IDc0IC0xMzMuNSAxNTAuNXQtOTQuNSAxMzguNXQtNjAgMTE5LjV0LTM0LjUgMTAwdC0xNSA3NC41dC00LjUgNDh6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE4MzsiIGQ9Ik02MDAgMTEwMHE5MiAwIDE3NSAtMTAuNXQxNDEuNSAtMjd0MTA4LjUgLTM2LjV0ODEuNSAtNDB0NTMuNSAtMzd0MzEgLTI3bDkgLTEwdi0yMDBxMCAtMjEgLTE0LjUgLTMzdC0zNC41IC05bC0yMDIgMzRxLTIwIDMgLTM0LjUgMjB0LTE0LjUgMzh2MTQ2cS0xNDEgMjQgLTMwMCAyNHQtMzAwIC0yNHYtMTQ2cTAgLTIxIC0xNC41IC0zOHQtMzQuNSAtMjBsLTIwMiAtMzRxLTIwIC0zIC0zNC41IDl0LTE0LjUgMzN2MjAwcTMgNCA5LjUgMTAuNSB0MzEgMjZ0NTQgMzcuNXQ4MC41IDM5LjV0MTA5IDM3LjV0MTQxIDI2LjV0MTc1IDEwLjV6TTYwMCA3OTVxNTYgMCA5NyAtOS41dDYwIC0yMy41dDMwIC0yOHQxMiAtMjRsMSAtMTB2LTUwbDM2NSAtMzAzcTE0IC0xNSAyNC41IC00MHQxMC41IC00NXYtMjEycTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYyMTJxMCAyMCAxMC41IDQ1dDI0LjUgNDBsMzY1IDMwM3Y1MCBxMCA0IDEgMTAuNXQxMiAyM3QzMCAyOXQ2MCAyMi41dDk3IDEweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxODQ7IiBkPSJNMTEwMCA3MDBsLTIwMCAtMjAwaC02MDBsLTIwMCAyMDB2NTAwaDIwMHYtMjAwaDIwMHYyMDBoMjAwdi0yMDBoMjAwdjIwMGgyMDB2LTUwMHpNMjUwIDQwMGg3MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV0LTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEybDEzNyAtMTAwaC05NTBsMTM3IDEwMGgtMTJxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjV6TTUwIDEwMGgxMTAwcTIxIDAgMzUuNSAtMTQuNSB0MTQuNSAtMzUuNXYtNTBoLTEyMDB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxODU7IiBkPSJNNzAwIDExMDBoLTEwMHEtNDEgMCAtNzAuNSAtMjkuNXQtMjkuNSAtNzAuNXYtMTAwMGgzMDB2MTAwMHEwIDQxIC0yOS41IDcwLjV0LTcwLjUgMjkuNXpNMTEwMCA4MDBoLTEwMHEtNDEgMCAtNzAuNSAtMjkuNXQtMjkuNSAtNzAuNXYtNzAwaDMwMHY3MDBxMCA0MSAtMjkuNSA3MC41dC03MC41IDI5LjV6TTQwMCAwaC0zMDB2NDAwcTAgNDEgMjkuNSA3MC41dDcwLjUgMjkuNWgxMDBxNDEgMCA3MC41IC0yOS41dDI5LjUgLTcwLjV2LTQwMHogIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE4NjsiIGQ9Ik0yMDAgMTEwMGg3MDBxMTI0IDAgMjEyIC04OHQ4OCAtMjEydi01MDBxMCAtMTI0IC04OCAtMjEydC0yMTIgLTg4aC03MDBxLTEyNCAwIC0yMTIgODh0LTg4IDIxMnY1MDBxMCAxMjQgODggMjEydDIxMiA4OHpNMTAwIDkwMHYtNzAwaDkwMHY3MDBoLTkwMHpNNTAwIDcwMGgtMjAwdi0xMDBoMjAwdi0zMDBoLTMwMHYxMDBoMjAwdjEwMGgtMjAwdjMwMGgzMDB2LTEwMHpNOTAwIDcwMHYtMzAwbC0xMDAgLTEwMGgtMjAwdjUwMGgyMDB6IE03MDAgNzAwdi0zMDBoMTAwdjMwMGgtMTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxODc7IiBkPSJNMjAwIDExMDBoNzAwcTEyNCAwIDIxMiAtODh0ODggLTIxMnYtNTAwcTAgLTEyNCAtODggLTIxMnQtMjEyIC04OGgtNzAwcS0xMjQgMCAtMjEyIDg4dC04OCAyMTJ2NTAwcTAgMTI0IDg4IDIxMnQyMTIgODh6TTEwMCA5MDB2LTcwMGg5MDB2NzAwaC05MDB6TTUwMCAzMDBoLTEwMHYyMDBoLTEwMHYtMjAwaC0xMDB2NTAwaDEwMHYtMjAwaDEwMHYyMDBoMTAwdi01MDB6TTkwMCA3MDB2LTMwMGwtMTAwIC0xMDBoLTIwMHY1MDBoMjAweiBNNzAwIDcwMHYtMzAwaDEwMHYzMDBoLTEwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTg4OyIgZD0iTTIwMCAxMTAwaDcwMHExMjQgMCAyMTIgLTg4dDg4IC0yMTJ2LTUwMHEwIC0xMjQgLTg4IC0yMTJ0LTIxMiAtODhoLTcwMHEtMTI0IDAgLTIxMiA4OHQtODggMjEydjUwMHEwIDEyNCA4OCAyMTJ0MjEyIDg4ek0xMDAgOTAwdi03MDBoOTAwdjcwMGgtOTAwek01MDAgNzAwaC0yMDB2LTMwMGgyMDB2LTEwMGgtMzAwdjUwMGgzMDB2LTEwMHpNOTAwIDcwMGgtMjAwdi0zMDBoMjAwdi0xMDBoLTMwMHY1MDBoMzAwdi0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE4OTsiIGQ9Ik0yMDAgMTEwMGg3MDBxMTI0IDAgMjEyIC04OHQ4OCAtMjEydi01MDBxMCAtMTI0IC04OCAtMjEydC0yMTIgLTg4aC03MDBxLTEyNCAwIC0yMTIgODh0LTg4IDIxMnY1MDBxMCAxMjQgODggMjEydDIxMiA4OHpNMTAwIDkwMHYtNzAwaDkwMHY3MDBoLTkwMHpNNTAwIDQwMGwtMzAwIDE1MGwzMDAgMTUwdi0zMDB6TTkwMCA1NTBsLTMwMCAtMTUwdjMwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTkwOyIgZD0iTTIwMCAxMTAwaDcwMHExMjQgMCAyMTIgLTg4dDg4IC0yMTJ2LTUwMHEwIC0xMjQgLTg4IC0yMTJ0LTIxMiAtODhoLTcwMHEtMTI0IDAgLTIxMiA4OHQtODggMjEydjUwMHEwIDEyNCA4OCAyMTJ0MjEyIDg4ek0xMDAgOTAwdi03MDBoOTAwdjcwMGgtOTAwek05MDAgMzAwaC03MDB2NTAwaDcwMHYtNTAwek04MDAgNzAwaC0xMzBxLTM4IDAgLTY2LjUgLTQzdC0yOC41IC0xMDh0MjcgLTEwN3Q2OCAtNDJoMTMwdjMwMHpNMzAwIDcwMHYtMzAwIGgxMzBxNDEgMCA2OCA0MnQyNyAxMDd0LTI4LjUgMTA4dC02Ni41IDQzaC0xMzB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE5MTsiIGQ9Ik0yMDAgMTEwMGg3MDBxMTI0IDAgMjEyIC04OHQ4OCAtMjEydi01MDBxMCAtMTI0IC04OCAtMjEydC0yMTIgLTg4aC03MDBxLTEyNCAwIC0yMTIgODh0LTg4IDIxMnY1MDBxMCAxMjQgODggMjEydDIxMiA4OHpNMTAwIDkwMHYtNzAwaDkwMHY3MDBoLTkwMHpNNTAwIDcwMGgtMjAwdi0xMDBoMjAwdi0zMDBoLTMwMHYxMDBoMjAwdjEwMGgtMjAwdjMwMGgzMDB2LTEwMHpNOTAwIDMwMGgtMTAwdjQwMGgtMTAwdjEwMGgyMDB2LTUwMHogTTcwMCAzMDBoLTEwMHYxMDBoMTAwdi0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE5MjsiIGQ9Ik0yMDAgMTEwMGg3MDBxMTI0IDAgMjEyIC04OHQ4OCAtMjEydi01MDBxMCAtMTI0IC04OCAtMjEydC0yMTIgLTg4aC03MDBxLTEyNCAwIC0yMTIgODh0LTg4IDIxMnY1MDBxMCAxMjQgODggMjEydDIxMiA4OHpNMTAwIDkwMHYtNzAwaDkwMHY3MDBoLTkwMHpNMzAwIDcwMGgyMDB2LTQwMGgtMzAwdjUwMGgxMDB2LTEwMHpNOTAwIDMwMGgtMTAwdjQwMGgtMTAwdjEwMGgyMDB2LTUwMHpNMzAwIDYwMHYtMjAwaDEwMHYyMDBoLTEwMHogTTcwMCAzMDBoLTEwMHYxMDBoMTAwdi0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE5MzsiIGQ9Ik0yMDAgMTEwMGg3MDBxMTI0IDAgMjEyIC04OHQ4OCAtMjEydi01MDBxMCAtMTI0IC04OCAtMjEydC0yMTIgLTg4aC03MDBxLTEyNCAwIC0yMTIgODh0LTg4IDIxMnY1MDBxMCAxMjQgODggMjEydDIxMiA4OHpNMTAwIDkwMHYtNzAwaDkwMHY3MDBoLTkwMHpNNTAwIDUwMGwtMTk5IC0yMDBoLTEwMHY1MGwxOTkgMjAwdjE1MGgtMjAwdjEwMGgzMDB2LTMwMHpNOTAwIDMwMGgtMTAwdjQwMGgtMTAwdjEwMGgyMDB2LTUwMHpNNzAxIDMwMGgtMTAwIHYxMDBoMTAwdi0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE5NDsiIGQ9Ik02MDAgMTE5MXExMjAgMCAyMjkuNSAtNDd0MTg4LjUgLTEyNnQxMjYgLTE4OC41dDQ3IC0yMjkuNXQtNDcgLTIyOS41dC0xMjYgLTE4OC41dC0xODguNSAtMTI2dC0yMjkuNSAtNDd0LTIyOS41IDQ3dC0xODguNSAxMjZ0LTEyNiAxODguNXQtNDcgMjI5LjV0NDcgMjI5LjV0MTI2IDE4OC41dDE4OC41IDEyNnQyMjkuNSA0N3pNNjAwIDEwMjFxLTExNCAwIC0yMTEgLTU2LjV0LTE1My41IC0xNTMuNXQtNTYuNSAtMjExdDU2LjUgLTIxMSB0MTUzLjUgLTE1My41dDIxMSAtNTYuNXQyMTEgNTYuNXQxNTMuNSAxNTMuNXQ1Ni41IDIxMXQtNTYuNSAyMTF0LTE1My41IDE1My41dC0yMTEgNTYuNXpNODAwIDcwMGgtMzAwdi0yMDBoMzAwdi0xMDBoLTMwMGwtMTAwIDEwMHYyMDBsMTAwIDEwMGgzMDB2LTEwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTk1OyIgZD0iTTYwMCAxMTkxcTEyMCAwIDIyOS41IC00N3QxODguNSAtMTI2dDEyNiAtMTg4LjV0NDcgLTIyOS41dC00NyAtMjI5LjV0LTEyNiAtMTg4LjV0LTE4OC41IC0xMjZ0LTIyOS41IC00N3QtMjI5LjUgNDd0LTE4OC41IDEyNnQtMTI2IDE4OC41dC00NyAyMjkuNXQ0NyAyMjkuNXQxMjYgMTg4LjV0MTg4LjUgMTI2dDIyOS41IDQ3ek02MDAgMTAyMXEtMTE0IDAgLTIxMSAtNTYuNXQtMTUzLjUgLTE1My41dC01Ni41IC0yMTF0NTYuNSAtMjExIHQxNTMuNSAtMTUzLjV0MjExIC01Ni41dDIxMSA1Ni41dDE1My41IDE1My41dDU2LjUgMjExdC01Ni41IDIxMXQtMTUzLjUgMTUzLjV0LTIxMSA1Ni41ek04MDAgNzAwdi0xMDBsLTUwIC01MGwxMDAgLTEwMHYtNTBoLTEwMGwtMTAwIDEwMGgtMTUwdi0xMDBoLTEwMHY0MDBoMzAwek01MDAgNzAwdi0xMDBoMjAwdjEwMGgtMjAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxOTc7IiBkPSJNNTAzIDEwODlxMTEwIDAgMjAwLjUgLTU5LjV0MTM0LjUgLTE1Ni41cTQ0IDE0IDkwIDE0cTEyMCAwIDIwNSAtODYuNXQ4NSAtMjA3dC04NSAtMjA3dC0yMDUgLTg2LjVoLTEyOHYyNTBxMCAyMSAtMTQuNSAzNS41dC0zNS41IDE0LjVoLTMwMHEtMjEgMCAtMzUuNSAtMTQuNXQtMTQuNSAtMzUuNXYtMjUwaC0yMjJxLTgwIDAgLTEzNiA1Ny41dC01NiAxMzYuNXEwIDY5IDQzIDEyMi41dDEwOCA2Ny41cS0yIDE5IC0yIDM3cTAgMTAwIDQ5IDE4NSB0MTM0IDEzNHQxODUgNDl6TTUyNSA1MDBoMTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMjc1aDEzN3EyMSAwIDI2IC0xMS41dC04IC0yNy41bC0yMjMgLTI0NHEtMTMgLTE2IC0zMiAtMTZ0LTMyIDE2bC0yMjMgMjQ0cS0xMyAxNiAtOCAyNy41dDI2IDExLjVoMTM3djI3NXEwIDEwIDcuNSAxNy41dDE3LjUgNy41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxOTg7IiBkPSJNNTAyIDEwODlxMTEwIDAgMjAxIC01OS41dDEzNSAtMTU2LjVxNDMgMTUgODkgMTVxMTIxIDAgMjA2IC04Ni41dDg2IC0yMDYuNXEwIC05OSAtNjAgLTE4MXQtMTUwIC0xMTBsLTM3OCAzNjBxLTEzIDE2IC0zMS41IDE2dC0zMS41IC0xNmwtMzgxIC0zNjVoLTlxLTc5IDAgLTEzNS41IDU3LjV0LTU2LjUgMTM2LjVxMCA2OSA0MyAxMjIuNXQxMDggNjcuNXEtMiAxOSAtMiAzOHEwIDEwMCA0OSAxODQuNXQxMzMuNSAxMzR0MTg0LjUgNDkuNXogTTYzMiA0NjdsMjIzIC0yMjhxMTMgLTE2IDggLTI3LjV0LTI2IC0xMS41aC0xMzd2LTI3NXEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTE1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djI3NWgtMTM3cS0yMSAwIC0yNiAxMS41dDggMjcuNXExOTkgMjA0IDIyMyAyMjhxMTkgMTkgMzEuNSAxOXQzMi41IC0xOXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTk5OyIgZD0iTTcwMCAxMDB2MTAwaDQwMGwtMjcwIDMwMGgxNzBsLTI3MCAzMDBoMTcwbC0zMDAgMzMzbC0zMDAgLTMzM2gxNzBsLTI3MCAtMzAwaDE3MGwtMjcwIC0zMDBoNDAwdi0xMDBoLTUwcS0yMSAwIC0zNS41IC0xNC41dC0xNC41IC0zNS41di01MGg0MDB2NTBxMCAyMSAtMTQuNSAzNS41dC0zNS41IDE0LjVoLTUweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMDA7IiBkPSJNNjAwIDExNzlxOTQgMCAxNjcuNSAtNTYuNXQ5OS41IC0xNDUuNXE4OSAtNiAxNTAuNSAtNzEuNXQ2MS41IC0xNTUuNXEwIC02MSAtMjkuNSAtMTEyLjV0LTc5LjUgLTgyLjVxOSAtMjkgOSAtNTVxMCAtNzQgLTUyLjUgLTEyNi41dC0xMjYuNSAtNTIuNXEtNTUgMCAtMTAwIDMwdi0yNTFxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTUwaC0zMDB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41djI1MXEtNDUgLTMwIC0xMDAgLTMwIHEtNzQgMCAtMTI2LjUgNTIuNXQtNTIuNSAxMjYuNXEwIDE4IDQgMzhxLTQ3IDIxIC03NS41IDY1dC0yOC41IDk3cTAgNzQgNTIuNSAxMjYuNXQxMjYuNSA1Mi41cTUgMCAyMyAtMnEwIDIgLTEgMTB0LTEgMTNxMCAxMTYgODEuNSAxOTcuNXQxOTcuNSA4MS41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMDE7IiBkPSJNMTAxMCAxMDEwcTExMSAtMTExIDE1MC41IC0yNjAuNXQwIC0yOTl0LTE1MC41IC0yNjAuNXEtODMgLTgzIC0xOTEuNSAtMTI2LjV0LTIxOC41IC00My41dC0yMTguNSA0My41dC0xOTEuNSAxMjYuNXEtMTExIDExMSAtMTUwLjUgMjYwLjV0MCAyOTl0MTUwLjUgMjYwLjVxODMgODMgMTkxLjUgMTI2LjV0MjE4LjUgNDMuNXQyMTguNSAtNDMuNXQxOTEuNSAtMTI2LjV6TTQ3NiAxMDY1cS00IDAgLTggLTFxLTEyMSAtMzQgLTIwOS41IC0xMjIuNSB0LTEyMi41IC0yMDkuNXEtNCAtMTIgMi41IC0yM3QxOC41IC0xNGwzNiAtOXEzIC0xIDcgLTFxMjMgMCAyOSAyMnEyNyA5NiA5OCAxNjZxNzAgNzEgMTY2IDk4cTExIDMgMTcuNSAxMy41dDMuNSAyMi41bC05IDM1cS0zIDEzIC0xNCAxOXEtNyA0IC0xNSA0ek01MTIgOTIwcS00IDAgLTkgLTJxLTgwIC0yNCAtMTM4LjUgLTgyLjV0LTgyLjUgLTEzOC41cS00IC0xMyAyIC0yNHQxOSAtMTRsMzQgLTlxNCAtMSA4IC0xcTIyIDAgMjggMjEgcTE4IDU4IDU4LjUgOTguNXQ5Ny41IDU4LjVxMTIgMyAxOCAxMy41dDMgMjEuNWwtOSAzNXEtMyAxMiAtMTQgMTlxLTcgNCAtMTUgNHpNNzE5LjUgNzE5LjVxLTQ5LjUgNDkuNSAtMTE5LjUgNDkuNXQtMTE5LjUgLTQ5LjV0LTQ5LjUgLTExOS41dDQ5LjUgLTExOS41dDExOS41IC00OS41dDExOS41IDQ5LjV0NDkuNSAxMTkuNXQtNDkuNSAxMTkuNXpNODU1IDU1MXEtMjIgMCAtMjggLTIxcS0xOCAtNTggLTU4LjUgLTk4LjV0LTk4LjUgLTU3LjUgcS0xMSAtNCAtMTcgLTE0LjV0LTMgLTIxLjVsOSAtMzVxMyAtMTIgMTQgLTE5cTcgLTQgMTUgLTRxNCAwIDkgMnE4MCAyNCAxMzguNSA4Mi41dDgyLjUgMTM4LjVxNCAxMyAtMi41IDI0dC0xOC41IDE0bC0zNCA5cS00IDEgLTggMXpNMTAwMCA1MTVxLTIzIDAgLTI5IC0yMnEtMjcgLTk2IC05OCAtMTY2cS03MCAtNzEgLTE2NiAtOThxLTExIC0zIC0xNy41IC0xMy41dC0zLjUgLTIyLjVsOSAtMzVxMyAtMTMgMTQgLTE5cTcgLTQgMTUgLTQgcTQgMCA4IDFxMTIxIDM0IDIwOS41IDEyMi41dDEyMi41IDIwOS41cTQgMTIgLTIuNSAyM3QtMTguNSAxNGwtMzYgOXEtMyAxIC03IDF6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIwMjsiIGQ9Ik03MDAgODAwaDMwMHYtMzgwaC0xODB2MjAwaC0zNDB2LTIwMGgtMzgwdjc1NXEwIDEwIDcuNSAxNy41dDE3LjUgNy41aDU3NXYtNDAwek0xMDAwIDkwMGgtMjAwdjIwMHpNNzAwIDMwMGgxNjJsLTIxMiAtMjEybC0yMTIgMjEyaDE2MnYyMDBoMTAwdi0yMDB6TTUyMCAwaC0zOTVxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYzOTV6TTEwMDAgMjIwdi0xOTVxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0xOTV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIwMzsiIGQ9Ik03MDAgODAwaDMwMHYtNTIwbC0zNTAgMzUwbC01NTAgLTU1MHYxMDk1cTAgMTAgNy41IDE3LjV0MTcuNSA3LjVoNTc1di00MDB6TTEwMDAgOTAwaC0yMDB2MjAwek04NjIgMjAwaC0xNjJ2LTIwMGgtMTAwdjIwMGgtMTYybDIxMiAyMTJ6TTQ4MCAwaC0zNTVxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY1NWgzODB2LTgwek0xMDAwIDgwdi01NXEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTE1NXY4MGgxODB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIwNDsiIGQ9Ik0xMTYyIDgwMGgtMTYydi0yMDBoMTAwbDEwMCAtMTAwaC0zMDB2MzAwaC0xNjJsMjEyIDIxMnpNMjAwIDgwMGgyMDBxMjcgMCA0MCAtMnQyOS41IC0xMC41dDIzLjUgLTMwdDcgLTU3LjVoMzAwdi0xMDBoLTYwMGwtMjAwIC0zNTB2NDUwaDEwMHEwIDM2IDcgNTcuNXQyMy41IDMwdDI5LjUgMTAuNXQ0MCAyek04MDAgNDAwaDI0MGwtMjQwIC00MDBoLTgwMGwzMDAgNTAwaDUwMHYtMTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMDU7IiBkPSJNNjUwIDExMDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGg1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0zMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoNTB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0xMDAwIDg1MHYxNTBxNDEgMCA3MC41IC0yOS41dDI5LjUgLTcwLjV2LTgwMCBxMCAtNDEgLTI5LjUgLTcwLjV0LTcwLjUgLTI5LjVoLTYwMHEtMSAwIC0yMCA0bDI0NiAyNDZsLTMyNiAzMjZ2MzI0cTAgNDEgMjkuNSA3MC41dDcwLjUgMjkuNXYtMTUwcTAgLTYyIDQ0IC0xMDZ0MTA2IC00NGgzMDBxNjIgMCAxMDYgNDR0NDQgMTA2ek00MTIgMjUwbC0yMTIgLTIxMnYxNjJoLTIwMHYxMDBoMjAwdjE2MnoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjA2OyIgZD0iTTQ1MCAxMTAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTBoNTBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMzAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDUwdjUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNODAwIDg1MHYxNTBxNDEgMCA3MC41IC0yOS41dDI5LjUgLTcwLjV2LTUwMCBoLTIwMHYtMzAwaDIwMHEwIC0zNiAtNyAtNTcuNXQtMjMuNSAtMzB0LTI5LjUgLTEwLjV0LTQwIC0yaC02MDBxLTQxIDAgLTcwLjUgMjkuNXQtMjkuNSA3MC41djgwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjV2LTE1MHEwIC02MiA0NCAtMTA2dDEwNiAtNDRoMzAwcTYyIDAgMTA2IDQ0dDQ0IDEwNnpNMTIxMiAyNTBsLTIxMiAtMjEydjE2MmgtMjAwdjEwMGgyMDB2MTYyeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMDk7IiBkPSJNNjU4IDExOTdsNjM3IC0xMTA0cTIzIC0zOCA3IC02NS41dC02MCAtMjcuNWgtMTI3NnEtNDQgMCAtNjAgMjcuNXQ3IDY1LjVsNjM3IDExMDRxMjIgMzkgNTQgMzl0NTQgLTM5ek03MDQgODAwaC0yMDhxLTIwIDAgLTMyIC0xNC41dC04IC0zNC41bDU4IC0zMDJxNCAtMjAgMjEuNSAtMzQuNXQzNy41IC0xNC41aDU0cTIwIDAgMzcuNSAxNC41dDIxLjUgMzQuNWw1OCAzMDJxNCAyMCAtOCAzNC41dC0zMiAxNC41ek01MDAgMzAwdi0xMDBoMjAwIHYxMDBoLTIwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjEwOyIgZD0iTTQyNSAxMTAwaDI1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTI1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek00MjUgODAwaDI1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTI1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE1MHEwIDEwIDcuNSAxNy41IHQxNy41IDcuNXpNODI1IDgwMGgyNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNMjUgNTAwaDI1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTI1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE1MCBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNNDI1IDUwMGgyNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNODI1IDUwMGgyNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNSB2MTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTI1IDIwMGgyNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNNDI1IDIwMGgyNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41IHQtNy41IDE3LjV2MTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTgyNSAyMDBoMjUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMjUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2MTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIxMTsiIGQ9Ik03MDAgMTIwMGgxMDB2LTIwMGgtMTAwdi0xMDBoMzUwcTYyIDAgODYuNSAtMzkuNXQtMy41IC05NC41bC02NiAtMTMycS00MSAtODMgLTgxIC0xMzRoLTc3MnEtNDAgNTEgLTgxIDEzNGwtNjYgMTMycS0yOCA1NSAtMy41IDk0LjV0ODYuNSAzOS41aDM1MHYxMDBoLTEwMHYyMDBoMTAwdjEwMGgyMDB2LTEwMHpNMjUwIDQwMGg3MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV0LTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEybDEzNyAtMTAwIGgtOTUwbDEzOCAxMDBoLTEzcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXQxNC41IDM1LjV0MzUuNSAxNC41ek01MCAxMDBoMTEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTBoLTEyMDB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMTI7IiBkPSJNNjAwIDEzMDBxNDAgMCA2OC41IC0yOS41dDI4LjUgLTcwLjVoLTE5NHEwIDQxIDI4LjUgNzAuNXQ2OC41IDI5LjV6TTQ0MyAxMTAwaDMxNHExOCAtMzcgMTggLTc1cTAgLTggLTMgLTI1aDMyOHE0MSAwIDQ0LjUgLTE2LjV0LTMwLjUgLTM4LjVsLTE3NSAtMTQ1aC02NzhsLTE3OCAxNDVxLTM0IDIyIC0yOSAzOC41dDQ2IDE2LjVoMzI4cS0zIDE3IC0zIDI1cTAgMzggMTggNzV6TTI1MCA3MDBoNzAwcTIxIDAgMzUuNSAtMTQuNSB0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTUwdi0yMDBsMjc1IC0yMDBoLTk1MGwyNzUgMjAwdjIwMGgtMTUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXQxNC41IDM1LjV0MzUuNSAxNC41ek01MCAxMDBoMTEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTBoLTEyMDB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMTM7IiBkPSJNNjAwIDExODFxNzUgMCAxMjggLTUzdDUzIC0xMjh0LTUzIC0xMjh0LTEyOCAtNTN0LTEyOCA1M3QtNTMgMTI4dDUzIDEyOHQxMjggNTN6TTYwMiA3OThoNDZxMzQgMCA1NS41IC0yOC41dDIxLjUgLTg2LjVxMCAtNzYgMzkgLTE4M2gtMzI0cTM5IDEwNyAzOSAxODNxMCA1OCAyMS41IDg2LjV0NTYuNSAyOC41aDQ1ek0yNTAgNDAwaDcwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTMgbDEzOCAtMTAwaC05NTBsMTM3IDEwMGgtMTJxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjV6TTUwIDEwMGgxMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGgtMTIwMHY1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIxNDsiIGQ9Ik02MDAgMTMwMHE0NyAwIDkyLjUgLTUzLjV0NzEgLTEyM3QyNS41IC0xMjMuNXEwIC03OCAtNTUuNSAtMTMzLjV0LTEzMy41IC01NS41dC0xMzMuNSA1NS41dC01NS41IDEzMy41cTAgNjIgMzQgMTQzbDE0NCAtMTQzbDExMSAxMTFsLTE2MyAxNjNxMzQgMjYgNjMgMjZ6TTYwMiA3OThoNDZxMzQgMCA1NS41IC0yOC41dDIxLjUgLTg2LjVxMCAtNzYgMzkgLTE4M2gtMzI0cTM5IDEwNyAzOSAxODNxMCA1OCAyMS41IDg2LjV0NTYuNSAyOC41aDQ1IHpNMjUwIDQwMGg3MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV0LTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEzbDEzOCAtMTAwaC05NTBsMTM3IDEwMGgtMTJxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjV6TTUwIDEwMGgxMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGgtMTIwMHY1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIxNTsiIGQ9Ik02MDAgMTIwMGwzMDAgLTE2MXYtMTM5aC0zMDBxMCAtNTcgMTguNSAtMTA4dDUwIC05MS41dDYzIC03MnQ3MCAtNjcuNXQ1Ny41IC02MWgtNTMwcS02MCA4MyAtOTAuNSAxNzcuNXQtMzAuNSAxNzguNXQzMyAxNjQuNXQ4Ny41IDEzOS41dDEyNiA5Ni41dDE0NS41IDQxLjV2LTk4ek0yNTAgNDAwaDcwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTNsMTM4IC0xMDBoLTk1MGwxMzcgMTAwIGgtMTJxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjV6TTUwIDEwMGgxMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGgtMTIwMHY1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIxNjsiIGQ9Ik02MDAgMTMwMHE0MSAwIDcwLjUgLTI5LjV0MjkuNSAtNzAuNXYtNzhxNDYgLTI2IDczIC03MnQyNyAtMTAwdi01MGgtNDAwdjUwcTAgNTQgMjcgMTAwdDczIDcydjc4cTAgNDEgMjkuNSA3MC41dDcwLjUgMjkuNXpNNDAwIDgwMGg0MDBxNTQgMCAxMDAgLTI3dDcyIC03M2gtMTcydi0xMDBoMjAwdi0xMDBoLTIwMHYtMTAwaDIwMHYtMTAwaC0yMDB2LTEwMGgyMDBxMCAtODMgLTU4LjUgLTE0MS41dC0xNDEuNSAtNTguNWgtNDAwIHEtODMgMCAtMTQxLjUgNTguNXQtNTguNSAxNDEuNXY0MDBxMCA4MyA1OC41IDE0MS41dDE0MS41IDU4LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIxODsiIGQ9Ik0xNTAgMTEwMGg5MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTUwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtOTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY1MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0xMjUgNDAwaDk1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMjgzbDIyNCAtMjI0cTEzIC0xMyAxMyAtMzEuNXQtMTMgLTMyIHQtMzEuNSAtMTMuNXQtMzEuNSAxM2wtODggODhoLTUyNGwtODcgLTg4cS0xMyAtMTMgLTMyIC0xM3QtMzIgMTMuNXQtMTMgMzJ0MTMgMzEuNWwyMjQgMjI0aC0yODlxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek01NDEgMzAwbC0xMDAgLTEwMGgzMjRsLTEwMCAxMDBoLTEyNHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjE5OyIgZD0iTTIwMCAxMTAwaDgwMHE4MyAwIDE0MS41IC01OC41dDU4LjUgLTE0MS41di0yMDBoLTEwMHEwIDQxIC0yOS41IDcwLjV0LTcwLjUgMjkuNWgtMjUwcS00MSAwIC03MC41IC0yOS41dC0yOS41IC03MC41aC0xMDBxMCA0MSAtMjkuNSA3MC41dC03MC41IDI5LjVoLTI1MHEtNDEgMCAtNzAuNSAtMjkuNXQtMjkuNSAtNzAuNWgtMTAwdjIwMHEwIDgzIDU4LjUgMTQxLjV0MTQxLjUgNTguNXpNMTAwIDYwMGgxMDAwcTQxIDAgNzAuNSAtMjkuNSB0MjkuNSAtNzAuNXYtMzAwaC0xMjAwdjMwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjV6TTMwMCAxMDB2LTUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djUwaDIwMHpNMTEwMCAxMDB2LTUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djUwaDIwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjIxOyIgZD0iTTQ4MCAxMTY1bDY4MiAtNjgzcTMxIC0zMSAzMSAtNzUuNXQtMzEgLTc1LjVsLTEzMSAtMTMxaC00ODFsLTUxNyA1MThxLTMyIDMxIC0zMiA3NS41dDMyIDc1LjVsMjk1IDI5NnEzMSAzMSA3NS41IDMxdDc2LjUgLTMxek0xMDggNzk0bDM0MiAtMzQybDMwMyAzMDRsLTM0MSAzNDF6TTI1MCAxMDBoODAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGgtOTAwdjUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjIzOyIgZD0iTTEwNTcgNjQ3bC0xODkgNTA2cS04IDE5IC0yNy41IDMzdC00MC41IDE0aC00MDBxLTIxIDAgLTQwLjUgLTE0dC0yNy41IC0zM2wtMTg5IC01MDZxLTggLTE5IDEuNSAtMzN0MzAuNSAtMTRoNjI1di0xNTBxMCAtMjEgMTQuNSAtMzUuNXQzNS41IC0xNC41dDM1LjUgMTQuNXQxNC41IDM1LjV2MTUwaDEyNXEyMSAwIDMwLjUgMTR0MS41IDMzek04OTcgMGgtNTk1djUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWg1MHY1MCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDQ4djMwMGgyMDB2LTMwMGg0N3EyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTBoNTBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTUweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMjQ7IiBkPSJNOTAwIDgwMGgzMDB2LTU3NXEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTM3NXY1OTFsLTMwMCAzMDB2ODRxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgzNzV2LTQwMHpNMTIwMCA5MDBoLTIwMHYyMDB6TTQwMCA2MDBoMzAwdi01NzVxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC02NTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY5NTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgzNzV2LTQwMHpNNzAwIDcwMGgtMjAwdjIwMHogIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIyNTsiIGQ9Ik00ODQgMTA5NWgxOTVxNzUgMCAxNDYgLTMyLjV0MTI0IC04NnQ4OS41IC0xMjIuNXQ0OC41IC0xNDJxMTggLTE0IDM1IC0yMHEzMSAtMTAgNjQuNSA2LjV0NDMuNSA0OC41cTEwIDM0IC0xNSA3MXEtMTkgMjcgLTkgNDNxNSA4IDEyLjUgMTF0MTkgLTF0MjMuNSAtMTZxNDEgLTQ0IDM5IC0xMDVxLTMgLTYzIC00NiAtMTA2LjV0LTEwNCAtNDMuNWgtNjJxLTcgLTU1IC0zNSAtMTE3dC01NiAtMTAwbC0zOSAtMjM0cS0zIC0yMCAtMjAgLTM0LjUgdC0zOCAtMTQuNWgtMTAwcS0yMSAwIC0zMyAxNC41dC05IDM0LjVsMTIgNzBxLTQ5IC0xNCAtOTEgLTE0aC0xOTVxLTI0IDAgLTY1IDhsLTExIC02NHEtMyAtMjAgLTIwIC0zNC41dC0zOCAtMTQuNWgtMTAwcS0yMSAwIC0zMyAxNC41dC05IDM0LjVsMjYgMTU3cS04NCA3NCAtMTI4IDE3NWwtMTU5IDUzcS0xOSA3IC0zMyAyNnQtMTQgNDB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDEyNHExMSA4NyA1NiAxNjZsLTExMSA5NSBxLTE2IDE0IC0xMi41IDIzLjV0MjQuNSA5LjVoMjAzcTExNiAxMDEgMjUwIDEwMXpNNjc1IDEwMDBoLTI1MHEtMTAgMCAtMTcuNSAtNy41dC03LjUgLTE3LjV2LTUwcTAgLTEwIDcuNSAtMTcuNXQxNy41IC03LjVoMjUwcTEwIDAgMTcuNSA3LjV0Ny41IDE3LjV2NTBxMCAxMCAtNy41IDE3LjV0LTE3LjUgNy41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMjY7IiBkPSJNNjQxIDkwMGw0MjMgMjQ3cTE5IDggNDIgMi41dDM3IC0yMS41bDMyIC0zOHExNCAtMTUgMTIuNSAtMzZ0LTE3LjUgLTM0bC0xMzkgLTEyMGgtMzkwek01MCAxMTAwaDEwNnE2NyAwIDEwMyAtMTd0NjYgLTcxbDEwMiAtMjEyaDgyM3EyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTBxMCAtMjEgLTE0IC00MHQtMzMgLTI2bC03MzcgLTEzMnEtMjMgLTQgLTQwIDZ0LTI2IDI1cS00MiA2NyAtMTAwIDY3aC0zMDBxLTYyIDAgLTEwNiA0NCB0LTQ0IDEwNnYyMDBxMCA2MiA0NCAxMDZ0MTA2IDQ0ek0xNzMgOTI4aC04MHEtMTkgMCAtMjggLTE0dC05IC0zNXYtNTZxMCAtNTEgNDIgLTUxaDEzNHExNiAwIDIxLjUgOHQ1LjUgMjRxMCAxMSAtMTYgNDV0LTI3IDUxcS0xOCAyOCAtNDMgMjh6TTU1MCA3MjdxLTMyIDAgLTU0LjUgLTIyLjV0LTIyLjUgLTU0LjV0MjIuNSAtNTQuNXQ1NC41IC0yMi41dDU0LjUgMjIuNXQyMi41IDU0LjV0LTIyLjUgNTQuNXQtNTQuNSAyMi41ek0xMzAgMzg5IGwxNTIgMTMwcTE4IDE5IDM0IDI0dDMxIC0zLjV0MjQuNSAtMTcuNXQyNS41IC0yOHEyOCAtMzUgNTAuNSAtNTF0NDguNSAtMTNsNjMgNWw0OCAtMTc5cTEzIC02MSAtMy41IC05Ny41dC02Ny41IC03OS41bC04MCAtNjlxLTQ3IC00MCAtMTA5IC0zNS41dC0xMDMgNTEuNWwtMTMwIDE1MXEtNDAgNDcgLTM1LjUgMTA5LjV0NTEuNSAxMDIuNXpNMzgwIDM3N2wtMTAyIC04OHEtMzEgLTI3IDIgLTY1bDM3IC00M3ExMyAtMTUgMjcuNSAtMTkuNSB0MzEuNSA2LjVsNjEgNTNxMTkgMTYgMTQgNDlxLTIgMjAgLTEyIDU2dC0xNyA0NXEtMTEgMTIgLTE5IDE0dC0yMyAtOHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjI3OyIgZD0iTTYyNSAxMjAwaDE1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTEwOXE3OSAtMzMgMTMxIC04Ny41dDUzIC0xMjguNXExIC00NiAtMTUgLTg0LjV0LTM5IC02MXQtNDYgLTM4dC0zOSAtMjEuNWwtMTcgLTZxNiAwIDE1IC0xLjV0MzUgLTl0NTAgLTE3LjV0NTMgLTMwdDUwIC00NXQzNS41IC02NHQxNC41IC04NHEwIC01OSAtMTEuNSAtMTA1LjV0LTI4LjUgLTc2LjV0LTQ0IC01MXQtNDkuNSAtMzEuNXQtNTQuNSAtMTZ0LTQ5LjUgLTYuNSB0LTQzLjUgLTF2LTc1cTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMTUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2NzVoLTEwMHYtNzVxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0xNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY3NWgtMTc1cS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2MTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjVoNzV2NjAwaC03NXEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE1MCBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgxNzV2NzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgxNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di03NWgxMDB2NzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNNDAwIDkwMHYtMjAwaDI2M3EyOCAwIDQ4LjUgMTAuNXQzMCAyNXQxNSAyOXQ1LjUgMjUuNWwxIDEwcTAgNCAtMC41IDExdC02IDI0dC0xNSAzMHQtMzAgMjR0LTQ4LjUgMTFoLTI2M3pNNDAwIDUwMHYtMjAwaDM2M3EyOCAwIDQ4LjUgMTAuNSB0MzAgMjV0MTUgMjl0NS41IDI1LjVsMSAxMHEwIDQgLTAuNSAxMXQtNiAyNHQtMTUgMzB0LTMwIDI0dC00OC41IDExaC0zNjN6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIzMDsiIGQ9Ik0yMTIgMTE5OGg3ODBxODYgMCAxNDcgLTYxdDYxIC0xNDd2LTQxNnEwIC01MSAtMTggLTE0Mi41dC0zNiAtMTU3LjVsLTE4IC02NnEtMjkgLTg3IC05My41IC0xNDYuNXQtMTQ2LjUgLTU5LjVoLTU3MnEtODIgMCAtMTQ3IDU5dC05MyAxNDdxLTggMjggLTIwIDczdC0zMiAxNDMuNXQtMjAgMTQ5LjV2NDE2cTAgODYgNjEgMTQ3dDE0NyA2MXpNNjAwIDEwNDVxLTcwIDAgLTEzMi41IC0xMS41dC0xMDUuNSAtMzAuNXQtNzguNSAtNDEuNSB0LTU3IC00NXQtMzYgLTQxdC0yMC41IC0zMC41bC02IC0xMmwxNTYgLTI0M2g1NjBsMTU2IDI0M3EtMiA1IC02IDEyLjV0LTIwIDI5LjV0LTM2LjUgNDJ0LTU3IDQ0LjV0LTc5IDQydC0xMDUgMjkuNXQtMTMyLjUgMTJ6TTc2MiA3MDNoLTE1N2wxOTUgMjYxeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMzE7IiBkPSJNNDc1IDEzMDBoMTUwcTEwMyAwIDE4OSAtODZ0ODYgLTE4OXYtNTAwcTAgLTQxIC00MiAtODN0LTgzIC00MmgtNDUwcS00MSAwIC04MyA0MnQtNDIgODN2NTAwcTAgMTAzIDg2IDE4OXQxODkgODZ6TTcwMCAzMDB2LTIyNXEwIC0yMSAtMjcgLTQ4dC00OCAtMjdoLTE1MHEtMjEgMCAtNDggMjd0LTI3IDQ4djIyNWgzMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIzMjsiIGQ9Ik00NzUgMTMwMGg5NnEwIC0xNTAgODkuNSAtMjM5LjV0MjM5LjUgLTg5LjV2LTQ0NnEwIC00MSAtNDIgLTgzdC04MyAtNDJoLTQ1MHEtNDEgMCAtODMgNDJ0LTQyIDgzdjUwMHEwIDEwMyA4NiAxODl0MTg5IDg2ek03MDAgMzAwdi0yMjVxMCAtMjEgLTI3IC00OHQtNDggLTI3aC0xNTBxLTIxIDAgLTQ4IDI3dC0yNyA0OHYyMjVoMzAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMzM7IiBkPSJNMTI5NCA3NjdsLTYzOCAtMjgzbC0zNzggMTcwbC03OCAtNjB2LTIyNGwxMDAgLTE1MHYtMTk5bC0xNTAgMTQ4bC0xNTAgLTE0OXYyMDBsMTAwIDE1MHYyNTBxMCA0IC0wLjUgMTAuNXQwIDkuNXQxIDh0MyA4dDYuNSA2bDQ3IDQwbC0xNDcgNjVsNjQyIDI4M3pNMTAwMCAzODBsLTM1MCAtMTY2bC0zNTAgMTY2djE0N2wzNTAgLTE2NWwzNTAgMTY1di0xNDd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIzNDsiIGQ9Ik0yNTAgODAwcTYyIDAgMTA2IC00NHQ0NCAtMTA2dC00NCAtMTA2dC0xMDYgLTQ0dC0xMDYgNDR0LTQ0IDEwNnQ0NCAxMDZ0MTA2IDQ0ek02NTAgODAwcTYyIDAgMTA2IC00NHQ0NCAtMTA2dC00NCAtMTA2dC0xMDYgLTQ0dC0xMDYgNDR0LTQ0IDEwNnQ0NCAxMDZ0MTA2IDQ0ek0xMDUwIDgwMHE2MiAwIDEwNiAtNDR0NDQgLTEwNnQtNDQgLTEwNnQtMTA2IC00NHQtMTA2IDQ0dC00NCAxMDZ0NDQgMTA2dDEwNiA0NHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjM1OyIgZD0iTTU1MCAxMTAwcTYyIDAgMTA2IC00NHQ0NCAtMTA2dC00NCAtMTA2dC0xMDYgLTQ0dC0xMDYgNDR0LTQ0IDEwNnQ0NCAxMDZ0MTA2IDQ0ek01NTAgNzAwcTYyIDAgMTA2IC00NHQ0NCAtMTA2dC00NCAtMTA2dC0xMDYgLTQ0dC0xMDYgNDR0LTQ0IDEwNnQ0NCAxMDZ0MTA2IDQ0ek01NTAgMzAwcTYyIDAgMTA2IC00NHQ0NCAtMTA2dC00NCAtMTA2dC0xMDYgLTQ0dC0xMDYgNDR0LTQ0IDEwNnQ0NCAxMDZ0MTA2IDQ0eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMzY7IiBkPSJNMTI1IDExMDBoOTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtOTUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2MTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTEyNSA3MDBoOTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtOTUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2MTUwcTAgMTAgNy41IDE3LjUgdDE3LjUgNy41ek0xMjUgMzAwaDk1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTk1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMzc7IiBkPSJNMzUwIDEyMDBoNTAwcTE2MiAwIDI1NiAtOTMuNXQ5NCAtMjU2LjV2LTUwMHEwIC0xNjUgLTkzLjUgLTI1Ny41dC0yNTYuNSAtOTIuNWgtNTAwcS0xNjUgMCAtMjU3LjUgOTIuNXQtOTIuNSAyNTcuNXY1MDBxMCAxNjUgOTIuNSAyNTcuNXQyNTcuNSA5Mi41ek05MDAgMTAwMGgtNjAwcS00MSAwIC03MC41IC0yOS41dC0yOS41IC03MC41di02MDBxMCAtNDEgMjkuNSAtNzAuNXQ3MC41IC0yOS41aDYwMHE0MSAwIDcwLjUgMjkuNSB0MjkuNSA3MC41djYwMHEwIDQxIC0yOS41IDcwLjV0LTcwLjUgMjkuNXpNMzUwIDkwMGg1MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTMwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYzMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek00MDAgODAwdi0yMDBoNDAwdjIwMGgtNDAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMzg7IiBkPSJNMTUwIDExMDBoMTAwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTB2LTIwMGg1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTB2LTIwMGg1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTB2LTIwMGg1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNSB0LTM1LjUgLTE0LjVoLTEwMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjVoNTB2MjAwaC01MHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV0MTQuNSAzNS41dDM1LjUgMTQuNWg1MHYyMDBoLTUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXQxNC41IDM1LjV0MzUuNSAxNC41aDUwdjIwMGgtNTBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIzOTsiIGQ9Ik02NTAgMTE4N3E4NyAtNjcgMTE4LjUgLTE1NnQwIC0xNzh0LTExOC41IC0xNTVxLTg3IDY2IC0xMTguNSAxNTV0MCAxNzh0MTE4LjUgMTU2ek0zMDAgODAwcTEyNCAwIDIxMiAtODh0ODggLTIxMnEtMTI0IDAgLTIxMiA4OHQtODggMjEyek0xMDAwIDgwMHEwIC0xMjQgLTg4IC0yMTJ0LTIxMiAtODhxMCAxMjQgODggMjEydDIxMiA4OHpNMzAwIDUwMHExMjQgMCAyMTIgLTg4dDg4IC0yMTJxLTEyNCAwIC0yMTIgODh0LTg4IDIxMnogTTEwMDAgNTAwcTAgLTEyNCAtODggLTIxMnQtMjEyIC04OHEwIDEyNCA4OCAyMTJ0MjEyIDg4ek03MDAgMTk5di0xNDRxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjV0LTM1LjUgMTQuNXQtMTQuNSAzNS41djE0MnE0MCAtNCA0MyAtNHExNyAwIDU3IDZ6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTI0MDsiIGQ9Ik03NDUgODc4bDY5IDE5cTI1IDYgNDUgLTEybDI5OCAtMjk1cTExIC0xMSAxNSAtMjYuNXQtMiAtMzAuNXEtNSAtMTQgLTE4IC0yMy41dC0yOCAtOS41aC04cTEgMCAxIC0xM3EwIC0yOSAtMiAtNTZ0LTguNSAtNjJ0LTIwIC02M3QtMzMgLTUzdC01MSAtMzl0LTcyLjUgLTE0aC0xNDZxLTE4NCAwIC0xODQgMjg4cTAgMjQgMTAgNDdxLTIwIDQgLTYyIDR0LTYzIC00cTExIC0yNCAxMSAtNDdxMCAtMjg4IC0xODQgLTI4OGgtMTQyIHEtNDggMCAtODQuNSAyMXQtNTYgNTF0LTMyIDcxLjV0LTE2IDc1dC0zLjUgNjguNXEwIDEzIDIgMTNoLTdxLTE1IDAgLTI3LjUgOS41dC0xOC41IDIzLjVxLTYgMTUgLTIgMzAuNXQxNSAyNS41bDI5OCAyOTZxMjAgMTggNDYgMTFsNzYgLTE5cTIwIC01IDMwLjUgLTIyLjV0NS41IC0zNy41dC0yMi41IC0zMXQtMzcuNSAtNWwtNTEgMTJsLTE4MiAtMTkzaDg5MWwtMTgyIDE5M2wtNDQgLTEycS0yMCAtNSAtMzcuNSA2dC0yMi41IDMxdDYgMzcuNSB0MzEgMjIuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjQxOyIgZD0iTTEyMDAgOTAwaC01MHEwIDIxIC00IDM3dC05LjUgMjYuNXQtMTggMTcuNXQtMjIgMTF0LTI4LjUgNS41dC0zMSAydC0zNyAwLjVoLTIwMHYtODUwcTAgLTIyIDI1IC0zNC41dDUwIC0xMy41bDI1IC0ydi0xMDBoLTQwMHYxMDBxNCAwIDExIDAuNXQyNCAzdDMwIDd0MjQgMTV0MTEgMjQuNXY4NTBoLTIwMHEtMjUgMCAtMzcgLTAuNXQtMzEgLTJ0LTI4LjUgLTUuNXQtMjIgLTExdC0xOCAtMTcuNXQtOS41IC0yNi41dC00IC0zN2gtNTB2MzAwIGgxMDAwdi0zMDB6TTUwMCA0NTBoLTI1cTAgMTUgLTQgMjQuNXQtOSAxNC41dC0xNyA3LjV0LTIwIDN0LTI1IDAuNWgtMTAwdi00MjVxMCAtMTEgMTIuNSAtMTcuNXQyNS41IC03LjVoMTJ2LTUwaC0yMDB2NTBxNTAgMCA1MCAyNXY0MjVoLTEwMHEtMTcgMCAtMjUgLTAuNXQtMjAgLTN0LTE3IC03LjV0LTkgLTE0LjV0LTQgLTI0LjVoLTI1djE1MGg1MDB2LTE1MHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjQyOyIgZD0iTTEwMDAgMzAwdjUwcS0yNSAwIC01NSAzMnEtMTQgMTQgLTI1IDMxdC0xNiAyN2wtNCAxMWwtMjg5IDc0N2gtNjlsLTMwMCAtNzU0cS0xOCAtMzUgLTM5IC01NnEtOSAtOSAtMjQuNSAtMTguNXQtMjYuNSAtMTQuNWwtMTEgLTV2LTUwaDI3M3Y1MHEtNDkgMCAtNzguNSAyMS41dC0xMS41IDY3LjVsNjkgMTc2aDI5M2w2MSAtMTY2cTEzIC0zNCAtMy41IC02Ni41dC01NS41IC0zMi41di01MGgzMTJ6TTQxMiA2OTFsMTM0IDM0MmwxMjEgLTM0MiBoLTI1NXpNMTEwMCAxNTB2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTAwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWgxMDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyNDM7IiBkPSJNNTAgMTIwMGgxMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNjExIDExMThoLTcwcS0xMyAwIC0xOCAtMTJsLTI5OSAtNzUzcS0xNyAtMzIgLTM1IC01MXEtMTggLTE4IC01NiAtMzRxLTEyIC01IC0xMiAtMTh2LTUwcTAgLTggNS41IC0xNHQxNC41IC02IGgyNzNxOCAwIDE0IDZ0NiAxNHY1MHEwIDggLTYgMTR0LTE0IDZxLTU1IDAgLTcxIDIzcS0xMCAxNCAwIDM5bDYzIDE2M2gyNjZsNTcgLTE1M3ExMSAtMzEgLTYgLTU1cS0xMiAtMTcgLTM2IC0xN3EtOCAwIC0xNCAtNnQtNiAtMTR2LTUwcTAgLTggNiAtMTR0MTQgLTZoMzEzcTggMCAxNCA2dDYgMTR2NTBxMCA3IC01LjUgMTN0LTEzLjUgN3EtMTcgMCAtNDIgMjVxLTI1IDI3IC00MCA2M2gtMWwtMjg4IDc0OHEtNSAxMiAtMTkgMTJ6TTYzOSA2MTEgaC0xOTdsMTAzIDI2NHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjQ0OyIgZD0iTTEyMDAgMTEwMGgtMTIwMHYxMDBoMTIwMHYtMTAwek01MCAxMDAwaDQwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtOTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC00MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djkwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTY1MCAxMDAwaDQwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC00MDAgcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY0MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek03MDAgOTAwdi0zMDBoMzAwdjMwMGgtMzAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyNDU7IiBkPSJNNTAgMTIwMGg0MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTkwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNDAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY5MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek02NTAgNzAwaDQwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC00MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djQwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek03MDAgNjAwdi0zMDBoMzAwdjMwMGgtMzAwek0xMjAwIDBoLTEyMDB2MTAwaDEyMDB2LTEwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjQ2OyIgZD0iTTUwIDEwMDBoNDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0zNTBoMTAwdjE1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoNDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xNTBoMTAwdi0xMDBoLTEwMHYtMTUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC00MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djE1MGgtMTAwdi0zNTBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTQwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djgwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTcwMCA3MDB2LTMwMGgzMDB2MzAwaC0zMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTI0NzsiIGQ9Ik0xMDAgMGgtMTAwdjEyMDBoMTAwdi0xMjAwek0yNTAgMTEwMGg0MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNDAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY0MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0zMDAgMTAwMHYtMzAwaDMwMHYzMDBoLTMwMHpNMjUwIDUwMGg5MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMCBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTkwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NDAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjQ4OyIgZD0iTTYwMCAxMTAwaDE1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xNTB2LTEwMGg0NTBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtOTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY0MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDM1MHYxMDBoLTE1MHEtMjEgMCAtMzUuNSAxNC41IHQtMTQuNSAzNS41djQwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoMTUwdjEwMGgxMDB2LTEwMHpNNDAwIDEwMDB2LTMwMGgzMDB2MzAwaC0zMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTI0OTsiIGQ9Ik0xMjAwIDBoLTEwMHYxMjAwaDEwMHYtMTIwMHpNNTUwIDExMDBoNDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di00MDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTQwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NDAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNjAwIDEwMDB2LTMwMGgzMDB2MzAwaC0zMDB6TTUwIDUwMGg5MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMCBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTkwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NDAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjUwOyIgZD0iTTg2NSA1NjVsLTQ5NCAtNDk0cS0yMyAtMjMgLTQxIC0yM3EtMTQgMCAtMjIgMTMuNXQtOCAzOC41djEwMDBxMCAyNSA4IDM4LjV0MjIgMTMuNXExOCAwIDQxIC0yM2w0OTQgLTQ5NHExNCAtMTQgMTQgLTM1dC0xNCAtMzV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTI1MTsiIGQ9Ik0zMzUgNjM1bDQ5NCA0OTRxMjkgMjkgNTAgMjAuNXQyMSAtNDkuNXYtMTAwMHEwIC00MSAtMjEgLTQ5LjV0LTUwIDIwLjVsLTQ5NCA0OTRxLTE0IDE0IC0xNCAzNXQxNCAzNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjUyOyIgZD0iTTEwMCA5MDBoMTAwMHE0MSAwIDQ5LjUgLTIxdC0yMC41IC01MGwtNDk0IC00OTRxLTE0IC0xNCAtMzUgLTE0dC0zNSAxNGwtNDk0IDQ5NHEtMjkgMjkgLTIwLjUgNTB0NDkuNSAyMXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjUzOyIgZD0iTTYzNSA4NjVsNDk0IC00OTRxMjkgLTI5IDIwLjUgLTUwdC00OS41IC0yMWgtMTAwMHEtNDEgMCAtNDkuNSAyMXQyMC41IDUwbDQ5NCA0OTRxMTQgMTQgMzUgMTR0MzUgLTE0eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyNTQ7IiBkPSJNNzAwIDc0MXYtMTgybC02OTIgLTMyM3YyMjFsNDEzIDE5M2wtNDEzIDE5M3YyMjF6TTEyMDAgMGgtODAwdjIwMGg4MDB2LTIwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjU1OyIgZD0iTTEyMDAgOTAwaC0yMDB2LTEwMGgyMDB2LTEwMGgtMzAwdjMwMGgyMDB2MTAwaC0yMDB2MTAwaDMwMHYtMzAwek0wIDcwMGg1MHEwIDIxIDQgMzd0OS41IDI2LjV0MTggMTcuNXQyMiAxMXQyOC41IDUuNXQzMSAydDM3IDAuNWgxMDB2LTU1MHEwIC0yMiAtMjUgLTM0LjV0LTUwIC0xMy41bC0yNSAtMnYtMTAwaDQwMHYxMDBxLTQgMCAtMTEgMC41dC0yNCAzdC0zMCA3dC0yNCAxNXQtMTEgMjQuNXY1NTBoMTAwcTI1IDAgMzcgLTAuNXQzMSAtMiB0MjguNSAtNS41dDIyIC0xMXQxOCAtMTcuNXQ5LjUgLTI2LjV0NCAtMzdoNTB2MzAwaC04MDB2LTMwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjU2OyIgZD0iTTgwMCA3MDBoLTUwcTAgMjEgLTQgMzd0LTkuNSAyNi41dC0xOCAxNy41dC0yMiAxMXQtMjguNSA1LjV0LTMxIDJ0LTM3IDAuNWgtMTAwdi01NTBxMCAtMjIgMjUgLTM0LjV0NTAgLTE0LjVsMjUgLTF2LTEwMGgtNDAwdjEwMHE0IDAgMTEgMC41dDI0IDN0MzAgN3QyNCAxNXQxMSAyNC41djU1MGgtMTAwcS0yNSAwIC0zNyAtMC41dC0zMSAtMnQtMjguNSAtNS41dC0yMiAtMTF0LTE4IC0xNy41dC05LjUgLTI2LjV0LTQgLTM3aC01MHYzMDAgaDgwMHYtMzAwek0xMTAwIDIwMGgtMjAwdi0xMDBoMjAwdi0xMDBoLTMwMHYzMDBoMjAwdjEwMGgtMjAwdjEwMGgzMDB2LTMwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjU3OyIgZD0iTTcwMSAxMDk4aDE2MHExNiAwIDIxIC0xMXQtNyAtMjNsLTQ2NCAtNDY0bDQ2NCAtNDY0cTEyIC0xMiA3IC0yM3QtMjEgLTExaC0xNjBxLTEzIDAgLTIzIDlsLTQ3MSA0NzFxLTcgOCAtNyAxOHQ3IDE4bDQ3MSA0NzFxMTAgOSAyMyA5eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyNTg7IiBkPSJNMzM5IDEwOThoMTYwcTEzIDAgMjMgLTlsNDcxIC00NzFxNyAtOCA3IC0xOHQtNyAtMThsLTQ3MSAtNDcxcS0xMCAtOSAtMjMgLTloLTE2MHEtMTYgMCAtMjEgMTF0NyAyM2w0NjQgNDY0bC00NjQgNDY0cS0xMiAxMiAtNyAyM3QyMSAxMXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjU5OyIgZD0iTTEwODcgODgycTExIC01IDExIC0yMXYtMTYwcTAgLTEzIC05IC0yM2wtNDcxIC00NzFxLTggLTcgLTE4IC03dC0xOCA3bC00NzEgNDcxcS05IDEwIC05IDIzdjE2MHEwIDE2IDExIDIxdDIzIC03bDQ2NCAtNDY0bDQ2NCA0NjRxMTIgMTIgMjMgN3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjYwOyIgZD0iTTYxOCA5OTNsNDcxIC00NzFxOSAtMTAgOSAtMjN2LTE2MHEwIC0xNiAtMTEgLTIxdC0yMyA3bC00NjQgNDY0bC00NjQgLTQ2NHEtMTIgLTEyIC0yMyAtN3QtMTEgMjF2MTYwcTAgMTMgOSAyM2w0NzEgNDcxcTggNyAxOCA3dDE4IC03eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGY4ZmY7IiBkPSJNMTAwMCAxMjAwcTAgLTEyNCAtODggLTIxMnQtMjEyIC04OHEwIDEyNCA4OCAyMTJ0MjEyIDg4ek00NTAgMTAwMGgxMDBxMjEgMCA0MCAtMTR0MjYgLTMzbDc5IC0xOTRxNSAxIDE2IDNxMzQgNiA1NCA5LjV0NjAgN3Q2NS41IDF0NjEgLTEwdDU2LjUgLTIzdDQyLjUgLTQydDI5IC02NHQ1IC05MnQtMTkuNSAtMTIxLjVxLTEgLTcgLTMgLTE5LjV0LTExIC01MHQtMjAuNSAtNzN0LTMyLjUgLTgxLjV0LTQ2LjUgLTgzdC02NCAtNzAgdC04Mi41IC01MHEtMTMgLTUgLTQyIC01dC02NS41IDIuNXQtNDcuNSAyLjVxLTE0IDAgLTQ5LjUgLTMuNXQtNjMgLTMuNXQtNDMuNSA3cS01NyAyNSAtMTA0LjUgNzguNXQtNzUgMTExLjV0LTQ2LjUgMTEydC0yNiA5MGwtNyAzNXEtMTUgNjMgLTE4IDExNXQ0LjUgODguNXQyNiA2NHQzOS41IDQzLjV0NTIgMjUuNXQ1OC41IDEzdDYyLjUgMnQ1OS41IC00LjV0NTUuNSAtOGwtMTQ3IDE5MnEtMTIgMTggLTUuNSAzMHQyNy41IDEyeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDFmNTExOyIgZD0iTTI1MCAxMjAwaDYwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xNTB2LTUwMGwtMjU1IC0xNzhxLTE5IC05IC0zMiAtMXQtMTMgMjl2NjUwaC0xNTBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djQwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTQwMCAxMTAwdi0xMDBoMzAwdjEwMGgtMzAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDFmNmFhOyIgZD0iTTI1MCAxMjAwaDc1MHEzOSAwIDY5LjUgLTQwLjV0MzAuNSAtODQuNXYtOTMzbC03MDAgLTExN3Y5NTBsNjAwIDEyNWgtNzAwdi0xMDAwaC0xMDB2MTAyNXEwIDIzIDE1LjUgNDl0MzQuNSAyNnpNNTAwIDUyNXYtMTAwbDEwMCAyMHYxMDB6IiAvPgo8L2ZvbnQ%2BCjwvZGVmcz48L3N2Zz4g%29%20format%28%27svg%27%29%7D%2Eglyphicon%7Bposition%3Arelative%3Btop%3A1px%3Bdisplay%3Ainline%2Dblock%3Bfont%2Dfamily%3A%27Glyphicons%20Halflings%27%3Bfont%2Dstyle%3Anormal%3Bfont%2Dweight%3Anormal%3Bline%2Dheight%3A1%3B%2Dwebkit%2Dfont%2Dsmoothing%3Aantialiased%3B%2Dmoz%2Dosx%2Dfont%2Dsmoothing%3Agrayscale%7D%2Eglyphicon%2Dasterisk%3Abefore%7Bcontent%3A%22%5C002a%22%7D%2Eglyphicon%2Dplus%3Abefore%7Bcontent%3A%22%5C002b%22%7D%2Eglyphicon%2Deuro%3Abefore%2C%2Eglyphicon%2Deur%3Abefore%7Bcontent%3A%22%5C20ac%22%7D%2Eglyphicon%2Dminus%3Abefore%7Bcontent%3A%22%5C2212%22%7D%2Eglyphicon%2Dcloud%3Abefore%7Bcontent%3A%22%5C2601%22%7D%2Eglyphicon%2Denvelope%3Abefore%7Bcontent%3A%22%5C2709%22%7D%2Eglyphicon%2Dpencil%3Abefore%7Bcontent%3A%22%5C270f%22%7D%2Eglyphicon%2Dglass%3Abefore%7Bcontent%3A%22%5Ce001%22%7D%2Eglyphicon%2Dmusic%3Abefore%7Bcontent%3A%22%5Ce002%22%7D%2Eglyphicon%2Dsearch%3Abefore%7Bcontent%3A%22%5Ce003%22%7D%2Eglyphicon%2Dheart%3Abefore%7Bcontent%3A%22%5Ce005%22%7D%2Eglyphicon%2Dstar%3Abefore%7Bcontent%3A%22%5Ce006%22%7D%2Eglyphicon%2Dstar%2Dempty%3Abefore%7Bcontent%3A%22%5Ce007%22%7D%2Eglyphicon%2Duser%3Abefore%7Bcontent%3A%22%5Ce008%22%7D%2Eglyphicon%2Dfilm%3Abefore%7Bcontent%3A%22%5Ce009%22%7D%2Eglyphicon%2Dth%2Dlarge%3Abefore%7Bcontent%3A%22%5Ce010%22%7D%2Eglyphicon%2Dth%3Abefore%7Bcontent%3A%22%5Ce011%22%7D%2Eglyphicon%2Dth%2Dlist%3Abefore%7Bcontent%3A%22%5Ce012%22%7D%2Eglyphicon%2Dok%3Abefore%7Bcontent%3A%22%5Ce013%22%7D%2Eglyphicon%2Dremove%3Abefore%7Bcontent%3A%22%5Ce014%22%7D%2Eglyphicon%2Dzoom%2Din%3Abefore%7Bcontent%3A%22%5Ce015%22%7D%2Eglyphicon%2Dzoom%2Dout%3Abefore%7Bcontent%3A%22%5Ce016%22%7D%2Eglyphicon%2Doff%3Abefore%7Bcontent%3A%22%5Ce017%22%7D%2Eglyphicon%2Dsignal%3Abefore%7Bcontent%3A%22%5Ce018%22%7D%2Eglyphicon%2Dcog%3Abefore%7Bcontent%3A%22%5Ce019%22%7D%2Eglyphicon%2Dtrash%3Abefore%7Bcontent%3A%22%5Ce020%22%7D%2Eglyphicon%2Dhome%3Abefore%7Bcontent%3A%22%5Ce021%22%7D%2Eglyphicon%2Dfile%3Abefore%7Bcontent%3A%22%5Ce022%22%7D%2Eglyphicon%2Dtime%3Abefore%7Bcontent%3A%22%5Ce023%22%7D%2Eglyphicon%2Droad%3Abefore%7Bcontent%3A%22%5Ce024%22%7D%2Eglyphicon%2Ddownload%2Dalt%3Abefore%7Bcontent%3A%22%5Ce025%22%7D%2Eglyphicon%2Ddownload%3Abefore%7Bcontent%3A%22%5Ce026%22%7D%2Eglyphicon%2Dupload%3Abefore%7Bcontent%3A%22%5Ce027%22%7D%2Eglyphicon%2Dinbox%3Abefore%7Bcontent%3A%22%5Ce028%22%7D%2Eglyphicon%2Dplay%2Dcircle%3Abefore%7Bcontent%3A%22%5Ce029%22%7D%2Eglyphicon%2Drepeat%3Abefore%7Bcontent%3A%22%5Ce030%22%7D%2Eglyphicon%2Drefresh%3Abefore%7Bcontent%3A%22%5Ce031%22%7D%2Eglyphicon%2Dlist%2Dalt%3Abefore%7Bcontent%3A%22%5Ce032%22%7D%2Eglyphicon%2Dlock%3Abefore%7Bcontent%3A%22%5Ce033%22%7D%2Eglyphicon%2Dflag%3Abefore%7Bcontent%3A%22%5Ce034%22%7D%2Eglyphicon%2Dheadphones%3Abefore%7Bcontent%3A%22%5Ce035%22%7D%2Eglyphicon%2Dvolume%2Doff%3Abefore%7Bcontent%3A%22%5Ce036%22%7D%2Eglyphicon%2Dvolume%2Ddown%3Abefore%7Bcontent%3A%22%5Ce037%22%7D%2Eglyphicon%2Dvolume%2Dup%3Abefore%7Bcontent%3A%22%5Ce038%22%7D%2Eglyphicon%2Dqrcode%3Abefore%7Bcontent%3A%22%5Ce039%22%7D%2Eglyphicon%2Dbarcode%3Abefore%7Bcontent%3A%22%5Ce040%22%7D%2Eglyphicon%2Dtag%3Abefore%7Bcontent%3A%22%5Ce041%22%7D%2Eglyphicon%2Dtags%3Abefore%7Bcontent%3A%22%5Ce042%22%7D%2Eglyphicon%2Dbook%3Abefore%7Bcontent%3A%22%5Ce043%22%7D%2Eglyphicon%2Dbookmark%3Abefore%7Bcontent%3A%22%5Ce044%22%7D%2Eglyphicon%2Dprint%3Abefore%7Bcontent%3A%22%5Ce045%22%7D%2Eglyphicon%2Dcamera%3Abefore%7Bcontent%3A%22%5Ce046%22%7D%2Eglyphicon%2Dfont%3Abefore%7Bcontent%3A%22%5Ce047%22%7D%2Eglyphicon%2Dbold%3Abefore%7Bcontent%3A%22%5Ce048%22%7D%2Eglyphicon%2Ditalic%3Abefore%7Bcontent%3A%22%5Ce049%22%7D%2Eglyphicon%2Dtext%2Dheight%3Abefore%7Bcontent%3A%22%5Ce050%22%7D%2Eglyphicon%2Dtext%2Dwidth%3Abefore%7Bcontent%3A%22%5Ce051%22%7D%2Eglyphicon%2Dalign%2Dleft%3Abefore%7Bcontent%3A%22%5Ce052%22%7D%2Eglyphicon%2Dalign%2Dcenter%3Abefore%7Bcontent%3A%22%5Ce053%22%7D%2Eglyphicon%2Dalign%2Dright%3Abefore%7Bcontent%3A%22%5Ce054%22%7D%2Eglyphicon%2Dalign%2Djustify%3Abefore%7Bcontent%3A%22%5Ce055%22%7D%2Eglyphicon%2Dlist%3Abefore%7Bcontent%3A%22%5Ce056%22%7D%2Eglyphicon%2Dindent%2Dleft%3Abefore%7Bcontent%3A%22%5Ce057%22%7D%2Eglyphicon%2Dindent%2Dright%3Abefore%7Bcontent%3A%22%5Ce058%22%7D%2Eglyphicon%2Dfacetime%2Dvideo%3Abefore%7Bcontent%3A%22%5Ce059%22%7D%2Eglyphicon%2Dpicture%3Abefore%7Bcontent%3A%22%5Ce060%22%7D%2Eglyphicon%2Dmap%2Dmarker%3Abefore%7Bcontent%3A%22%5Ce062%22%7D%2Eglyphicon%2Dadjust%3Abefore%7Bcontent%3A%22%5Ce063%22%7D%2Eglyphicon%2Dtint%3Abefore%7Bcontent%3A%22%5Ce064%22%7D%2Eglyphicon%2Dedit%3Abefore%7Bcontent%3A%22%5Ce065%22%7D%2Eglyphicon%2Dshare%3Abefore%7Bcontent%3A%22%5Ce066%22%7D%2Eglyphicon%2Dcheck%3Abefore%7Bcontent%3A%22%5Ce067%22%7D%2Eglyphicon%2Dmove%3Abefore%7Bcontent%3A%22%5Ce068%22%7D%2Eglyphicon%2Dstep%2Dbackward%3Abefore%7Bcontent%3A%22%5Ce069%22%7D%2Eglyphicon%2Dfast%2Dbackward%3Abefore%7Bcontent%3A%22%5Ce070%22%7D%2Eglyphicon%2Dbackward%3Abefore%7Bcontent%3A%22%5Ce071%22%7D%2Eglyphicon%2Dplay%3Abefore%7Bcontent%3A%22%5Ce072%22%7D%2Eglyphicon%2Dpause%3Abefore%7Bcontent%3A%22%5Ce073%22%7D%2Eglyphicon%2Dstop%3Abefore%7Bcontent%3A%22%5Ce074%22%7D%2Eglyphicon%2Dforward%3Abefore%7Bcontent%3A%22%5Ce075%22%7D%2Eglyphicon%2Dfast%2Dforward%3Abefore%7Bcontent%3A%22%5Ce076%22%7D%2Eglyphicon%2Dstep%2Dforward%3Abefore%7Bcontent%3A%22%5Ce077%22%7D%2Eglyphicon%2Deject%3Abefore%7Bcontent%3A%22%5Ce078%22%7D%2Eglyphicon%2Dchevron%2Dleft%3Abefore%7Bcontent%3A%22%5Ce079%22%7D%2Eglyphicon%2Dchevron%2Dright%3Abefore%7Bcontent%3A%22%5Ce080%22%7D%2Eglyphicon%2Dplus%2Dsign%3Abefore%7Bcontent%3A%22%5Ce081%22%7D%2Eglyphicon%2Dminus%2Dsign%3Abefore%7Bcontent%3A%22%5Ce082%22%7D%2Eglyphicon%2Dremove%2Dsign%3Abefore%7Bcontent%3A%22%5Ce083%22%7D%2Eglyphicon%2Dok%2Dsign%3Abefore%7Bcontent%3A%22%5Ce084%22%7D%2Eglyphicon%2Dquestion%2Dsign%3Abefore%7Bcontent%3A%22%5Ce085%22%7D%2Eglyphicon%2Dinfo%2Dsign%3Abefore%7Bcontent%3A%22%5Ce086%22%7D%2Eglyphicon%2Dscreenshot%3Abefore%7Bcontent%3A%22%5Ce087%22%7D%2Eglyphicon%2Dremove%2Dcircle%3Abefore%7Bcontent%3A%22%5Ce088%22%7D%2Eglyphicon%2Dok%2Dcircle%3Abefore%7Bcontent%3A%22%5Ce089%22%7D%2Eglyphicon%2Dban%2Dcircle%3Abefore%7Bcontent%3A%22%5Ce090%22%7D%2Eglyphicon%2Darrow%2Dleft%3Abefore%7Bcontent%3A%22%5Ce091%22%7D%2Eglyphicon%2Darrow%2Dright%3Abefore%7Bcontent%3A%22%5Ce092%22%7D%2Eglyphicon%2Darrow%2Dup%3Abefore%7Bcontent%3A%22%5Ce093%22%7D%2Eglyphicon%2Darrow%2Ddown%3Abefore%7Bcontent%3A%22%5Ce094%22%7D%2Eglyphicon%2Dshare%2Dalt%3Abefore%7Bcontent%3A%22%5Ce095%22%7D%2Eglyphicon%2Dresize%2Dfull%3Abefore%7Bcontent%3A%22%5Ce096%22%7D%2Eglyphicon%2Dresize%2Dsmall%3Abefore%7Bcontent%3A%22%5Ce097%22%7D%2Eglyphicon%2Dexclamation%2Dsign%3Abefore%7Bcontent%3A%22%5Ce101%22%7D%2Eglyphicon%2Dgift%3Abefore%7Bcontent%3A%22%5Ce102%22%7D%2Eglyphicon%2Dleaf%3Abefore%7Bcontent%3A%22%5Ce103%22%7D%2Eglyphicon%2Dfire%3Abefore%7Bcontent%3A%22%5Ce104%22%7D%2Eglyphicon%2Deye%2Dopen%3Abefore%7Bcontent%3A%22%5Ce105%22%7D%2Eglyphicon%2Deye%2Dclose%3Abefore%7Bcontent%3A%22%5Ce106%22%7D%2Eglyphicon%2Dwarning%2Dsign%3Abefore%7Bcontent%3A%22%5Ce107%22%7D%2Eglyphicon%2Dplane%3Abefore%7Bcontent%3A%22%5Ce108%22%7D%2Eglyphicon%2Dcalendar%3Abefore%7Bcontent%3A%22%5Ce109%22%7D%2Eglyphicon%2Drandom%3Abefore%7Bcontent%3A%22%5Ce110%22%7D%2Eglyphicon%2Dcomment%3Abefore%7Bcontent%3A%22%5Ce111%22%7D%2Eglyphicon%2Dmagnet%3Abefore%7Bcontent%3A%22%5Ce112%22%7D%2Eglyphicon%2Dchevron%2Dup%3Abefore%7Bcontent%3A%22%5Ce113%22%7D%2Eglyphicon%2Dchevron%2Ddown%3Abefore%7Bcontent%3A%22%5Ce114%22%7D%2Eglyphicon%2Dretweet%3Abefore%7Bcontent%3A%22%5Ce115%22%7D%2Eglyphicon%2Dshopping%2Dcart%3Abefore%7Bcontent%3A%22%5Ce116%22%7D%2Eglyphicon%2Dfolder%2Dclose%3Abefore%7Bcontent%3A%22%5Ce117%22%7D%2Eglyphicon%2Dfolder%2Dopen%3Abefore%7Bcontent%3A%22%5Ce118%22%7D%2Eglyphicon%2Dresize%2Dvertical%3Abefore%7Bcontent%3A%22%5Ce119%22%7D%2Eglyphicon%2Dresize%2Dhorizontal%3Abefore%7Bcontent%3A%22%5Ce120%22%7D%2Eglyphicon%2Dhdd%3Abefore%7Bcontent%3A%22%5Ce121%22%7D%2Eglyphicon%2Dbullhorn%3Abefore%7Bcontent%3A%22%5Ce122%22%7D%2Eglyphicon%2Dbell%3Abefore%7Bcontent%3A%22%5Ce123%22%7D%2Eglyphicon%2Dcertificate%3Abefore%7Bcontent%3A%22%5Ce124%22%7D%2Eglyphicon%2Dthumbs%2Dup%3Abefore%7Bcontent%3A%22%5Ce125%22%7D%2Eglyphicon%2Dthumbs%2Ddown%3Abefore%7Bcontent%3A%22%5Ce126%22%7D%2Eglyphicon%2Dhand%2Dright%3Abefore%7Bcontent%3A%22%5Ce127%22%7D%2Eglyphicon%2Dhand%2Dleft%3Abefore%7Bcontent%3A%22%5Ce128%22%7D%2Eglyphicon%2Dhand%2Dup%3Abefore%7Bcontent%3A%22%5Ce129%22%7D%2Eglyphicon%2Dhand%2Ddown%3Abefore%7Bcontent%3A%22%5Ce130%22%7D%2Eglyphicon%2Dcircle%2Darrow%2Dright%3Abefore%7Bcontent%3A%22%5Ce131%22%7D%2Eglyphicon%2Dcircle%2Darrow%2Dleft%3Abefore%7Bcontent%3A%22%5Ce132%22%7D%2Eglyphicon%2Dcircle%2Darrow%2Dup%3Abefore%7Bcontent%3A%22%5Ce133%22%7D%2Eglyphicon%2Dcircle%2Darrow%2Ddown%3Abefore%7Bcontent%3A%22%5Ce134%22%7D%2Eglyphicon%2Dglobe%3Abefore%7Bcontent%3A%22%5Ce135%22%7D%2Eglyphicon%2Dwrench%3Abefore%7Bcontent%3A%22%5Ce136%22%7D%2Eglyphicon%2Dtasks%3Abefore%7Bcontent%3A%22%5Ce137%22%7D%2Eglyphicon%2Dfilter%3Abefore%7Bcontent%3A%22%5Ce138%22%7D%2Eglyphicon%2Dbriefcase%3Abefore%7Bcontent%3A%22%5Ce139%22%7D%2Eglyphicon%2Dfullscreen%3Abefore%7Bcontent%3A%22%5Ce140%22%7D%2Eglyphicon%2Ddashboard%3Abefore%7Bcontent%3A%22%5Ce141%22%7D%2Eglyphicon%2Dpaperclip%3Abefore%7Bcontent%3A%22%5Ce142%22%7D%2Eglyphicon%2Dheart%2Dempty%3Abefore%7Bcontent%3A%22%5Ce143%22%7D%2Eglyphicon%2Dlink%3Abefore%7Bcontent%3A%22%5Ce144%22%7D%2Eglyphicon%2Dphone%3Abefore%7Bcontent%3A%22%5Ce145%22%7D%2Eglyphicon%2Dpushpin%3Abefore%7Bcontent%3A%22%5Ce146%22%7D%2Eglyphicon%2Dusd%3Abefore%7Bcontent%3A%22%5Ce148%22%7D%2Eglyphicon%2Dgbp%3Abefore%7Bcontent%3A%22%5Ce149%22%7D%2Eglyphicon%2Dsort%3Abefore%7Bcontent%3A%22%5Ce150%22%7D%2Eglyphicon%2Dsort%2Dby%2Dalphabet%3Abefore%7Bcontent%3A%22%5Ce151%22%7D%2Eglyphicon%2Dsort%2Dby%2Dalphabet%2Dalt%3Abefore%7Bcontent%3A%22%5Ce152%22%7D%2Eglyphicon%2Dsort%2Dby%2Dorder%3Abefore%7Bcontent%3A%22%5Ce153%22%7D%2Eglyphicon%2Dsort%2Dby%2Dorder%2Dalt%3Abefore%7Bcontent%3A%22%5Ce154%22%7D%2Eglyphicon%2Dsort%2Dby%2Dattributes%3Abefore%7Bcontent%3A%22%5Ce155%22%7D%2Eglyphicon%2Dsort%2Dby%2Dattributes%2Dalt%3Abefore%7Bcontent%3A%22%5Ce156%22%7D%2Eglyphicon%2Dunchecked%3Abefore%7Bcontent%3A%22%5Ce157%22%7D%2Eglyphicon%2Dexpand%3Abefore%7Bcontent%3A%22%5Ce158%22%7D%2Eglyphicon%2Dcollapse%2Ddown%3Abefore%7Bcontent%3A%22%5Ce159%22%7D%2Eglyphicon%2Dcollapse%2Dup%3Abefore%7Bcontent%3A%22%5Ce160%22%7D%2Eglyphicon%2Dlog%2Din%3Abefore%7Bcontent%3A%22%5Ce161%22%7D%2Eglyphicon%2Dflash%3Abefore%7Bcontent%3A%22%5Ce162%22%7D%2Eglyphicon%2Dlog%2Dout%3Abefore%7Bcontent%3A%22%5Ce163%22%7D%2Eglyphicon%2Dnew%2Dwindow%3Abefore%7Bcontent%3A%22%5Ce164%22%7D%2Eglyphicon%2Drecord%3Abefore%7Bcontent%3A%22%5Ce165%22%7D%2Eglyphicon%2Dsave%3Abefore%7Bcontent%3A%22%5Ce166%22%7D%2Eglyphicon%2Dopen%3Abefore%7Bcontent%3A%22%5Ce167%22%7D%2Eglyphicon%2Dsaved%3Abefore%7Bcontent%3A%22%5Ce168%22%7D%2Eglyphicon%2Dimport%3Abefore%7Bcontent%3A%22%5Ce169%22%7D%2Eglyphicon%2Dexport%3Abefore%7Bcontent%3A%22%5Ce170%22%7D%2Eglyphicon%2Dsend%3Abefore%7Bcontent%3A%22%5Ce171%22%7D%2Eglyphicon%2Dfloppy%2Ddisk%3Abefore%7Bcontent%3A%22%5Ce172%22%7D%2Eglyphicon%2Dfloppy%2Dsaved%3Abefore%7Bcontent%3A%22%5Ce173%22%7D%2Eglyphicon%2Dfloppy%2Dremove%3Abefore%7Bcontent%3A%22%5Ce174%22%7D%2Eglyphicon%2Dfloppy%2Dsave%3Abefore%7Bcontent%3A%22%5Ce175%22%7D%2Eglyphicon%2Dfloppy%2Dopen%3Abefore%7Bcontent%3A%22%5Ce176%22%7D%2Eglyphicon%2Dcredit%2Dcard%3Abefore%7Bcontent%3A%22%5Ce177%22%7D%2Eglyphicon%2Dtransfer%3Abefore%7Bcontent%3A%22%5Ce178%22%7D%2Eglyphicon%2Dcutlery%3Abefore%7Bcontent%3A%22%5Ce179%22%7D%2Eglyphicon%2Dheader%3Abefore%7Bcontent%3A%22%5Ce180%22%7D%2Eglyphicon%2Dcompressed%3Abefore%7Bcontent%3A%22%5Ce181%22%7D%2Eglyphicon%2Dearphone%3Abefore%7Bcontent%3A%22%5Ce182%22%7D%2Eglyphicon%2Dphone%2Dalt%3Abefore%7Bcontent%3A%22%5Ce183%22%7D%2Eglyphicon%2Dtower%3Abefore%7Bcontent%3A%22%5Ce184%22%7D%2Eglyphicon%2Dstats%3Abefore%7Bcontent%3A%22%5Ce185%22%7D%2Eglyphicon%2Dsd%2Dvideo%3Abefore%7Bcontent%3A%22%5Ce186%22%7D%2Eglyphicon%2Dhd%2Dvideo%3Abefore%7Bcontent%3A%22%5Ce187%22%7D%2Eglyphicon%2Dsubtitles%3Abefore%7Bcontent%3A%22%5Ce188%22%7D%2Eglyphicon%2Dsound%2Dstereo%3Abefore%7Bcontent%3A%22%5Ce189%22%7D%2Eglyphicon%2Dsound%2Ddolby%3Abefore%7Bcontent%3A%22%5Ce190%22%7D%2Eglyphicon%2Dsound%2D5%2D1%3Abefore%7Bcontent%3A%22%5Ce191%22%7D%2Eglyphicon%2Dsound%2D6%2D1%3Abefore%7Bcontent%3A%22%5Ce192%22%7D%2Eglyphicon%2Dsound%2D7%2D1%3Abefore%7Bcontent%3A%22%5Ce193%22%7D%2Eglyphicon%2Dcopyright%2Dmark%3Abefore%7Bcontent%3A%22%5Ce194%22%7D%2Eglyphicon%2Dregistration%2Dmark%3Abefore%7Bcontent%3A%22%5Ce195%22%7D%2Eglyphicon%2Dcloud%2Ddownload%3Abefore%7Bcontent%3A%22%5Ce197%22%7D%2Eglyphicon%2Dcloud%2Dupload%3Abefore%7Bcontent%3A%22%5Ce198%22%7D%2Eglyphicon%2Dtree%2Dconifer%3Abefore%7Bcontent%3A%22%5Ce199%22%7D%2Eglyphicon%2Dtree%2Ddeciduous%3Abefore%7Bcontent%3A%22%5Ce200%22%7D%2Eglyphicon%2Dcd%3Abefore%7Bcontent%3A%22%5Ce201%22%7D%2Eglyphicon%2Dsave%2Dfile%3Abefore%7Bcontent%3A%22%5Ce202%22%7D%2Eglyphicon%2Dopen%2Dfile%3Abefore%7Bcontent%3A%22%5Ce203%22%7D%2Eglyphicon%2Dlevel%2Dup%3Abefore%7Bcontent%3A%22%5Ce204%22%7D%2Eglyphicon%2Dcopy%3Abefore%7Bcontent%3A%22%5Ce205%22%7D%2Eglyphicon%2Dpaste%3Abefore%7Bcontent%3A%22%5Ce206%22%7D%2Eglyphicon%2Dalert%3Abefore%7Bcontent%3A%22%5Ce209%22%7D%2Eglyphicon%2Dequalizer%3Abefore%7Bcontent%3A%22%5Ce210%22%7D%2Eglyphicon%2Dking%3Abefore%7Bcontent%3A%22%5Ce211%22%7D%2Eglyphicon%2Dqueen%3Abefore%7Bcontent%3A%22%5Ce212%22%7D%2Eglyphicon%2Dpawn%3Abefore%7Bcontent%3A%22%5Ce213%22%7D%2Eglyphicon%2Dbishop%3Abefore%7Bcontent%3A%22%5Ce214%22%7D%2Eglyphicon%2Dknight%3Abefore%7Bcontent%3A%22%5Ce215%22%7D%2Eglyphicon%2Dbaby%2Dformula%3Abefore%7Bcontent%3A%22%5Ce216%22%7D%2Eglyphicon%2Dtent%3Abefore%7Bcontent%3A%22%5C26fa%22%7D%2Eglyphicon%2Dblackboard%3Abefore%7Bcontent%3A%22%5Ce218%22%7D%2Eglyphicon%2Dbed%3Abefore%7Bcontent%3A%22%5Ce219%22%7D%2Eglyphicon%2Dapple%3Abefore%7Bcontent%3A%22%5Cf8ff%22%7D%2Eglyphicon%2Derase%3Abefore%7Bcontent%3A%22%5Ce221%22%7D%2Eglyphicon%2Dhourglass%3Abefore%7Bcontent%3A%22%5C231b%22%7D%2Eglyphicon%2Dlamp%3Abefore%7Bcontent%3A%22%5Ce223%22%7D%2Eglyphicon%2Dduplicate%3Abefore%7Bcontent%3A%22%5Ce224%22%7D%2Eglyphicon%2Dpiggy%2Dbank%3Abefore%7Bcontent%3A%22%5Ce225%22%7D%2Eglyphicon%2Dscissors%3Abefore%7Bcontent%3A%22%5Ce226%22%7D%2Eglyphicon%2Dbitcoin%3Abefore%7Bcontent%3A%22%5Ce227%22%7D%2Eglyphicon%2Dbtc%3Abefore%7Bcontent%3A%22%5Ce227%22%7D%2Eglyphicon%2Dxbt%3Abefore%7Bcontent%3A%22%5Ce227%22%7D%2Eglyphicon%2Dyen%3Abefore%7Bcontent%3A%22%5C00a5%22%7D%2Eglyphicon%2Djpy%3Abefore%7Bcontent%3A%22%5C00a5%22%7D%2Eglyphicon%2Druble%3Abefore%7Bcontent%3A%22%5C20bd%22%7D%2Eglyphicon%2Drub%3Abefore%7Bcontent%3A%22%5C20bd%22%7D%2Eglyphicon%2Dscale%3Abefore%7Bcontent%3A%22%5Ce230%22%7D%2Eglyphicon%2Dice%2Dlolly%3Abefore%7Bcontent%3A%22%5Ce231%22%7D%2Eglyphicon%2Dice%2Dlolly%2Dtasted%3Abefore%7Bcontent%3A%22%5Ce232%22%7D%2Eglyphicon%2Deducation%3Abefore%7Bcontent%3A%22%5Ce233%22%7D%2Eglyphicon%2Doption%2Dhorizontal%3Abefore%7Bcontent%3A%22%5Ce234%22%7D%2Eglyphicon%2Doption%2Dvertical%3Abefore%7Bcontent%3A%22%5Ce235%22%7D%2Eglyphicon%2Dmenu%2Dhamburger%3Abefore%7Bcontent%3A%22%5Ce236%22%7D%2Eglyphicon%2Dmodal%2Dwindow%3Abefore%7Bcontent%3A%22%5Ce237%22%7D%2Eglyphicon%2Doil%3Abefore%7Bcontent%3A%22%5Ce238%22%7D%2Eglyphicon%2Dgrain%3Abefore%7Bcontent%3A%22%5Ce239%22%7D%2Eglyphicon%2Dsunglasses%3Abefore%7Bcontent%3A%22%5Ce240%22%7D%2Eglyphicon%2Dtext%2Dsize%3Abefore%7Bcontent%3A%22%5Ce241%22%7D%2Eglyphicon%2Dtext%2Dcolor%3Abefore%7Bcontent%3A%22%5Ce242%22%7D%2Eglyphicon%2Dtext%2Dbackground%3Abefore%7Bcontent%3A%22%5Ce243%22%7D%2Eglyphicon%2Dobject%2Dalign%2Dtop%3Abefore%7Bcontent%3A%22%5Ce244%22%7D%2Eglyphicon%2Dobject%2Dalign%2Dbottom%3Abefore%7Bcontent%3A%22%5Ce245%22%7D%2Eglyphicon%2Dobject%2Dalign%2Dhorizontal%3Abefore%7Bcontent%3A%22%5Ce246%22%7D%2Eglyphicon%2Dobject%2Dalign%2Dleft%3Abefore%7Bcontent%3A%22%5Ce247%22%7D%2Eglyphicon%2Dobject%2Dalign%2Dvertical%3Abefore%7Bcontent%3A%22%5Ce248%22%7D%2Eglyphicon%2Dobject%2Dalign%2Dright%3Abefore%7Bcontent%3A%22%5Ce249%22%7D%2Eglyphicon%2Dtriangle%2Dright%3Abefore%7Bcontent%3A%22%5Ce250%22%7D%2Eglyphicon%2Dtriangle%2Dleft%3Abefore%7Bcontent%3A%22%5Ce251%22%7D%2Eglyphicon%2Dtriangle%2Dbottom%3Abefore%7Bcontent%3A%22%5Ce252%22%7D%2Eglyphicon%2Dtriangle%2Dtop%3Abefore%7Bcontent%3A%22%5Ce253%22%7D%2Eglyphicon%2Dconsole%3Abefore%7Bcontent%3A%22%5Ce254%22%7D%2Eglyphicon%2Dsuperscript%3Abefore%7Bcontent%3A%22%5Ce255%22%7D%2Eglyphicon%2Dsubscript%3Abefore%7Bcontent%3A%22%5Ce256%22%7D%2Eglyphicon%2Dmenu%2Dleft%3Abefore%7Bcontent%3A%22%5Ce257%22%7D%2Eglyphicon%2Dmenu%2Dright%3Abefore%7Bcontent%3A%22%5Ce258%22%7D%2Eglyphicon%2Dmenu%2Ddown%3Abefore%7Bcontent%3A%22%5Ce259%22%7D%2Eglyphicon%2Dmenu%2Dup%3Abefore%7Bcontent%3A%22%5Ce260%22%7D%2A%7B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7D%2A%3Abefore%2C%2A%3Aafter%7B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7Dhtml%7Bfont%2Dsize%3A10px%3B%2Dwebkit%2Dtap%2Dhighlight%2Dcolor%3Argba%280%2C0%2C0%2C0%29%7Dbody%7Bfont%2Dfamily%3AGeorgia%2C%22Times%20New%20Roman%22%2CTimes%2Cserif%3Bfont%2Dsize%3A15px%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23777777%3Bbackground%2Dcolor%3A%23ffffff%7Dinput%2Cbutton%2Cselect%2Ctextarea%7Bfont%2Dfamily%3Ainherit%3Bfont%2Dsize%3Ainherit%3Bline%2Dheight%3Ainherit%7Da%7Bcolor%3A%23eb6864%3Btext%2Ddecoration%3Anone%7Da%3Ahover%2Ca%3Afocus%7Bcolor%3A%23e22620%3Btext%2Ddecoration%3Aunderline%7Da%3Afocus%7Boutline%3Athin%20dotted%3Boutline%3A5px%20auto%20%2Dwebkit%2Dfocus%2Dring%2Dcolor%3Boutline%2Doffset%3A%2D2px%7Dfigure%7Bmargin%3A0%7Dimg%7Bvertical%2Dalign%3Amiddle%7D%2Eimg%2Dresponsive%2C%2Ethumbnail%3Eimg%2C%2Ethumbnail%20a%3Eimg%2C%2Ecarousel%2Dinner%3E%2Eitem%3Eimg%2C%2Ecarousel%2Dinner%3E%2Eitem%3Ea%3Eimg%7Bdisplay%3Ablock%3Bmax%2Dwidth%3A100%25%3Bheight%3Aauto%7D%2Eimg%2Drounded%7Bborder%2Dradius%3A6px%7D%2Eimg%2Dthumbnail%7Bpadding%3A4px%3Bline%2Dheight%3A1%2E42857143%3Bbackground%2Dcolor%3A%23ffffff%3Bborder%3A1px%20solid%20%23dddddd%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dtransition%3Aall%20%2E2s%20ease%2Din%2Dout%3B%2Do%2Dtransition%3Aall%20%2E2s%20ease%2Din%2Dout%3Btransition%3Aall%20%2E2s%20ease%2Din%2Dout%3Bdisplay%3Ainline%2Dblock%3Bmax%2Dwidth%3A100%25%3Bheight%3Aauto%7D%2Eimg%2Dcircle%7Bborder%2Dradius%3A50%25%7Dhr%7Bmargin%2Dtop%3A21px%3Bmargin%2Dbottom%3A21px%3Bborder%3A0%3Bborder%2Dtop%3A1px%20solid%20%23eeeeee%7D%2Esr%2Donly%7Bposition%3Aabsolute%3Bwidth%3A1px%3Bheight%3A1px%3Bmargin%3A%2D1px%3Bpadding%3A0%3Boverflow%3Ahidden%3Bclip%3Arect%280%2C%200%2C%200%2C%200%29%3Bborder%3A0%7D%2Esr%2Donly%2Dfocusable%3Aactive%2C%2Esr%2Donly%2Dfocusable%3Afocus%7Bposition%3Astatic%3Bwidth%3Aauto%3Bheight%3Aauto%3Bmargin%3A0%3Boverflow%3Avisible%3Bclip%3Aauto%7D%5Brole%3D%22button%22%5D%7Bcursor%3Apointer%7Dh1%2Ch2%2Ch3%2Ch4%2Ch5%2Ch6%2C%2Eh1%2C%2Eh2%2C%2Eh3%2C%2Eh4%2C%2Eh5%2C%2Eh6%7Bfont%2Dfamily%3A%22News%20Cycle%22%2C%22Arial%20Narrow%20Bold%22%2Csans%2Dserif%3Bfont%2Dweight%3A700%3Bline%2Dheight%3A1%2E1%3Bcolor%3A%23000000%7Dh1%20small%2Ch2%20small%2Ch3%20small%2Ch4%20small%2Ch5%20small%2Ch6%20small%2C%2Eh1%20small%2C%2Eh2%20small%2C%2Eh3%20small%2C%2Eh4%20small%2C%2Eh5%20small%2C%2Eh6%20small%2Ch1%20%2Esmall%2Ch2%20%2Esmall%2Ch3%20%2Esmall%2Ch4%20%2Esmall%2Ch5%20%2Esmall%2Ch6%20%2Esmall%2C%2Eh1%20%2Esmall%2C%2Eh2%20%2Esmall%2C%2Eh3%20%2Esmall%2C%2Eh4%20%2Esmall%2C%2Eh5%20%2Esmall%2C%2Eh6%20%2Esmall%7Bfont%2Dweight%3Anormal%3Bline%2Dheight%3A1%3Bcolor%3A%23999999%7Dh1%2C%2Eh1%2Ch2%2C%2Eh2%2Ch3%2C%2Eh3%7Bmargin%2Dtop%3A21px%3Bmargin%2Dbottom%3A10%2E5px%7Dh1%20small%2C%2Eh1%20small%2Ch2%20small%2C%2Eh2%20small%2Ch3%20small%2C%2Eh3%20small%2Ch1%20%2Esmall%2C%2Eh1%20%2Esmall%2Ch2%20%2Esmall%2C%2Eh2%20%2Esmall%2Ch3%20%2Esmall%2C%2Eh3%20%2Esmall%7Bfont%2Dsize%3A65%25%7Dh4%2C%2Eh4%2Ch5%2C%2Eh5%2Ch6%2C%2Eh6%7Bmargin%2Dtop%3A10%2E5px%3Bmargin%2Dbottom%3A10%2E5px%7Dh4%20small%2C%2Eh4%20small%2Ch5%20small%2C%2Eh5%20small%2Ch6%20small%2C%2Eh6%20small%2Ch4%20%2Esmall%2C%2Eh4%20%2Esmall%2Ch5%20%2Esmall%2C%2Eh5%20%2Esmall%2Ch6%20%2Esmall%2C%2Eh6%20%2Esmall%7Bfont%2Dsize%3A75%25%7Dh1%2C%2Eh1%7Bfont%2Dsize%3A39px%7Dh2%2C%2Eh2%7Bfont%2Dsize%3A32px%7Dh3%2C%2Eh3%7Bfont%2Dsize%3A26px%7Dh4%2C%2Eh4%7Bfont%2Dsize%3A19px%7Dh5%2C%2Eh5%7Bfont%2Dsize%3A15px%7Dh6%2C%2Eh6%7Bfont%2Dsize%3A13px%7Dp%7Bmargin%3A0%200%2010%2E5px%7D%2Elead%7Bmargin%2Dbottom%3A21px%3Bfont%2Dsize%3A17px%3Bfont%2Dweight%3A300%3Bline%2Dheight%3A1%2E4%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Elead%7Bfont%2Dsize%3A22%2E5px%7D%7Dsmall%2C%2Esmall%7Bfont%2Dsize%3A86%25%7Dmark%2C%2Emark%7Bbackground%2Dcolor%3A%23fcf8e3%3Bpadding%3A%2E2em%7D%2Etext%2Dleft%7Btext%2Dalign%3Aleft%7D%2Etext%2Dright%7Btext%2Dalign%3Aright%7D%2Etext%2Dcenter%7Btext%2Dalign%3Acenter%7D%2Etext%2Djustify%7Btext%2Dalign%3Ajustify%7D%2Etext%2Dnowrap%7Bwhite%2Dspace%3Anowrap%7D%2Etext%2Dlowercase%7Btext%2Dtransform%3Alowercase%7D%2Etext%2Duppercase%7Btext%2Dtransform%3Auppercase%7D%2Etext%2Dcapitalize%7Btext%2Dtransform%3Acapitalize%7D%2Etext%2Dmuted%7Bcolor%3A%23999999%7D%2Etext%2Dprimary%7Bcolor%3A%23eb6864%7Da%2Etext%2Dprimary%3Ahover%2Ca%2Etext%2Dprimary%3Afocus%7Bcolor%3A%23e53c37%7D%2Etext%2Dsuccess%7Bcolor%3A%23468847%7Da%2Etext%2Dsuccess%3Ahover%2Ca%2Etext%2Dsuccess%3Afocus%7Bcolor%3A%23356635%7D%2Etext%2Dinfo%7Bcolor%3A%233a87ad%7Da%2Etext%2Dinfo%3Ahover%2Ca%2Etext%2Dinfo%3Afocus%7Bcolor%3A%232d6987%7D%2Etext%2Dwarning%7Bcolor%3A%23c09853%7Da%2Etext%2Dwarning%3Ahover%2Ca%2Etext%2Dwarning%3Afocus%7Bcolor%3A%23a47e3c%7D%2Etext%2Ddanger%7Bcolor%3A%23b94a48%7Da%2Etext%2Ddanger%3Ahover%2Ca%2Etext%2Ddanger%3Afocus%7Bcolor%3A%23953b39%7D%2Ebg%2Dprimary%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23eb6864%7Da%2Ebg%2Dprimary%3Ahover%2Ca%2Ebg%2Dprimary%3Afocus%7Bbackground%2Dcolor%3A%23e53c37%7D%2Ebg%2Dsuccess%7Bbackground%2Dcolor%3A%23dff0d8%7Da%2Ebg%2Dsuccess%3Ahover%2Ca%2Ebg%2Dsuccess%3Afocus%7Bbackground%2Dcolor%3A%23c1e2b3%7D%2Ebg%2Dinfo%7Bbackground%2Dcolor%3A%23d9edf7%7Da%2Ebg%2Dinfo%3Ahover%2Ca%2Ebg%2Dinfo%3Afocus%7Bbackground%2Dcolor%3A%23afd9ee%7D%2Ebg%2Dwarning%7Bbackground%2Dcolor%3A%23fcf8e3%7Da%2Ebg%2Dwarning%3Ahover%2Ca%2Ebg%2Dwarning%3Afocus%7Bbackground%2Dcolor%3A%23f7ecb5%7D%2Ebg%2Ddanger%7Bbackground%2Dcolor%3A%23f2dede%7Da%2Ebg%2Ddanger%3Ahover%2Ca%2Ebg%2Ddanger%3Afocus%7Bbackground%2Dcolor%3A%23e4b9b9%7D%2Epage%2Dheader%7Bpadding%2Dbottom%3A9%2E5px%3Bmargin%3A42px%200%2021px%3Bborder%2Dbottom%3A1px%20solid%20%23eeeeee%7Dul%2Col%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A10%2E5px%7Dul%20ul%2Col%20ul%2Cul%20ol%2Col%20ol%7Bmargin%2Dbottom%3A0%7D%2Elist%2Dunstyled%7Bpadding%2Dleft%3A0%3Blist%2Dstyle%3Anone%7D%2Elist%2Dinline%7Bpadding%2Dleft%3A0%3Blist%2Dstyle%3Anone%3Bmargin%2Dleft%3A%2D5px%7D%2Elist%2Dinline%3Eli%7Bdisplay%3Ainline%2Dblock%3Bpadding%2Dleft%3A5px%3Bpadding%2Dright%3A5px%7Ddl%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A21px%7Ddt%2Cdd%7Bline%2Dheight%3A1%2E42857143%7Ddt%7Bfont%2Dweight%3Abold%7Ddd%7Bmargin%2Dleft%3A0%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Edl%2Dhorizontal%20dt%7Bfloat%3Aleft%3Bwidth%3A160px%3Bclear%3Aleft%3Btext%2Dalign%3Aright%3Boverflow%3Ahidden%3Btext%2Doverflow%3Aellipsis%3Bwhite%2Dspace%3Anowrap%7D%2Edl%2Dhorizontal%20dd%7Bmargin%2Dleft%3A180px%7D%7Dabbr%5Btitle%5D%2Cabbr%5Bdata%2Doriginal%2Dtitle%5D%7Bcursor%3Ahelp%3Bborder%2Dbottom%3A1px%20dotted%20%23999999%7D%2Einitialism%7Bfont%2Dsize%3A90%25%3Btext%2Dtransform%3Auppercase%7Dblockquote%7Bpadding%3A10%2E5px%2021px%3Bmargin%3A0%200%2021px%3Bfont%2Dsize%3A18%2E75px%3Bborder%2Dleft%3A5px%20solid%20%23eeeeee%7Dblockquote%20p%3Alast%2Dchild%2Cblockquote%20ul%3Alast%2Dchild%2Cblockquote%20ol%3Alast%2Dchild%7Bmargin%2Dbottom%3A0%7Dblockquote%20footer%2Cblockquote%20small%2Cblockquote%20%2Esmall%7Bdisplay%3Ablock%3Bfont%2Dsize%3A80%25%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23999999%7Dblockquote%20footer%3Abefore%2Cblockquote%20small%3Abefore%2Cblockquote%20%2Esmall%3Abefore%7Bcontent%3A%27%5C2014%20%5C00A0%27%7D%2Eblockquote%2Dreverse%2Cblockquote%2Epull%2Dright%7Bpadding%2Dright%3A15px%3Bpadding%2Dleft%3A0%3Bborder%2Dright%3A5px%20solid%20%23eeeeee%3Bborder%2Dleft%3A0%3Btext%2Dalign%3Aright%7D%2Eblockquote%2Dreverse%20footer%3Abefore%2Cblockquote%2Epull%2Dright%20footer%3Abefore%2C%2Eblockquote%2Dreverse%20small%3Abefore%2Cblockquote%2Epull%2Dright%20small%3Abefore%2C%2Eblockquote%2Dreverse%20%2Esmall%3Abefore%2Cblockquote%2Epull%2Dright%20%2Esmall%3Abefore%7Bcontent%3A%27%27%7D%2Eblockquote%2Dreverse%20footer%3Aafter%2Cblockquote%2Epull%2Dright%20footer%3Aafter%2C%2Eblockquote%2Dreverse%20small%3Aafter%2Cblockquote%2Epull%2Dright%20small%3Aafter%2C%2Eblockquote%2Dreverse%20%2Esmall%3Aafter%2Cblockquote%2Epull%2Dright%20%2Esmall%3Aafter%7Bcontent%3A%27%5C00A0%20%5C2014%27%7Daddress%7Bmargin%2Dbottom%3A21px%3Bfont%2Dstyle%3Anormal%3Bline%2Dheight%3A1%2E42857143%7Dcode%2Ckbd%2Cpre%2Csamp%7Bfont%2Dfamily%3Amonospace%7Dcode%7Bpadding%3A2px%204px%3Bfont%2Dsize%3A90%25%3Bcolor%3A%23c7254e%3Bbackground%2Dcolor%3A%23f9f2f4%3Bborder%2Dradius%3A4px%7Dkbd%7Bpadding%3A2px%204px%3Bfont%2Dsize%3A90%25%3Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23333333%3Bborder%2Dradius%3A3px%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3Bbox%2Dshadow%3Ainset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%7Dkbd%20kbd%7Bpadding%3A0%3Bfont%2Dsize%3A100%25%3Bfont%2Dweight%3Abold%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7Dpre%7Bdisplay%3Ablock%3Bpadding%3A10px%3Bmargin%3A0%200%2010%2E5px%3Bfont%2Dsize%3A14px%3Bline%2Dheight%3A1%2E42857143%3Bword%2Dbreak%3Abreak%2Dall%3Bword%2Dwrap%3Abreak%2Dword%3Bcolor%3A%23333333%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%3A1px%20solid%20%23cccccc%3Bborder%2Dradius%3A4px%7Dpre%20code%7Bpadding%3A0%3Bfont%2Dsize%3Ainherit%3Bcolor%3Ainherit%3Bwhite%2Dspace%3Apre%2Dwrap%3Bbackground%2Dcolor%3Atransparent%3Bborder%2Dradius%3A0%7D%2Epre%2Dscrollable%7Bmax%2Dheight%3A340px%3Boverflow%2Dy%3Ascroll%7D%2Econtainer%7Bmargin%2Dright%3Aauto%3Bmargin%2Dleft%3Aauto%3Bpadding%2Dleft%3A15px%3Bpadding%2Dright%3A15px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Econtainer%7Bwidth%3A750px%7D%7D%40media%20%28min%2Dwidth%3A992px%29%7B%2Econtainer%7Bwidth%3A970px%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Econtainer%7Bwidth%3A1170px%7D%7D%2Econtainer%2Dfluid%7Bmargin%2Dright%3Aauto%3Bmargin%2Dleft%3Aauto%3Bpadding%2Dleft%3A15px%3Bpadding%2Dright%3A15px%7D%2Erow%7Bmargin%2Dleft%3A%2D15px%3Bmargin%2Dright%3A%2D15px%7D%2Ecol%2Dxs%2D1%2C%2Ecol%2Dsm%2D1%2C%2Ecol%2Dmd%2D1%2C%2Ecol%2Dlg%2D1%2C%2Ecol%2Dxs%2D2%2C%2Ecol%2Dsm%2D2%2C%2Ecol%2Dmd%2D2%2C%2Ecol%2Dlg%2D2%2C%2Ecol%2Dxs%2D3%2C%2Ecol%2Dsm%2D3%2C%2Ecol%2Dmd%2D3%2C%2Ecol%2Dlg%2D3%2C%2Ecol%2Dxs%2D4%2C%2Ecol%2Dsm%2D4%2C%2Ecol%2Dmd%2D4%2C%2Ecol%2Dlg%2D4%2C%2Ecol%2Dxs%2D5%2C%2Ecol%2Dsm%2D5%2C%2Ecol%2Dmd%2D5%2C%2Ecol%2Dlg%2D5%2C%2Ecol%2Dxs%2D6%2C%2Ecol%2Dsm%2D6%2C%2Ecol%2Dmd%2D6%2C%2Ecol%2Dlg%2D6%2C%2Ecol%2Dxs%2D7%2C%2Ecol%2Dsm%2D7%2C%2Ecol%2Dmd%2D7%2C%2Ecol%2Dlg%2D7%2C%2Ecol%2Dxs%2D8%2C%2Ecol%2Dsm%2D8%2C%2Ecol%2Dmd%2D8%2C%2Ecol%2Dlg%2D8%2C%2Ecol%2Dxs%2D9%2C%2Ecol%2Dsm%2D9%2C%2Ecol%2Dmd%2D9%2C%2Ecol%2Dlg%2D9%2C%2Ecol%2Dxs%2D10%2C%2Ecol%2Dsm%2D10%2C%2Ecol%2Dmd%2D10%2C%2Ecol%2Dlg%2D10%2C%2Ecol%2Dxs%2D11%2C%2Ecol%2Dsm%2D11%2C%2Ecol%2Dmd%2D11%2C%2Ecol%2Dlg%2D11%2C%2Ecol%2Dxs%2D12%2C%2Ecol%2Dsm%2D12%2C%2Ecol%2Dmd%2D12%2C%2Ecol%2Dlg%2D12%7Bposition%3Arelative%3Bmin%2Dheight%3A1px%3Bpadding%2Dleft%3A15px%3Bpadding%2Dright%3A15px%7D%2Ecol%2Dxs%2D1%2C%2Ecol%2Dxs%2D2%2C%2Ecol%2Dxs%2D3%2C%2Ecol%2Dxs%2D4%2C%2Ecol%2Dxs%2D5%2C%2Ecol%2Dxs%2D6%2C%2Ecol%2Dxs%2D7%2C%2Ecol%2Dxs%2D8%2C%2Ecol%2Dxs%2D9%2C%2Ecol%2Dxs%2D10%2C%2Ecol%2Dxs%2D11%2C%2Ecol%2Dxs%2D12%7Bfloat%3Aleft%7D%2Ecol%2Dxs%2D12%7Bwidth%3A100%25%7D%2Ecol%2Dxs%2D11%7Bwidth%3A91%2E66666667%25%7D%2Ecol%2Dxs%2D10%7Bwidth%3A83%2E33333333%25%7D%2Ecol%2Dxs%2D9%7Bwidth%3A75%25%7D%2Ecol%2Dxs%2D8%7Bwidth%3A66%2E66666667%25%7D%2Ecol%2Dxs%2D7%7Bwidth%3A58%2E33333333%25%7D%2Ecol%2Dxs%2D6%7Bwidth%3A50%25%7D%2Ecol%2Dxs%2D5%7Bwidth%3A41%2E66666667%25%7D%2Ecol%2Dxs%2D4%7Bwidth%3A33%2E33333333%25%7D%2Ecol%2Dxs%2D3%7Bwidth%3A25%25%7D%2Ecol%2Dxs%2D2%7Bwidth%3A16%2E66666667%25%7D%2Ecol%2Dxs%2D1%7Bwidth%3A8%2E33333333%25%7D%2Ecol%2Dxs%2Dpull%2D12%7Bright%3A100%25%7D%2Ecol%2Dxs%2Dpull%2D11%7Bright%3A91%2E66666667%25%7D%2Ecol%2Dxs%2Dpull%2D10%7Bright%3A83%2E33333333%25%7D%2Ecol%2Dxs%2Dpull%2D9%7Bright%3A75%25%7D%2Ecol%2Dxs%2Dpull%2D8%7Bright%3A66%2E66666667%25%7D%2Ecol%2Dxs%2Dpull%2D7%7Bright%3A58%2E33333333%25%7D%2Ecol%2Dxs%2Dpull%2D6%7Bright%3A50%25%7D%2Ecol%2Dxs%2Dpull%2D5%7Bright%3A41%2E66666667%25%7D%2Ecol%2Dxs%2Dpull%2D4%7Bright%3A33%2E33333333%25%7D%2Ecol%2Dxs%2Dpull%2D3%7Bright%3A25%25%7D%2Ecol%2Dxs%2Dpull%2D2%7Bright%3A16%2E66666667%25%7D%2Ecol%2Dxs%2Dpull%2D1%7Bright%3A8%2E33333333%25%7D%2Ecol%2Dxs%2Dpull%2D0%7Bright%3Aauto%7D%2Ecol%2Dxs%2Dpush%2D12%7Bleft%3A100%25%7D%2Ecol%2Dxs%2Dpush%2D11%7Bleft%3A91%2E66666667%25%7D%2Ecol%2Dxs%2Dpush%2D10%7Bleft%3A83%2E33333333%25%7D%2Ecol%2Dxs%2Dpush%2D9%7Bleft%3A75%25%7D%2Ecol%2Dxs%2Dpush%2D8%7Bleft%3A66%2E66666667%25%7D%2Ecol%2Dxs%2Dpush%2D7%7Bleft%3A58%2E33333333%25%7D%2Ecol%2Dxs%2Dpush%2D6%7Bleft%3A50%25%7D%2Ecol%2Dxs%2Dpush%2D5%7Bleft%3A41%2E66666667%25%7D%2Ecol%2Dxs%2Dpush%2D4%7Bleft%3A33%2E33333333%25%7D%2Ecol%2Dxs%2Dpush%2D3%7Bleft%3A25%25%7D%2Ecol%2Dxs%2Dpush%2D2%7Bleft%3A16%2E66666667%25%7D%2Ecol%2Dxs%2Dpush%2D1%7Bleft%3A8%2E33333333%25%7D%2Ecol%2Dxs%2Dpush%2D0%7Bleft%3Aauto%7D%2Ecol%2Dxs%2Doffset%2D12%7Bmargin%2Dleft%3A100%25%7D%2Ecol%2Dxs%2Doffset%2D11%7Bmargin%2Dleft%3A91%2E66666667%25%7D%2Ecol%2Dxs%2Doffset%2D10%7Bmargin%2Dleft%3A83%2E33333333%25%7D%2Ecol%2Dxs%2Doffset%2D9%7Bmargin%2Dleft%3A75%25%7D%2Ecol%2Dxs%2Doffset%2D8%7Bmargin%2Dleft%3A66%2E66666667%25%7D%2Ecol%2Dxs%2Doffset%2D7%7Bmargin%2Dleft%3A58%2E33333333%25%7D%2Ecol%2Dxs%2Doffset%2D6%7Bmargin%2Dleft%3A50%25%7D%2Ecol%2Dxs%2Doffset%2D5%7Bmargin%2Dleft%3A41%2E66666667%25%7D%2Ecol%2Dxs%2Doffset%2D4%7Bmargin%2Dleft%3A33%2E33333333%25%7D%2Ecol%2Dxs%2Doffset%2D3%7Bmargin%2Dleft%3A25%25%7D%2Ecol%2Dxs%2Doffset%2D2%7Bmargin%2Dleft%3A16%2E66666667%25%7D%2Ecol%2Dxs%2Doffset%2D1%7Bmargin%2Dleft%3A8%2E33333333%25%7D%2Ecol%2Dxs%2Doffset%2D0%7Bmargin%2Dleft%3A0%25%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Ecol%2Dsm%2D1%2C%2Ecol%2Dsm%2D2%2C%2Ecol%2Dsm%2D3%2C%2Ecol%2Dsm%2D4%2C%2Ecol%2Dsm%2D5%2C%2Ecol%2Dsm%2D6%2C%2Ecol%2Dsm%2D7%2C%2Ecol%2Dsm%2D8%2C%2Ecol%2Dsm%2D9%2C%2Ecol%2Dsm%2D10%2C%2Ecol%2Dsm%2D11%2C%2Ecol%2Dsm%2D12%7Bfloat%3Aleft%7D%2Ecol%2Dsm%2D12%7Bwidth%3A100%25%7D%2Ecol%2Dsm%2D11%7Bwidth%3A91%2E66666667%25%7D%2Ecol%2Dsm%2D10%7Bwidth%3A83%2E33333333%25%7D%2Ecol%2Dsm%2D9%7Bwidth%3A75%25%7D%2Ecol%2Dsm%2D8%7Bwidth%3A66%2E66666667%25%7D%2Ecol%2Dsm%2D7%7Bwidth%3A58%2E33333333%25%7D%2Ecol%2Dsm%2D6%7Bwidth%3A50%25%7D%2Ecol%2Dsm%2D5%7Bwidth%3A41%2E66666667%25%7D%2Ecol%2Dsm%2D4%7Bwidth%3A33%2E33333333%25%7D%2Ecol%2Dsm%2D3%7Bwidth%3A25%25%7D%2Ecol%2Dsm%2D2%7Bwidth%3A16%2E66666667%25%7D%2Ecol%2Dsm%2D1%7Bwidth%3A8%2E33333333%25%7D%2Ecol%2Dsm%2Dpull%2D12%7Bright%3A100%25%7D%2Ecol%2Dsm%2Dpull%2D11%7Bright%3A91%2E66666667%25%7D%2Ecol%2Dsm%2Dpull%2D10%7Bright%3A83%2E33333333%25%7D%2Ecol%2Dsm%2Dpull%2D9%7Bright%3A75%25%7D%2Ecol%2Dsm%2Dpull%2D8%7Bright%3A66%2E66666667%25%7D%2Ecol%2Dsm%2Dpull%2D7%7Bright%3A58%2E33333333%25%7D%2Ecol%2Dsm%2Dpull%2D6%7Bright%3A50%25%7D%2Ecol%2Dsm%2Dpull%2D5%7Bright%3A41%2E66666667%25%7D%2Ecol%2Dsm%2Dpull%2D4%7Bright%3A33%2E33333333%25%7D%2Ecol%2Dsm%2Dpull%2D3%7Bright%3A25%25%7D%2Ecol%2Dsm%2Dpull%2D2%7Bright%3A16%2E66666667%25%7D%2Ecol%2Dsm%2Dpull%2D1%7Bright%3A8%2E33333333%25%7D%2Ecol%2Dsm%2Dpull%2D0%7Bright%3Aauto%7D%2Ecol%2Dsm%2Dpush%2D12%7Bleft%3A100%25%7D%2Ecol%2Dsm%2Dpush%2D11%7Bleft%3A91%2E66666667%25%7D%2Ecol%2Dsm%2Dpush%2D10%7Bleft%3A83%2E33333333%25%7D%2Ecol%2Dsm%2Dpush%2D9%7Bleft%3A75%25%7D%2Ecol%2Dsm%2Dpush%2D8%7Bleft%3A66%2E66666667%25%7D%2Ecol%2Dsm%2Dpush%2D7%7Bleft%3A58%2E33333333%25%7D%2Ecol%2Dsm%2Dpush%2D6%7Bleft%3A50%25%7D%2Ecol%2Dsm%2Dpush%2D5%7Bleft%3A41%2E66666667%25%7D%2Ecol%2Dsm%2Dpush%2D4%7Bleft%3A33%2E33333333%25%7D%2Ecol%2Dsm%2Dpush%2D3%7Bleft%3A25%25%7D%2Ecol%2Dsm%2Dpush%2D2%7Bleft%3A16%2E66666667%25%7D%2Ecol%2Dsm%2Dpush%2D1%7Bleft%3A8%2E33333333%25%7D%2Ecol%2Dsm%2Dpush%2D0%7Bleft%3Aauto%7D%2Ecol%2Dsm%2Doffset%2D12%7Bmargin%2Dleft%3A100%25%7D%2Ecol%2Dsm%2Doffset%2D11%7Bmargin%2Dleft%3A91%2E66666667%25%7D%2Ecol%2Dsm%2Doffset%2D10%7Bmargin%2Dleft%3A83%2E33333333%25%7D%2Ecol%2Dsm%2Doffset%2D9%7Bmargin%2Dleft%3A75%25%7D%2Ecol%2Dsm%2Doffset%2D8%7Bmargin%2Dleft%3A66%2E66666667%25%7D%2Ecol%2Dsm%2Doffset%2D7%7Bmargin%2Dleft%3A58%2E33333333%25%7D%2Ecol%2Dsm%2Doffset%2D6%7Bmargin%2Dleft%3A50%25%7D%2Ecol%2Dsm%2Doffset%2D5%7Bmargin%2Dleft%3A41%2E66666667%25%7D%2Ecol%2Dsm%2Doffset%2D4%7Bmargin%2Dleft%3A33%2E33333333%25%7D%2Ecol%2Dsm%2Doffset%2D3%7Bmargin%2Dleft%3A25%25%7D%2Ecol%2Dsm%2Doffset%2D2%7Bmargin%2Dleft%3A16%2E66666667%25%7D%2Ecol%2Dsm%2Doffset%2D1%7Bmargin%2Dleft%3A8%2E33333333%25%7D%2Ecol%2Dsm%2Doffset%2D0%7Bmargin%2Dleft%3A0%25%7D%7D%40media%20%28min%2Dwidth%3A992px%29%7B%2Ecol%2Dmd%2D1%2C%2Ecol%2Dmd%2D2%2C%2Ecol%2Dmd%2D3%2C%2Ecol%2Dmd%2D4%2C%2Ecol%2Dmd%2D5%2C%2Ecol%2Dmd%2D6%2C%2Ecol%2Dmd%2D7%2C%2Ecol%2Dmd%2D8%2C%2Ecol%2Dmd%2D9%2C%2Ecol%2Dmd%2D10%2C%2Ecol%2Dmd%2D11%2C%2Ecol%2Dmd%2D12%7Bfloat%3Aleft%7D%2Ecol%2Dmd%2D12%7Bwidth%3A100%25%7D%2Ecol%2Dmd%2D11%7Bwidth%3A91%2E66666667%25%7D%2Ecol%2Dmd%2D10%7Bwidth%3A83%2E33333333%25%7D%2Ecol%2Dmd%2D9%7Bwidth%3A75%25%7D%2Ecol%2Dmd%2D8%7Bwidth%3A66%2E66666667%25%7D%2Ecol%2Dmd%2D7%7Bwidth%3A58%2E33333333%25%7D%2Ecol%2Dmd%2D6%7Bwidth%3A50%25%7D%2Ecol%2Dmd%2D5%7Bwidth%3A41%2E66666667%25%7D%2Ecol%2Dmd%2D4%7Bwidth%3A33%2E33333333%25%7D%2Ecol%2Dmd%2D3%7Bwidth%3A25%25%7D%2Ecol%2Dmd%2D2%7Bwidth%3A16%2E66666667%25%7D%2Ecol%2Dmd%2D1%7Bwidth%3A8%2E33333333%25%7D%2Ecol%2Dmd%2Dpull%2D12%7Bright%3A100%25%7D%2Ecol%2Dmd%2Dpull%2D11%7Bright%3A91%2E66666667%25%7D%2Ecol%2Dmd%2Dpull%2D10%7Bright%3A83%2E33333333%25%7D%2Ecol%2Dmd%2Dpull%2D9%7Bright%3A75%25%7D%2Ecol%2Dmd%2Dpull%2D8%7Bright%3A66%2E66666667%25%7D%2Ecol%2Dmd%2Dpull%2D7%7Bright%3A58%2E33333333%25%7D%2Ecol%2Dmd%2Dpull%2D6%7Bright%3A50%25%7D%2Ecol%2Dmd%2Dpull%2D5%7Bright%3A41%2E66666667%25%7D%2Ecol%2Dmd%2Dpull%2D4%7Bright%3A33%2E33333333%25%7D%2Ecol%2Dmd%2Dpull%2D3%7Bright%3A25%25%7D%2Ecol%2Dmd%2Dpull%2D2%7Bright%3A16%2E66666667%25%7D%2Ecol%2Dmd%2Dpull%2D1%7Bright%3A8%2E33333333%25%7D%2Ecol%2Dmd%2Dpull%2D0%7Bright%3Aauto%7D%2Ecol%2Dmd%2Dpush%2D12%7Bleft%3A100%25%7D%2Ecol%2Dmd%2Dpush%2D11%7Bleft%3A91%2E66666667%25%7D%2Ecol%2Dmd%2Dpush%2D10%7Bleft%3A83%2E33333333%25%7D%2Ecol%2Dmd%2Dpush%2D9%7Bleft%3A75%25%7D%2Ecol%2Dmd%2Dpush%2D8%7Bleft%3A66%2E66666667%25%7D%2Ecol%2Dmd%2Dpush%2D7%7Bleft%3A58%2E33333333%25%7D%2Ecol%2Dmd%2Dpush%2D6%7Bleft%3A50%25%7D%2Ecol%2Dmd%2Dpush%2D5%7Bleft%3A41%2E66666667%25%7D%2Ecol%2Dmd%2Dpush%2D4%7Bleft%3A33%2E33333333%25%7D%2Ecol%2Dmd%2Dpush%2D3%7Bleft%3A25%25%7D%2Ecol%2Dmd%2Dpush%2D2%7Bleft%3A16%2E66666667%25%7D%2Ecol%2Dmd%2Dpush%2D1%7Bleft%3A8%2E33333333%25%7D%2Ecol%2Dmd%2Dpush%2D0%7Bleft%3Aauto%7D%2Ecol%2Dmd%2Doffset%2D12%7Bmargin%2Dleft%3A100%25%7D%2Ecol%2Dmd%2Doffset%2D11%7Bmargin%2Dleft%3A91%2E66666667%25%7D%2Ecol%2Dmd%2Doffset%2D10%7Bmargin%2Dleft%3A83%2E33333333%25%7D%2Ecol%2Dmd%2Doffset%2D9%7Bmargin%2Dleft%3A75%25%7D%2Ecol%2Dmd%2Doffset%2D8%7Bmargin%2Dleft%3A66%2E66666667%25%7D%2Ecol%2Dmd%2Doffset%2D7%7Bmargin%2Dleft%3A58%2E33333333%25%7D%2Ecol%2Dmd%2Doffset%2D6%7Bmargin%2Dleft%3A50%25%7D%2Ecol%2Dmd%2Doffset%2D5%7Bmargin%2Dleft%3A41%2E66666667%25%7D%2Ecol%2Dmd%2Doffset%2D4%7Bmargin%2Dleft%3A33%2E33333333%25%7D%2Ecol%2Dmd%2Doffset%2D3%7Bmargin%2Dleft%3A25%25%7D%2Ecol%2Dmd%2Doffset%2D2%7Bmargin%2Dleft%3A16%2E66666667%25%7D%2Ecol%2Dmd%2Doffset%2D1%7Bmargin%2Dleft%3A8%2E33333333%25%7D%2Ecol%2Dmd%2Doffset%2D0%7Bmargin%2Dleft%3A0%25%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Ecol%2Dlg%2D1%2C%2Ecol%2Dlg%2D2%2C%2Ecol%2Dlg%2D3%2C%2Ecol%2Dlg%2D4%2C%2Ecol%2Dlg%2D5%2C%2Ecol%2Dlg%2D6%2C%2Ecol%2Dlg%2D7%2C%2Ecol%2Dlg%2D8%2C%2Ecol%2Dlg%2D9%2C%2Ecol%2Dlg%2D10%2C%2Ecol%2Dlg%2D11%2C%2Ecol%2Dlg%2D12%7Bfloat%3Aleft%7D%2Ecol%2Dlg%2D12%7Bwidth%3A100%25%7D%2Ecol%2Dlg%2D11%7Bwidth%3A91%2E66666667%25%7D%2Ecol%2Dlg%2D10%7Bwidth%3A83%2E33333333%25%7D%2Ecol%2Dlg%2D9%7Bwidth%3A75%25%7D%2Ecol%2Dlg%2D8%7Bwidth%3A66%2E66666667%25%7D%2Ecol%2Dlg%2D7%7Bwidth%3A58%2E33333333%25%7D%2Ecol%2Dlg%2D6%7Bwidth%3A50%25%7D%2Ecol%2Dlg%2D5%7Bwidth%3A41%2E66666667%25%7D%2Ecol%2Dlg%2D4%7Bwidth%3A33%2E33333333%25%7D%2Ecol%2Dlg%2D3%7Bwidth%3A25%25%7D%2Ecol%2Dlg%2D2%7Bwidth%3A16%2E66666667%25%7D%2Ecol%2Dlg%2D1%7Bwidth%3A8%2E33333333%25%7D%2Ecol%2Dlg%2Dpull%2D12%7Bright%3A100%25%7D%2Ecol%2Dlg%2Dpull%2D11%7Bright%3A91%2E66666667%25%7D%2Ecol%2Dlg%2Dpull%2D10%7Bright%3A83%2E33333333%25%7D%2Ecol%2Dlg%2Dpull%2D9%7Bright%3A75%25%7D%2Ecol%2Dlg%2Dpull%2D8%7Bright%3A66%2E66666667%25%7D%2Ecol%2Dlg%2Dpull%2D7%7Bright%3A58%2E33333333%25%7D%2Ecol%2Dlg%2Dpull%2D6%7Bright%3A50%25%7D%2Ecol%2Dlg%2Dpull%2D5%7Bright%3A41%2E66666667%25%7D%2Ecol%2Dlg%2Dpull%2D4%7Bright%3A33%2E33333333%25%7D%2Ecol%2Dlg%2Dpull%2D3%7Bright%3A25%25%7D%2Ecol%2Dlg%2Dpull%2D2%7Bright%3A16%2E66666667%25%7D%2Ecol%2Dlg%2Dpull%2D1%7Bright%3A8%2E33333333%25%7D%2Ecol%2Dlg%2Dpull%2D0%7Bright%3Aauto%7D%2Ecol%2Dlg%2Dpush%2D12%7Bleft%3A100%25%7D%2Ecol%2Dlg%2Dpush%2D11%7Bleft%3A91%2E66666667%25%7D%2Ecol%2Dlg%2Dpush%2D10%7Bleft%3A83%2E33333333%25%7D%2Ecol%2Dlg%2Dpush%2D9%7Bleft%3A75%25%7D%2Ecol%2Dlg%2Dpush%2D8%7Bleft%3A66%2E66666667%25%7D%2Ecol%2Dlg%2Dpush%2D7%7Bleft%3A58%2E33333333%25%7D%2Ecol%2Dlg%2Dpush%2D6%7Bleft%3A50%25%7D%2Ecol%2Dlg%2Dpush%2D5%7Bleft%3A41%2E66666667%25%7D%2Ecol%2Dlg%2Dpush%2D4%7Bleft%3A33%2E33333333%25%7D%2Ecol%2Dlg%2Dpush%2D3%7Bleft%3A25%25%7D%2Ecol%2Dlg%2Dpush%2D2%7Bleft%3A16%2E66666667%25%7D%2Ecol%2Dlg%2Dpush%2D1%7Bleft%3A8%2E33333333%25%7D%2Ecol%2Dlg%2Dpush%2D0%7Bleft%3Aauto%7D%2Ecol%2Dlg%2Doffset%2D12%7Bmargin%2Dleft%3A100%25%7D%2Ecol%2Dlg%2Doffset%2D11%7Bmargin%2Dleft%3A91%2E66666667%25%7D%2Ecol%2Dlg%2Doffset%2D10%7Bmargin%2Dleft%3A83%2E33333333%25%7D%2Ecol%2Dlg%2Doffset%2D9%7Bmargin%2Dleft%3A75%25%7D%2Ecol%2Dlg%2Doffset%2D8%7Bmargin%2Dleft%3A66%2E66666667%25%7D%2Ecol%2Dlg%2Doffset%2D7%7Bmargin%2Dleft%3A58%2E33333333%25%7D%2Ecol%2Dlg%2Doffset%2D6%7Bmargin%2Dleft%3A50%25%7D%2Ecol%2Dlg%2Doffset%2D5%7Bmargin%2Dleft%3A41%2E66666667%25%7D%2Ecol%2Dlg%2Doffset%2D4%7Bmargin%2Dleft%3A33%2E33333333%25%7D%2Ecol%2Dlg%2Doffset%2D3%7Bmargin%2Dleft%3A25%25%7D%2Ecol%2Dlg%2Doffset%2D2%7Bmargin%2Dleft%3A16%2E66666667%25%7D%2Ecol%2Dlg%2Doffset%2D1%7Bmargin%2Dleft%3A8%2E33333333%25%7D%2Ecol%2Dlg%2Doffset%2D0%7Bmargin%2Dleft%3A0%25%7D%7Dtable%7Bbackground%2Dcolor%3Atransparent%7Dcaption%7Bpadding%2Dtop%3A8px%3Bpadding%2Dbottom%3A8px%3Bcolor%3A%23999999%3Btext%2Dalign%3Aleft%7Dth%7B%7D%2Etable%7Bwidth%3A100%25%3Bmax%2Dwidth%3A100%25%3Bmargin%2Dbottom%3A21px%7D%2Etable%3Ethead%3Etr%3Eth%2C%2Etable%3Etbody%3Etr%3Eth%2C%2Etable%3Etfoot%3Etr%3Eth%2C%2Etable%3Ethead%3Etr%3Etd%2C%2Etable%3Etbody%3Etr%3Etd%2C%2Etable%3Etfoot%3Etr%3Etd%7Bpadding%3A8px%3Bline%2Dheight%3A1%2E42857143%3Bvertical%2Dalign%3Atop%3Bborder%2Dtop%3A1px%20solid%20%23dddddd%7D%2Etable%3Ethead%3Etr%3Eth%7Bvertical%2Dalign%3Abottom%3Bborder%2Dbottom%3A2px%20solid%20%23dddddd%7D%2Etable%3Ecaption%2Bthead%3Etr%3Afirst%2Dchild%3Eth%2C%2Etable%3Ecolgroup%2Bthead%3Etr%3Afirst%2Dchild%3Eth%2C%2Etable%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%3Eth%2C%2Etable%3Ecaption%2Bthead%3Etr%3Afirst%2Dchild%3Etd%2C%2Etable%3Ecolgroup%2Bthead%3Etr%3Afirst%2Dchild%3Etd%2C%2Etable%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%3Etd%7Bborder%2Dtop%3A0%7D%2Etable%3Etbody%2Btbody%7Bborder%2Dtop%3A2px%20solid%20%23dddddd%7D%2Etable%20%2Etable%7Bbackground%2Dcolor%3A%23ffffff%7D%2Etable%2Dcondensed%3Ethead%3Etr%3Eth%2C%2Etable%2Dcondensed%3Etbody%3Etr%3Eth%2C%2Etable%2Dcondensed%3Etfoot%3Etr%3Eth%2C%2Etable%2Dcondensed%3Ethead%3Etr%3Etd%2C%2Etable%2Dcondensed%3Etbody%3Etr%3Etd%2C%2Etable%2Dcondensed%3Etfoot%3Etr%3Etd%7Bpadding%3A5px%7D%2Etable%2Dbordered%7Bborder%3A1px%20solid%20%23dddddd%7D%2Etable%2Dbordered%3Ethead%3Etr%3Eth%2C%2Etable%2Dbordered%3Etbody%3Etr%3Eth%2C%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%2C%2Etable%2Dbordered%3Ethead%3Etr%3Etd%2C%2Etable%2Dbordered%3Etbody%3Etr%3Etd%2C%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%7Bborder%3A1px%20solid%20%23dddddd%7D%2Etable%2Dbordered%3Ethead%3Etr%3Eth%2C%2Etable%2Dbordered%3Ethead%3Etr%3Etd%7Bborder%2Dbottom%2Dwidth%3A2px%7D%2Etable%2Dstriped%3Etbody%3Etr%3Anth%2Dof%2Dtype%28odd%29%7Bbackground%2Dcolor%3A%23f9f9f9%7D%2Etable%2Dhover%3Etbody%3Etr%3Ahover%7Bbackground%2Dcolor%3A%23f5f5f5%7Dtable%20col%5Bclass%2A%3D%22col%2D%22%5D%7Bposition%3Astatic%3Bfloat%3Anone%3Bdisplay%3Atable%2Dcolumn%7Dtable%20td%5Bclass%2A%3D%22col%2D%22%5D%2Ctable%20th%5Bclass%2A%3D%22col%2D%22%5D%7Bposition%3Astatic%3Bfloat%3Anone%3Bdisplay%3Atable%2Dcell%7D%2Etable%3Ethead%3Etr%3Etd%2Eactive%2C%2Etable%3Etbody%3Etr%3Etd%2Eactive%2C%2Etable%3Etfoot%3Etr%3Etd%2Eactive%2C%2Etable%3Ethead%3Etr%3Eth%2Eactive%2C%2Etable%3Etbody%3Etr%3Eth%2Eactive%2C%2Etable%3Etfoot%3Etr%3Eth%2Eactive%2C%2Etable%3Ethead%3Etr%2Eactive%3Etd%2C%2Etable%3Etbody%3Etr%2Eactive%3Etd%2C%2Etable%3Etfoot%3Etr%2Eactive%3Etd%2C%2Etable%3Ethead%3Etr%2Eactive%3Eth%2C%2Etable%3Etbody%3Etr%2Eactive%3Eth%2C%2Etable%3Etfoot%3Etr%2Eactive%3Eth%7Bbackground%2Dcolor%3A%23f5f5f5%7D%2Etable%2Dhover%3Etbody%3Etr%3Etd%2Eactive%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%3Eth%2Eactive%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%2Eactive%3Ahover%3Etd%2C%2Etable%2Dhover%3Etbody%3Etr%3Ahover%3E%2Eactive%2C%2Etable%2Dhover%3Etbody%3Etr%2Eactive%3Ahover%3Eth%7Bbackground%2Dcolor%3A%23e8e8e8%7D%2Etable%3Ethead%3Etr%3Etd%2Esuccess%2C%2Etable%3Etbody%3Etr%3Etd%2Esuccess%2C%2Etable%3Etfoot%3Etr%3Etd%2Esuccess%2C%2Etable%3Ethead%3Etr%3Eth%2Esuccess%2C%2Etable%3Etbody%3Etr%3Eth%2Esuccess%2C%2Etable%3Etfoot%3Etr%3Eth%2Esuccess%2C%2Etable%3Ethead%3Etr%2Esuccess%3Etd%2C%2Etable%3Etbody%3Etr%2Esuccess%3Etd%2C%2Etable%3Etfoot%3Etr%2Esuccess%3Etd%2C%2Etable%3Ethead%3Etr%2Esuccess%3Eth%2C%2Etable%3Etbody%3Etr%2Esuccess%3Eth%2C%2Etable%3Etfoot%3Etr%2Esuccess%3Eth%7Bbackground%2Dcolor%3A%23dff0d8%7D%2Etable%2Dhover%3Etbody%3Etr%3Etd%2Esuccess%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%3Eth%2Esuccess%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%2Esuccess%3Ahover%3Etd%2C%2Etable%2Dhover%3Etbody%3Etr%3Ahover%3E%2Esuccess%2C%2Etable%2Dhover%3Etbody%3Etr%2Esuccess%3Ahover%3Eth%7Bbackground%2Dcolor%3A%23d0e9c6%7D%2Etable%3Ethead%3Etr%3Etd%2Einfo%2C%2Etable%3Etbody%3Etr%3Etd%2Einfo%2C%2Etable%3Etfoot%3Etr%3Etd%2Einfo%2C%2Etable%3Ethead%3Etr%3Eth%2Einfo%2C%2Etable%3Etbody%3Etr%3Eth%2Einfo%2C%2Etable%3Etfoot%3Etr%3Eth%2Einfo%2C%2Etable%3Ethead%3Etr%2Einfo%3Etd%2C%2Etable%3Etbody%3Etr%2Einfo%3Etd%2C%2Etable%3Etfoot%3Etr%2Einfo%3Etd%2C%2Etable%3Ethead%3Etr%2Einfo%3Eth%2C%2Etable%3Etbody%3Etr%2Einfo%3Eth%2C%2Etable%3Etfoot%3Etr%2Einfo%3Eth%7Bbackground%2Dcolor%3A%23d9edf7%7D%2Etable%2Dhover%3Etbody%3Etr%3Etd%2Einfo%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%3Eth%2Einfo%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%2Einfo%3Ahover%3Etd%2C%2Etable%2Dhover%3Etbody%3Etr%3Ahover%3E%2Einfo%2C%2Etable%2Dhover%3Etbody%3Etr%2Einfo%3Ahover%3Eth%7Bbackground%2Dcolor%3A%23c4e3f3%7D%2Etable%3Ethead%3Etr%3Etd%2Ewarning%2C%2Etable%3Etbody%3Etr%3Etd%2Ewarning%2C%2Etable%3Etfoot%3Etr%3Etd%2Ewarning%2C%2Etable%3Ethead%3Etr%3Eth%2Ewarning%2C%2Etable%3Etbody%3Etr%3Eth%2Ewarning%2C%2Etable%3Etfoot%3Etr%3Eth%2Ewarning%2C%2Etable%3Ethead%3Etr%2Ewarning%3Etd%2C%2Etable%3Etbody%3Etr%2Ewarning%3Etd%2C%2Etable%3Etfoot%3Etr%2Ewarning%3Etd%2C%2Etable%3Ethead%3Etr%2Ewarning%3Eth%2C%2Etable%3Etbody%3Etr%2Ewarning%3Eth%2C%2Etable%3Etfoot%3Etr%2Ewarning%3Eth%7Bbackground%2Dcolor%3A%23fcf8e3%7D%2Etable%2Dhover%3Etbody%3Etr%3Etd%2Ewarning%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%3Eth%2Ewarning%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%2Ewarning%3Ahover%3Etd%2C%2Etable%2Dhover%3Etbody%3Etr%3Ahover%3E%2Ewarning%2C%2Etable%2Dhover%3Etbody%3Etr%2Ewarning%3Ahover%3Eth%7Bbackground%2Dcolor%3A%23faf2cc%7D%2Etable%3Ethead%3Etr%3Etd%2Edanger%2C%2Etable%3Etbody%3Etr%3Etd%2Edanger%2C%2Etable%3Etfoot%3Etr%3Etd%2Edanger%2C%2Etable%3Ethead%3Etr%3Eth%2Edanger%2C%2Etable%3Etbody%3Etr%3Eth%2Edanger%2C%2Etable%3Etfoot%3Etr%3Eth%2Edanger%2C%2Etable%3Ethead%3Etr%2Edanger%3Etd%2C%2Etable%3Etbody%3Etr%2Edanger%3Etd%2C%2Etable%3Etfoot%3Etr%2Edanger%3Etd%2C%2Etable%3Ethead%3Etr%2Edanger%3Eth%2C%2Etable%3Etbody%3Etr%2Edanger%3Eth%2C%2Etable%3Etfoot%3Etr%2Edanger%3Eth%7Bbackground%2Dcolor%3A%23f2dede%7D%2Etable%2Dhover%3Etbody%3Etr%3Etd%2Edanger%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%3Eth%2Edanger%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%2Edanger%3Ahover%3Etd%2C%2Etable%2Dhover%3Etbody%3Etr%3Ahover%3E%2Edanger%2C%2Etable%2Dhover%3Etbody%3Etr%2Edanger%3Ahover%3Eth%7Bbackground%2Dcolor%3A%23ebcccc%7D%2Etable%2Dresponsive%7Boverflow%2Dx%3Aauto%3Bmin%2Dheight%3A0%2E01%25%7D%40media%20screen%20and%20%28max%2Dwidth%3A767px%29%7B%2Etable%2Dresponsive%7Bwidth%3A100%25%3Bmargin%2Dbottom%3A15%2E75px%3Boverflow%2Dy%3Ahidden%3B%2Dms%2Doverflow%2Dstyle%3A%2Dms%2Dautohiding%2Dscrollbar%3Bborder%3A1px%20solid%20%23dddddd%7D%2Etable%2Dresponsive%3E%2Etable%7Bmargin%2Dbottom%3A0%7D%2Etable%2Dresponsive%3E%2Etable%3Ethead%3Etr%3Eth%2C%2Etable%2Dresponsive%3E%2Etable%3Etbody%3Etr%3Eth%2C%2Etable%2Dresponsive%3E%2Etable%3Etfoot%3Etr%3Eth%2C%2Etable%2Dresponsive%3E%2Etable%3Ethead%3Etr%3Etd%2C%2Etable%2Dresponsive%3E%2Etable%3Etbody%3Etr%3Etd%2C%2Etable%2Dresponsive%3E%2Etable%3Etfoot%3Etr%3Etd%7Bwhite%2Dspace%3Anowrap%7D%2Etable%2Dresponsive%3E%2Etable%2Dbordered%7Bborder%3A0%7D%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Eth%3Afirst%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Eth%3Afirst%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%3Afirst%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Etd%3Afirst%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Etd%3Afirst%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%3Afirst%2Dchild%7Bborder%2Dleft%3A0%7D%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Eth%3Alast%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Eth%3Alast%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%3Alast%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Etd%3Alast%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Etd%3Alast%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%3Alast%2Dchild%7Bborder%2Dright%3A0%7D%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Alast%2Dchild%3Eth%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Alast%2Dchild%3Eth%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Alast%2Dchild%3Etd%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Alast%2Dchild%3Etd%7Bborder%2Dbottom%3A0%7D%7Dfieldset%7Bpadding%3A0%3Bmargin%3A0%3Bborder%3A0%3Bmin%2Dwidth%3A0%7Dlegend%7Bdisplay%3Ablock%3Bwidth%3A100%25%3Bpadding%3A0%3Bmargin%2Dbottom%3A21px%3Bfont%2Dsize%3A22%2E5px%3Bline%2Dheight%3Ainherit%3Bcolor%3A%23777777%3Bborder%3A0%3Bborder%2Dbottom%3A1px%20solid%20%23e5e5e5%7Dlabel%7Bdisplay%3Ainline%2Dblock%3Bmax%2Dwidth%3A100%25%3Bmargin%2Dbottom%3A5px%3Bfont%2Dweight%3Abold%7Dinput%5Btype%3D%22search%22%5D%7B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7Dinput%5Btype%3D%22radio%22%5D%2Cinput%5Btype%3D%22checkbox%22%5D%7Bmargin%3A4px%200%200%3Bmargin%2Dtop%3A1px%20%5C9%3Bline%2Dheight%3Anormal%7Dinput%5Btype%3D%22file%22%5D%7Bdisplay%3Ablock%7Dinput%5Btype%3D%22range%22%5D%7Bdisplay%3Ablock%3Bwidth%3A100%25%7Dselect%5Bmultiple%5D%2Cselect%5Bsize%5D%7Bheight%3Aauto%7Dinput%5Btype%3D%22file%22%5D%3Afocus%2Cinput%5Btype%3D%22radio%22%5D%3Afocus%2Cinput%5Btype%3D%22checkbox%22%5D%3Afocus%7Boutline%3Athin%20dotted%3Boutline%3A5px%20auto%20%2Dwebkit%2Dfocus%2Dring%2Dcolor%3Boutline%2Doffset%3A%2D2px%7Doutput%7Bdisplay%3Ablock%3Bpadding%2Dtop%3A9px%3Bfont%2Dsize%3A15px%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23777777%7D%2Eform%2Dcontrol%7Bdisplay%3Ablock%3Bwidth%3A100%25%3Bheight%3A39px%3Bpadding%3A8px%2012px%3Bfont%2Dsize%3A15px%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23777777%3Bbackground%2Dcolor%3A%23ffffff%3Bbackground%2Dimage%3Anone%3Bborder%3A1px%20solid%20%23cccccc%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3B%2Dwebkit%2Dtransition%3Aborder%2Dcolor%20ease%2Din%2Dout%20%2E15s%2C%2Dwebkit%2Dbox%2Dshadow%20ease%2Din%2Dout%20%2E15s%3B%2Do%2Dtransition%3Aborder%2Dcolor%20ease%2Din%2Dout%20%2E15s%2Cbox%2Dshadow%20ease%2Din%2Dout%20%2E15s%3Btransition%3Aborder%2Dcolor%20ease%2Din%2Dout%20%2E15s%2Cbox%2Dshadow%20ease%2Din%2Dout%20%2E15s%7D%2Eform%2Dcontrol%3Afocus%7Bborder%2Dcolor%3A%2366afe9%3Boutline%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%208px%20rgba%28102%2C175%2C233%2C0%2E6%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%208px%20rgba%28102%2C175%2C233%2C0%2E6%29%7D%2Eform%2Dcontrol%3A%3A%2Dmoz%2Dplaceholder%7Bcolor%3A%23999999%3Bopacity%3A1%7D%2Eform%2Dcontrol%3A%2Dms%2Dinput%2Dplaceholder%7Bcolor%3A%23999999%7D%2Eform%2Dcontrol%3A%3A%2Dwebkit%2Dinput%2Dplaceholder%7Bcolor%3A%23999999%7D%2Eform%2Dcontrol%3A%3A%2Dms%2Dexpand%7Bborder%3A0%3Bbackground%2Dcolor%3Atransparent%7D%2Eform%2Dcontrol%5Bdisabled%5D%2C%2Eform%2Dcontrol%5Breadonly%5D%2Cfieldset%5Bdisabled%5D%20%2Eform%2Dcontrol%7Bbackground%2Dcolor%3A%23eeeeee%3Bopacity%3A1%7D%2Eform%2Dcontrol%5Bdisabled%5D%2Cfieldset%5Bdisabled%5D%20%2Eform%2Dcontrol%7Bcursor%3Anot%2Dallowed%7Dtextarea%2Eform%2Dcontrol%7Bheight%3Aauto%7Dinput%5Btype%3D%22search%22%5D%7B%2Dwebkit%2Dappearance%3Anone%7D%40media%20screen%20and%20%28%2Dwebkit%2Dmin%2Ddevice%2Dpixel%2Dratio%3A0%29%7Binput%5Btype%3D%22date%22%5D%2Eform%2Dcontrol%2Cinput%5Btype%3D%22time%22%5D%2Eform%2Dcontrol%2Cinput%5Btype%3D%22datetime%2Dlocal%22%5D%2Eform%2Dcontrol%2Cinput%5Btype%3D%22month%22%5D%2Eform%2Dcontrol%7Bline%2Dheight%3A39px%7Dinput%5Btype%3D%22date%22%5D%2Einput%2Dsm%2Cinput%5Btype%3D%22time%22%5D%2Einput%2Dsm%2Cinput%5Btype%3D%22datetime%2Dlocal%22%5D%2Einput%2Dsm%2Cinput%5Btype%3D%22month%22%5D%2Einput%2Dsm%2C%2Einput%2Dgroup%2Dsm%20input%5Btype%3D%22date%22%5D%2C%2Einput%2Dgroup%2Dsm%20input%5Btype%3D%22time%22%5D%2C%2Einput%2Dgroup%2Dsm%20input%5Btype%3D%22datetime%2Dlocal%22%5D%2C%2Einput%2Dgroup%2Dsm%20input%5Btype%3D%22month%22%5D%7Bline%2Dheight%3A31px%7Dinput%5Btype%3D%22date%22%5D%2Einput%2Dlg%2Cinput%5Btype%3D%22time%22%5D%2Einput%2Dlg%2Cinput%5Btype%3D%22datetime%2Dlocal%22%5D%2Einput%2Dlg%2Cinput%5Btype%3D%22month%22%5D%2Einput%2Dlg%2C%2Einput%2Dgroup%2Dlg%20input%5Btype%3D%22date%22%5D%2C%2Einput%2Dgroup%2Dlg%20input%5Btype%3D%22time%22%5D%2C%2Einput%2Dgroup%2Dlg%20input%5Btype%3D%22datetime%2Dlocal%22%5D%2C%2Einput%2Dgroup%2Dlg%20input%5Btype%3D%22month%22%5D%7Bline%2Dheight%3A56px%7D%7D%2Eform%2Dgroup%7Bmargin%2Dbottom%3A15px%7D%2Eradio%2C%2Echeckbox%7Bposition%3Arelative%3Bdisplay%3Ablock%3Bmargin%2Dtop%3A10px%3Bmargin%2Dbottom%3A10px%7D%2Eradio%20label%2C%2Echeckbox%20label%7Bmin%2Dheight%3A21px%3Bpadding%2Dleft%3A20px%3Bmargin%2Dbottom%3A0%3Bfont%2Dweight%3Anormal%3Bcursor%3Apointer%7D%2Eradio%20input%5Btype%3D%22radio%22%5D%2C%2Eradio%2Dinline%20input%5Btype%3D%22radio%22%5D%2C%2Echeckbox%20input%5Btype%3D%22checkbox%22%5D%2C%2Echeckbox%2Dinline%20input%5Btype%3D%22checkbox%22%5D%7Bposition%3Aabsolute%3Bmargin%2Dleft%3A%2D20px%3Bmargin%2Dtop%3A4px%20%5C9%7D%2Eradio%2B%2Eradio%2C%2Echeckbox%2B%2Echeckbox%7Bmargin%2Dtop%3A%2D5px%7D%2Eradio%2Dinline%2C%2Echeckbox%2Dinline%7Bposition%3Arelative%3Bdisplay%3Ainline%2Dblock%3Bpadding%2Dleft%3A20px%3Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%3Bfont%2Dweight%3Anormal%3Bcursor%3Apointer%7D%2Eradio%2Dinline%2B%2Eradio%2Dinline%2C%2Echeckbox%2Dinline%2B%2Echeckbox%2Dinline%7Bmargin%2Dtop%3A0%3Bmargin%2Dleft%3A10px%7Dinput%5Btype%3D%22radio%22%5D%5Bdisabled%5D%2Cinput%5Btype%3D%22checkbox%22%5D%5Bdisabled%5D%2Cinput%5Btype%3D%22radio%22%5D%2Edisabled%2Cinput%5Btype%3D%22checkbox%22%5D%2Edisabled%2Cfieldset%5Bdisabled%5D%20input%5Btype%3D%22radio%22%5D%2Cfieldset%5Bdisabled%5D%20input%5Btype%3D%22checkbox%22%5D%7Bcursor%3Anot%2Dallowed%7D%2Eradio%2Dinline%2Edisabled%2C%2Echeckbox%2Dinline%2Edisabled%2Cfieldset%5Bdisabled%5D%20%2Eradio%2Dinline%2Cfieldset%5Bdisabled%5D%20%2Echeckbox%2Dinline%7Bcursor%3Anot%2Dallowed%7D%2Eradio%2Edisabled%20label%2C%2Echeckbox%2Edisabled%20label%2Cfieldset%5Bdisabled%5D%20%2Eradio%20label%2Cfieldset%5Bdisabled%5D%20%2Echeckbox%20label%7Bcursor%3Anot%2Dallowed%7D%2Eform%2Dcontrol%2Dstatic%7Bpadding%2Dtop%3A9px%3Bpadding%2Dbottom%3A9px%3Bmargin%2Dbottom%3A0%3Bmin%2Dheight%3A36px%7D%2Eform%2Dcontrol%2Dstatic%2Einput%2Dlg%2C%2Eform%2Dcontrol%2Dstatic%2Einput%2Dsm%7Bpadding%2Dleft%3A0%3Bpadding%2Dright%3A0%7D%2Einput%2Dsm%7Bheight%3A31px%3Bpadding%3A5px%2010px%3Bfont%2Dsize%3A13px%3Bline%2Dheight%3A1%2E5%3Bborder%2Dradius%3A3px%7Dselect%2Einput%2Dsm%7Bheight%3A31px%3Bline%2Dheight%3A31px%7Dtextarea%2Einput%2Dsm%2Cselect%5Bmultiple%5D%2Einput%2Dsm%7Bheight%3Aauto%7D%2Eform%2Dgroup%2Dsm%20%2Eform%2Dcontrol%7Bheight%3A31px%3Bpadding%3A5px%2010px%3Bfont%2Dsize%3A13px%3Bline%2Dheight%3A1%2E5%3Bborder%2Dradius%3A3px%7D%2Eform%2Dgroup%2Dsm%20select%2Eform%2Dcontrol%7Bheight%3A31px%3Bline%2Dheight%3A31px%7D%2Eform%2Dgroup%2Dsm%20textarea%2Eform%2Dcontrol%2C%2Eform%2Dgroup%2Dsm%20select%5Bmultiple%5D%2Eform%2Dcontrol%7Bheight%3Aauto%7D%2Eform%2Dgroup%2Dsm%20%2Eform%2Dcontrol%2Dstatic%7Bheight%3A31px%3Bmin%2Dheight%3A34px%3Bpadding%3A6px%2010px%3Bfont%2Dsize%3A13px%3Bline%2Dheight%3A1%2E5%7D%2Einput%2Dlg%7Bheight%3A56px%3Bpadding%3A14px%2016px%3Bfont%2Dsize%3A19px%3Bline%2Dheight%3A1%2E3333333%3Bborder%2Dradius%3A6px%7Dselect%2Einput%2Dlg%7Bheight%3A56px%3Bline%2Dheight%3A56px%7Dtextarea%2Einput%2Dlg%2Cselect%5Bmultiple%5D%2Einput%2Dlg%7Bheight%3Aauto%7D%2Eform%2Dgroup%2Dlg%20%2Eform%2Dcontrol%7Bheight%3A56px%3Bpadding%3A14px%2016px%3Bfont%2Dsize%3A19px%3Bline%2Dheight%3A1%2E3333333%3Bborder%2Dradius%3A6px%7D%2Eform%2Dgroup%2Dlg%20select%2Eform%2Dcontrol%7Bheight%3A56px%3Bline%2Dheight%3A56px%7D%2Eform%2Dgroup%2Dlg%20textarea%2Eform%2Dcontrol%2C%2Eform%2Dgroup%2Dlg%20select%5Bmultiple%5D%2Eform%2Dcontrol%7Bheight%3Aauto%7D%2Eform%2Dgroup%2Dlg%20%2Eform%2Dcontrol%2Dstatic%7Bheight%3A56px%3Bmin%2Dheight%3A40px%3Bpadding%3A15px%2016px%3Bfont%2Dsize%3A19px%3Bline%2Dheight%3A1%2E3333333%7D%2Ehas%2Dfeedback%7Bposition%3Arelative%7D%2Ehas%2Dfeedback%20%2Eform%2Dcontrol%7Bpadding%2Dright%3A48%2E75px%7D%2Eform%2Dcontrol%2Dfeedback%7Bposition%3Aabsolute%3Btop%3A0%3Bright%3A0%3Bz%2Dindex%3A2%3Bdisplay%3Ablock%3Bwidth%3A39px%3Bheight%3A39px%3Bline%2Dheight%3A39px%3Btext%2Dalign%3Acenter%3Bpointer%2Devents%3Anone%7D%2Einput%2Dlg%2B%2Eform%2Dcontrol%2Dfeedback%2C%2Einput%2Dgroup%2Dlg%2B%2Eform%2Dcontrol%2Dfeedback%2C%2Eform%2Dgroup%2Dlg%20%2Eform%2Dcontrol%2B%2Eform%2Dcontrol%2Dfeedback%7Bwidth%3A56px%3Bheight%3A56px%3Bline%2Dheight%3A56px%7D%2Einput%2Dsm%2B%2Eform%2Dcontrol%2Dfeedback%2C%2Einput%2Dgroup%2Dsm%2B%2Eform%2Dcontrol%2Dfeedback%2C%2Eform%2Dgroup%2Dsm%20%2Eform%2Dcontrol%2B%2Eform%2Dcontrol%2Dfeedback%7Bwidth%3A31px%3Bheight%3A31px%3Bline%2Dheight%3A31px%7D%2Ehas%2Dsuccess%20%2Ehelp%2Dblock%2C%2Ehas%2Dsuccess%20%2Econtrol%2Dlabel%2C%2Ehas%2Dsuccess%20%2Eradio%2C%2Ehas%2Dsuccess%20%2Echeckbox%2C%2Ehas%2Dsuccess%20%2Eradio%2Dinline%2C%2Ehas%2Dsuccess%20%2Echeckbox%2Dinline%2C%2Ehas%2Dsuccess%2Eradio%20label%2C%2Ehas%2Dsuccess%2Echeckbox%20label%2C%2Ehas%2Dsuccess%2Eradio%2Dinline%20label%2C%2Ehas%2Dsuccess%2Echeckbox%2Dinline%20label%7Bcolor%3A%23468847%7D%2Ehas%2Dsuccess%20%2Eform%2Dcontrol%7Bborder%2Dcolor%3A%23468847%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%7D%2Ehas%2Dsuccess%20%2Eform%2Dcontrol%3Afocus%7Bborder%2Dcolor%3A%23356635%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%237aba7b%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%237aba7b%7D%2Ehas%2Dsuccess%20%2Einput%2Dgroup%2Daddon%7Bcolor%3A%23468847%3Bborder%2Dcolor%3A%23468847%3Bbackground%2Dcolor%3A%23dff0d8%7D%2Ehas%2Dsuccess%20%2Eform%2Dcontrol%2Dfeedback%7Bcolor%3A%23468847%7D%2Ehas%2Dwarning%20%2Ehelp%2Dblock%2C%2Ehas%2Dwarning%20%2Econtrol%2Dlabel%2C%2Ehas%2Dwarning%20%2Eradio%2C%2Ehas%2Dwarning%20%2Echeckbox%2C%2Ehas%2Dwarning%20%2Eradio%2Dinline%2C%2Ehas%2Dwarning%20%2Echeckbox%2Dinline%2C%2Ehas%2Dwarning%2Eradio%20label%2C%2Ehas%2Dwarning%2Echeckbox%20label%2C%2Ehas%2Dwarning%2Eradio%2Dinline%20label%2C%2Ehas%2Dwarning%2Echeckbox%2Dinline%20label%7Bcolor%3A%23c09853%7D%2Ehas%2Dwarning%20%2Eform%2Dcontrol%7Bborder%2Dcolor%3A%23c09853%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%7D%2Ehas%2Dwarning%20%2Eform%2Dcontrol%3Afocus%7Bborder%2Dcolor%3A%23a47e3c%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%23dbc59e%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%23dbc59e%7D%2Ehas%2Dwarning%20%2Einput%2Dgroup%2Daddon%7Bcolor%3A%23c09853%3Bborder%2Dcolor%3A%23c09853%3Bbackground%2Dcolor%3A%23fcf8e3%7D%2Ehas%2Dwarning%20%2Eform%2Dcontrol%2Dfeedback%7Bcolor%3A%23c09853%7D%2Ehas%2Derror%20%2Ehelp%2Dblock%2C%2Ehas%2Derror%20%2Econtrol%2Dlabel%2C%2Ehas%2Derror%20%2Eradio%2C%2Ehas%2Derror%20%2Echeckbox%2C%2Ehas%2Derror%20%2Eradio%2Dinline%2C%2Ehas%2Derror%20%2Echeckbox%2Dinline%2C%2Ehas%2Derror%2Eradio%20label%2C%2Ehas%2Derror%2Echeckbox%20label%2C%2Ehas%2Derror%2Eradio%2Dinline%20label%2C%2Ehas%2Derror%2Echeckbox%2Dinline%20label%7Bcolor%3A%23b94a48%7D%2Ehas%2Derror%20%2Eform%2Dcontrol%7Bborder%2Dcolor%3A%23b94a48%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%7D%2Ehas%2Derror%20%2Eform%2Dcontrol%3Afocus%7Bborder%2Dcolor%3A%23953b39%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%23d59392%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%23d59392%7D%2Ehas%2Derror%20%2Einput%2Dgroup%2Daddon%7Bcolor%3A%23b94a48%3Bborder%2Dcolor%3A%23b94a48%3Bbackground%2Dcolor%3A%23f2dede%7D%2Ehas%2Derror%20%2Eform%2Dcontrol%2Dfeedback%7Bcolor%3A%23b94a48%7D%2Ehas%2Dfeedback%20label%7E%2Eform%2Dcontrol%2Dfeedback%7Btop%3A26px%7D%2Ehas%2Dfeedback%20label%2Esr%2Donly%7E%2Eform%2Dcontrol%2Dfeedback%7Btop%3A0%7D%2Ehelp%2Dblock%7Bdisplay%3Ablock%3Bmargin%2Dtop%3A5px%3Bmargin%2Dbottom%3A10px%3Bcolor%3A%23b7b7b7%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Eform%2Dinline%20%2Eform%2Dgroup%7Bdisplay%3Ainline%2Dblock%3Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Eform%2Dinline%20%2Eform%2Dcontrol%7Bdisplay%3Ainline%2Dblock%3Bwidth%3Aauto%3Bvertical%2Dalign%3Amiddle%7D%2Eform%2Dinline%20%2Eform%2Dcontrol%2Dstatic%7Bdisplay%3Ainline%2Dblock%7D%2Eform%2Dinline%20%2Einput%2Dgroup%7Bdisplay%3Ainline%2Dtable%3Bvertical%2Dalign%3Amiddle%7D%2Eform%2Dinline%20%2Einput%2Dgroup%20%2Einput%2Dgroup%2Daddon%2C%2Eform%2Dinline%20%2Einput%2Dgroup%20%2Einput%2Dgroup%2Dbtn%2C%2Eform%2Dinline%20%2Einput%2Dgroup%20%2Eform%2Dcontrol%7Bwidth%3Aauto%7D%2Eform%2Dinline%20%2Einput%2Dgroup%3E%2Eform%2Dcontrol%7Bwidth%3A100%25%7D%2Eform%2Dinline%20%2Econtrol%2Dlabel%7Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Eform%2Dinline%20%2Eradio%2C%2Eform%2Dinline%20%2Echeckbox%7Bdisplay%3Ainline%2Dblock%3Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Eform%2Dinline%20%2Eradio%20label%2C%2Eform%2Dinline%20%2Echeckbox%20label%7Bpadding%2Dleft%3A0%7D%2Eform%2Dinline%20%2Eradio%20input%5Btype%3D%22radio%22%5D%2C%2Eform%2Dinline%20%2Echeckbox%20input%5Btype%3D%22checkbox%22%5D%7Bposition%3Arelative%3Bmargin%2Dleft%3A0%7D%2Eform%2Dinline%20%2Ehas%2Dfeedback%20%2Eform%2Dcontrol%2Dfeedback%7Btop%3A0%7D%7D%2Eform%2Dhorizontal%20%2Eradio%2C%2Eform%2Dhorizontal%20%2Echeckbox%2C%2Eform%2Dhorizontal%20%2Eradio%2Dinline%2C%2Eform%2Dhorizontal%20%2Echeckbox%2Dinline%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A0%3Bpadding%2Dtop%3A9px%7D%2Eform%2Dhorizontal%20%2Eradio%2C%2Eform%2Dhorizontal%20%2Echeckbox%7Bmin%2Dheight%3A30px%7D%2Eform%2Dhorizontal%20%2Eform%2Dgroup%7Bmargin%2Dleft%3A%2D15px%3Bmargin%2Dright%3A%2D15px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Eform%2Dhorizontal%20%2Econtrol%2Dlabel%7Btext%2Dalign%3Aright%3Bmargin%2Dbottom%3A0%3Bpadding%2Dtop%3A9px%7D%7D%2Eform%2Dhorizontal%20%2Ehas%2Dfeedback%20%2Eform%2Dcontrol%2Dfeedback%7Bright%3A15px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Eform%2Dhorizontal%20%2Eform%2Dgroup%2Dlg%20%2Econtrol%2Dlabel%7Bpadding%2Dtop%3A15px%3Bfont%2Dsize%3A19px%7D%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Eform%2Dhorizontal%20%2Eform%2Dgroup%2Dsm%20%2Econtrol%2Dlabel%7Bpadding%2Dtop%3A6px%3Bfont%2Dsize%3A13px%7D%7D%2Ebtn%7Bdisplay%3Ainline%2Dblock%3Bmargin%2Dbottom%3A0%3Bfont%2Dweight%3Anormal%3Btext%2Dalign%3Acenter%3Bvertical%2Dalign%3Amiddle%3B%2Dms%2Dtouch%2Daction%3Amanipulation%3Btouch%2Daction%3Amanipulation%3Bcursor%3Apointer%3Bbackground%2Dimage%3Anone%3Bborder%3A1px%20solid%20transparent%3Bwhite%2Dspace%3Anowrap%3Bpadding%3A8px%2012px%3Bfont%2Dsize%3A15px%3Bline%2Dheight%3A1%2E42857143%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Duser%2Dselect%3Anone%3B%2Dmoz%2Duser%2Dselect%3Anone%3B%2Dms%2Duser%2Dselect%3Anone%3Buser%2Dselect%3Anone%7D%2Ebtn%3Afocus%2C%2Ebtn%3Aactive%3Afocus%2C%2Ebtn%2Eactive%3Afocus%2C%2Ebtn%2Efocus%2C%2Ebtn%3Aactive%2Efocus%2C%2Ebtn%2Eactive%2Efocus%7Boutline%3Athin%20dotted%3Boutline%3A5px%20auto%20%2Dwebkit%2Dfocus%2Dring%2Dcolor%3Boutline%2Doffset%3A%2D2px%7D%2Ebtn%3Ahover%2C%2Ebtn%3Afocus%2C%2Ebtn%2Efocus%7Bcolor%3A%23ffffff%3Btext%2Ddecoration%3Anone%7D%2Ebtn%3Aactive%2C%2Ebtn%2Eactive%7Boutline%3A0%3Bbackground%2Dimage%3Anone%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%203px%205px%20rgba%280%2C0%2C0%2C0%2E125%29%3Bbox%2Dshadow%3Ainset%200%203px%205px%20rgba%280%2C0%2C0%2C0%2E125%29%7D%2Ebtn%2Edisabled%2C%2Ebtn%5Bdisabled%5D%2Cfieldset%5Bdisabled%5D%20%2Ebtn%7Bcursor%3Anot%2Dallowed%3Bopacity%3A0%2E65%3Bfilter%3Aalpha%28opacity%3D65%29%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7Da%2Ebtn%2Edisabled%2Cfieldset%5Bdisabled%5D%20a%2Ebtn%7Bpointer%2Devents%3Anone%7D%2Ebtn%2Ddefault%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23999999%3Bborder%2Dcolor%3A%23999999%7D%2Ebtn%2Ddefault%3Afocus%2C%2Ebtn%2Ddefault%2Efocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23808080%3Bborder%2Dcolor%3A%23595959%7D%2Ebtn%2Ddefault%3Ahover%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23808080%3Bborder%2Dcolor%3A%237a7a7a%7D%2Ebtn%2Ddefault%3Aactive%2C%2Ebtn%2Ddefault%2Eactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddefault%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23808080%3Bborder%2Dcolor%3A%237a7a7a%7D%2Ebtn%2Ddefault%3Aactive%3Ahover%2C%2Ebtn%2Ddefault%2Eactive%3Ahover%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddefault%3Ahover%2C%2Ebtn%2Ddefault%3Aactive%3Afocus%2C%2Ebtn%2Ddefault%2Eactive%3Afocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddefault%3Afocus%2C%2Ebtn%2Ddefault%3Aactive%2Efocus%2C%2Ebtn%2Ddefault%2Eactive%2Efocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddefault%2Efocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%236e6e6e%3Bborder%2Dcolor%3A%23595959%7D%2Ebtn%2Ddefault%3Aactive%2C%2Ebtn%2Ddefault%2Eactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddefault%7Bbackground%2Dimage%3Anone%7D%2Ebtn%2Ddefault%2Edisabled%3Ahover%2C%2Ebtn%2Ddefault%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddefault%3Ahover%2C%2Ebtn%2Ddefault%2Edisabled%3Afocus%2C%2Ebtn%2Ddefault%5Bdisabled%5D%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddefault%3Afocus%2C%2Ebtn%2Ddefault%2Edisabled%2Efocus%2C%2Ebtn%2Ddefault%5Bdisabled%5D%2Efocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddefault%2Efocus%7Bbackground%2Dcolor%3A%23999999%3Bborder%2Dcolor%3A%23999999%7D%2Ebtn%2Ddefault%20%2Ebadge%7Bcolor%3A%23999999%3Bbackground%2Dcolor%3A%23ffffff%7D%2Ebtn%2Dprimary%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23eb6864%3Bborder%2Dcolor%3A%23eb6864%7D%2Ebtn%2Dprimary%3Afocus%2C%2Ebtn%2Dprimary%2Efocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23e53c37%3Bborder%2Dcolor%3A%23b81c18%7D%2Ebtn%2Dprimary%3Ahover%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23e53c37%3Bborder%2Dcolor%3A%23e4332e%7D%2Ebtn%2Dprimary%3Aactive%2C%2Ebtn%2Dprimary%2Eactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dprimary%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23e53c37%3Bborder%2Dcolor%3A%23e4332e%7D%2Ebtn%2Dprimary%3Aactive%3Ahover%2C%2Ebtn%2Dprimary%2Eactive%3Ahover%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dprimary%3Ahover%2C%2Ebtn%2Dprimary%3Aactive%3Afocus%2C%2Ebtn%2Dprimary%2Eactive%3Afocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dprimary%3Afocus%2C%2Ebtn%2Dprimary%3Aactive%2Efocus%2C%2Ebtn%2Dprimary%2Eactive%2Efocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dprimary%2Efocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23dc221c%3Bborder%2Dcolor%3A%23b81c18%7D%2Ebtn%2Dprimary%3Aactive%2C%2Ebtn%2Dprimary%2Eactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dprimary%7Bbackground%2Dimage%3Anone%7D%2Ebtn%2Dprimary%2Edisabled%3Ahover%2C%2Ebtn%2Dprimary%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dprimary%3Ahover%2C%2Ebtn%2Dprimary%2Edisabled%3Afocus%2C%2Ebtn%2Dprimary%5Bdisabled%5D%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dprimary%3Afocus%2C%2Ebtn%2Dprimary%2Edisabled%2Efocus%2C%2Ebtn%2Dprimary%5Bdisabled%5D%2Efocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dprimary%2Efocus%7Bbackground%2Dcolor%3A%23eb6864%3Bborder%2Dcolor%3A%23eb6864%7D%2Ebtn%2Dprimary%20%2Ebadge%7Bcolor%3A%23eb6864%3Bbackground%2Dcolor%3A%23ffffff%7D%2Ebtn%2Dsuccess%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%2322b24c%3Bborder%2Dcolor%3A%2322b24c%7D%2Ebtn%2Dsuccess%3Afocus%2C%2Ebtn%2Dsuccess%2Efocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%231a873a%3Bborder%2Dcolor%3A%230e471e%7D%2Ebtn%2Dsuccess%3Ahover%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%231a873a%3Bborder%2Dcolor%3A%23187f36%7D%2Ebtn%2Dsuccess%3Aactive%2C%2Ebtn%2Dsuccess%2Eactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dsuccess%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%231a873a%3Bborder%2Dcolor%3A%23187f36%7D%2Ebtn%2Dsuccess%3Aactive%3Ahover%2C%2Ebtn%2Dsuccess%2Eactive%3Ahover%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dsuccess%3Ahover%2C%2Ebtn%2Dsuccess%3Aactive%3Afocus%2C%2Ebtn%2Dsuccess%2Eactive%3Afocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dsuccess%3Afocus%2C%2Ebtn%2Dsuccess%3Aactive%2Efocus%2C%2Ebtn%2Dsuccess%2Eactive%2Efocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dsuccess%2Efocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%2314692d%3Bborder%2Dcolor%3A%230e471e%7D%2Ebtn%2Dsuccess%3Aactive%2C%2Ebtn%2Dsuccess%2Eactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dsuccess%7Bbackground%2Dimage%3Anone%7D%2Ebtn%2Dsuccess%2Edisabled%3Ahover%2C%2Ebtn%2Dsuccess%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dsuccess%3Ahover%2C%2Ebtn%2Dsuccess%2Edisabled%3Afocus%2C%2Ebtn%2Dsuccess%5Bdisabled%5D%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dsuccess%3Afocus%2C%2Ebtn%2Dsuccess%2Edisabled%2Efocus%2C%2Ebtn%2Dsuccess%5Bdisabled%5D%2Efocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dsuccess%2Efocus%7Bbackground%2Dcolor%3A%2322b24c%3Bborder%2Dcolor%3A%2322b24c%7D%2Ebtn%2Dsuccess%20%2Ebadge%7Bcolor%3A%2322b24c%3Bbackground%2Dcolor%3A%23ffffff%7D%2Ebtn%2Dinfo%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23336699%3Bborder%2Dcolor%3A%23336699%7D%2Ebtn%2Dinfo%3Afocus%2C%2Ebtn%2Dinfo%2Efocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23264c73%3Bborder%2Dcolor%3A%23132639%7D%2Ebtn%2Dinfo%3Ahover%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23264c73%3Bborder%2Dcolor%3A%2324476b%7D%2Ebtn%2Dinfo%3Aactive%2C%2Ebtn%2Dinfo%2Eactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dinfo%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23264c73%3Bborder%2Dcolor%3A%2324476b%7D%2Ebtn%2Dinfo%3Aactive%3Ahover%2C%2Ebtn%2Dinfo%2Eactive%3Ahover%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dinfo%3Ahover%2C%2Ebtn%2Dinfo%3Aactive%3Afocus%2C%2Ebtn%2Dinfo%2Eactive%3Afocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dinfo%3Afocus%2C%2Ebtn%2Dinfo%3Aactive%2Efocus%2C%2Ebtn%2Dinfo%2Eactive%2Efocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dinfo%2Efocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%231d3b58%3Bborder%2Dcolor%3A%23132639%7D%2Ebtn%2Dinfo%3Aactive%2C%2Ebtn%2Dinfo%2Eactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dinfo%7Bbackground%2Dimage%3Anone%7D%2Ebtn%2Dinfo%2Edisabled%3Ahover%2C%2Ebtn%2Dinfo%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dinfo%3Ahover%2C%2Ebtn%2Dinfo%2Edisabled%3Afocus%2C%2Ebtn%2Dinfo%5Bdisabled%5D%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dinfo%3Afocus%2C%2Ebtn%2Dinfo%2Edisabled%2Efocus%2C%2Ebtn%2Dinfo%5Bdisabled%5D%2Efocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dinfo%2Efocus%7Bbackground%2Dcolor%3A%23336699%3Bborder%2Dcolor%3A%23336699%7D%2Ebtn%2Dinfo%20%2Ebadge%7Bcolor%3A%23336699%3Bbackground%2Dcolor%3A%23ffffff%7D%2Ebtn%2Dwarning%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23f5e625%3Bborder%2Dcolor%3A%23f5e625%7D%2Ebtn%2Dwarning%3Afocus%2C%2Ebtn%2Dwarning%2Efocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23ddce0a%3Bborder%2Dcolor%3A%23948a07%7D%2Ebtn%2Dwarning%3Ahover%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23ddce0a%3Bborder%2Dcolor%3A%23d3c50a%7D%2Ebtn%2Dwarning%3Aactive%2C%2Ebtn%2Dwarning%2Eactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dwarning%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23ddce0a%3Bborder%2Dcolor%3A%23d3c50a%7D%2Ebtn%2Dwarning%3Aactive%3Ahover%2C%2Ebtn%2Dwarning%2Eactive%3Ahover%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dwarning%3Ahover%2C%2Ebtn%2Dwarning%3Aactive%3Afocus%2C%2Ebtn%2Dwarning%2Eactive%3Afocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dwarning%3Afocus%2C%2Ebtn%2Dwarning%3Aactive%2Efocus%2C%2Ebtn%2Dwarning%2Eactive%2Efocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dwarning%2Efocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23bbae09%3Bborder%2Dcolor%3A%23948a07%7D%2Ebtn%2Dwarning%3Aactive%2C%2Ebtn%2Dwarning%2Eactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dwarning%7Bbackground%2Dimage%3Anone%7D%2Ebtn%2Dwarning%2Edisabled%3Ahover%2C%2Ebtn%2Dwarning%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dwarning%3Ahover%2C%2Ebtn%2Dwarning%2Edisabled%3Afocus%2C%2Ebtn%2Dwarning%5Bdisabled%5D%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dwarning%3Afocus%2C%2Ebtn%2Dwarning%2Edisabled%2Efocus%2C%2Ebtn%2Dwarning%5Bdisabled%5D%2Efocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dwarning%2Efocus%7Bbackground%2Dcolor%3A%23f5e625%3Bborder%2Dcolor%3A%23f5e625%7D%2Ebtn%2Dwarning%20%2Ebadge%7Bcolor%3A%23f5e625%3Bbackground%2Dcolor%3A%23ffffff%7D%2Ebtn%2Ddanger%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23f57a00%3Bborder%2Dcolor%3A%23f57a00%7D%2Ebtn%2Ddanger%3Afocus%2C%2Ebtn%2Ddanger%2Efocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23c26100%3Bborder%2Dcolor%3A%23763b00%7D%2Ebtn%2Ddanger%3Ahover%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23c26100%3Bborder%2Dcolor%3A%23b85c00%7D%2Ebtn%2Ddanger%3Aactive%2C%2Ebtn%2Ddanger%2Eactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddanger%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23c26100%3Bborder%2Dcolor%3A%23b85c00%7D%2Ebtn%2Ddanger%3Aactive%3Ahover%2C%2Ebtn%2Ddanger%2Eactive%3Ahover%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddanger%3Ahover%2C%2Ebtn%2Ddanger%3Aactive%3Afocus%2C%2Ebtn%2Ddanger%2Eactive%3Afocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddanger%3Afocus%2C%2Ebtn%2Ddanger%3Aactive%2Efocus%2C%2Ebtn%2Ddanger%2Eactive%2Efocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddanger%2Efocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%239e4f00%3Bborder%2Dcolor%3A%23763b00%7D%2Ebtn%2Ddanger%3Aactive%2C%2Ebtn%2Ddanger%2Eactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddanger%7Bbackground%2Dimage%3Anone%7D%2Ebtn%2Ddanger%2Edisabled%3Ahover%2C%2Ebtn%2Ddanger%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddanger%3Ahover%2C%2Ebtn%2Ddanger%2Edisabled%3Afocus%2C%2Ebtn%2Ddanger%5Bdisabled%5D%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddanger%3Afocus%2C%2Ebtn%2Ddanger%2Edisabled%2Efocus%2C%2Ebtn%2Ddanger%5Bdisabled%5D%2Efocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddanger%2Efocus%7Bbackground%2Dcolor%3A%23f57a00%3Bborder%2Dcolor%3A%23f57a00%7D%2Ebtn%2Ddanger%20%2Ebadge%7Bcolor%3A%23f57a00%3Bbackground%2Dcolor%3A%23ffffff%7D%2Ebtn%2Dlink%7Bcolor%3A%23eb6864%3Bfont%2Dweight%3Anormal%3Bborder%2Dradius%3A0%7D%2Ebtn%2Dlink%2C%2Ebtn%2Dlink%3Aactive%2C%2Ebtn%2Dlink%2Eactive%2C%2Ebtn%2Dlink%5Bdisabled%5D%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dlink%7Bbackground%2Dcolor%3Atransparent%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%2Ebtn%2Dlink%2C%2Ebtn%2Dlink%3Ahover%2C%2Ebtn%2Dlink%3Afocus%2C%2Ebtn%2Dlink%3Aactive%7Bborder%2Dcolor%3Atransparent%7D%2Ebtn%2Dlink%3Ahover%2C%2Ebtn%2Dlink%3Afocus%7Bcolor%3A%23e22620%3Btext%2Ddecoration%3Aunderline%3Bbackground%2Dcolor%3Atransparent%7D%2Ebtn%2Dlink%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dlink%3Ahover%2C%2Ebtn%2Dlink%5Bdisabled%5D%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dlink%3Afocus%7Bcolor%3A%23999999%3Btext%2Ddecoration%3Anone%7D%2Ebtn%2Dlg%2C%2Ebtn%2Dgroup%2Dlg%3E%2Ebtn%7Bpadding%3A14px%2016px%3Bfont%2Dsize%3A19px%3Bline%2Dheight%3A1%2E3333333%3Bborder%2Dradius%3A6px%7D%2Ebtn%2Dsm%2C%2Ebtn%2Dgroup%2Dsm%3E%2Ebtn%7Bpadding%3A5px%2010px%3Bfont%2Dsize%3A13px%3Bline%2Dheight%3A1%2E5%3Bborder%2Dradius%3A3px%7D%2Ebtn%2Dxs%2C%2Ebtn%2Dgroup%2Dxs%3E%2Ebtn%7Bpadding%3A1px%205px%3Bfont%2Dsize%3A13px%3Bline%2Dheight%3A1%2E5%3Bborder%2Dradius%3A3px%7D%2Ebtn%2Dblock%7Bdisplay%3Ablock%3Bwidth%3A100%25%7D%2Ebtn%2Dblock%2B%2Ebtn%2Dblock%7Bmargin%2Dtop%3A5px%7Dinput%5Btype%3D%22submit%22%5D%2Ebtn%2Dblock%2Cinput%5Btype%3D%22reset%22%5D%2Ebtn%2Dblock%2Cinput%5Btype%3D%22button%22%5D%2Ebtn%2Dblock%7Bwidth%3A100%25%7D%2Efade%7Bopacity%3A0%3B%2Dwebkit%2Dtransition%3Aopacity%200%2E15s%20linear%3B%2Do%2Dtransition%3Aopacity%200%2E15s%20linear%3Btransition%3Aopacity%200%2E15s%20linear%7D%2Efade%2Ein%7Bopacity%3A1%7D%2Ecollapse%7Bdisplay%3Anone%7D%2Ecollapse%2Ein%7Bdisplay%3Ablock%7Dtr%2Ecollapse%2Ein%7Bdisplay%3Atable%2Drow%7Dtbody%2Ecollapse%2Ein%7Bdisplay%3Atable%2Drow%2Dgroup%7D%2Ecollapsing%7Bposition%3Arelative%3Bheight%3A0%3Boverflow%3Ahidden%3B%2Dwebkit%2Dtransition%2Dproperty%3Aheight%2C%20visibility%3B%2Do%2Dtransition%2Dproperty%3Aheight%2C%20visibility%3Btransition%2Dproperty%3Aheight%2C%20visibility%3B%2Dwebkit%2Dtransition%2Dduration%3A0%2E35s%3B%2Do%2Dtransition%2Dduration%3A0%2E35s%3Btransition%2Dduration%3A0%2E35s%3B%2Dwebkit%2Dtransition%2Dtiming%2Dfunction%3Aease%3B%2Do%2Dtransition%2Dtiming%2Dfunction%3Aease%3Btransition%2Dtiming%2Dfunction%3Aease%7D%2Ecaret%7Bdisplay%3Ainline%2Dblock%3Bwidth%3A0%3Bheight%3A0%3Bmargin%2Dleft%3A2px%3Bvertical%2Dalign%3Amiddle%3Bborder%2Dtop%3A4px%20dashed%3Bborder%2Dtop%3A4px%20solid%20%5C9%3Bborder%2Dright%3A4px%20solid%20transparent%3Bborder%2Dleft%3A4px%20solid%20transparent%7D%2Edropup%2C%2Edropdown%7Bposition%3Arelative%7D%2Edropdown%2Dtoggle%3Afocus%7Boutline%3A0%7D%2Edropdown%2Dmenu%7Bposition%3Aabsolute%3Btop%3A100%25%3Bleft%3A0%3Bz%2Dindex%3A1000%3Bdisplay%3Anone%3Bfloat%3Aleft%3Bmin%2Dwidth%3A160px%3Bpadding%3A5px%200%3Bmargin%3A2px%200%200%3Blist%2Dstyle%3Anone%3Bfont%2Dsize%3A15px%3Btext%2Dalign%3Aleft%3Bbackground%2Dcolor%3A%23ffffff%3Bborder%3A1px%20solid%20%23cccccc%3Bborder%3A1px%20solid%20rgba%280%2C0%2C0%2C0%2E15%29%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dbox%2Dshadow%3A0%206px%2012px%20rgba%280%2C0%2C0%2C0%2E175%29%3Bbox%2Dshadow%3A0%206px%2012px%20rgba%280%2C0%2C0%2C0%2E175%29%3B%2Dwebkit%2Dbackground%2Dclip%3Apadding%2Dbox%3Bbackground%2Dclip%3Apadding%2Dbox%7D%2Edropdown%2Dmenu%2Epull%2Dright%7Bright%3A0%3Bleft%3Aauto%7D%2Edropdown%2Dmenu%20%2Edivider%7Bheight%3A1px%3Bmargin%3A9%2E5px%200%3Boverflow%3Ahidden%3Bbackground%2Dcolor%3A%23e5e5e5%7D%2Edropdown%2Dmenu%3Eli%3Ea%7Bdisplay%3Ablock%3Bpadding%3A3px%2020px%3Bclear%3Aboth%3Bfont%2Dweight%3Anormal%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23333333%3Bwhite%2Dspace%3Anowrap%7D%2Edropdown%2Dmenu%3Eli%3Ea%3Ahover%2C%2Edropdown%2Dmenu%3Eli%3Ea%3Afocus%7Btext%2Ddecoration%3Anone%3Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23eb6864%7D%2Edropdown%2Dmenu%3E%2Eactive%3Ea%2C%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Ahover%2C%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Afocus%7Bcolor%3A%23ffffff%3Btext%2Ddecoration%3Anone%3Boutline%3A0%3Bbackground%2Dcolor%3A%23eb6864%7D%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%2C%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Ahover%2C%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Afocus%7Bcolor%3A%23999999%7D%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Ahover%2C%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Afocus%7Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3Atransparent%3Bbackground%2Dimage%3Anone%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28enabled%3Dfalse%29%3Bcursor%3Anot%2Dallowed%7D%2Eopen%3E%2Edropdown%2Dmenu%7Bdisplay%3Ablock%7D%2Eopen%3Ea%7Boutline%3A0%7D%2Edropdown%2Dmenu%2Dright%7Bleft%3Aauto%3Bright%3A0%7D%2Edropdown%2Dmenu%2Dleft%7Bleft%3A0%3Bright%3Aauto%7D%2Edropdown%2Dheader%7Bdisplay%3Ablock%3Bpadding%3A3px%2020px%3Bfont%2Dsize%3A13px%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23999999%3Bwhite%2Dspace%3Anowrap%7D%2Edropdown%2Dbackdrop%7Bposition%3Afixed%3Bleft%3A0%3Bright%3A0%3Bbottom%3A0%3Btop%3A0%3Bz%2Dindex%3A990%7D%2Epull%2Dright%3E%2Edropdown%2Dmenu%7Bright%3A0%3Bleft%3Aauto%7D%2Edropup%20%2Ecaret%2C%2Enavbar%2Dfixed%2Dbottom%20%2Edropdown%20%2Ecaret%7Bborder%2Dtop%3A0%3Bborder%2Dbottom%3A4px%20dashed%3Bborder%2Dbottom%3A4px%20solid%20%5C9%3Bcontent%3A%22%22%7D%2Edropup%20%2Edropdown%2Dmenu%2C%2Enavbar%2Dfixed%2Dbottom%20%2Edropdown%20%2Edropdown%2Dmenu%7Btop%3Aauto%3Bbottom%3A100%25%3Bmargin%2Dbottom%3A2px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dright%20%2Edropdown%2Dmenu%7Bleft%3Aauto%3Bright%3A0%7D%2Enavbar%2Dright%20%2Edropdown%2Dmenu%2Dleft%7Bleft%3A0%3Bright%3Aauto%7D%7D%2Ebtn%2Dgroup%2C%2Ebtn%2Dgroup%2Dvertical%7Bposition%3Arelative%3Bdisplay%3Ainline%2Dblock%3Bvertical%2Dalign%3Amiddle%7D%2Ebtn%2Dgroup%3E%2Ebtn%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%7Bposition%3Arelative%3Bfloat%3Aleft%7D%2Ebtn%2Dgroup%3E%2Ebtn%3Ahover%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Ahover%2C%2Ebtn%2Dgroup%3E%2Ebtn%3Afocus%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Afocus%2C%2Ebtn%2Dgroup%3E%2Ebtn%3Aactive%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Aactive%2C%2Ebtn%2Dgroup%3E%2Ebtn%2Eactive%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Eactive%7Bz%2Dindex%3A2%7D%2Ebtn%2Dgroup%20%2Ebtn%2B%2Ebtn%2C%2Ebtn%2Dgroup%20%2Ebtn%2B%2Ebtn%2Dgroup%2C%2Ebtn%2Dgroup%20%2Ebtn%2Dgroup%2B%2Ebtn%2C%2Ebtn%2Dgroup%20%2Ebtn%2Dgroup%2B%2Ebtn%2Dgroup%7Bmargin%2Dleft%3A%2D1px%7D%2Ebtn%2Dtoolbar%7Bmargin%2Dleft%3A%2D5px%7D%2Ebtn%2Dtoolbar%20%2Ebtn%2C%2Ebtn%2Dtoolbar%20%2Ebtn%2Dgroup%2C%2Ebtn%2Dtoolbar%20%2Einput%2Dgroup%7Bfloat%3Aleft%7D%2Ebtn%2Dtoolbar%3E%2Ebtn%2C%2Ebtn%2Dtoolbar%3E%2Ebtn%2Dgroup%2C%2Ebtn%2Dtoolbar%3E%2Einput%2Dgroup%7Bmargin%2Dleft%3A5px%7D%2Ebtn%2Dgroup%3E%2Ebtn%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%3Anot%28%2Edropdown%2Dtoggle%29%7Bborder%2Dradius%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%3Afirst%2Dchild%7Bmargin%2Dleft%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%3Afirst%2Dchild%3Anot%28%3Alast%2Dchild%29%3Anot%28%2Edropdown%2Dtoggle%29%7Bborder%2Dbottom%2Dright%2Dradius%3A0%3Bborder%2Dtop%2Dright%2Dradius%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%3Alast%2Dchild%3Anot%28%3Afirst%2Dchild%29%2C%2Ebtn%2Dgroup%3E%2Edropdown%2Dtoggle%3Anot%28%3Afirst%2Dchild%29%7Bborder%2Dbottom%2Dleft%2Dradius%3A0%3Bborder%2Dtop%2Dleft%2Dradius%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dgroup%7Bfloat%3Aleft%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dgroup%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%3E%2Ebtn%7Bborder%2Dradius%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dgroup%3Afirst%2Dchild%3Anot%28%3Alast%2Dchild%29%3E%2Ebtn%3Alast%2Dchild%2C%2Ebtn%2Dgroup%3E%2Ebtn%2Dgroup%3Afirst%2Dchild%3Anot%28%3Alast%2Dchild%29%3E%2Edropdown%2Dtoggle%7Bborder%2Dbottom%2Dright%2Dradius%3A0%3Bborder%2Dtop%2Dright%2Dradius%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dgroup%3Alast%2Dchild%3Anot%28%3Afirst%2Dchild%29%3E%2Ebtn%3Afirst%2Dchild%7Bborder%2Dbottom%2Dleft%2Dradius%3A0%3Bborder%2Dtop%2Dleft%2Dradius%3A0%7D%2Ebtn%2Dgroup%20%2Edropdown%2Dtoggle%3Aactive%2C%2Ebtn%2Dgroup%2Eopen%20%2Edropdown%2Dtoggle%7Boutline%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%2B%2Edropdown%2Dtoggle%7Bpadding%2Dleft%3A8px%3Bpadding%2Dright%3A8px%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dlg%2B%2Edropdown%2Dtoggle%7Bpadding%2Dleft%3A12px%3Bpadding%2Dright%3A12px%7D%2Ebtn%2Dgroup%2Eopen%20%2Edropdown%2Dtoggle%7B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%203px%205px%20rgba%280%2C0%2C0%2C0%2E125%29%3Bbox%2Dshadow%3Ainset%200%203px%205px%20rgba%280%2C0%2C0%2C0%2E125%29%7D%2Ebtn%2Dgroup%2Eopen%20%2Edropdown%2Dtoggle%2Ebtn%2Dlink%7B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%2Ebtn%20%2Ecaret%7Bmargin%2Dleft%3A0%7D%2Ebtn%2Dlg%20%2Ecaret%7Bborder%2Dwidth%3A5px%205px%200%3Bborder%2Dbottom%2Dwidth%3A0%7D%2Edropup%20%2Ebtn%2Dlg%20%2Ecaret%7Bborder%2Dwidth%3A0%205px%205px%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3E%2Ebtn%7Bdisplay%3Ablock%3Bfloat%3Anone%3Bwidth%3A100%25%3Bmax%2Dwidth%3A100%25%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3E%2Ebtn%7Bfloat%3Anone%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2B%2Ebtn%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2B%2Ebtn%2Dgroup%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%2B%2Ebtn%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%2B%2Ebtn%2Dgroup%7Bmargin%2Dtop%3A%2D1px%3Bmargin%2Dleft%3A0%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%7Bborder%2Dradius%3A0%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Afirst%2Dchild%3Anot%28%3Alast%2Dchild%29%7Bborder%2Dtop%2Dright%2Dradius%3A4px%3Bborder%2Dtop%2Dleft%2Dradius%3A4px%3Bborder%2Dbottom%2Dright%2Dradius%3A0%3Bborder%2Dbottom%2Dleft%2Dradius%3A0%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Alast%2Dchild%3Anot%28%3Afirst%2Dchild%29%7Bborder%2Dtop%2Dright%2Dradius%3A0%3Bborder%2Dtop%2Dleft%2Dradius%3A0%3Bborder%2Dbottom%2Dright%2Dradius%3A4px%3Bborder%2Dbottom%2Dleft%2Dradius%3A4px%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%3E%2Ebtn%7Bborder%2Dradius%3A0%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Afirst%2Dchild%3Anot%28%3Alast%2Dchild%29%3E%2Ebtn%3Alast%2Dchild%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Afirst%2Dchild%3Anot%28%3Alast%2Dchild%29%3E%2Edropdown%2Dtoggle%7Bborder%2Dbottom%2Dright%2Dradius%3A0%3Bborder%2Dbottom%2Dleft%2Dradius%3A0%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Alast%2Dchild%3Anot%28%3Afirst%2Dchild%29%3E%2Ebtn%3Afirst%2Dchild%7Bborder%2Dtop%2Dright%2Dradius%3A0%3Bborder%2Dtop%2Dleft%2Dradius%3A0%7D%2Ebtn%2Dgroup%2Djustified%7Bdisplay%3Atable%3Bwidth%3A100%25%3Btable%2Dlayout%3Afixed%3Bborder%2Dcollapse%3Aseparate%7D%2Ebtn%2Dgroup%2Djustified%3E%2Ebtn%2C%2Ebtn%2Dgroup%2Djustified%3E%2Ebtn%2Dgroup%7Bfloat%3Anone%3Bdisplay%3Atable%2Dcell%3Bwidth%3A1%25%7D%2Ebtn%2Dgroup%2Djustified%3E%2Ebtn%2Dgroup%20%2Ebtn%7Bwidth%3A100%25%7D%2Ebtn%2Dgroup%2Djustified%3E%2Ebtn%2Dgroup%20%2Edropdown%2Dmenu%7Bleft%3Aauto%7D%5Bdata%2Dtoggle%3D%22buttons%22%5D%3E%2Ebtn%20input%5Btype%3D%22radio%22%5D%2C%5Bdata%2Dtoggle%3D%22buttons%22%5D%3E%2Ebtn%2Dgroup%3E%2Ebtn%20input%5Btype%3D%22radio%22%5D%2C%5Bdata%2Dtoggle%3D%22buttons%22%5D%3E%2Ebtn%20input%5Btype%3D%22checkbox%22%5D%2C%5Bdata%2Dtoggle%3D%22buttons%22%5D%3E%2Ebtn%2Dgroup%3E%2Ebtn%20input%5Btype%3D%22checkbox%22%5D%7Bposition%3Aabsolute%3Bclip%3Arect%280%2C%200%2C%200%2C%200%29%3Bpointer%2Devents%3Anone%7D%2Einput%2Dgroup%7Bposition%3Arelative%3Bdisplay%3Atable%3Bborder%2Dcollapse%3Aseparate%7D%2Einput%2Dgroup%5Bclass%2A%3D%22col%2D%22%5D%7Bfloat%3Anone%3Bpadding%2Dleft%3A0%3Bpadding%2Dright%3A0%7D%2Einput%2Dgroup%20%2Eform%2Dcontrol%7Bposition%3Arelative%3Bz%2Dindex%3A2%3Bfloat%3Aleft%3Bwidth%3A100%25%3Bmargin%2Dbottom%3A0%7D%2Einput%2Dgroup%20%2Eform%2Dcontrol%3Afocus%7Bz%2Dindex%3A3%7D%2Einput%2Dgroup%2Dlg%3E%2Eform%2Dcontrol%2C%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Daddon%2C%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bheight%3A56px%3Bpadding%3A14px%2016px%3Bfont%2Dsize%3A19px%3Bline%2Dheight%3A1%2E3333333%3Bborder%2Dradius%3A6px%7Dselect%2Einput%2Dgroup%2Dlg%3E%2Eform%2Dcontrol%2Cselect%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Daddon%2Cselect%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bheight%3A56px%3Bline%2Dheight%3A56px%7Dtextarea%2Einput%2Dgroup%2Dlg%3E%2Eform%2Dcontrol%2Ctextarea%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Daddon%2Ctextarea%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%2Cselect%5Bmultiple%5D%2Einput%2Dgroup%2Dlg%3E%2Eform%2Dcontrol%2Cselect%5Bmultiple%5D%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Daddon%2Cselect%5Bmultiple%5D%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bheight%3Aauto%7D%2Einput%2Dgroup%2Dsm%3E%2Eform%2Dcontrol%2C%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Daddon%2C%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bheight%3A31px%3Bpadding%3A5px%2010px%3Bfont%2Dsize%3A13px%3Bline%2Dheight%3A1%2E5%3Bborder%2Dradius%3A3px%7Dselect%2Einput%2Dgroup%2Dsm%3E%2Eform%2Dcontrol%2Cselect%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Daddon%2Cselect%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bheight%3A31px%3Bline%2Dheight%3A31px%7Dtextarea%2Einput%2Dgroup%2Dsm%3E%2Eform%2Dcontrol%2Ctextarea%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Daddon%2Ctextarea%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%2Cselect%5Bmultiple%5D%2Einput%2Dgroup%2Dsm%3E%2Eform%2Dcontrol%2Cselect%5Bmultiple%5D%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Daddon%2Cselect%5Bmultiple%5D%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bheight%3Aauto%7D%2Einput%2Dgroup%2Daddon%2C%2Einput%2Dgroup%2Dbtn%2C%2Einput%2Dgroup%20%2Eform%2Dcontrol%7Bdisplay%3Atable%2Dcell%7D%2Einput%2Dgroup%2Daddon%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%2C%2Einput%2Dgroup%2Dbtn%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%2C%2Einput%2Dgroup%20%2Eform%2Dcontrol%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%7Bborder%2Dradius%3A0%7D%2Einput%2Dgroup%2Daddon%2C%2Einput%2Dgroup%2Dbtn%7Bwidth%3A1%25%3Bwhite%2Dspace%3Anowrap%3Bvertical%2Dalign%3Amiddle%7D%2Einput%2Dgroup%2Daddon%7Bpadding%3A8px%2012px%3Bfont%2Dsize%3A15px%3Bfont%2Dweight%3Anormal%3Bline%2Dheight%3A1%3Bcolor%3A%23777777%3Btext%2Dalign%3Acenter%3Bbackground%2Dcolor%3A%23eeeeee%3Bborder%3A1px%20solid%20%23cccccc%3Bborder%2Dradius%3A4px%7D%2Einput%2Dgroup%2Daddon%2Einput%2Dsm%7Bpadding%3A5px%2010px%3Bfont%2Dsize%3A13px%3Bborder%2Dradius%3A3px%7D%2Einput%2Dgroup%2Daddon%2Einput%2Dlg%7Bpadding%3A14px%2016px%3Bfont%2Dsize%3A19px%3Bborder%2Dradius%3A6px%7D%2Einput%2Dgroup%2Daddon%20input%5Btype%3D%22radio%22%5D%2C%2Einput%2Dgroup%2Daddon%20input%5Btype%3D%22checkbox%22%5D%7Bmargin%2Dtop%3A0%7D%2Einput%2Dgroup%20%2Eform%2Dcontrol%3Afirst%2Dchild%2C%2Einput%2Dgroup%2Daddon%3Afirst%2Dchild%2C%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Ebtn%2Dgroup%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Edropdown%2Dtoggle%2C%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Ebtn%3Anot%28%3Alast%2Dchild%29%3Anot%28%2Edropdown%2Dtoggle%29%2C%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Ebtn%2Dgroup%3Anot%28%3Alast%2Dchild%29%3E%2Ebtn%7Bborder%2Dbottom%2Dright%2Dradius%3A0%3Bborder%2Dtop%2Dright%2Dradius%3A0%7D%2Einput%2Dgroup%2Daddon%3Afirst%2Dchild%7Bborder%2Dright%3A0%7D%2Einput%2Dgroup%20%2Eform%2Dcontrol%3Alast%2Dchild%2C%2Einput%2Dgroup%2Daddon%3Alast%2Dchild%2C%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Ebtn%2Dgroup%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Edropdown%2Dtoggle%2C%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Ebtn%3Anot%28%3Afirst%2Dchild%29%2C%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Ebtn%2Dgroup%3Anot%28%3Afirst%2Dchild%29%3E%2Ebtn%7Bborder%2Dbottom%2Dleft%2Dradius%3A0%3Bborder%2Dtop%2Dleft%2Dradius%3A0%7D%2Einput%2Dgroup%2Daddon%3Alast%2Dchild%7Bborder%2Dleft%3A0%7D%2Einput%2Dgroup%2Dbtn%7Bposition%3Arelative%3Bfont%2Dsize%3A0%3Bwhite%2Dspace%3Anowrap%7D%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bposition%3Arelative%7D%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%2B%2Ebtn%7Bmargin%2Dleft%3A%2D1px%7D%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%3Ahover%2C%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%3Afocus%2C%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%3Aactive%7Bz%2Dindex%3A2%7D%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Ebtn%2Dgroup%7Bmargin%2Dright%3A%2D1px%7D%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Ebtn%2Dgroup%7Bz%2Dindex%3A2%3Bmargin%2Dleft%3A%2D1px%7D%2Enav%7Bmargin%2Dbottom%3A0%3Bpadding%2Dleft%3A0%3Blist%2Dstyle%3Anone%7D%2Enav%3Eli%7Bposition%3Arelative%3Bdisplay%3Ablock%7D%2Enav%3Eli%3Ea%7Bposition%3Arelative%3Bdisplay%3Ablock%3Bpadding%3A10px%2015px%7D%2Enav%3Eli%3Ea%3Ahover%2C%2Enav%3Eli%3Ea%3Afocus%7Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23eeeeee%7D%2Enav%3Eli%2Edisabled%3Ea%7Bcolor%3A%23999999%7D%2Enav%3Eli%2Edisabled%3Ea%3Ahover%2C%2Enav%3Eli%2Edisabled%3Ea%3Afocus%7Bcolor%3A%23999999%3Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3Atransparent%3Bcursor%3Anot%2Dallowed%7D%2Enav%20%2Eopen%3Ea%2C%2Enav%20%2Eopen%3Ea%3Ahover%2C%2Enav%20%2Eopen%3Ea%3Afocus%7Bbackground%2Dcolor%3A%23eeeeee%3Bborder%2Dcolor%3A%23eb6864%7D%2Enav%20%2Enav%2Ddivider%7Bheight%3A1px%3Bmargin%3A9%2E5px%200%3Boverflow%3Ahidden%3Bbackground%2Dcolor%3A%23e5e5e5%7D%2Enav%3Eli%3Ea%3Eimg%7Bmax%2Dwidth%3Anone%7D%2Enav%2Dtabs%7Bborder%2Dbottom%3A1px%20solid%20%23dddddd%7D%2Enav%2Dtabs%3Eli%7Bfloat%3Aleft%3Bmargin%2Dbottom%3A%2D1px%7D%2Enav%2Dtabs%3Eli%3Ea%7Bmargin%2Dright%3A2px%3Bline%2Dheight%3A1%2E42857143%3Bborder%3A1px%20solid%20transparent%3Bborder%2Dradius%3A4px%204px%200%200%7D%2Enav%2Dtabs%3Eli%3Ea%3Ahover%7Bborder%2Dcolor%3A%23eeeeee%20%23eeeeee%20%23dddddd%7D%2Enav%2Dtabs%3Eli%2Eactive%3Ea%2C%2Enav%2Dtabs%3Eli%2Eactive%3Ea%3Ahover%2C%2Enav%2Dtabs%3Eli%2Eactive%3Ea%3Afocus%7Bcolor%3A%23777777%3Bbackground%2Dcolor%3A%23ffffff%3Bborder%3A1px%20solid%20%23dddddd%3Bborder%2Dbottom%2Dcolor%3Atransparent%3Bcursor%3Adefault%7D%2Enav%2Dtabs%2Enav%2Djustified%7Bwidth%3A100%25%3Bborder%2Dbottom%3A0%7D%2Enav%2Dtabs%2Enav%2Djustified%3Eli%7Bfloat%3Anone%7D%2Enav%2Dtabs%2Enav%2Djustified%3Eli%3Ea%7Btext%2Dalign%3Acenter%3Bmargin%2Dbottom%3A5px%7D%2Enav%2Dtabs%2Enav%2Djustified%3E%2Edropdown%20%2Edropdown%2Dmenu%7Btop%3Aauto%3Bleft%3Aauto%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enav%2Dtabs%2Enav%2Djustified%3Eli%7Bdisplay%3Atable%2Dcell%3Bwidth%3A1%25%7D%2Enav%2Dtabs%2Enav%2Djustified%3Eli%3Ea%7Bmargin%2Dbottom%3A0%7D%7D%2Enav%2Dtabs%2Enav%2Djustified%3Eli%3Ea%7Bmargin%2Dright%3A0%3Bborder%2Dradius%3A4px%7D%2Enav%2Dtabs%2Enav%2Djustified%3E%2Eactive%3Ea%2C%2Enav%2Dtabs%2Enav%2Djustified%3E%2Eactive%3Ea%3Ahover%2C%2Enav%2Dtabs%2Enav%2Djustified%3E%2Eactive%3Ea%3Afocus%7Bborder%3A1px%20solid%20%23dddddd%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enav%2Dtabs%2Enav%2Djustified%3Eli%3Ea%7Bborder%2Dbottom%3A1px%20solid%20%23dddddd%3Bborder%2Dradius%3A4px%204px%200%200%7D%2Enav%2Dtabs%2Enav%2Djustified%3E%2Eactive%3Ea%2C%2Enav%2Dtabs%2Enav%2Djustified%3E%2Eactive%3Ea%3Ahover%2C%2Enav%2Dtabs%2Enav%2Djustified%3E%2Eactive%3Ea%3Afocus%7Bborder%2Dbottom%2Dcolor%3A%23ffffff%7D%7D%2Enav%2Dpills%3Eli%7Bfloat%3Aleft%7D%2Enav%2Dpills%3Eli%3Ea%7Bborder%2Dradius%3A4px%7D%2Enav%2Dpills%3Eli%2Bli%7Bmargin%2Dleft%3A2px%7D%2Enav%2Dpills%3Eli%2Eactive%3Ea%2C%2Enav%2Dpills%3Eli%2Eactive%3Ea%3Ahover%2C%2Enav%2Dpills%3Eli%2Eactive%3Ea%3Afocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23eb6864%7D%2Enav%2Dstacked%3Eli%7Bfloat%3Anone%7D%2Enav%2Dstacked%3Eli%2Bli%7Bmargin%2Dtop%3A2px%3Bmargin%2Dleft%3A0%7D%2Enav%2Djustified%7Bwidth%3A100%25%7D%2Enav%2Djustified%3Eli%7Bfloat%3Anone%7D%2Enav%2Djustified%3Eli%3Ea%7Btext%2Dalign%3Acenter%3Bmargin%2Dbottom%3A5px%7D%2Enav%2Djustified%3E%2Edropdown%20%2Edropdown%2Dmenu%7Btop%3Aauto%3Bleft%3Aauto%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enav%2Djustified%3Eli%7Bdisplay%3Atable%2Dcell%3Bwidth%3A1%25%7D%2Enav%2Djustified%3Eli%3Ea%7Bmargin%2Dbottom%3A0%7D%7D%2Enav%2Dtabs%2Djustified%7Bborder%2Dbottom%3A0%7D%2Enav%2Dtabs%2Djustified%3Eli%3Ea%7Bmargin%2Dright%3A0%3Bborder%2Dradius%3A4px%7D%2Enav%2Dtabs%2Djustified%3E%2Eactive%3Ea%2C%2Enav%2Dtabs%2Djustified%3E%2Eactive%3Ea%3Ahover%2C%2Enav%2Dtabs%2Djustified%3E%2Eactive%3Ea%3Afocus%7Bborder%3A1px%20solid%20%23dddddd%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enav%2Dtabs%2Djustified%3Eli%3Ea%7Bborder%2Dbottom%3A1px%20solid%20%23dddddd%3Bborder%2Dradius%3A4px%204px%200%200%7D%2Enav%2Dtabs%2Djustified%3E%2Eactive%3Ea%2C%2Enav%2Dtabs%2Djustified%3E%2Eactive%3Ea%3Ahover%2C%2Enav%2Dtabs%2Djustified%3E%2Eactive%3Ea%3Afocus%7Bborder%2Dbottom%2Dcolor%3A%23ffffff%7D%7D%2Etab%2Dcontent%3E%2Etab%2Dpane%7Bdisplay%3Anone%7D%2Etab%2Dcontent%3E%2Eactive%7Bdisplay%3Ablock%7D%2Enav%2Dtabs%20%2Edropdown%2Dmenu%7Bmargin%2Dtop%3A%2D1px%3Bborder%2Dtop%2Dright%2Dradius%3A0%3Bborder%2Dtop%2Dleft%2Dradius%3A0%7D%2Enavbar%7Bposition%3Arelative%3Bmin%2Dheight%3A60px%3Bmargin%2Dbottom%3A21px%3Bborder%3A1px%20solid%20transparent%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%7Bborder%2Dradius%3A4px%7D%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dheader%7Bfloat%3Aleft%7D%7D%2Enavbar%2Dcollapse%7Boverflow%2Dx%3Avisible%3Bpadding%2Dright%3A15px%3Bpadding%2Dleft%3A15px%3Bborder%2Dtop%3A1px%20solid%20transparent%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%3Bbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%3B%2Dwebkit%2Doverflow%2Dscrolling%3Atouch%7D%2Enavbar%2Dcollapse%2Ein%7Boverflow%2Dy%3Aauto%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dcollapse%7Bwidth%3Aauto%3Bborder%2Dtop%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%2Enavbar%2Dcollapse%2Ecollapse%7Bdisplay%3Ablock%20%21important%3Bheight%3Aauto%20%21important%3Bpadding%2Dbottom%3A0%3Boverflow%3Avisible%20%21important%7D%2Enavbar%2Dcollapse%2Ein%7Boverflow%2Dy%3Avisible%7D%2Enavbar%2Dfixed%2Dtop%20%2Enavbar%2Dcollapse%2C%2Enavbar%2Dstatic%2Dtop%20%2Enavbar%2Dcollapse%2C%2Enavbar%2Dfixed%2Dbottom%20%2Enavbar%2Dcollapse%7Bpadding%2Dleft%3A0%3Bpadding%2Dright%3A0%7D%7D%2Enavbar%2Dfixed%2Dtop%20%2Enavbar%2Dcollapse%2C%2Enavbar%2Dfixed%2Dbottom%20%2Enavbar%2Dcollapse%7Bmax%2Dheight%3A340px%7D%40media%20%28max%2Ddevice%2Dwidth%3A480px%29%20and%20%28orientation%3Alandscape%29%7B%2Enavbar%2Dfixed%2Dtop%20%2Enavbar%2Dcollapse%2C%2Enavbar%2Dfixed%2Dbottom%20%2Enavbar%2Dcollapse%7Bmax%2Dheight%3A200px%7D%7D%2Econtainer%3E%2Enavbar%2Dheader%2C%2Econtainer%2Dfluid%3E%2Enavbar%2Dheader%2C%2Econtainer%3E%2Enavbar%2Dcollapse%2C%2Econtainer%2Dfluid%3E%2Enavbar%2Dcollapse%7Bmargin%2Dright%3A%2D15px%3Bmargin%2Dleft%3A%2D15px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Econtainer%3E%2Enavbar%2Dheader%2C%2Econtainer%2Dfluid%3E%2Enavbar%2Dheader%2C%2Econtainer%3E%2Enavbar%2Dcollapse%2C%2Econtainer%2Dfluid%3E%2Enavbar%2Dcollapse%7Bmargin%2Dright%3A0%3Bmargin%2Dleft%3A0%7D%7D%2Enavbar%2Dstatic%2Dtop%7Bz%2Dindex%3A1000%3Bborder%2Dwidth%3A0%200%201px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dstatic%2Dtop%7Bborder%2Dradius%3A0%7D%7D%2Enavbar%2Dfixed%2Dtop%2C%2Enavbar%2Dfixed%2Dbottom%7Bposition%3Afixed%3Bright%3A0%3Bleft%3A0%3Bz%2Dindex%3A1030%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dfixed%2Dtop%2C%2Enavbar%2Dfixed%2Dbottom%7Bborder%2Dradius%3A0%7D%7D%2Enavbar%2Dfixed%2Dtop%7Btop%3A0%3Bborder%2Dwidth%3A0%200%201px%7D%2Enavbar%2Dfixed%2Dbottom%7Bbottom%3A0%3Bmargin%2Dbottom%3A0%3Bborder%2Dwidth%3A1px%200%200%7D%2Enavbar%2Dbrand%7Bfloat%3Aleft%3Bpadding%3A19%2E5px%2015px%3Bfont%2Dsize%3A19px%3Bline%2Dheight%3A21px%3Bheight%3A60px%7D%2Enavbar%2Dbrand%3Ahover%2C%2Enavbar%2Dbrand%3Afocus%7Btext%2Ddecoration%3Anone%7D%2Enavbar%2Dbrand%3Eimg%7Bdisplay%3Ablock%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%3E%2Econtainer%20%2Enavbar%2Dbrand%2C%2Enavbar%3E%2Econtainer%2Dfluid%20%2Enavbar%2Dbrand%7Bmargin%2Dleft%3A%2D15px%7D%7D%2Enavbar%2Dtoggle%7Bposition%3Arelative%3Bfloat%3Aright%3Bmargin%2Dright%3A15px%3Bpadding%3A9px%2010px%3Bmargin%2Dtop%3A13px%3Bmargin%2Dbottom%3A13px%3Bbackground%2Dcolor%3Atransparent%3Bbackground%2Dimage%3Anone%3Bborder%3A1px%20solid%20transparent%3Bborder%2Dradius%3A4px%7D%2Enavbar%2Dtoggle%3Afocus%7Boutline%3A0%7D%2Enavbar%2Dtoggle%20%2Eicon%2Dbar%7Bdisplay%3Ablock%3Bwidth%3A22px%3Bheight%3A2px%3Bborder%2Dradius%3A1px%7D%2Enavbar%2Dtoggle%20%2Eicon%2Dbar%2B%2Eicon%2Dbar%7Bmargin%2Dtop%3A4px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dtoggle%7Bdisplay%3Anone%7D%7D%2Enavbar%2Dnav%7Bmargin%3A9%2E75px%20%2D15px%7D%2Enavbar%2Dnav%3Eli%3Ea%7Bpadding%2Dtop%3A10px%3Bpadding%2Dbottom%3A10px%3Bline%2Dheight%3A21px%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%7Bposition%3Astatic%3Bfloat%3Anone%3Bwidth%3Aauto%3Bmargin%2Dtop%3A0%3Bbackground%2Dcolor%3Atransparent%3Bborder%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%2C%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%20%2Edropdown%2Dheader%7Bpadding%3A5px%2015px%205px%2025px%7D%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%7Bline%2Dheight%3A21px%7D%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%3Ahover%2C%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%3Afocus%7Bbackground%2Dimage%3Anone%7D%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dnav%7Bfloat%3Aleft%3Bmargin%3A0%7D%2Enavbar%2Dnav%3Eli%7Bfloat%3Aleft%7D%2Enavbar%2Dnav%3Eli%3Ea%7Bpadding%2Dtop%3A19%2E5px%3Bpadding%2Dbottom%3A19%2E5px%7D%7D%2Enavbar%2Dform%7Bmargin%2Dleft%3A%2D15px%3Bmargin%2Dright%3A%2D15px%3Bpadding%3A10px%2015px%3Bborder%2Dtop%3A1px%20solid%20transparent%3Bborder%2Dbottom%3A1px%20solid%20transparent%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%3Bbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%3Bmargin%2Dtop%3A10%2E5px%3Bmargin%2Dbottom%3A10%2E5px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dform%20%2Eform%2Dgroup%7Bdisplay%3Ainline%2Dblock%3Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Enavbar%2Dform%20%2Eform%2Dcontrol%7Bdisplay%3Ainline%2Dblock%3Bwidth%3Aauto%3Bvertical%2Dalign%3Amiddle%7D%2Enavbar%2Dform%20%2Eform%2Dcontrol%2Dstatic%7Bdisplay%3Ainline%2Dblock%7D%2Enavbar%2Dform%20%2Einput%2Dgroup%7Bdisplay%3Ainline%2Dtable%3Bvertical%2Dalign%3Amiddle%7D%2Enavbar%2Dform%20%2Einput%2Dgroup%20%2Einput%2Dgroup%2Daddon%2C%2Enavbar%2Dform%20%2Einput%2Dgroup%20%2Einput%2Dgroup%2Dbtn%2C%2Enavbar%2Dform%20%2Einput%2Dgroup%20%2Eform%2Dcontrol%7Bwidth%3Aauto%7D%2Enavbar%2Dform%20%2Einput%2Dgroup%3E%2Eform%2Dcontrol%7Bwidth%3A100%25%7D%2Enavbar%2Dform%20%2Econtrol%2Dlabel%7Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Enavbar%2Dform%20%2Eradio%2C%2Enavbar%2Dform%20%2Echeckbox%7Bdisplay%3Ainline%2Dblock%3Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Enavbar%2Dform%20%2Eradio%20label%2C%2Enavbar%2Dform%20%2Echeckbox%20label%7Bpadding%2Dleft%3A0%7D%2Enavbar%2Dform%20%2Eradio%20input%5Btype%3D%22radio%22%5D%2C%2Enavbar%2Dform%20%2Echeckbox%20input%5Btype%3D%22checkbox%22%5D%7Bposition%3Arelative%3Bmargin%2Dleft%3A0%7D%2Enavbar%2Dform%20%2Ehas%2Dfeedback%20%2Eform%2Dcontrol%2Dfeedback%7Btop%3A0%7D%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Enavbar%2Dform%20%2Eform%2Dgroup%7Bmargin%2Dbottom%3A5px%7D%2Enavbar%2Dform%20%2Eform%2Dgroup%3Alast%2Dchild%7Bmargin%2Dbottom%3A0%7D%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dform%7Bwidth%3Aauto%3Bborder%3A0%3Bmargin%2Dleft%3A0%3Bmargin%2Dright%3A0%3Bpadding%2Dtop%3A0%3Bpadding%2Dbottom%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%7D%2Enavbar%2Dnav%3Eli%3E%2Edropdown%2Dmenu%7Bmargin%2Dtop%3A0%3Bborder%2Dtop%2Dright%2Dradius%3A0%3Bborder%2Dtop%2Dleft%2Dradius%3A0%7D%2Enavbar%2Dfixed%2Dbottom%20%2Enavbar%2Dnav%3Eli%3E%2Edropdown%2Dmenu%7Bmargin%2Dbottom%3A0%3Bborder%2Dtop%2Dright%2Dradius%3A4px%3Bborder%2Dtop%2Dleft%2Dradius%3A4px%3Bborder%2Dbottom%2Dright%2Dradius%3A0%3Bborder%2Dbottom%2Dleft%2Dradius%3A0%7D%2Enavbar%2Dbtn%7Bmargin%2Dtop%3A10%2E5px%3Bmargin%2Dbottom%3A10%2E5px%7D%2Enavbar%2Dbtn%2Ebtn%2Dsm%7Bmargin%2Dtop%3A14%2E5px%3Bmargin%2Dbottom%3A14%2E5px%7D%2Enavbar%2Dbtn%2Ebtn%2Dxs%7Bmargin%2Dtop%3A19px%3Bmargin%2Dbottom%3A19px%7D%2Enavbar%2Dtext%7Bmargin%2Dtop%3A19%2E5px%3Bmargin%2Dbottom%3A19%2E5px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dtext%7Bfloat%3Aleft%3Bmargin%2Dleft%3A15px%3Bmargin%2Dright%3A15px%7D%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dleft%7Bfloat%3Aleft%20%21important%7D%2Enavbar%2Dright%7Bfloat%3Aright%20%21important%3Bmargin%2Dright%3A%2D15px%7D%2Enavbar%2Dright%7E%2Enavbar%2Dright%7Bmargin%2Dright%3A0%7D%7D%2Enavbar%2Ddefault%7Bbackground%2Dcolor%3A%23ffffff%3Bborder%2Dcolor%3A%23eeeeee%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dbrand%7Bcolor%3A%23000000%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dbrand%3Ahover%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dbrand%3Afocus%7Bcolor%3A%23000000%3Bbackground%2Dcolor%3A%23eeeeee%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dtext%7Bcolor%3A%23000000%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3Eli%3Ea%7Bcolor%3A%23000000%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3Eli%3Ea%3Ahover%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3Eli%3Ea%3Afocus%7Bcolor%3A%23000000%3Bbackground%2Dcolor%3A%23eeeeee%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Eactive%3Ea%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Eactive%3Ea%3Ahover%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Eactive%3Ea%3Afocus%7Bcolor%3A%23000000%3Bbackground%2Dcolor%3A%23eeeeee%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Edisabled%3Ea%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Edisabled%3Ea%3Ahover%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Edisabled%3Ea%3Afocus%7Bcolor%3A%23cccccc%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dtoggle%7Bborder%2Dcolor%3A%23dddddd%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dtoggle%3Ahover%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dtoggle%3Afocus%7Bbackground%2Dcolor%3A%23dddddd%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dtoggle%20%2Eicon%2Dbar%7Bbackground%2Dcolor%3A%23cccccc%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dcollapse%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dform%7Bborder%2Dcolor%3A%23eeeeee%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Eopen%3Ea%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Eopen%3Ea%3Ahover%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Eopen%3Ea%3Afocus%7Bbackground%2Dcolor%3A%23eeeeee%3Bcolor%3A%23000000%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%7Bcolor%3A%23000000%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%3Ahover%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%3Afocus%7Bcolor%3A%23000000%3Bbackground%2Dcolor%3A%23eeeeee%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Eactive%3Ea%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Ahover%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Afocus%7Bcolor%3A%23000000%3Bbackground%2Dcolor%3A%23eeeeee%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Ahover%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Afocus%7Bcolor%3A%23cccccc%3Bbackground%2Dcolor%3Atransparent%7D%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dlink%7Bcolor%3A%23000000%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dlink%3Ahover%7Bcolor%3A%23000000%7D%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%7Bcolor%3A%23000000%7D%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%3Ahover%2C%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%3Afocus%7Bcolor%3A%23000000%7D%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%3Ahover%2C%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%5Bdisabled%5D%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%3Afocus%7Bcolor%3A%23cccccc%7D%2Enavbar%2Dinverse%7Bbackground%2Dcolor%3A%23eb6864%3Bborder%2Dcolor%3A%23e53c37%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dbrand%7Bcolor%3A%23ffffff%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dbrand%3Ahover%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dbrand%3Afocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23e74b47%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dtext%7Bcolor%3A%23ffffff%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3Eli%3Ea%7Bcolor%3A%23ffffff%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3Eli%3Ea%3Ahover%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3Eli%3Ea%3Afocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23e74b47%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Eactive%3Ea%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Eactive%3Ea%3Ahover%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Eactive%3Ea%3Afocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23e74b47%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Edisabled%3Ea%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Edisabled%3Ea%3Ahover%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Edisabled%3Ea%3Afocus%7Bcolor%3A%23444444%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dtoggle%7Bborder%2Dcolor%3A%23e53c37%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dtoggle%3Ahover%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dtoggle%3Afocus%7Bbackground%2Dcolor%3A%23e53c37%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dtoggle%20%2Eicon%2Dbar%7Bbackground%2Dcolor%3A%23ffffff%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dcollapse%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dform%7Bborder%2Dcolor%3A%23e74944%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Eopen%3Ea%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Eopen%3Ea%3Ahover%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Eopen%3Ea%3Afocus%7Bbackground%2Dcolor%3A%23e74b47%3Bcolor%3A%23ffffff%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edropdown%2Dheader%7Bborder%2Dcolor%3A%23e53c37%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%20%2Edivider%7Bbackground%2Dcolor%3A%23e53c37%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%7Bcolor%3A%23ffffff%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%3Ahover%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%3Afocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23e74b47%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Eactive%3Ea%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Ahover%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Afocus%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23e74b47%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Ahover%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Afocus%7Bcolor%3A%23444444%3Bbackground%2Dcolor%3Atransparent%7D%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dlink%7Bcolor%3A%23ffffff%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dlink%3Ahover%7Bcolor%3A%23ffffff%7D%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%7Bcolor%3A%23ffffff%7D%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%3Ahover%2C%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%3Afocus%7Bcolor%3A%23ffffff%7D%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%3Ahover%2C%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%5Bdisabled%5D%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%3Afocus%7Bcolor%3A%23444444%7D%2Ebreadcrumb%7Bpadding%3A8px%2015px%3Bmargin%2Dbottom%3A21px%3Blist%2Dstyle%3Anone%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%2Dradius%3A4px%7D%2Ebreadcrumb%3Eli%7Bdisplay%3Ainline%2Dblock%7D%2Ebreadcrumb%3Eli%2Bli%3Abefore%7Bcontent%3A%22%2F%5C00a0%22%3Bpadding%3A0%205px%3Bcolor%3A%23cccccc%7D%2Ebreadcrumb%3E%2Eactive%7Bcolor%3A%23999999%7D%2Epagination%7Bdisplay%3Ainline%2Dblock%3Bpadding%2Dleft%3A0%3Bmargin%3A21px%200%3Bborder%2Dradius%3A4px%7D%2Epagination%3Eli%7Bdisplay%3Ainline%7D%2Epagination%3Eli%3Ea%2C%2Epagination%3Eli%3Espan%7Bposition%3Arelative%3Bfloat%3Aleft%3Bpadding%3A8px%2012px%3Bline%2Dheight%3A1%2E42857143%3Btext%2Ddecoration%3Anone%3Bcolor%3A%23eb6864%3Bbackground%2Dcolor%3A%23ffffff%3Bborder%3A1px%20solid%20%23dddddd%3Bmargin%2Dleft%3A%2D1px%7D%2Epagination%3Eli%3Afirst%2Dchild%3Ea%2C%2Epagination%3Eli%3Afirst%2Dchild%3Espan%7Bmargin%2Dleft%3A0%3Bborder%2Dbottom%2Dleft%2Dradius%3A4px%3Bborder%2Dtop%2Dleft%2Dradius%3A4px%7D%2Epagination%3Eli%3Alast%2Dchild%3Ea%2C%2Epagination%3Eli%3Alast%2Dchild%3Espan%7Bborder%2Dbottom%2Dright%2Dradius%3A4px%3Bborder%2Dtop%2Dright%2Dradius%3A4px%7D%2Epagination%3Eli%3Ea%3Ahover%2C%2Epagination%3Eli%3Espan%3Ahover%2C%2Epagination%3Eli%3Ea%3Afocus%2C%2Epagination%3Eli%3Espan%3Afocus%7Bz%2Dindex%3A2%3Bcolor%3A%23e22620%3Bbackground%2Dcolor%3A%23eeeeee%3Bborder%2Dcolor%3A%23dddddd%7D%2Epagination%3E%2Eactive%3Ea%2C%2Epagination%3E%2Eactive%3Espan%2C%2Epagination%3E%2Eactive%3Ea%3Ahover%2C%2Epagination%3E%2Eactive%3Espan%3Ahover%2C%2Epagination%3E%2Eactive%3Ea%3Afocus%2C%2Epagination%3E%2Eactive%3Espan%3Afocus%7Bz%2Dindex%3A3%3Bcolor%3A%23999999%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%2Dcolor%3A%23dddddd%3Bcursor%3Adefault%7D%2Epagination%3E%2Edisabled%3Espan%2C%2Epagination%3E%2Edisabled%3Espan%3Ahover%2C%2Epagination%3E%2Edisabled%3Espan%3Afocus%2C%2Epagination%3E%2Edisabled%3Ea%2C%2Epagination%3E%2Edisabled%3Ea%3Ahover%2C%2Epagination%3E%2Edisabled%3Ea%3Afocus%7Bcolor%3A%23999999%3Bbackground%2Dcolor%3A%23ffffff%3Bborder%2Dcolor%3A%23dddddd%3Bcursor%3Anot%2Dallowed%7D%2Epagination%2Dlg%3Eli%3Ea%2C%2Epagination%2Dlg%3Eli%3Espan%7Bpadding%3A14px%2016px%3Bfont%2Dsize%3A19px%3Bline%2Dheight%3A1%2E3333333%7D%2Epagination%2Dlg%3Eli%3Afirst%2Dchild%3Ea%2C%2Epagination%2Dlg%3Eli%3Afirst%2Dchild%3Espan%7Bborder%2Dbottom%2Dleft%2Dradius%3A6px%3Bborder%2Dtop%2Dleft%2Dradius%3A6px%7D%2Epagination%2Dlg%3Eli%3Alast%2Dchild%3Ea%2C%2Epagination%2Dlg%3Eli%3Alast%2Dchild%3Espan%7Bborder%2Dbottom%2Dright%2Dradius%3A6px%3Bborder%2Dtop%2Dright%2Dradius%3A6px%7D%2Epagination%2Dsm%3Eli%3Ea%2C%2Epagination%2Dsm%3Eli%3Espan%7Bpadding%3A5px%2010px%3Bfont%2Dsize%3A13px%3Bline%2Dheight%3A1%2E5%7D%2Epagination%2Dsm%3Eli%3Afirst%2Dchild%3Ea%2C%2Epagination%2Dsm%3Eli%3Afirst%2Dchild%3Espan%7Bborder%2Dbottom%2Dleft%2Dradius%3A3px%3Bborder%2Dtop%2Dleft%2Dradius%3A3px%7D%2Epagination%2Dsm%3Eli%3Alast%2Dchild%3Ea%2C%2Epagination%2Dsm%3Eli%3Alast%2Dchild%3Espan%7Bborder%2Dbottom%2Dright%2Dradius%3A3px%3Bborder%2Dtop%2Dright%2Dradius%3A3px%7D%2Epager%7Bpadding%2Dleft%3A0%3Bmargin%3A21px%200%3Blist%2Dstyle%3Anone%3Btext%2Dalign%3Acenter%7D%2Epager%20li%7Bdisplay%3Ainline%7D%2Epager%20li%3Ea%2C%2Epager%20li%3Espan%7Bdisplay%3Ainline%2Dblock%3Bpadding%3A5px%2014px%3Bbackground%2Dcolor%3A%23ffffff%3Bborder%3A1px%20solid%20%23dddddd%3Bborder%2Dradius%3A15px%7D%2Epager%20li%3Ea%3Ahover%2C%2Epager%20li%3Ea%3Afocus%7Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23eeeeee%7D%2Epager%20%2Enext%3Ea%2C%2Epager%20%2Enext%3Espan%7Bfloat%3Aright%7D%2Epager%20%2Eprevious%3Ea%2C%2Epager%20%2Eprevious%3Espan%7Bfloat%3Aleft%7D%2Epager%20%2Edisabled%3Ea%2C%2Epager%20%2Edisabled%3Ea%3Ahover%2C%2Epager%20%2Edisabled%3Ea%3Afocus%2C%2Epager%20%2Edisabled%3Espan%7Bcolor%3A%23999999%3Bbackground%2Dcolor%3A%23ffffff%3Bcursor%3Anot%2Dallowed%7D%2Elabel%7Bdisplay%3Ainline%3Bpadding%3A%2E2em%20%2E6em%20%2E3em%3Bfont%2Dsize%3A75%25%3Bfont%2Dweight%3Abold%3Bline%2Dheight%3A1%3Bcolor%3A%23ffffff%3Btext%2Dalign%3Acenter%3Bwhite%2Dspace%3Anowrap%3Bvertical%2Dalign%3Abaseline%3Bborder%2Dradius%3A%2E25em%7Da%2Elabel%3Ahover%2Ca%2Elabel%3Afocus%7Bcolor%3A%23ffffff%3Btext%2Ddecoration%3Anone%3Bcursor%3Apointer%7D%2Elabel%3Aempty%7Bdisplay%3Anone%7D%2Ebtn%20%2Elabel%7Bposition%3Arelative%3Btop%3A%2D1px%7D%2Elabel%2Ddefault%7Bbackground%2Dcolor%3A%23999999%7D%2Elabel%2Ddefault%5Bhref%5D%3Ahover%2C%2Elabel%2Ddefault%5Bhref%5D%3Afocus%7Bbackground%2Dcolor%3A%23808080%7D%2Elabel%2Dprimary%7Bbackground%2Dcolor%3A%23eb6864%7D%2Elabel%2Dprimary%5Bhref%5D%3Ahover%2C%2Elabel%2Dprimary%5Bhref%5D%3Afocus%7Bbackground%2Dcolor%3A%23e53c37%7D%2Elabel%2Dsuccess%7Bbackground%2Dcolor%3A%2322b24c%7D%2Elabel%2Dsuccess%5Bhref%5D%3Ahover%2C%2Elabel%2Dsuccess%5Bhref%5D%3Afocus%7Bbackground%2Dcolor%3A%231a873a%7D%2Elabel%2Dinfo%7Bbackground%2Dcolor%3A%23336699%7D%2Elabel%2Dinfo%5Bhref%5D%3Ahover%2C%2Elabel%2Dinfo%5Bhref%5D%3Afocus%7Bbackground%2Dcolor%3A%23264c73%7D%2Elabel%2Dwarning%7Bbackground%2Dcolor%3A%23f5e625%7D%2Elabel%2Dwarning%5Bhref%5D%3Ahover%2C%2Elabel%2Dwarning%5Bhref%5D%3Afocus%7Bbackground%2Dcolor%3A%23ddce0a%7D%2Elabel%2Ddanger%7Bbackground%2Dcolor%3A%23f57a00%7D%2Elabel%2Ddanger%5Bhref%5D%3Ahover%2C%2Elabel%2Ddanger%5Bhref%5D%3Afocus%7Bbackground%2Dcolor%3A%23c26100%7D%2Ebadge%7Bdisplay%3Ainline%2Dblock%3Bmin%2Dwidth%3A10px%3Bpadding%3A3px%207px%3Bfont%2Dsize%3A13px%3Bfont%2Dweight%3Abold%3Bcolor%3A%23ffffff%3Bline%2Dheight%3A1%3Bvertical%2Dalign%3Amiddle%3Bwhite%2Dspace%3Anowrap%3Btext%2Dalign%3Acenter%3Bbackground%2Dcolor%3A%23eb6864%3Bborder%2Dradius%3A10px%7D%2Ebadge%3Aempty%7Bdisplay%3Anone%7D%2Ebtn%20%2Ebadge%7Bposition%3Arelative%3Btop%3A%2D1px%7D%2Ebtn%2Dxs%20%2Ebadge%2C%2Ebtn%2Dgroup%2Dxs%3E%2Ebtn%20%2Ebadge%7Btop%3A0%3Bpadding%3A1px%205px%7Da%2Ebadge%3Ahover%2Ca%2Ebadge%3Afocus%7Bcolor%3A%23ffffff%3Btext%2Ddecoration%3Anone%3Bcursor%3Apointer%7D%2Elist%2Dgroup%2Ditem%2Eactive%3E%2Ebadge%2C%2Enav%2Dpills%3E%2Eactive%3Ea%3E%2Ebadge%7Bcolor%3A%23eb6864%3Bbackground%2Dcolor%3A%23ffffff%7D%2Elist%2Dgroup%2Ditem%3E%2Ebadge%7Bfloat%3Aright%7D%2Elist%2Dgroup%2Ditem%3E%2Ebadge%2B%2Ebadge%7Bmargin%2Dright%3A5px%7D%2Enav%2Dpills%3Eli%3Ea%3E%2Ebadge%7Bmargin%2Dleft%3A3px%7D%2Ejumbotron%7Bpadding%2Dtop%3A30px%3Bpadding%2Dbottom%3A30px%3Bmargin%2Dbottom%3A30px%3Bcolor%3Ainherit%3Bbackground%2Dcolor%3A%23eeeeee%7D%2Ejumbotron%20h1%2C%2Ejumbotron%20%2Eh1%7Bcolor%3Ainherit%7D%2Ejumbotron%20p%7Bmargin%2Dbottom%3A15px%3Bfont%2Dsize%3A23px%3Bfont%2Dweight%3A200%7D%2Ejumbotron%3Ehr%7Bborder%2Dtop%2Dcolor%3A%23d5d5d5%7D%2Econtainer%20%2Ejumbotron%2C%2Econtainer%2Dfluid%20%2Ejumbotron%7Bborder%2Dradius%3A6px%3Bpadding%2Dleft%3A15px%3Bpadding%2Dright%3A15px%7D%2Ejumbotron%20%2Econtainer%7Bmax%2Dwidth%3A100%25%7D%40media%20screen%20and%20%28min%2Dwidth%3A768px%29%7B%2Ejumbotron%7Bpadding%2Dtop%3A48px%3Bpadding%2Dbottom%3A48px%7D%2Econtainer%20%2Ejumbotron%2C%2Econtainer%2Dfluid%20%2Ejumbotron%7Bpadding%2Dleft%3A60px%3Bpadding%2Dright%3A60px%7D%2Ejumbotron%20h1%2C%2Ejumbotron%20%2Eh1%7Bfont%2Dsize%3A68px%7D%7D%2Ethumbnail%7Bdisplay%3Ablock%3Bpadding%3A4px%3Bmargin%2Dbottom%3A21px%3Bline%2Dheight%3A1%2E42857143%3Bbackground%2Dcolor%3A%23ffffff%3Bborder%3A1px%20solid%20%23dddddd%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dtransition%3Aborder%20%2E2s%20ease%2Din%2Dout%3B%2Do%2Dtransition%3Aborder%20%2E2s%20ease%2Din%2Dout%3Btransition%3Aborder%20%2E2s%20ease%2Din%2Dout%7D%2Ethumbnail%3Eimg%2C%2Ethumbnail%20a%3Eimg%7Bmargin%2Dleft%3Aauto%3Bmargin%2Dright%3Aauto%7Da%2Ethumbnail%3Ahover%2Ca%2Ethumbnail%3Afocus%2Ca%2Ethumbnail%2Eactive%7Bborder%2Dcolor%3A%23eb6864%7D%2Ethumbnail%20%2Ecaption%7Bpadding%3A9px%3Bcolor%3A%23777777%7D%2Ealert%7Bpadding%3A15px%3Bmargin%2Dbottom%3A21px%3Bborder%3A1px%20solid%20transparent%3Bborder%2Dradius%3A4px%7D%2Ealert%20h4%7Bmargin%2Dtop%3A0%3Bcolor%3Ainherit%7D%2Ealert%20%2Ealert%2Dlink%7Bfont%2Dweight%3Abold%7D%2Ealert%3Ep%2C%2Ealert%3Eul%7Bmargin%2Dbottom%3A0%7D%2Ealert%3Ep%2Bp%7Bmargin%2Dtop%3A5px%7D%2Ealert%2Ddismissable%2C%2Ealert%2Ddismissible%7Bpadding%2Dright%3A35px%7D%2Ealert%2Ddismissable%20%2Eclose%2C%2Ealert%2Ddismissible%20%2Eclose%7Bposition%3Arelative%3Btop%3A%2D2px%3Bright%3A%2D21px%3Bcolor%3Ainherit%7D%2Ealert%2Dsuccess%7Bbackground%2Dcolor%3A%23dff0d8%3Bborder%2Dcolor%3A%23d6e9c6%3Bcolor%3A%23468847%7D%2Ealert%2Dsuccess%20hr%7Bborder%2Dtop%2Dcolor%3A%23c9e2b3%7D%2Ealert%2Dsuccess%20%2Ealert%2Dlink%7Bcolor%3A%23356635%7D%2Ealert%2Dinfo%7Bbackground%2Dcolor%3A%23d9edf7%3Bborder%2Dcolor%3A%23bce8f1%3Bcolor%3A%233a87ad%7D%2Ealert%2Dinfo%20hr%7Bborder%2Dtop%2Dcolor%3A%23a6e1ec%7D%2Ealert%2Dinfo%20%2Ealert%2Dlink%7Bcolor%3A%232d6987%7D%2Ealert%2Dwarning%7Bbackground%2Dcolor%3A%23fcf8e3%3Bborder%2Dcolor%3A%23fbeed5%3Bcolor%3A%23c09853%7D%2Ealert%2Dwarning%20hr%7Bborder%2Dtop%2Dcolor%3A%23f8e5be%7D%2Ealert%2Dwarning%20%2Ealert%2Dlink%7Bcolor%3A%23a47e3c%7D%2Ealert%2Ddanger%7Bbackground%2Dcolor%3A%23f2dede%3Bborder%2Dcolor%3A%23eed3d7%3Bcolor%3A%23b94a48%7D%2Ealert%2Ddanger%20hr%7Bborder%2Dtop%2Dcolor%3A%23e6c1c7%7D%2Ealert%2Ddanger%20%2Ealert%2Dlink%7Bcolor%3A%23953b39%7D%40%2Dwebkit%2Dkeyframes%20progress%2Dbar%2Dstripes%7Bfrom%7Bbackground%2Dposition%3A40px%200%7Dto%7Bbackground%2Dposition%3A0%200%7D%7D%40%2Do%2Dkeyframes%20progress%2Dbar%2Dstripes%7Bfrom%7Bbackground%2Dposition%3A40px%200%7Dto%7Bbackground%2Dposition%3A0%200%7D%7D%40keyframes%20progress%2Dbar%2Dstripes%7Bfrom%7Bbackground%2Dposition%3A40px%200%7Dto%7Bbackground%2Dposition%3A0%200%7D%7D%2Eprogress%7Boverflow%3Ahidden%3Bheight%3A21px%3Bmargin%2Dbottom%3A21px%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C0%2E1%29%3Bbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C0%2E1%29%7D%2Eprogress%2Dbar%7Bfloat%3Aleft%3Bwidth%3A0%25%3Bheight%3A100%25%3Bfont%2Dsize%3A13px%3Bline%2Dheight%3A21px%3Bcolor%3A%23ffffff%3Btext%2Dalign%3Acenter%3Bbackground%2Dcolor%3A%23eb6864%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E15%29%3Bbox%2Dshadow%3Ainset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E15%29%3B%2Dwebkit%2Dtransition%3Awidth%200%2E6s%20ease%3B%2Do%2Dtransition%3Awidth%200%2E6s%20ease%3Btransition%3Awidth%200%2E6s%20ease%7D%2Eprogress%2Dstriped%20%2Eprogress%2Dbar%2C%2Eprogress%2Dbar%2Dstriped%7Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%3B%2Dwebkit%2Dbackground%2Dsize%3A40px%2040px%3Bbackground%2Dsize%3A40px%2040px%7D%2Eprogress%2Eactive%20%2Eprogress%2Dbar%2C%2Eprogress%2Dbar%2Eactive%7B%2Dwebkit%2Danimation%3Aprogress%2Dbar%2Dstripes%202s%20linear%20infinite%3B%2Do%2Danimation%3Aprogress%2Dbar%2Dstripes%202s%20linear%20infinite%3Banimation%3Aprogress%2Dbar%2Dstripes%202s%20linear%20infinite%7D%2Eprogress%2Dbar%2Dsuccess%7Bbackground%2Dcolor%3A%2322b24c%7D%2Eprogress%2Dstriped%20%2Eprogress%2Dbar%2Dsuccess%7Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%7D%2Eprogress%2Dbar%2Dinfo%7Bbackground%2Dcolor%3A%23336699%7D%2Eprogress%2Dstriped%20%2Eprogress%2Dbar%2Dinfo%7Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%7D%2Eprogress%2Dbar%2Dwarning%7Bbackground%2Dcolor%3A%23f5e625%7D%2Eprogress%2Dstriped%20%2Eprogress%2Dbar%2Dwarning%7Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%7D%2Eprogress%2Dbar%2Ddanger%7Bbackground%2Dcolor%3A%23f57a00%7D%2Eprogress%2Dstriped%20%2Eprogress%2Dbar%2Ddanger%7Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2C%20transparent%2025%25%2C%20transparent%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2C%20rgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2C%20transparent%2075%25%2C%20transparent%29%7D%2Emedia%7Bmargin%2Dtop%3A15px%7D%2Emedia%3Afirst%2Dchild%7Bmargin%2Dtop%3A0%7D%2Emedia%2C%2Emedia%2Dbody%7Bzoom%3A1%3Boverflow%3Ahidden%7D%2Emedia%2Dbody%7Bwidth%3A10000px%7D%2Emedia%2Dobject%7Bdisplay%3Ablock%7D%2Emedia%2Dobject%2Eimg%2Dthumbnail%7Bmax%2Dwidth%3Anone%7D%2Emedia%2Dright%2C%2Emedia%3E%2Epull%2Dright%7Bpadding%2Dleft%3A10px%7D%2Emedia%2Dleft%2C%2Emedia%3E%2Epull%2Dleft%7Bpadding%2Dright%3A10px%7D%2Emedia%2Dleft%2C%2Emedia%2Dright%2C%2Emedia%2Dbody%7Bdisplay%3Atable%2Dcell%3Bvertical%2Dalign%3Atop%7D%2Emedia%2Dmiddle%7Bvertical%2Dalign%3Amiddle%7D%2Emedia%2Dbottom%7Bvertical%2Dalign%3Abottom%7D%2Emedia%2Dheading%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A5px%7D%2Emedia%2Dlist%7Bpadding%2Dleft%3A0%3Blist%2Dstyle%3Anone%7D%2Elist%2Dgroup%7Bmargin%2Dbottom%3A20px%3Bpadding%2Dleft%3A0%7D%2Elist%2Dgroup%2Ditem%7Bposition%3Arelative%3Bdisplay%3Ablock%3Bpadding%3A10px%2015px%3Bmargin%2Dbottom%3A%2D1px%3Bbackground%2Dcolor%3A%23ffffff%3Bborder%3A1px%20solid%20%23dddddd%7D%2Elist%2Dgroup%2Ditem%3Afirst%2Dchild%7Bborder%2Dtop%2Dright%2Dradius%3A4px%3Bborder%2Dtop%2Dleft%2Dradius%3A4px%7D%2Elist%2Dgroup%2Ditem%3Alast%2Dchild%7Bmargin%2Dbottom%3A0%3Bborder%2Dbottom%2Dright%2Dradius%3A4px%3Bborder%2Dbottom%2Dleft%2Dradius%3A4px%7Da%2Elist%2Dgroup%2Ditem%2Cbutton%2Elist%2Dgroup%2Ditem%7Bcolor%3A%23555555%7Da%2Elist%2Dgroup%2Ditem%20%2Elist%2Dgroup%2Ditem%2Dheading%2Cbutton%2Elist%2Dgroup%2Ditem%20%2Elist%2Dgroup%2Ditem%2Dheading%7Bcolor%3A%23333333%7Da%2Elist%2Dgroup%2Ditem%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%3Ahover%2Ca%2Elist%2Dgroup%2Ditem%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%3Afocus%7Btext%2Ddecoration%3Anone%3Bcolor%3A%23555555%3Bbackground%2Dcolor%3A%23f5f5f5%7Dbutton%2Elist%2Dgroup%2Ditem%7Bwidth%3A100%25%3Btext%2Dalign%3Aleft%7D%2Elist%2Dgroup%2Ditem%2Edisabled%2C%2Elist%2Dgroup%2Ditem%2Edisabled%3Ahover%2C%2Elist%2Dgroup%2Ditem%2Edisabled%3Afocus%7Bbackground%2Dcolor%3A%23eeeeee%3Bcolor%3A%23999999%3Bcursor%3Anot%2Dallowed%7D%2Elist%2Dgroup%2Ditem%2Edisabled%20%2Elist%2Dgroup%2Ditem%2Dheading%2C%2Elist%2Dgroup%2Ditem%2Edisabled%3Ahover%20%2Elist%2Dgroup%2Ditem%2Dheading%2C%2Elist%2Dgroup%2Ditem%2Edisabled%3Afocus%20%2Elist%2Dgroup%2Ditem%2Dheading%7Bcolor%3Ainherit%7D%2Elist%2Dgroup%2Ditem%2Edisabled%20%2Elist%2Dgroup%2Ditem%2Dtext%2C%2Elist%2Dgroup%2Ditem%2Edisabled%3Ahover%20%2Elist%2Dgroup%2Ditem%2Dtext%2C%2Elist%2Dgroup%2Ditem%2Edisabled%3Afocus%20%2Elist%2Dgroup%2Ditem%2Dtext%7Bcolor%3A%23999999%7D%2Elist%2Dgroup%2Ditem%2Eactive%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Ahover%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Afocus%7Bz%2Dindex%3A2%3Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23eb6864%3Bborder%2Dcolor%3A%23eb6864%7D%2Elist%2Dgroup%2Ditem%2Eactive%20%2Elist%2Dgroup%2Ditem%2Dheading%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Ahover%20%2Elist%2Dgroup%2Ditem%2Dheading%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Afocus%20%2Elist%2Dgroup%2Ditem%2Dheading%2C%2Elist%2Dgroup%2Ditem%2Eactive%20%2Elist%2Dgroup%2Ditem%2Dheading%3Esmall%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Ahover%20%2Elist%2Dgroup%2Ditem%2Dheading%3Esmall%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Afocus%20%2Elist%2Dgroup%2Ditem%2Dheading%3Esmall%2C%2Elist%2Dgroup%2Ditem%2Eactive%20%2Elist%2Dgroup%2Ditem%2Dheading%3E%2Esmall%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Ahover%20%2Elist%2Dgroup%2Ditem%2Dheading%3E%2Esmall%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Afocus%20%2Elist%2Dgroup%2Ditem%2Dheading%3E%2Esmall%7Bcolor%3Ainherit%7D%2Elist%2Dgroup%2Ditem%2Eactive%20%2Elist%2Dgroup%2Ditem%2Dtext%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Ahover%20%2Elist%2Dgroup%2Ditem%2Dtext%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Afocus%20%2Elist%2Dgroup%2Ditem%2Dtext%7Bcolor%3A%23ffffff%7D%2Elist%2Dgroup%2Ditem%2Dsuccess%7Bcolor%3A%23468847%3Bbackground%2Dcolor%3A%23dff0d8%7Da%2Elist%2Dgroup%2Ditem%2Dsuccess%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%7Bcolor%3A%23468847%7Da%2Elist%2Dgroup%2Ditem%2Dsuccess%20%2Elist%2Dgroup%2Ditem%2Dheading%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%20%2Elist%2Dgroup%2Ditem%2Dheading%7Bcolor%3Ainherit%7Da%2Elist%2Dgroup%2Ditem%2Dsuccess%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%3Ahover%2Ca%2Elist%2Dgroup%2Ditem%2Dsuccess%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%3Afocus%7Bcolor%3A%23468847%3Bbackground%2Dcolor%3A%23d0e9c6%7Da%2Elist%2Dgroup%2Ditem%2Dsuccess%2Eactive%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%2Eactive%2Ca%2Elist%2Dgroup%2Ditem%2Dsuccess%2Eactive%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%2Eactive%3Ahover%2Ca%2Elist%2Dgroup%2Ditem%2Dsuccess%2Eactive%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%2Eactive%3Afocus%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23468847%3Bborder%2Dcolor%3A%23468847%7D%2Elist%2Dgroup%2Ditem%2Dinfo%7Bcolor%3A%233a87ad%3Bbackground%2Dcolor%3A%23d9edf7%7Da%2Elist%2Dgroup%2Ditem%2Dinfo%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%7Bcolor%3A%233a87ad%7Da%2Elist%2Dgroup%2Ditem%2Dinfo%20%2Elist%2Dgroup%2Ditem%2Dheading%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%20%2Elist%2Dgroup%2Ditem%2Dheading%7Bcolor%3Ainherit%7Da%2Elist%2Dgroup%2Ditem%2Dinfo%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%3Ahover%2Ca%2Elist%2Dgroup%2Ditem%2Dinfo%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%3Afocus%7Bcolor%3A%233a87ad%3Bbackground%2Dcolor%3A%23c4e3f3%7Da%2Elist%2Dgroup%2Ditem%2Dinfo%2Eactive%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%2Eactive%2Ca%2Elist%2Dgroup%2Ditem%2Dinfo%2Eactive%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%2Eactive%3Ahover%2Ca%2Elist%2Dgroup%2Ditem%2Dinfo%2Eactive%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%2Eactive%3Afocus%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%233a87ad%3Bborder%2Dcolor%3A%233a87ad%7D%2Elist%2Dgroup%2Ditem%2Dwarning%7Bcolor%3A%23c09853%3Bbackground%2Dcolor%3A%23fcf8e3%7Da%2Elist%2Dgroup%2Ditem%2Dwarning%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%7Bcolor%3A%23c09853%7Da%2Elist%2Dgroup%2Ditem%2Dwarning%20%2Elist%2Dgroup%2Ditem%2Dheading%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%20%2Elist%2Dgroup%2Ditem%2Dheading%7Bcolor%3Ainherit%7Da%2Elist%2Dgroup%2Ditem%2Dwarning%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%3Ahover%2Ca%2Elist%2Dgroup%2Ditem%2Dwarning%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%3Afocus%7Bcolor%3A%23c09853%3Bbackground%2Dcolor%3A%23faf2cc%7Da%2Elist%2Dgroup%2Ditem%2Dwarning%2Eactive%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%2Eactive%2Ca%2Elist%2Dgroup%2Ditem%2Dwarning%2Eactive%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%2Eactive%3Ahover%2Ca%2Elist%2Dgroup%2Ditem%2Dwarning%2Eactive%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%2Eactive%3Afocus%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23c09853%3Bborder%2Dcolor%3A%23c09853%7D%2Elist%2Dgroup%2Ditem%2Ddanger%7Bcolor%3A%23b94a48%3Bbackground%2Dcolor%3A%23f2dede%7Da%2Elist%2Dgroup%2Ditem%2Ddanger%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%7Bcolor%3A%23b94a48%7Da%2Elist%2Dgroup%2Ditem%2Ddanger%20%2Elist%2Dgroup%2Ditem%2Dheading%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%20%2Elist%2Dgroup%2Ditem%2Dheading%7Bcolor%3Ainherit%7Da%2Elist%2Dgroup%2Ditem%2Ddanger%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%3Ahover%2Ca%2Elist%2Dgroup%2Ditem%2Ddanger%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%3Afocus%7Bcolor%3A%23b94a48%3Bbackground%2Dcolor%3A%23ebcccc%7Da%2Elist%2Dgroup%2Ditem%2Ddanger%2Eactive%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%2Eactive%2Ca%2Elist%2Dgroup%2Ditem%2Ddanger%2Eactive%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%2Eactive%3Ahover%2Ca%2Elist%2Dgroup%2Ditem%2Ddanger%2Eactive%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%2Eactive%3Afocus%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23b94a48%3Bborder%2Dcolor%3A%23b94a48%7D%2Elist%2Dgroup%2Ditem%2Dheading%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A5px%7D%2Elist%2Dgroup%2Ditem%2Dtext%7Bmargin%2Dbottom%3A0%3Bline%2Dheight%3A1%2E3%7D%2Epanel%7Bmargin%2Dbottom%3A21px%3Bbackground%2Dcolor%3A%23ffffff%3Bborder%3A1px%20solid%20transparent%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dbox%2Dshadow%3A0%201px%201px%20rgba%280%2C0%2C0%2C0%2E05%29%3Bbox%2Dshadow%3A0%201px%201px%20rgba%280%2C0%2C0%2C0%2E05%29%7D%2Epanel%2Dbody%7Bpadding%3A15px%7D%2Epanel%2Dheading%7Bpadding%3A10px%2015px%3Bborder%2Dbottom%3A1px%20solid%20transparent%3Bborder%2Dtop%2Dright%2Dradius%3A3px%3Bborder%2Dtop%2Dleft%2Dradius%3A3px%7D%2Epanel%2Dheading%3E%2Edropdown%20%2Edropdown%2Dtoggle%7Bcolor%3Ainherit%7D%2Epanel%2Dtitle%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A0%3Bfont%2Dsize%3A17px%3Bcolor%3Ainherit%7D%2Epanel%2Dtitle%3Ea%2C%2Epanel%2Dtitle%3Esmall%2C%2Epanel%2Dtitle%3E%2Esmall%2C%2Epanel%2Dtitle%3Esmall%3Ea%2C%2Epanel%2Dtitle%3E%2Esmall%3Ea%7Bcolor%3Ainherit%7D%2Epanel%2Dfooter%7Bpadding%3A10px%2015px%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%2Dtop%3A1px%20solid%20%23dddddd%3Bborder%2Dbottom%2Dright%2Dradius%3A3px%3Bborder%2Dbottom%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Elist%2Dgroup%2C%2Epanel%3E%2Epanel%2Dcollapse%3E%2Elist%2Dgroup%7Bmargin%2Dbottom%3A0%7D%2Epanel%3E%2Elist%2Dgroup%20%2Elist%2Dgroup%2Ditem%2C%2Epanel%3E%2Epanel%2Dcollapse%3E%2Elist%2Dgroup%20%2Elist%2Dgroup%2Ditem%7Bborder%2Dwidth%3A1px%200%3Bborder%2Dradius%3A0%7D%2Epanel%3E%2Elist%2Dgroup%3Afirst%2Dchild%20%2Elist%2Dgroup%2Ditem%3Afirst%2Dchild%2C%2Epanel%3E%2Epanel%2Dcollapse%3E%2Elist%2Dgroup%3Afirst%2Dchild%20%2Elist%2Dgroup%2Ditem%3Afirst%2Dchild%7Bborder%2Dtop%3A0%3Bborder%2Dtop%2Dright%2Dradius%3A3px%3Bborder%2Dtop%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Elist%2Dgroup%3Alast%2Dchild%20%2Elist%2Dgroup%2Ditem%3Alast%2Dchild%2C%2Epanel%3E%2Epanel%2Dcollapse%3E%2Elist%2Dgroup%3Alast%2Dchild%20%2Elist%2Dgroup%2Ditem%3Alast%2Dchild%7Bborder%2Dbottom%3A0%3Bborder%2Dbottom%2Dright%2Dradius%3A3px%3Bborder%2Dbottom%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Elist%2Dgroup%20%2Elist%2Dgroup%2Ditem%3Afirst%2Dchild%7Bborder%2Dtop%2Dright%2Dradius%3A0%3Bborder%2Dtop%2Dleft%2Dradius%3A0%7D%2Epanel%2Dheading%2B%2Elist%2Dgroup%20%2Elist%2Dgroup%2Ditem%3Afirst%2Dchild%7Bborder%2Dtop%2Dwidth%3A0%7D%2Elist%2Dgroup%2B%2Epanel%2Dfooter%7Bborder%2Dtop%2Dwidth%3A0%7D%2Epanel%3E%2Etable%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2C%2Epanel%3E%2Epanel%2Dcollapse%3E%2Etable%7Bmargin%2Dbottom%3A0%7D%2Epanel%3E%2Etable%20caption%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%20caption%2C%2Epanel%3E%2Epanel%2Dcollapse%3E%2Etable%20caption%7Bpadding%2Dleft%3A15px%3Bpadding%2Dright%3A15px%7D%2Epanel%3E%2Etable%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%7Bborder%2Dtop%2Dright%2Dradius%3A3px%3Bborder%2Dtop%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%7Bborder%2Dtop%2Dleft%2Dradius%3A3px%3Bborder%2Dtop%2Dright%2Dradius%3A3px%7D%2Epanel%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Afirst%2Dchild%7Bborder%2Dtop%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Alast%2Dchild%7Bborder%2Dtop%2Dright%2Dradius%3A3px%7D%2Epanel%3E%2Etable%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%7Bborder%2Dbottom%2Dright%2Dradius%3A3px%3Bborder%2Dbottom%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%7Bborder%2Dbottom%2Dleft%2Dradius%3A3px%3Bborder%2Dbottom%2Dright%2Dradius%3A3px%7D%2Epanel%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Afirst%2Dchild%7Bborder%2Dbottom%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Alast%2Dchild%7Bborder%2Dbottom%2Dright%2Dradius%3A3px%7D%2Epanel%3E%2Epanel%2Dbody%2B%2Etable%2C%2Epanel%3E%2Epanel%2Dbody%2B%2Etable%2Dresponsive%2C%2Epanel%3E%2Etable%2B%2Epanel%2Dbody%2C%2Epanel%3E%2Etable%2Dresponsive%2B%2Epanel%2Dbody%7Bborder%2Dtop%3A1px%20solid%20%23dddddd%7D%2Epanel%3E%2Etable%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%2C%2Epanel%3E%2Etable%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%7Bborder%2Dtop%3A0%7D%2Epanel%3E%2Etable%2Dbordered%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%7Bborder%3A0%7D%2Epanel%3E%2Etable%2Dbordered%3Ethead%3Etr%3Eth%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Eth%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Eth%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Eth%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Ethead%3Etr%3Etd%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Etd%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Etd%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Etd%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%3Afirst%2Dchild%7Bborder%2Dleft%3A0%7D%2Epanel%3E%2Etable%2Dbordered%3Ethead%3Etr%3Eth%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Eth%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Eth%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Eth%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Ethead%3Etr%3Etd%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Etd%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Etd%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Etd%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%3Alast%2Dchild%7Bborder%2Dright%3A0%7D%2Epanel%3E%2Etable%2Dbordered%3Ethead%3Etr%3Afirst%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Afirst%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Afirst%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Afirst%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dbordered%3Ethead%3Etr%3Afirst%2Dchild%3Eth%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Afirst%2Dchild%3Eth%2C%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Afirst%2Dchild%3Eth%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Afirst%2Dchild%3Eth%7Bborder%2Dbottom%3A0%7D%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Alast%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Alast%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Alast%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Alast%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Alast%2Dchild%3Eth%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Alast%2Dchild%3Eth%2C%2Epanel%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Alast%2Dchild%3Eth%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Alast%2Dchild%3Eth%7Bborder%2Dbottom%3A0%7D%2Epanel%3E%2Etable%2Dresponsive%7Bborder%3A0%3Bmargin%2Dbottom%3A0%7D%2Epanel%2Dgroup%7Bmargin%2Dbottom%3A21px%7D%2Epanel%2Dgroup%20%2Epanel%7Bmargin%2Dbottom%3A0%3Bborder%2Dradius%3A4px%7D%2Epanel%2Dgroup%20%2Epanel%2B%2Epanel%7Bmargin%2Dtop%3A5px%7D%2Epanel%2Dgroup%20%2Epanel%2Dheading%7Bborder%2Dbottom%3A0%7D%2Epanel%2Dgroup%20%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%2C%2Epanel%2Dgroup%20%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Elist%2Dgroup%7Bborder%2Dtop%3A1px%20solid%20%23dddddd%7D%2Epanel%2Dgroup%20%2Epanel%2Dfooter%7Bborder%2Dtop%3A0%7D%2Epanel%2Dgroup%20%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%20%2Epanel%2Dbody%7Bborder%2Dbottom%3A1px%20solid%20%23dddddd%7D%2Epanel%2Ddefault%7Bborder%2Dcolor%3A%23dddddd%7D%2Epanel%2Ddefault%3E%2Epanel%2Dheading%7Bcolor%3A%23777777%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%2Dcolor%3A%23dddddd%7D%2Epanel%2Ddefault%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%2Dcolor%3A%23dddddd%7D%2Epanel%2Ddefault%3E%2Epanel%2Dheading%20%2Ebadge%7Bcolor%3A%23f5f5f5%3Bbackground%2Dcolor%3A%23777777%7D%2Epanel%2Ddefault%3E%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dbottom%2Dcolor%3A%23dddddd%7D%2Epanel%2Dprimary%7Bborder%2Dcolor%3A%23eb6864%7D%2Epanel%2Dprimary%3E%2Epanel%2Dheading%7Bcolor%3A%23ffffff%3Bbackground%2Dcolor%3A%23eb6864%3Bborder%2Dcolor%3A%23eb6864%7D%2Epanel%2Dprimary%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%2Dcolor%3A%23eb6864%7D%2Epanel%2Dprimary%3E%2Epanel%2Dheading%20%2Ebadge%7Bcolor%3A%23eb6864%3Bbackground%2Dcolor%3A%23ffffff%7D%2Epanel%2Dprimary%3E%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dbottom%2Dcolor%3A%23eb6864%7D%2Epanel%2Dsuccess%7Bborder%2Dcolor%3A%2322b24c%7D%2Epanel%2Dsuccess%3E%2Epanel%2Dheading%7Bcolor%3A%23468847%3Bbackground%2Dcolor%3A%2322b24c%3Bborder%2Dcolor%3A%2322b24c%7D%2Epanel%2Dsuccess%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%2Dcolor%3A%2322b24c%7D%2Epanel%2Dsuccess%3E%2Epanel%2Dheading%20%2Ebadge%7Bcolor%3A%2322b24c%3Bbackground%2Dcolor%3A%23468847%7D%2Epanel%2Dsuccess%3E%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dbottom%2Dcolor%3A%2322b24c%7D%2Epanel%2Dinfo%7Bborder%2Dcolor%3A%23336699%7D%2Epanel%2Dinfo%3E%2Epanel%2Dheading%7Bcolor%3A%233a87ad%3Bbackground%2Dcolor%3A%23336699%3Bborder%2Dcolor%3A%23336699%7D%2Epanel%2Dinfo%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%2Dcolor%3A%23336699%7D%2Epanel%2Dinfo%3E%2Epanel%2Dheading%20%2Ebadge%7Bcolor%3A%23336699%3Bbackground%2Dcolor%3A%233a87ad%7D%2Epanel%2Dinfo%3E%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dbottom%2Dcolor%3A%23336699%7D%2Epanel%2Dwarning%7Bborder%2Dcolor%3A%23f5e625%7D%2Epanel%2Dwarning%3E%2Epanel%2Dheading%7Bcolor%3A%23c09853%3Bbackground%2Dcolor%3A%23f5e625%3Bborder%2Dcolor%3A%23f5e625%7D%2Epanel%2Dwarning%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%2Dcolor%3A%23f5e625%7D%2Epanel%2Dwarning%3E%2Epanel%2Dheading%20%2Ebadge%7Bcolor%3A%23f5e625%3Bbackground%2Dcolor%3A%23c09853%7D%2Epanel%2Dwarning%3E%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dbottom%2Dcolor%3A%23f5e625%7D%2Epanel%2Ddanger%7Bborder%2Dcolor%3A%23f57a00%7D%2Epanel%2Ddanger%3E%2Epanel%2Dheading%7Bcolor%3A%23b94a48%3Bbackground%2Dcolor%3A%23f57a00%3Bborder%2Dcolor%3A%23f57a00%7D%2Epanel%2Ddanger%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%2Dcolor%3A%23f57a00%7D%2Epanel%2Ddanger%3E%2Epanel%2Dheading%20%2Ebadge%7Bcolor%3A%23f57a00%3Bbackground%2Dcolor%3A%23b94a48%7D%2Epanel%2Ddanger%3E%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dbottom%2Dcolor%3A%23f57a00%7D%2Eembed%2Dresponsive%7Bposition%3Arelative%3Bdisplay%3Ablock%3Bheight%3A0%3Bpadding%3A0%3Boverflow%3Ahidden%7D%2Eembed%2Dresponsive%20%2Eembed%2Dresponsive%2Ditem%2C%2Eembed%2Dresponsive%20iframe%2C%2Eembed%2Dresponsive%20embed%2C%2Eembed%2Dresponsive%20object%2C%2Eembed%2Dresponsive%20video%7Bposition%3Aabsolute%3Btop%3A0%3Bleft%3A0%3Bbottom%3A0%3Bheight%3A100%25%3Bwidth%3A100%25%3Bborder%3A0%7D%2Eembed%2Dresponsive%2D16by9%7Bpadding%2Dbottom%3A56%2E25%25%7D%2Eembed%2Dresponsive%2D4by3%7Bpadding%2Dbottom%3A75%25%7D%2Ewell%7Bmin%2Dheight%3A20px%3Bpadding%3A19px%3Bmargin%2Dbottom%3A20px%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%3A1px%20solid%20%23e3e3e3%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E05%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E05%29%7D%2Ewell%20blockquote%7Bborder%2Dcolor%3A%23ddd%3Bborder%2Dcolor%3Argba%280%2C0%2C0%2C0%2E15%29%7D%2Ewell%2Dlg%7Bpadding%3A24px%3Bborder%2Dradius%3A6px%7D%2Ewell%2Dsm%7Bpadding%3A9px%3Bborder%2Dradius%3A3px%7D%2Eclose%7Bfloat%3Aright%3Bfont%2Dsize%3A22%2E5px%3Bfont%2Dweight%3Abold%3Bline%2Dheight%3A1%3Bcolor%3A%23000000%3Btext%2Dshadow%3A0%201px%200%20%23ffffff%3Bopacity%3A0%2E2%3Bfilter%3Aalpha%28opacity%3D20%29%7D%2Eclose%3Ahover%2C%2Eclose%3Afocus%7Bcolor%3A%23000000%3Btext%2Ddecoration%3Anone%3Bcursor%3Apointer%3Bopacity%3A0%2E5%3Bfilter%3Aalpha%28opacity%3D50%29%7Dbutton%2Eclose%7Bpadding%3A0%3Bcursor%3Apointer%3Bbackground%3Atransparent%3Bborder%3A0%3B%2Dwebkit%2Dappearance%3Anone%7D%2Emodal%2Dopen%7Boverflow%3Ahidden%7D%2Emodal%7Bdisplay%3Anone%3Boverflow%3Ahidden%3Bposition%3Afixed%3Btop%3A0%3Bright%3A0%3Bbottom%3A0%3Bleft%3A0%3Bz%2Dindex%3A1050%3B%2Dwebkit%2Doverflow%2Dscrolling%3Atouch%3Boutline%3A0%7D%2Emodal%2Efade%20%2Emodal%2Ddialog%7B%2Dwebkit%2Dtransform%3Atranslate%280%2C%20%2D25%25%29%3B%2Dms%2Dtransform%3Atranslate%280%2C%20%2D25%25%29%3B%2Do%2Dtransform%3Atranslate%280%2C%20%2D25%25%29%3Btransform%3Atranslate%280%2C%20%2D25%25%29%3B%2Dwebkit%2Dtransition%3A%2Dwebkit%2Dtransform%20%2E3s%20ease%2Dout%3B%2Do%2Dtransition%3A%2Do%2Dtransform%20%2E3s%20ease%2Dout%3Btransition%3Atransform%20%2E3s%20ease%2Dout%7D%2Emodal%2Ein%20%2Emodal%2Ddialog%7B%2Dwebkit%2Dtransform%3Atranslate%280%2C%200%29%3B%2Dms%2Dtransform%3Atranslate%280%2C%200%29%3B%2Do%2Dtransform%3Atranslate%280%2C%200%29%3Btransform%3Atranslate%280%2C%200%29%7D%2Emodal%2Dopen%20%2Emodal%7Boverflow%2Dx%3Ahidden%3Boverflow%2Dy%3Aauto%7D%2Emodal%2Ddialog%7Bposition%3Arelative%3Bwidth%3Aauto%3Bmargin%3A10px%7D%2Emodal%2Dcontent%7Bposition%3Arelative%3Bbackground%2Dcolor%3A%23ffffff%3Bborder%3A1px%20solid%20%23999999%3Bborder%3A1px%20solid%20rgba%280%2C0%2C0%2C0%2E2%29%3Bborder%2Dradius%3A6px%3B%2Dwebkit%2Dbox%2Dshadow%3A0%203px%209px%20rgba%280%2C0%2C0%2C0%2E5%29%3Bbox%2Dshadow%3A0%203px%209px%20rgba%280%2C0%2C0%2C0%2E5%29%3B%2Dwebkit%2Dbackground%2Dclip%3Apadding%2Dbox%3Bbackground%2Dclip%3Apadding%2Dbox%3Boutline%3A0%7D%2Emodal%2Dbackdrop%7Bposition%3Afixed%3Btop%3A0%3Bright%3A0%3Bbottom%3A0%3Bleft%3A0%3Bz%2Dindex%3A1040%3Bbackground%2Dcolor%3A%23000000%7D%2Emodal%2Dbackdrop%2Efade%7Bopacity%3A0%3Bfilter%3Aalpha%28opacity%3D0%29%7D%2Emodal%2Dbackdrop%2Ein%7Bopacity%3A0%2E5%3Bfilter%3Aalpha%28opacity%3D50%29%7D%2Emodal%2Dheader%7Bpadding%3A15px%3Bborder%2Dbottom%3A1px%20solid%20%23e5e5e5%7D%2Emodal%2Dheader%20%2Eclose%7Bmargin%2Dtop%3A%2D2px%7D%2Emodal%2Dtitle%7Bmargin%3A0%3Bline%2Dheight%3A1%2E42857143%7D%2Emodal%2Dbody%7Bposition%3Arelative%3Bpadding%3A20px%7D%2Emodal%2Dfooter%7Bpadding%3A20px%3Btext%2Dalign%3Aright%3Bborder%2Dtop%3A1px%20solid%20%23e5e5e5%7D%2Emodal%2Dfooter%20%2Ebtn%2B%2Ebtn%7Bmargin%2Dleft%3A5px%3Bmargin%2Dbottom%3A0%7D%2Emodal%2Dfooter%20%2Ebtn%2Dgroup%20%2Ebtn%2B%2Ebtn%7Bmargin%2Dleft%3A%2D1px%7D%2Emodal%2Dfooter%20%2Ebtn%2Dblock%2B%2Ebtn%2Dblock%7Bmargin%2Dleft%3A0%7D%2Emodal%2Dscrollbar%2Dmeasure%7Bposition%3Aabsolute%3Btop%3A%2D9999px%3Bwidth%3A50px%3Bheight%3A50px%3Boverflow%3Ascroll%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Emodal%2Ddialog%7Bwidth%3A600px%3Bmargin%3A30px%20auto%7D%2Emodal%2Dcontent%7B%2Dwebkit%2Dbox%2Dshadow%3A0%205px%2015px%20rgba%280%2C0%2C0%2C0%2E5%29%3Bbox%2Dshadow%3A0%205px%2015px%20rgba%280%2C0%2C0%2C0%2E5%29%7D%2Emodal%2Dsm%7Bwidth%3A300px%7D%7D%40media%20%28min%2Dwidth%3A992px%29%7B%2Emodal%2Dlg%7Bwidth%3A900px%7D%7D%2Etooltip%7Bposition%3Aabsolute%3Bz%2Dindex%3A1070%3Bdisplay%3Ablock%3Bfont%2Dfamily%3AGeorgia%2C%22Times%20New%20Roman%22%2CTimes%2Cserif%3Bfont%2Dstyle%3Anormal%3Bfont%2Dweight%3Anormal%3Bletter%2Dspacing%3Anormal%3Bline%2Dbreak%3Aauto%3Bline%2Dheight%3A1%2E42857143%3Btext%2Dalign%3Aleft%3Btext%2Dalign%3Astart%3Btext%2Ddecoration%3Anone%3Btext%2Dshadow%3Anone%3Btext%2Dtransform%3Anone%3Bwhite%2Dspace%3Anormal%3Bword%2Dbreak%3Anormal%3Bword%2Dspacing%3Anormal%3Bword%2Dwrap%3Anormal%3Bfont%2Dsize%3A13px%3Bopacity%3A0%3Bfilter%3Aalpha%28opacity%3D0%29%7D%2Etooltip%2Ein%7Bopacity%3A0%2E9%3Bfilter%3Aalpha%28opacity%3D90%29%7D%2Etooltip%2Etop%7Bmargin%2Dtop%3A%2D3px%3Bpadding%3A5px%200%7D%2Etooltip%2Eright%7Bmargin%2Dleft%3A3px%3Bpadding%3A0%205px%7D%2Etooltip%2Ebottom%7Bmargin%2Dtop%3A3px%3Bpadding%3A5px%200%7D%2Etooltip%2Eleft%7Bmargin%2Dleft%3A%2D3px%3Bpadding%3A0%205px%7D%2Etooltip%2Dinner%7Bmax%2Dwidth%3A200px%3Bpadding%3A3px%208px%3Bcolor%3A%23ffffff%3Btext%2Dalign%3Acenter%3Bbackground%2Dcolor%3A%23000000%3Bborder%2Dradius%3A4px%7D%2Etooltip%2Darrow%7Bposition%3Aabsolute%3Bwidth%3A0%3Bheight%3A0%3Bborder%2Dcolor%3Atransparent%3Bborder%2Dstyle%3Asolid%7D%2Etooltip%2Etop%20%2Etooltip%2Darrow%7Bbottom%3A0%3Bleft%3A50%25%3Bmargin%2Dleft%3A%2D5px%3Bborder%2Dwidth%3A5px%205px%200%3Bborder%2Dtop%2Dcolor%3A%23000000%7D%2Etooltip%2Etop%2Dleft%20%2Etooltip%2Darrow%7Bbottom%3A0%3Bright%3A5px%3Bmargin%2Dbottom%3A%2D5px%3Bborder%2Dwidth%3A5px%205px%200%3Bborder%2Dtop%2Dcolor%3A%23000000%7D%2Etooltip%2Etop%2Dright%20%2Etooltip%2Darrow%7Bbottom%3A0%3Bleft%3A5px%3Bmargin%2Dbottom%3A%2D5px%3Bborder%2Dwidth%3A5px%205px%200%3Bborder%2Dtop%2Dcolor%3A%23000000%7D%2Etooltip%2Eright%20%2Etooltip%2Darrow%7Btop%3A50%25%3Bleft%3A0%3Bmargin%2Dtop%3A%2D5px%3Bborder%2Dwidth%3A5px%205px%205px%200%3Bborder%2Dright%2Dcolor%3A%23000000%7D%2Etooltip%2Eleft%20%2Etooltip%2Darrow%7Btop%3A50%25%3Bright%3A0%3Bmargin%2Dtop%3A%2D5px%3Bborder%2Dwidth%3A5px%200%205px%205px%3Bborder%2Dleft%2Dcolor%3A%23000000%7D%2Etooltip%2Ebottom%20%2Etooltip%2Darrow%7Btop%3A0%3Bleft%3A50%25%3Bmargin%2Dleft%3A%2D5px%3Bborder%2Dwidth%3A0%205px%205px%3Bborder%2Dbottom%2Dcolor%3A%23000000%7D%2Etooltip%2Ebottom%2Dleft%20%2Etooltip%2Darrow%7Btop%3A0%3Bright%3A5px%3Bmargin%2Dtop%3A%2D5px%3Bborder%2Dwidth%3A0%205px%205px%3Bborder%2Dbottom%2Dcolor%3A%23000000%7D%2Etooltip%2Ebottom%2Dright%20%2Etooltip%2Darrow%7Btop%3A0%3Bleft%3A5px%3Bmargin%2Dtop%3A%2D5px%3Bborder%2Dwidth%3A0%205px%205px%3Bborder%2Dbottom%2Dcolor%3A%23000000%7D%2Epopover%7Bposition%3Aabsolute%3Btop%3A0%3Bleft%3A0%3Bz%2Dindex%3A1060%3Bdisplay%3Anone%3Bmax%2Dwidth%3A276px%3Bpadding%3A1px%3Bfont%2Dfamily%3AGeorgia%2C%22Times%20New%20Roman%22%2CTimes%2Cserif%3Bfont%2Dstyle%3Anormal%3Bfont%2Dweight%3Anormal%3Bletter%2Dspacing%3Anormal%3Bline%2Dbreak%3Aauto%3Bline%2Dheight%3A1%2E42857143%3Btext%2Dalign%3Aleft%3Btext%2Dalign%3Astart%3Btext%2Ddecoration%3Anone%3Btext%2Dshadow%3Anone%3Btext%2Dtransform%3Anone%3Bwhite%2Dspace%3Anormal%3Bword%2Dbreak%3Anormal%3Bword%2Dspacing%3Anormal%3Bword%2Dwrap%3Anormal%3Bfont%2Dsize%3A15px%3Bbackground%2Dcolor%3A%23ffffff%3B%2Dwebkit%2Dbackground%2Dclip%3Apadding%2Dbox%3Bbackground%2Dclip%3Apadding%2Dbox%3Bborder%3A1px%20solid%20%23cccccc%3Bborder%3A1px%20solid%20rgba%280%2C0%2C0%2C0%2E2%29%3Bborder%2Dradius%3A6px%3B%2Dwebkit%2Dbox%2Dshadow%3A0%205px%2010px%20rgba%280%2C0%2C0%2C0%2E2%29%3Bbox%2Dshadow%3A0%205px%2010px%20rgba%280%2C0%2C0%2C0%2E2%29%7D%2Epopover%2Etop%7Bmargin%2Dtop%3A%2D10px%7D%2Epopover%2Eright%7Bmargin%2Dleft%3A10px%7D%2Epopover%2Ebottom%7Bmargin%2Dtop%3A10px%7D%2Epopover%2Eleft%7Bmargin%2Dleft%3A%2D10px%7D%2Epopover%2Dtitle%7Bmargin%3A0%3Bpadding%3A8px%2014px%3Bfont%2Dsize%3A15px%3Bbackground%2Dcolor%3A%23f7f7f7%3Bborder%2Dbottom%3A1px%20solid%20%23ebebeb%3Bborder%2Dradius%3A5px%205px%200%200%7D%2Epopover%2Dcontent%7Bpadding%3A9px%2014px%7D%2Epopover%3E%2Earrow%2C%2Epopover%3E%2Earrow%3Aafter%7Bposition%3Aabsolute%3Bdisplay%3Ablock%3Bwidth%3A0%3Bheight%3A0%3Bborder%2Dcolor%3Atransparent%3Bborder%2Dstyle%3Asolid%7D%2Epopover%3E%2Earrow%7Bborder%2Dwidth%3A11px%7D%2Epopover%3E%2Earrow%3Aafter%7Bborder%2Dwidth%3A10px%3Bcontent%3A%22%22%7D%2Epopover%2Etop%3E%2Earrow%7Bleft%3A50%25%3Bmargin%2Dleft%3A%2D11px%3Bborder%2Dbottom%2Dwidth%3A0%3Bborder%2Dtop%2Dcolor%3A%23999999%3Bborder%2Dtop%2Dcolor%3Argba%280%2C0%2C0%2C0%2E25%29%3Bbottom%3A%2D11px%7D%2Epopover%2Etop%3E%2Earrow%3Aafter%7Bcontent%3A%22%20%22%3Bbottom%3A1px%3Bmargin%2Dleft%3A%2D10px%3Bborder%2Dbottom%2Dwidth%3A0%3Bborder%2Dtop%2Dcolor%3A%23ffffff%7D%2Epopover%2Eright%3E%2Earrow%7Btop%3A50%25%3Bleft%3A%2D11px%3Bmargin%2Dtop%3A%2D11px%3Bborder%2Dleft%2Dwidth%3A0%3Bborder%2Dright%2Dcolor%3A%23999999%3Bborder%2Dright%2Dcolor%3Argba%280%2C0%2C0%2C0%2E25%29%7D%2Epopover%2Eright%3E%2Earrow%3Aafter%7Bcontent%3A%22%20%22%3Bleft%3A1px%3Bbottom%3A%2D10px%3Bborder%2Dleft%2Dwidth%3A0%3Bborder%2Dright%2Dcolor%3A%23ffffff%7D%2Epopover%2Ebottom%3E%2Earrow%7Bleft%3A50%25%3Bmargin%2Dleft%3A%2D11px%3Bborder%2Dtop%2Dwidth%3A0%3Bborder%2Dbottom%2Dcolor%3A%23999999%3Bborder%2Dbottom%2Dcolor%3Argba%280%2C0%2C0%2C0%2E25%29%3Btop%3A%2D11px%7D%2Epopover%2Ebottom%3E%2Earrow%3Aafter%7Bcontent%3A%22%20%22%3Btop%3A1px%3Bmargin%2Dleft%3A%2D10px%3Bborder%2Dtop%2Dwidth%3A0%3Bborder%2Dbottom%2Dcolor%3A%23ffffff%7D%2Epopover%2Eleft%3E%2Earrow%7Btop%3A50%25%3Bright%3A%2D11px%3Bmargin%2Dtop%3A%2D11px%3Bborder%2Dright%2Dwidth%3A0%3Bborder%2Dleft%2Dcolor%3A%23999999%3Bborder%2Dleft%2Dcolor%3Argba%280%2C0%2C0%2C0%2E25%29%7D%2Epopover%2Eleft%3E%2Earrow%3Aafter%7Bcontent%3A%22%20%22%3Bright%3A1px%3Bborder%2Dright%2Dwidth%3A0%3Bborder%2Dleft%2Dcolor%3A%23ffffff%3Bbottom%3A%2D10px%7D%2Ecarousel%7Bposition%3Arelative%7D%2Ecarousel%2Dinner%7Bposition%3Arelative%3Boverflow%3Ahidden%3Bwidth%3A100%25%7D%2Ecarousel%2Dinner%3E%2Eitem%7Bdisplay%3Anone%3Bposition%3Arelative%3B%2Dwebkit%2Dtransition%3A%2E6s%20ease%2Din%2Dout%20left%3B%2Do%2Dtransition%3A%2E6s%20ease%2Din%2Dout%20left%3Btransition%3A%2E6s%20ease%2Din%2Dout%20left%7D%2Ecarousel%2Dinner%3E%2Eitem%3Eimg%2C%2Ecarousel%2Dinner%3E%2Eitem%3Ea%3Eimg%7Bline%2Dheight%3A1%7D%40media%20all%20and%20%28transform%2D3d%29%2C%28%2Dwebkit%2Dtransform%2D3d%29%7B%2Ecarousel%2Dinner%3E%2Eitem%7B%2Dwebkit%2Dtransition%3A%2Dwebkit%2Dtransform%20%2E6s%20ease%2Din%2Dout%3B%2Do%2Dtransition%3A%2Do%2Dtransform%20%2E6s%20ease%2Din%2Dout%3Btransition%3Atransform%20%2E6s%20ease%2Din%2Dout%3B%2Dwebkit%2Dbackface%2Dvisibility%3Ahidden%3Bbackface%2Dvisibility%3Ahidden%3B%2Dwebkit%2Dperspective%3A1000px%3Bperspective%3A1000px%7D%2Ecarousel%2Dinner%3E%2Eitem%2Enext%2C%2Ecarousel%2Dinner%3E%2Eitem%2Eactive%2Eright%7B%2Dwebkit%2Dtransform%3Atranslate3d%28100%25%2C%200%2C%200%29%3Btransform%3Atranslate3d%28100%25%2C%200%2C%200%29%3Bleft%3A0%7D%2Ecarousel%2Dinner%3E%2Eitem%2Eprev%2C%2Ecarousel%2Dinner%3E%2Eitem%2Eactive%2Eleft%7B%2Dwebkit%2Dtransform%3Atranslate3d%28%2D100%25%2C%200%2C%200%29%3Btransform%3Atranslate3d%28%2D100%25%2C%200%2C%200%29%3Bleft%3A0%7D%2Ecarousel%2Dinner%3E%2Eitem%2Enext%2Eleft%2C%2Ecarousel%2Dinner%3E%2Eitem%2Eprev%2Eright%2C%2Ecarousel%2Dinner%3E%2Eitem%2Eactive%7B%2Dwebkit%2Dtransform%3Atranslate3d%280%2C%200%2C%200%29%3Btransform%3Atranslate3d%280%2C%200%2C%200%29%3Bleft%3A0%7D%7D%2Ecarousel%2Dinner%3E%2Eactive%2C%2Ecarousel%2Dinner%3E%2Enext%2C%2Ecarousel%2Dinner%3E%2Eprev%7Bdisplay%3Ablock%7D%2Ecarousel%2Dinner%3E%2Eactive%7Bleft%3A0%7D%2Ecarousel%2Dinner%3E%2Enext%2C%2Ecarousel%2Dinner%3E%2Eprev%7Bposition%3Aabsolute%3Btop%3A0%3Bwidth%3A100%25%7D%2Ecarousel%2Dinner%3E%2Enext%7Bleft%3A100%25%7D%2Ecarousel%2Dinner%3E%2Eprev%7Bleft%3A%2D100%25%7D%2Ecarousel%2Dinner%3E%2Enext%2Eleft%2C%2Ecarousel%2Dinner%3E%2Eprev%2Eright%7Bleft%3A0%7D%2Ecarousel%2Dinner%3E%2Eactive%2Eleft%7Bleft%3A%2D100%25%7D%2Ecarousel%2Dinner%3E%2Eactive%2Eright%7Bleft%3A100%25%7D%2Ecarousel%2Dcontrol%7Bposition%3Aabsolute%3Btop%3A0%3Bleft%3A0%3Bbottom%3A0%3Bwidth%3A15%25%3Bopacity%3A0%2E5%3Bfilter%3Aalpha%28opacity%3D50%29%3Bfont%2Dsize%3A20px%3Bcolor%3A%23ffffff%3Btext%2Dalign%3Acenter%3Btext%2Dshadow%3A0%201px%202px%20rgba%280%2C0%2C0%2C0%2E6%29%3Bbackground%2Dcolor%3Argba%280%2C0%2C0%2C0%29%7D%2Ecarousel%2Dcontrol%2Eleft%7Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28left%2C%20rgba%280%2C0%2C0%2C0%2E5%29%200%2C%20rgba%280%2C0%2C0%2C0%2E0001%29%20100%25%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28left%2C%20rgba%280%2C0%2C0%2C0%2E5%29%200%2C%20rgba%280%2C0%2C0%2C0%2E0001%29%20100%25%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C%20left%20top%2C%20right%20top%2C%20from%28rgba%280%2C0%2C0%2C0%2E5%29%29%2C%20to%28rgba%280%2C0%2C0%2C0%2E0001%29%29%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20right%2C%20rgba%280%2C0%2C0%2C0%2E5%29%200%2C%20rgba%280%2C0%2C0%2C0%2E0001%29%20100%25%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%2380000000%27%2C%20endColorstr%3D%27%2300000000%27%2C%20GradientType%3D1%29%7D%2Ecarousel%2Dcontrol%2Eright%7Bleft%3Aauto%3Bright%3A0%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28left%2C%20rgba%280%2C0%2C0%2C0%2E0001%29%200%2C%20rgba%280%2C0%2C0%2C0%2E5%29%20100%25%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28left%2C%20rgba%280%2C0%2C0%2C0%2E0001%29%200%2C%20rgba%280%2C0%2C0%2C0%2E5%29%20100%25%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C%20left%20top%2C%20right%20top%2C%20from%28rgba%280%2C0%2C0%2C0%2E0001%29%29%2C%20to%28rgba%280%2C0%2C0%2C0%2E5%29%29%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20right%2C%20rgba%280%2C0%2C0%2C0%2E0001%29%200%2C%20rgba%280%2C0%2C0%2C0%2E5%29%20100%25%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%2300000000%27%2C%20endColorstr%3D%27%2380000000%27%2C%20GradientType%3D1%29%7D%2Ecarousel%2Dcontrol%3Ahover%2C%2Ecarousel%2Dcontrol%3Afocus%7Boutline%3A0%3Bcolor%3A%23ffffff%3Btext%2Ddecoration%3Anone%3Bopacity%3A0%2E9%3Bfilter%3Aalpha%28opacity%3D90%29%7D%2Ecarousel%2Dcontrol%20%2Eicon%2Dprev%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dnext%2C%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dleft%2C%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dright%7Bposition%3Aabsolute%3Btop%3A50%25%3Bmargin%2Dtop%3A%2D10px%3Bz%2Dindex%3A5%3Bdisplay%3Ainline%2Dblock%7D%2Ecarousel%2Dcontrol%20%2Eicon%2Dprev%2C%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dleft%7Bleft%3A50%25%3Bmargin%2Dleft%3A%2D10px%7D%2Ecarousel%2Dcontrol%20%2Eicon%2Dnext%2C%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dright%7Bright%3A50%25%3Bmargin%2Dright%3A%2D10px%7D%2Ecarousel%2Dcontrol%20%2Eicon%2Dprev%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dnext%7Bwidth%3A20px%3Bheight%3A20px%3Bline%2Dheight%3A1%3Bfont%2Dfamily%3Aserif%7D%2Ecarousel%2Dcontrol%20%2Eicon%2Dprev%3Abefore%7Bcontent%3A%27%5C2039%27%7D%2Ecarousel%2Dcontrol%20%2Eicon%2Dnext%3Abefore%7Bcontent%3A%27%5C203a%27%7D%2Ecarousel%2Dindicators%7Bposition%3Aabsolute%3Bbottom%3A10px%3Bleft%3A50%25%3Bz%2Dindex%3A15%3Bwidth%3A60%25%3Bmargin%2Dleft%3A%2D30%25%3Bpadding%2Dleft%3A0%3Blist%2Dstyle%3Anone%3Btext%2Dalign%3Acenter%7D%2Ecarousel%2Dindicators%20li%7Bdisplay%3Ainline%2Dblock%3Bwidth%3A10px%3Bheight%3A10px%3Bmargin%3A1px%3Btext%2Dindent%3A%2D999px%3Bborder%3A1px%20solid%20%23ffffff%3Bborder%2Dradius%3A10px%3Bcursor%3Apointer%3Bbackground%2Dcolor%3A%23000%20%5C9%3Bbackground%2Dcolor%3Argba%280%2C0%2C0%2C0%29%7D%2Ecarousel%2Dindicators%20%2Eactive%7Bmargin%3A0%3Bwidth%3A12px%3Bheight%3A12px%3Bbackground%2Dcolor%3A%23ffffff%7D%2Ecarousel%2Dcaption%7Bposition%3Aabsolute%3Bleft%3A15%25%3Bright%3A15%25%3Bbottom%3A20px%3Bz%2Dindex%3A10%3Bpadding%2Dtop%3A20px%3Bpadding%2Dbottom%3A20px%3Bcolor%3A%23ffffff%3Btext%2Dalign%3Acenter%3Btext%2Dshadow%3A0%201px%202px%20rgba%280%2C0%2C0%2C0%2E6%29%7D%2Ecarousel%2Dcaption%20%2Ebtn%7Btext%2Dshadow%3Anone%7D%40media%20screen%20and%20%28min%2Dwidth%3A768px%29%7B%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dleft%2C%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dright%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dprev%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dnext%7Bwidth%3A30px%3Bheight%3A30px%3Bmargin%2Dtop%3A%2D10px%3Bfont%2Dsize%3A30px%7D%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dleft%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dprev%7Bmargin%2Dleft%3A%2D10px%7D%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dright%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dnext%7Bmargin%2Dright%3A%2D10px%7D%2Ecarousel%2Dcaption%7Bleft%3A20%25%3Bright%3A20%25%3Bpadding%2Dbottom%3A30px%7D%2Ecarousel%2Dindicators%7Bbottom%3A20px%7D%7D%2Eclearfix%3Abefore%2C%2Eclearfix%3Aafter%2C%2Edl%2Dhorizontal%20dd%3Abefore%2C%2Edl%2Dhorizontal%20dd%3Aafter%2C%2Econtainer%3Abefore%2C%2Econtainer%3Aafter%2C%2Econtainer%2Dfluid%3Abefore%2C%2Econtainer%2Dfluid%3Aafter%2C%2Erow%3Abefore%2C%2Erow%3Aafter%2C%2Eform%2Dhorizontal%20%2Eform%2Dgroup%3Abefore%2C%2Eform%2Dhorizontal%20%2Eform%2Dgroup%3Aafter%2C%2Ebtn%2Dtoolbar%3Abefore%2C%2Ebtn%2Dtoolbar%3Aafter%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Abefore%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Aafter%2C%2Enav%3Abefore%2C%2Enav%3Aafter%2C%2Enavbar%3Abefore%2C%2Enavbar%3Aafter%2C%2Enavbar%2Dheader%3Abefore%2C%2Enavbar%2Dheader%3Aafter%2C%2Enavbar%2Dcollapse%3Abefore%2C%2Enavbar%2Dcollapse%3Aafter%2C%2Epager%3Abefore%2C%2Epager%3Aafter%2C%2Epanel%2Dbody%3Abefore%2C%2Epanel%2Dbody%3Aafter%2C%2Emodal%2Dheader%3Abefore%2C%2Emodal%2Dheader%3Aafter%2C%2Emodal%2Dfooter%3Abefore%2C%2Emodal%2Dfooter%3Aafter%7Bcontent%3A%22%20%22%3Bdisplay%3Atable%7D%2Eclearfix%3Aafter%2C%2Edl%2Dhorizontal%20dd%3Aafter%2C%2Econtainer%3Aafter%2C%2Econtainer%2Dfluid%3Aafter%2C%2Erow%3Aafter%2C%2Eform%2Dhorizontal%20%2Eform%2Dgroup%3Aafter%2C%2Ebtn%2Dtoolbar%3Aafter%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Aafter%2C%2Enav%3Aafter%2C%2Enavbar%3Aafter%2C%2Enavbar%2Dheader%3Aafter%2C%2Enavbar%2Dcollapse%3Aafter%2C%2Epager%3Aafter%2C%2Epanel%2Dbody%3Aafter%2C%2Emodal%2Dheader%3Aafter%2C%2Emodal%2Dfooter%3Aafter%7Bclear%3Aboth%7D%2Ecenter%2Dblock%7Bdisplay%3Ablock%3Bmargin%2Dleft%3Aauto%3Bmargin%2Dright%3Aauto%7D%2Epull%2Dright%7Bfloat%3Aright%20%21important%7D%2Epull%2Dleft%7Bfloat%3Aleft%20%21important%7D%2Ehide%7Bdisplay%3Anone%20%21important%7D%2Eshow%7Bdisplay%3Ablock%20%21important%7D%2Einvisible%7Bvisibility%3Ahidden%7D%2Etext%2Dhide%7Bfont%3A0%2F0%20a%3Bcolor%3Atransparent%3Btext%2Dshadow%3Anone%3Bbackground%2Dcolor%3Atransparent%3Bborder%3A0%7D%2Ehidden%7Bdisplay%3Anone%20%21important%7D%2Eaffix%7Bposition%3Afixed%7D%40%2Dms%2Dviewport%7Bwidth%3Adevice%2Dwidth%7D%2Evisible%2Dxs%2C%2Evisible%2Dsm%2C%2Evisible%2Dmd%2C%2Evisible%2Dlg%7Bdisplay%3Anone%20%21important%7D%2Evisible%2Dxs%2Dblock%2C%2Evisible%2Dxs%2Dinline%2C%2Evisible%2Dxs%2Dinline%2Dblock%2C%2Evisible%2Dsm%2Dblock%2C%2Evisible%2Dsm%2Dinline%2C%2Evisible%2Dsm%2Dinline%2Dblock%2C%2Evisible%2Dmd%2Dblock%2C%2Evisible%2Dmd%2Dinline%2C%2Evisible%2Dmd%2Dinline%2Dblock%2C%2Evisible%2Dlg%2Dblock%2C%2Evisible%2Dlg%2Dinline%2C%2Evisible%2Dlg%2Dinline%2Dblock%7Bdisplay%3Anone%20%21important%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Evisible%2Dxs%7Bdisplay%3Ablock%20%21important%7Dtable%2Evisible%2Dxs%7Bdisplay%3Atable%20%21important%7Dtr%2Evisible%2Dxs%7Bdisplay%3Atable%2Drow%20%21important%7Dth%2Evisible%2Dxs%2Ctd%2Evisible%2Dxs%7Bdisplay%3Atable%2Dcell%20%21important%7D%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Evisible%2Dxs%2Dblock%7Bdisplay%3Ablock%20%21important%7D%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Evisible%2Dxs%2Dinline%7Bdisplay%3Ainline%20%21important%7D%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Evisible%2Dxs%2Dinline%2Dblock%7Bdisplay%3Ainline%2Dblock%20%21important%7D%7D%40media%20%28min%2Dwidth%3A768px%29%20and%20%28max%2Dwidth%3A991px%29%7B%2Evisible%2Dsm%7Bdisplay%3Ablock%20%21important%7Dtable%2Evisible%2Dsm%7Bdisplay%3Atable%20%21important%7Dtr%2Evisible%2Dsm%7Bdisplay%3Atable%2Drow%20%21important%7Dth%2Evisible%2Dsm%2Ctd%2Evisible%2Dsm%7Bdisplay%3Atable%2Dcell%20%21important%7D%7D%40media%20%28min%2Dwidth%3A768px%29%20and%20%28max%2Dwidth%3A991px%29%7B%2Evisible%2Dsm%2Dblock%7Bdisplay%3Ablock%20%21important%7D%7D%40media%20%28min%2Dwidth%3A768px%29%20and%20%28max%2Dwidth%3A991px%29%7B%2Evisible%2Dsm%2Dinline%7Bdisplay%3Ainline%20%21important%7D%7D%40media%20%28min%2Dwidth%3A768px%29%20and%20%28max%2Dwidth%3A991px%29%7B%2Evisible%2Dsm%2Dinline%2Dblock%7Bdisplay%3Ainline%2Dblock%20%21important%7D%7D%40media%20%28min%2Dwidth%3A992px%29%20and%20%28max%2Dwidth%3A1199px%29%7B%2Evisible%2Dmd%7Bdisplay%3Ablock%20%21important%7Dtable%2Evisible%2Dmd%7Bdisplay%3Atable%20%21important%7Dtr%2Evisible%2Dmd%7Bdisplay%3Atable%2Drow%20%21important%7Dth%2Evisible%2Dmd%2Ctd%2Evisible%2Dmd%7Bdisplay%3Atable%2Dcell%20%21important%7D%7D%40media%20%28min%2Dwidth%3A992px%29%20and%20%28max%2Dwidth%3A1199px%29%7B%2Evisible%2Dmd%2Dblock%7Bdisplay%3Ablock%20%21important%7D%7D%40media%20%28min%2Dwidth%3A992px%29%20and%20%28max%2Dwidth%3A1199px%29%7B%2Evisible%2Dmd%2Dinline%7Bdisplay%3Ainline%20%21important%7D%7D%40media%20%28min%2Dwidth%3A992px%29%20and%20%28max%2Dwidth%3A1199px%29%7B%2Evisible%2Dmd%2Dinline%2Dblock%7Bdisplay%3Ainline%2Dblock%20%21important%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Evisible%2Dlg%7Bdisplay%3Ablock%20%21important%7Dtable%2Evisible%2Dlg%7Bdisplay%3Atable%20%21important%7Dtr%2Evisible%2Dlg%7Bdisplay%3Atable%2Drow%20%21important%7Dth%2Evisible%2Dlg%2Ctd%2Evisible%2Dlg%7Bdisplay%3Atable%2Dcell%20%21important%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Evisible%2Dlg%2Dblock%7Bdisplay%3Ablock%20%21important%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Evisible%2Dlg%2Dinline%7Bdisplay%3Ainline%20%21important%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Evisible%2Dlg%2Dinline%2Dblock%7Bdisplay%3Ainline%2Dblock%20%21important%7D%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Ehidden%2Dxs%7Bdisplay%3Anone%20%21important%7D%7D%40media%20%28min%2Dwidth%3A768px%29%20and%20%28max%2Dwidth%3A991px%29%7B%2Ehidden%2Dsm%7Bdisplay%3Anone%20%21important%7D%7D%40media%20%28min%2Dwidth%3A992px%29%20and%20%28max%2Dwidth%3A1199px%29%7B%2Ehidden%2Dmd%7Bdisplay%3Anone%20%21important%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Ehidden%2Dlg%7Bdisplay%3Anone%20%21important%7D%7D%2Evisible%2Dprint%7Bdisplay%3Anone%20%21important%7D%40media%20print%7B%2Evisible%2Dprint%7Bdisplay%3Ablock%20%21important%7Dtable%2Evisible%2Dprint%7Bdisplay%3Atable%20%21important%7Dtr%2Evisible%2Dprint%7Bdisplay%3Atable%2Drow%20%21important%7Dth%2Evisible%2Dprint%2Ctd%2Evisible%2Dprint%7Bdisplay%3Atable%2Dcell%20%21important%7D%7D%2Evisible%2Dprint%2Dblock%7Bdisplay%3Anone%20%21important%7D%40media%20print%7B%2Evisible%2Dprint%2Dblock%7Bdisplay%3Ablock%20%21important%7D%7D%2Evisible%2Dprint%2Dinline%7Bdisplay%3Anone%20%21important%7D%40media%20print%7B%2Evisible%2Dprint%2Dinline%7Bdisplay%3Ainline%20%21important%7D%7D%2Evisible%2Dprint%2Dinline%2Dblock%7Bdisplay%3Anone%20%21important%7D%40media%20print%7B%2Evisible%2Dprint%2Dinline%2Dblock%7Bdisplay%3Ainline%2Dblock%20%21important%7D%7D%40media%20print%7B%2Ehidden%2Dprint%7Bdisplay%3Anone%20%21important%7D%7D%2Enavbar%7Bfont%2Dsize%3A18px%3Bfont%2Dfamily%3A%22News%20Cycle%22%2C%22Arial%20Narrow%20Bold%22%2Csans%2Dserif%3Bfont%2Dweight%3A700%7D%2Enavbar%2Ddefault%20%2Ebadge%7Bbackground%2Dcolor%3A%23000%3Bcolor%3A%23fff%7D%2Enavbar%2Dinverse%20%2Ebadge%7Bbackground%2Dcolor%3A%23fff%3Bcolor%3A%23eb6864%7D%2Enavbar%2Dbrand%7Bfont%2Dsize%3Ainherit%3Bfont%2Dweight%3A700%3Btext%2Dtransform%3Auppercase%7D%2Ehas%2Dwarning%20%2Ehelp%2Dblock%2C%2Ehas%2Dwarning%20%2Econtrol%2Dlabel%2C%2Ehas%2Dwarning%20%2Eradio%2C%2Ehas%2Dwarning%20%2Echeckbox%2C%2Ehas%2Dwarning%20%2Eradio%2Dinline%2C%2Ehas%2Dwarning%20%2Echeckbox%2Dinline%2C%2Ehas%2Dwarning%2Eradio%20label%2C%2Ehas%2Dwarning%2Echeckbox%20label%2C%2Ehas%2Dwarning%2Eradio%2Dinline%20label%2C%2Ehas%2Dwarning%2Echeckbox%2Dinline%20label%2C%2Ehas%2Dwarning%20%2Eform%2Dcontrol%2Dfeedback%7Bcolor%3A%23f57a00%7D%2Ehas%2Dwarning%20%2Eform%2Dcontrol%2C%2Ehas%2Dwarning%20%2Eform%2Dcontrol%3Afocus%7Bborder%2Dcolor%3A%23f57a00%7D%2Ehas%2Derror%20%2Ehelp%2Dblock%2C%2Ehas%2Derror%20%2Econtrol%2Dlabel%2C%2Ehas%2Derror%20%2Eradio%2C%2Ehas%2Derror%20%2Echeckbox%2C%2Ehas%2Derror%20%2Eradio%2Dinline%2C%2Ehas%2Derror%20%2Echeckbox%2Dinline%2C%2Ehas%2Derror%2Eradio%20label%2C%2Ehas%2Derror%2Echeckbox%20label%2C%2Ehas%2Derror%2Eradio%2Dinline%20label%2C%2Ehas%2Derror%2Echeckbox%2Dinline%20label%2C%2Ehas%2Derror%20%2Eform%2Dcontrol%2Dfeedback%7Bcolor%3A%23eb6864%7D%2Ehas%2Derror%20%2Eform%2Dcontrol%2C%2Ehas%2Derror%20%2Eform%2Dcontrol%3Afocus%7Bborder%2Dcolor%3A%23eb6864%7D%2Ehas%2Dsuccess%20%2Ehelp%2Dblock%2C%2Ehas%2Dsuccess%20%2Econtrol%2Dlabel%2C%2Ehas%2Dsuccess%20%2Eradio%2C%2Ehas%2Dsuccess%20%2Echeckbox%2C%2Ehas%2Dsuccess%20%2Eradio%2Dinline%2C%2Ehas%2Dsuccess%20%2Echeckbox%2Dinline%2C%2Ehas%2Dsuccess%2Eradio%20label%2C%2Ehas%2Dsuccess%2Echeckbox%20label%2C%2Ehas%2Dsuccess%2Eradio%2Dinline%20label%2C%2Ehas%2Dsuccess%2Echeckbox%2Dinline%20label%2C%2Ehas%2Dsuccess%20%2Eform%2Dcontrol%2Dfeedback%7Bcolor%3A%2322b24c%7D%2Ehas%2Dsuccess%20%2Eform%2Dcontrol%2C%2Ehas%2Dsuccess%20%2Eform%2Dcontrol%3Afocus%7Bborder%2Dcolor%3A%2322b24c%7D%2Ebadge%7Bpadding%2Dbottom%3A4px%3Bvertical%2Dalign%3A3px%3Bfont%2Dsize%3A10px%7D%2Ejumbotron%20h1%2C%2Ejumbotron%20h2%2C%2Ejumbotron%20h3%2C%2Ejumbotron%20h4%2C%2Ejumbotron%20h5%2C%2Ejumbotron%20h6%7Bfont%2Dfamily%3A%22News%20Cycle%22%2C%22Arial%20Narrow%20Bold%22%2Csans%2Dserif%3Bfont%2Dweight%3A700%3Bcolor%3A%23000%7D%2Epanel%2Dprimary%20%2Epanel%2Dtitle%2C%2Epanel%2Dsuccess%20%2Epanel%2Dtitle%2C%2Epanel%2Dwarning%20%2Epanel%2Dtitle%2C%2Epanel%2Ddanger%20%2Epanel%2Dtitle%2C%2Epanel%2Dinfo%20%2Epanel%2Dtitle%7Bcolor%3A%23fff%7D%0A" rel="stylesheet" /> +<script src="data:application/x-javascript;base64,LyohCiAqIEJvb3RzdHJhcCB2My4zLjUgKGh0dHA6Ly9nZXRib290c3RyYXAuY29tKQogKiBDb3B5cmlnaHQgMjAxMS0yMDE1IFR3aXR0ZXIsIEluYy4KICogTGljZW5zZWQgdW5kZXIgdGhlIE1JVCBsaWNlbnNlCiAqLwppZigidW5kZWZpbmVkIj09dHlwZW9mIGpRdWVyeSl0aHJvdyBuZXcgRXJyb3IoIkJvb3RzdHJhcCdzIEphdmFTY3JpcHQgcmVxdWlyZXMgalF1ZXJ5Iik7K2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0Ijt2YXIgYj1hLmZuLmpxdWVyeS5zcGxpdCgiICIpWzBdLnNwbGl0KCIuIik7aWYoYlswXTwyJiZiWzFdPDl8fDE9PWJbMF0mJjk9PWJbMV0mJmJbMl08MSl0aHJvdyBuZXcgRXJyb3IoIkJvb3RzdHJhcCdzIEphdmFTY3JpcHQgcmVxdWlyZXMgalF1ZXJ5IHZlcnNpb24gMS45LjEgb3IgaGlnaGVyIil9KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKCl7dmFyIGE9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiYm9vdHN0cmFwIiksYj17V2Via2l0VHJhbnNpdGlvbjoid2Via2l0VHJhbnNpdGlvbkVuZCIsTW96VHJhbnNpdGlvbjoidHJhbnNpdGlvbmVuZCIsT1RyYW5zaXRpb246Im9UcmFuc2l0aW9uRW5kIG90cmFuc2l0aW9uZW5kIix0cmFuc2l0aW9uOiJ0cmFuc2l0aW9uZW5kIn07Zm9yKHZhciBjIGluIGIpaWYodm9pZCAwIT09YS5zdHlsZVtjXSlyZXR1cm57ZW5kOmJbY119O3JldHVybiExfWEuZm4uZW11bGF0ZVRyYW5zaXRpb25FbmQ9ZnVuY3Rpb24oYil7dmFyIGM9ITEsZD10aGlzO2EodGhpcykub25lKCJic1RyYW5zaXRpb25FbmQiLGZ1bmN0aW9uKCl7Yz0hMH0pO3ZhciBlPWZ1bmN0aW9uKCl7Y3x8YShkKS50cmlnZ2VyKGEuc3VwcG9ydC50cmFuc2l0aW9uLmVuZCl9O3JldHVybiBzZXRUaW1lb3V0KGUsYiksdGhpc30sYShmdW5jdGlvbigpe2Euc3VwcG9ydC50cmFuc2l0aW9uPWIoKSxhLnN1cHBvcnQudHJhbnNpdGlvbiYmKGEuZXZlbnQuc3BlY2lhbC5ic1RyYW5zaXRpb25FbmQ9e2JpbmRUeXBlOmEuc3VwcG9ydC50cmFuc2l0aW9uLmVuZCxkZWxlZ2F0ZVR5cGU6YS5zdXBwb3J0LnRyYW5zaXRpb24uZW5kLGhhbmRsZTpmdW5jdGlvbihiKXtyZXR1cm4gYShiLnRhcmdldCkuaXModGhpcyk/Yi5oYW5kbGVPYmouaGFuZGxlci5hcHBseSh0aGlzLGFyZ3VtZW50cyk6dm9pZCAwfX0pfSl9KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKGIpe3JldHVybiB0aGlzLmVhY2goZnVuY3Rpb24oKXt2YXIgYz1hKHRoaXMpLGU9Yy5kYXRhKCJicy5hbGVydCIpO2V8fGMuZGF0YSgiYnMuYWxlcnQiLGU9bmV3IGQodGhpcykpLCJzdHJpbmciPT10eXBlb2YgYiYmZVtiXS5jYWxsKGMpfSl9dmFyIGM9J1tkYXRhLWRpc21pc3M9ImFsZXJ0Il0nLGQ9ZnVuY3Rpb24oYil7YShiKS5vbigiY2xpY2siLGMsdGhpcy5jbG9zZSl9O2QuVkVSU0lPTj0iMy4zLjUiLGQuVFJBTlNJVElPTl9EVVJBVElPTj0xNTAsZC5wcm90b3R5cGUuY2xvc2U9ZnVuY3Rpb24oYil7ZnVuY3Rpb24gYygpe2cuZGV0YWNoKCkudHJpZ2dlcigiY2xvc2VkLmJzLmFsZXJ0IikucmVtb3ZlKCl9dmFyIGU9YSh0aGlzKSxmPWUuYXR0cigiZGF0YS10YXJnZXQiKTtmfHwoZj1lLmF0dHIoImhyZWYiKSxmPWYmJmYucmVwbGFjZSgvLiooPz0jW15cc10qJCkvLCIiKSk7dmFyIGc9YShmKTtiJiZiLnByZXZlbnREZWZhdWx0KCksZy5sZW5ndGh8fChnPWUuY2xvc2VzdCgiLmFsZXJ0IikpLGcudHJpZ2dlcihiPWEuRXZlbnQoImNsb3NlLmJzLmFsZXJ0IikpLGIuaXNEZWZhdWx0UHJldmVudGVkKCl8fChnLnJlbW92ZUNsYXNzKCJpbiIpLGEuc3VwcG9ydC50cmFuc2l0aW9uJiZnLmhhc0NsYXNzKCJmYWRlIik/Zy5vbmUoImJzVHJhbnNpdGlvbkVuZCIsYykuZW11bGF0ZVRyYW5zaXRpb25FbmQoZC5UUkFOU0lUSU9OX0RVUkFUSU9OKTpjKCkpfTt2YXIgZT1hLmZuLmFsZXJ0O2EuZm4uYWxlcnQ9YixhLmZuLmFsZXJ0LkNvbnN0cnVjdG9yPWQsYS5mbi5hbGVydC5ub0NvbmZsaWN0PWZ1bmN0aW9uKCl7cmV0dXJuIGEuZm4uYWxlcnQ9ZSx0aGlzfSxhKGRvY3VtZW50KS5vbigiY2xpY2suYnMuYWxlcnQuZGF0YS1hcGkiLGMsZC5wcm90b3R5cGUuY2xvc2UpfShqUXVlcnkpLCtmdW5jdGlvbihhKXsidXNlIHN0cmljdCI7ZnVuY3Rpb24gYihiKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGQ9YSh0aGlzKSxlPWQuZGF0YSgiYnMuYnV0dG9uIiksZj0ib2JqZWN0Ij09dHlwZW9mIGImJmI7ZXx8ZC5kYXRhKCJicy5idXR0b24iLGU9bmV3IGModGhpcyxmKSksInRvZ2dsZSI9PWI/ZS50b2dnbGUoKTpiJiZlLnNldFN0YXRlKGIpfSl9dmFyIGM9ZnVuY3Rpb24oYixkKXt0aGlzLiRlbGVtZW50PWEoYiksdGhpcy5vcHRpb25zPWEuZXh0ZW5kKHt9LGMuREVGQVVMVFMsZCksdGhpcy5pc0xvYWRpbmc9ITF9O2MuVkVSU0lPTj0iMy4zLjUiLGMuREVGQVVMVFM9e2xvYWRpbmdUZXh0OiJsb2FkaW5nLi4uIn0sYy5wcm90b3R5cGUuc2V0U3RhdGU9ZnVuY3Rpb24oYil7dmFyIGM9ImRpc2FibGVkIixkPXRoaXMuJGVsZW1lbnQsZT1kLmlzKCJpbnB1dCIpPyJ2YWwiOiJodG1sIixmPWQuZGF0YSgpO2IrPSJUZXh0IixudWxsPT1mLnJlc2V0VGV4dCYmZC5kYXRhKCJyZXNldFRleHQiLGRbZV0oKSksc2V0VGltZW91dChhLnByb3h5KGZ1bmN0aW9uKCl7ZFtlXShudWxsPT1mW2JdP3RoaXMub3B0aW9uc1tiXTpmW2JdKSwibG9hZGluZ1RleHQiPT1iPyh0aGlzLmlzTG9hZGluZz0hMCxkLmFkZENsYXNzKGMpLmF0dHIoYyxjKSk6dGhpcy5pc0xvYWRpbmcmJih0aGlzLmlzTG9hZGluZz0hMSxkLnJlbW92ZUNsYXNzKGMpLnJlbW92ZUF0dHIoYykpfSx0aGlzKSwwKX0sYy5wcm90b3R5cGUudG9nZ2xlPWZ1bmN0aW9uKCl7dmFyIGE9ITAsYj10aGlzLiRlbGVtZW50LmNsb3Nlc3QoJ1tkYXRhLXRvZ2dsZT0iYnV0dG9ucyJdJyk7aWYoYi5sZW5ndGgpe3ZhciBjPXRoaXMuJGVsZW1lbnQuZmluZCgiaW5wdXQiKTsicmFkaW8iPT1jLnByb3AoInR5cGUiKT8oYy5wcm9wKCJjaGVja2VkIikmJihhPSExKSxiLmZpbmQoIi5hY3RpdmUiKS5yZW1vdmVDbGFzcygiYWN0aXZlIiksdGhpcy4kZWxlbWVudC5hZGRDbGFzcygiYWN0aXZlIikpOiJjaGVja2JveCI9PWMucHJvcCgidHlwZSIpJiYoYy5wcm9wKCJjaGVja2VkIikhPT10aGlzLiRlbGVtZW50Lmhhc0NsYXNzKCJhY3RpdmUiKSYmKGE9ITEpLHRoaXMuJGVsZW1lbnQudG9nZ2xlQ2xhc3MoImFjdGl2ZSIpKSxjLnByb3AoImNoZWNrZWQiLHRoaXMuJGVsZW1lbnQuaGFzQ2xhc3MoImFjdGl2ZSIpKSxhJiZjLnRyaWdnZXIoImNoYW5nZSIpfWVsc2UgdGhpcy4kZWxlbWVudC5hdHRyKCJhcmlhLXByZXNzZWQiLCF0aGlzLiRlbGVtZW50Lmhhc0NsYXNzKCJhY3RpdmUiKSksdGhpcy4kZWxlbWVudC50b2dnbGVDbGFzcygiYWN0aXZlIil9O3ZhciBkPWEuZm4uYnV0dG9uO2EuZm4uYnV0dG9uPWIsYS5mbi5idXR0b24uQ29uc3RydWN0b3I9YyxhLmZuLmJ1dHRvbi5ub0NvbmZsaWN0PWZ1bmN0aW9uKCl7cmV0dXJuIGEuZm4uYnV0dG9uPWQsdGhpc30sYShkb2N1bWVudCkub24oImNsaWNrLmJzLmJ1dHRvbi5kYXRhLWFwaSIsJ1tkYXRhLXRvZ2dsZV49ImJ1dHRvbiJdJyxmdW5jdGlvbihjKXt2YXIgZD1hKGMudGFyZ2V0KTtkLmhhc0NsYXNzKCJidG4iKXx8KGQ9ZC5jbG9zZXN0KCIuYnRuIikpLGIuY2FsbChkLCJ0b2dnbGUiKSxhKGMudGFyZ2V0KS5pcygnaW5wdXRbdHlwZT0icmFkaW8iXScpfHxhKGMudGFyZ2V0KS5pcygnaW5wdXRbdHlwZT0iY2hlY2tib3giXScpfHxjLnByZXZlbnREZWZhdWx0KCl9KS5vbigiZm9jdXMuYnMuYnV0dG9uLmRhdGEtYXBpIGJsdXIuYnMuYnV0dG9uLmRhdGEtYXBpIiwnW2RhdGEtdG9nZ2xlXj0iYnV0dG9uIl0nLGZ1bmN0aW9uKGIpe2EoYi50YXJnZXQpLmNsb3Nlc3QoIi5idG4iKS50b2dnbGVDbGFzcygiZm9jdXMiLC9eZm9jdXMoaW4pPyQvLnRlc3QoYi50eXBlKSl9KX0oalF1ZXJ5KSwrZnVuY3Rpb24oYSl7InVzZSBzdHJpY3QiO2Z1bmN0aW9uIGIoYil7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbigpe3ZhciBkPWEodGhpcyksZT1kLmRhdGEoImJzLmNhcm91c2VsIiksZj1hLmV4dGVuZCh7fSxjLkRFRkFVTFRTLGQuZGF0YSgpLCJvYmplY3QiPT10eXBlb2YgYiYmYiksZz0ic3RyaW5nIj09dHlwZW9mIGI/YjpmLnNsaWRlO2V8fGQuZGF0YSgiYnMuY2Fyb3VzZWwiLGU9bmV3IGModGhpcyxmKSksIm51bWJlciI9PXR5cGVvZiBiP2UudG8oYik6Zz9lW2ddKCk6Zi5pbnRlcnZhbCYmZS5wYXVzZSgpLmN5Y2xlKCl9KX12YXIgYz1mdW5jdGlvbihiLGMpe3RoaXMuJGVsZW1lbnQ9YShiKSx0aGlzLiRpbmRpY2F0b3JzPXRoaXMuJGVsZW1lbnQuZmluZCgiLmNhcm91c2VsLWluZGljYXRvcnMiKSx0aGlzLm9wdGlvbnM9Yyx0aGlzLnBhdXNlZD1udWxsLHRoaXMuc2xpZGluZz1udWxsLHRoaXMuaW50ZXJ2YWw9bnVsbCx0aGlzLiRhY3RpdmU9bnVsbCx0aGlzLiRpdGVtcz1udWxsLHRoaXMub3B0aW9ucy5rZXlib2FyZCYmdGhpcy4kZWxlbWVudC5vbigia2V5ZG93bi5icy5jYXJvdXNlbCIsYS5wcm94eSh0aGlzLmtleWRvd24sdGhpcykpLCJob3ZlciI9PXRoaXMub3B0aW9ucy5wYXVzZSYmISgib250b3VjaHN0YXJ0ImluIGRvY3VtZW50LmRvY3VtZW50RWxlbWVudCkmJnRoaXMuJGVsZW1lbnQub24oIm1vdXNlZW50ZXIuYnMuY2Fyb3VzZWwiLGEucHJveHkodGhpcy5wYXVzZSx0aGlzKSkub24oIm1vdXNlbGVhdmUuYnMuY2Fyb3VzZWwiLGEucHJveHkodGhpcy5jeWNsZSx0aGlzKSl9O2MuVkVSU0lPTj0iMy4zLjUiLGMuVFJBTlNJVElPTl9EVVJBVElPTj02MDAsYy5ERUZBVUxUUz17aW50ZXJ2YWw6NWUzLHBhdXNlOiJob3ZlciIsd3JhcDohMCxrZXlib2FyZDohMH0sYy5wcm90b3R5cGUua2V5ZG93bj1mdW5jdGlvbihhKXtpZighL2lucHV0fHRleHRhcmVhL2kudGVzdChhLnRhcmdldC50YWdOYW1lKSl7c3dpdGNoKGEud2hpY2gpe2Nhc2UgMzc6dGhpcy5wcmV2KCk7YnJlYWs7Y2FzZSAzOTp0aGlzLm5leHQoKTticmVhaztkZWZhdWx0OnJldHVybn1hLnByZXZlbnREZWZhdWx0KCl9fSxjLnByb3RvdHlwZS5jeWNsZT1mdW5jdGlvbihiKXtyZXR1cm4gYnx8KHRoaXMucGF1c2VkPSExKSx0aGlzLmludGVydmFsJiZjbGVhckludGVydmFsKHRoaXMuaW50ZXJ2YWwpLHRoaXMub3B0aW9ucy5pbnRlcnZhbCYmIXRoaXMucGF1c2VkJiYodGhpcy5pbnRlcnZhbD1zZXRJbnRlcnZhbChhLnByb3h5KHRoaXMubmV4dCx0aGlzKSx0aGlzLm9wdGlvbnMuaW50ZXJ2YWwpKSx0aGlzfSxjLnByb3RvdHlwZS5nZXRJdGVtSW5kZXg9ZnVuY3Rpb24oYSl7cmV0dXJuIHRoaXMuJGl0ZW1zPWEucGFyZW50KCkuY2hpbGRyZW4oIi5pdGVtIiksdGhpcy4kaXRlbXMuaW5kZXgoYXx8dGhpcy4kYWN0aXZlKX0sYy5wcm90b3R5cGUuZ2V0SXRlbUZvckRpcmVjdGlvbj1mdW5jdGlvbihhLGIpe3ZhciBjPXRoaXMuZ2V0SXRlbUluZGV4KGIpLGQ9InByZXYiPT1hJiYwPT09Y3x8Im5leHQiPT1hJiZjPT10aGlzLiRpdGVtcy5sZW5ndGgtMTtpZihkJiYhdGhpcy5vcHRpb25zLndyYXApcmV0dXJuIGI7dmFyIGU9InByZXYiPT1hPy0xOjEsZj0oYytlKSV0aGlzLiRpdGVtcy5sZW5ndGg7cmV0dXJuIHRoaXMuJGl0ZW1zLmVxKGYpfSxjLnByb3RvdHlwZS50bz1mdW5jdGlvbihhKXt2YXIgYj10aGlzLGM9dGhpcy5nZXRJdGVtSW5kZXgodGhpcy4kYWN0aXZlPXRoaXMuJGVsZW1lbnQuZmluZCgiLml0ZW0uYWN0aXZlIikpO3JldHVybiBhPnRoaXMuJGl0ZW1zLmxlbmd0aC0xfHwwPmE/dm9pZCAwOnRoaXMuc2xpZGluZz90aGlzLiRlbGVtZW50Lm9uZSgic2xpZC5icy5jYXJvdXNlbCIsZnVuY3Rpb24oKXtiLnRvKGEpfSk6Yz09YT90aGlzLnBhdXNlKCkuY3ljbGUoKTp0aGlzLnNsaWRlKGE+Yz8ibmV4dCI6InByZXYiLHRoaXMuJGl0ZW1zLmVxKGEpKX0sYy5wcm90b3R5cGUucGF1c2U9ZnVuY3Rpb24oYil7cmV0dXJuIGJ8fCh0aGlzLnBhdXNlZD0hMCksdGhpcy4kZWxlbWVudC5maW5kKCIubmV4dCwgLnByZXYiKS5sZW5ndGgmJmEuc3VwcG9ydC50cmFuc2l0aW9uJiYodGhpcy4kZWxlbWVudC50cmlnZ2VyKGEuc3VwcG9ydC50cmFuc2l0aW9uLmVuZCksdGhpcy5jeWNsZSghMCkpLHRoaXMuaW50ZXJ2YWw9Y2xlYXJJbnRlcnZhbCh0aGlzLmludGVydmFsKSx0aGlzfSxjLnByb3RvdHlwZS5uZXh0PWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuc2xpZGluZz92b2lkIDA6dGhpcy5zbGlkZSgibmV4dCIpfSxjLnByb3RvdHlwZS5wcmV2PWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuc2xpZGluZz92b2lkIDA6dGhpcy5zbGlkZSgicHJldiIpfSxjLnByb3RvdHlwZS5zbGlkZT1mdW5jdGlvbihiLGQpe3ZhciBlPXRoaXMuJGVsZW1lbnQuZmluZCgiLml0ZW0uYWN0aXZlIiksZj1kfHx0aGlzLmdldEl0ZW1Gb3JEaXJlY3Rpb24oYixlKSxnPXRoaXMuaW50ZXJ2YWwsaD0ibmV4dCI9PWI/ImxlZnQiOiJyaWdodCIsaT10aGlzO2lmKGYuaGFzQ2xhc3MoImFjdGl2ZSIpKXJldHVybiB0aGlzLnNsaWRpbmc9ITE7dmFyIGo9ZlswXSxrPWEuRXZlbnQoInNsaWRlLmJzLmNhcm91c2VsIix7cmVsYXRlZFRhcmdldDpqLGRpcmVjdGlvbjpofSk7aWYodGhpcy4kZWxlbWVudC50cmlnZ2VyKGspLCFrLmlzRGVmYXVsdFByZXZlbnRlZCgpKXtpZih0aGlzLnNsaWRpbmc9ITAsZyYmdGhpcy5wYXVzZSgpLHRoaXMuJGluZGljYXRvcnMubGVuZ3RoKXt0aGlzLiRpbmRpY2F0b3JzLmZpbmQoIi5hY3RpdmUiKS5yZW1vdmVDbGFzcygiYWN0aXZlIik7dmFyIGw9YSh0aGlzLiRpbmRpY2F0b3JzLmNoaWxkcmVuKClbdGhpcy5nZXRJdGVtSW5kZXgoZildKTtsJiZsLmFkZENsYXNzKCJhY3RpdmUiKX12YXIgbT1hLkV2ZW50KCJzbGlkLmJzLmNhcm91c2VsIix7cmVsYXRlZFRhcmdldDpqLGRpcmVjdGlvbjpofSk7cmV0dXJuIGEuc3VwcG9ydC50cmFuc2l0aW9uJiZ0aGlzLiRlbGVtZW50Lmhhc0NsYXNzKCJzbGlkZSIpPyhmLmFkZENsYXNzKGIpLGZbMF0ub2Zmc2V0V2lkdGgsZS5hZGRDbGFzcyhoKSxmLmFkZENsYXNzKGgpLGUub25lKCJic1RyYW5zaXRpb25FbmQiLGZ1bmN0aW9uKCl7Zi5yZW1vdmVDbGFzcyhbYixoXS5qb2luKCIgIikpLmFkZENsYXNzKCJhY3RpdmUiKSxlLnJlbW92ZUNsYXNzKFsiYWN0aXZlIixoXS5qb2luKCIgIikpLGkuc2xpZGluZz0hMSxzZXRUaW1lb3V0KGZ1bmN0aW9uKCl7aS4kZWxlbWVudC50cmlnZ2VyKG0pfSwwKX0pLmVtdWxhdGVUcmFuc2l0aW9uRW5kKGMuVFJBTlNJVElPTl9EVVJBVElPTikpOihlLnJlbW92ZUNsYXNzKCJhY3RpdmUiKSxmLmFkZENsYXNzKCJhY3RpdmUiKSx0aGlzLnNsaWRpbmc9ITEsdGhpcy4kZWxlbWVudC50cmlnZ2VyKG0pKSxnJiZ0aGlzLmN5Y2xlKCksdGhpc319O3ZhciBkPWEuZm4uY2Fyb3VzZWw7YS5mbi5jYXJvdXNlbD1iLGEuZm4uY2Fyb3VzZWwuQ29uc3RydWN0b3I9YyxhLmZuLmNhcm91c2VsLm5vQ29uZmxpY3Q9ZnVuY3Rpb24oKXtyZXR1cm4gYS5mbi5jYXJvdXNlbD1kLHRoaXN9O3ZhciBlPWZ1bmN0aW9uKGMpe3ZhciBkLGU9YSh0aGlzKSxmPWEoZS5hdHRyKCJkYXRhLXRhcmdldCIpfHwoZD1lLmF0dHIoImhyZWYiKSkmJmQucmVwbGFjZSgvLiooPz0jW15cc10rJCkvLCIiKSk7aWYoZi5oYXNDbGFzcygiY2Fyb3VzZWwiKSl7dmFyIGc9YS5leHRlbmQoe30sZi5kYXRhKCksZS5kYXRhKCkpLGg9ZS5hdHRyKCJkYXRhLXNsaWRlLXRvIik7aCYmKGcuaW50ZXJ2YWw9ITEpLGIuY2FsbChmLGcpLGgmJmYuZGF0YSgiYnMuY2Fyb3VzZWwiKS50byhoKSxjLnByZXZlbnREZWZhdWx0KCl9fTthKGRvY3VtZW50KS5vbigiY2xpY2suYnMuY2Fyb3VzZWwuZGF0YS1hcGkiLCJbZGF0YS1zbGlkZV0iLGUpLm9uKCJjbGljay5icy5jYXJvdXNlbC5kYXRhLWFwaSIsIltkYXRhLXNsaWRlLXRvXSIsZSksYSh3aW5kb3cpLm9uKCJsb2FkIixmdW5jdGlvbigpe2EoJ1tkYXRhLXJpZGU9ImNhcm91c2VsIl0nKS5lYWNoKGZ1bmN0aW9uKCl7dmFyIGM9YSh0aGlzKTtiLmNhbGwoYyxjLmRhdGEoKSl9KX0pfShqUXVlcnkpLCtmdW5jdGlvbihhKXsidXNlIHN0cmljdCI7ZnVuY3Rpb24gYihiKXt2YXIgYyxkPWIuYXR0cigiZGF0YS10YXJnZXQiKXx8KGM9Yi5hdHRyKCJocmVmIikpJiZjLnJlcGxhY2UoLy4qKD89I1teXHNdKyQpLywiIik7cmV0dXJuIGEoZCl9ZnVuY3Rpb24gYyhiKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGM9YSh0aGlzKSxlPWMuZGF0YSgiYnMuY29sbGFwc2UiKSxmPWEuZXh0ZW5kKHt9LGQuREVGQVVMVFMsYy5kYXRhKCksIm9iamVjdCI9PXR5cGVvZiBiJiZiKTshZSYmZi50b2dnbGUmJi9zaG93fGhpZGUvLnRlc3QoYikmJihmLnRvZ2dsZT0hMSksZXx8Yy5kYXRhKCJicy5jb2xsYXBzZSIsZT1uZXcgZCh0aGlzLGYpKSwic3RyaW5nIj09dHlwZW9mIGImJmVbYl0oKX0pfXZhciBkPWZ1bmN0aW9uKGIsYyl7dGhpcy4kZWxlbWVudD1hKGIpLHRoaXMub3B0aW9ucz1hLmV4dGVuZCh7fSxkLkRFRkFVTFRTLGMpLHRoaXMuJHRyaWdnZXI9YSgnW2RhdGEtdG9nZ2xlPSJjb2xsYXBzZSJdW2hyZWY9IiMnK2IuaWQrJyJdLFtkYXRhLXRvZ2dsZT0iY29sbGFwc2UiXVtkYXRhLXRhcmdldD0iIycrYi5pZCsnIl0nKSx0aGlzLnRyYW5zaXRpb25pbmc9bnVsbCx0aGlzLm9wdGlvbnMucGFyZW50P3RoaXMuJHBhcmVudD10aGlzLmdldFBhcmVudCgpOnRoaXMuYWRkQXJpYUFuZENvbGxhcHNlZENsYXNzKHRoaXMuJGVsZW1lbnQsdGhpcy4kdHJpZ2dlciksdGhpcy5vcHRpb25zLnRvZ2dsZSYmdGhpcy50b2dnbGUoKX07ZC5WRVJTSU9OPSIzLjMuNSIsZC5UUkFOU0lUSU9OX0RVUkFUSU9OPTM1MCxkLkRFRkFVTFRTPXt0b2dnbGU6ITB9LGQucHJvdG90eXBlLmRpbWVuc2lvbj1mdW5jdGlvbigpe3ZhciBhPXRoaXMuJGVsZW1lbnQuaGFzQ2xhc3MoIndpZHRoIik7cmV0dXJuIGE/IndpZHRoIjoiaGVpZ2h0In0sZC5wcm90b3R5cGUuc2hvdz1mdW5jdGlvbigpe2lmKCF0aGlzLnRyYW5zaXRpb25pbmcmJiF0aGlzLiRlbGVtZW50Lmhhc0NsYXNzKCJpbiIpKXt2YXIgYixlPXRoaXMuJHBhcmVudCYmdGhpcy4kcGFyZW50LmNoaWxkcmVuKCIucGFuZWwiKS5jaGlsZHJlbigiLmluLCAuY29sbGFwc2luZyIpO2lmKCEoZSYmZS5sZW5ndGgmJihiPWUuZGF0YSgiYnMuY29sbGFwc2UiKSxiJiZiLnRyYW5zaXRpb25pbmcpKSl7dmFyIGY9YS5FdmVudCgic2hvdy5icy5jb2xsYXBzZSIpO2lmKHRoaXMuJGVsZW1lbnQudHJpZ2dlcihmKSwhZi5pc0RlZmF1bHRQcmV2ZW50ZWQoKSl7ZSYmZS5sZW5ndGgmJihjLmNhbGwoZSwiaGlkZSIpLGJ8fGUuZGF0YSgiYnMuY29sbGFwc2UiLG51bGwpKTt2YXIgZz10aGlzLmRpbWVuc2lvbigpO3RoaXMuJGVsZW1lbnQucmVtb3ZlQ2xhc3MoImNvbGxhcHNlIikuYWRkQ2xhc3MoImNvbGxhcHNpbmciKVtnXSgwKS5hdHRyKCJhcmlhLWV4cGFuZGVkIiwhMCksdGhpcy4kdHJpZ2dlci5yZW1vdmVDbGFzcygiY29sbGFwc2VkIikuYXR0cigiYXJpYS1leHBhbmRlZCIsITApLHRoaXMudHJhbnNpdGlvbmluZz0xO3ZhciBoPWZ1bmN0aW9uKCl7dGhpcy4kZWxlbWVudC5yZW1vdmVDbGFzcygiY29sbGFwc2luZyIpLmFkZENsYXNzKCJjb2xsYXBzZSBpbiIpW2ddKCIiKSx0aGlzLnRyYW5zaXRpb25pbmc9MCx0aGlzLiRlbGVtZW50LnRyaWdnZXIoInNob3duLmJzLmNvbGxhcHNlIil9O2lmKCFhLnN1cHBvcnQudHJhbnNpdGlvbilyZXR1cm4gaC5jYWxsKHRoaXMpO3ZhciBpPWEuY2FtZWxDYXNlKFsic2Nyb2xsIixnXS5qb2luKCItIikpO3RoaXMuJGVsZW1lbnQub25lKCJic1RyYW5zaXRpb25FbmQiLGEucHJveHkoaCx0aGlzKSkuZW11bGF0ZVRyYW5zaXRpb25FbmQoZC5UUkFOU0lUSU9OX0RVUkFUSU9OKVtnXSh0aGlzLiRlbGVtZW50WzBdW2ldKX19fX0sZC5wcm90b3R5cGUuaGlkZT1mdW5jdGlvbigpe2lmKCF0aGlzLnRyYW5zaXRpb25pbmcmJnRoaXMuJGVsZW1lbnQuaGFzQ2xhc3MoImluIikpe3ZhciBiPWEuRXZlbnQoImhpZGUuYnMuY29sbGFwc2UiKTtpZih0aGlzLiRlbGVtZW50LnRyaWdnZXIoYiksIWIuaXNEZWZhdWx0UHJldmVudGVkKCkpe3ZhciBjPXRoaXMuZGltZW5zaW9uKCk7dGhpcy4kZWxlbWVudFtjXSh0aGlzLiRlbGVtZW50W2NdKCkpWzBdLm9mZnNldEhlaWdodCx0aGlzLiRlbGVtZW50LmFkZENsYXNzKCJjb2xsYXBzaW5nIikucmVtb3ZlQ2xhc3MoImNvbGxhcHNlIGluIikuYXR0cigiYXJpYS1leHBhbmRlZCIsITEpLHRoaXMuJHRyaWdnZXIuYWRkQ2xhc3MoImNvbGxhcHNlZCIpLmF0dHIoImFyaWEtZXhwYW5kZWQiLCExKSx0aGlzLnRyYW5zaXRpb25pbmc9MTt2YXIgZT1mdW5jdGlvbigpe3RoaXMudHJhbnNpdGlvbmluZz0wLHRoaXMuJGVsZW1lbnQucmVtb3ZlQ2xhc3MoImNvbGxhcHNpbmciKS5hZGRDbGFzcygiY29sbGFwc2UiKS50cmlnZ2VyKCJoaWRkZW4uYnMuY29sbGFwc2UiKX07cmV0dXJuIGEuc3VwcG9ydC50cmFuc2l0aW9uP3ZvaWQgdGhpcy4kZWxlbWVudFtjXSgwKS5vbmUoImJzVHJhbnNpdGlvbkVuZCIsYS5wcm94eShlLHRoaXMpKS5lbXVsYXRlVHJhbnNpdGlvbkVuZChkLlRSQU5TSVRJT05fRFVSQVRJT04pOmUuY2FsbCh0aGlzKX19fSxkLnByb3RvdHlwZS50b2dnbGU9ZnVuY3Rpb24oKXt0aGlzW3RoaXMuJGVsZW1lbnQuaGFzQ2xhc3MoImluIik/ImhpZGUiOiJzaG93Il0oKX0sZC5wcm90b3R5cGUuZ2V0UGFyZW50PWZ1bmN0aW9uKCl7cmV0dXJuIGEodGhpcy5vcHRpb25zLnBhcmVudCkuZmluZCgnW2RhdGEtdG9nZ2xlPSJjb2xsYXBzZSJdW2RhdGEtcGFyZW50PSInK3RoaXMub3B0aW9ucy5wYXJlbnQrJyJdJykuZWFjaChhLnByb3h5KGZ1bmN0aW9uKGMsZCl7dmFyIGU9YShkKTt0aGlzLmFkZEFyaWFBbmRDb2xsYXBzZWRDbGFzcyhiKGUpLGUpfSx0aGlzKSkuZW5kKCl9LGQucHJvdG90eXBlLmFkZEFyaWFBbmRDb2xsYXBzZWRDbGFzcz1mdW5jdGlvbihhLGIpe3ZhciBjPWEuaGFzQ2xhc3MoImluIik7YS5hdHRyKCJhcmlhLWV4cGFuZGVkIixjKSxiLnRvZ2dsZUNsYXNzKCJjb2xsYXBzZWQiLCFjKS5hdHRyKCJhcmlhLWV4cGFuZGVkIixjKX07dmFyIGU9YS5mbi5jb2xsYXBzZTthLmZuLmNvbGxhcHNlPWMsYS5mbi5jb2xsYXBzZS5Db25zdHJ1Y3Rvcj1kLGEuZm4uY29sbGFwc2Uubm9Db25mbGljdD1mdW5jdGlvbigpe3JldHVybiBhLmZuLmNvbGxhcHNlPWUsdGhpc30sYShkb2N1bWVudCkub24oImNsaWNrLmJzLmNvbGxhcHNlLmRhdGEtYXBpIiwnW2RhdGEtdG9nZ2xlPSJjb2xsYXBzZSJdJyxmdW5jdGlvbihkKXt2YXIgZT1hKHRoaXMpO2UuYXR0cigiZGF0YS10YXJnZXQiKXx8ZC5wcmV2ZW50RGVmYXVsdCgpO3ZhciBmPWIoZSksZz1mLmRhdGEoImJzLmNvbGxhcHNlIiksaD1nPyJ0b2dnbGUiOmUuZGF0YSgpO2MuY2FsbChmLGgpfSl9KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKGIpe3ZhciBjPWIuYXR0cigiZGF0YS10YXJnZXQiKTtjfHwoYz1iLmF0dHIoImhyZWYiKSxjPWMmJi8jW0EtWmEtel0vLnRlc3QoYykmJmMucmVwbGFjZSgvLiooPz0jW15cc10qJCkvLCIiKSk7dmFyIGQ9YyYmYShjKTtyZXR1cm4gZCYmZC5sZW5ndGg/ZDpiLnBhcmVudCgpfWZ1bmN0aW9uIGMoYyl7YyYmMz09PWMud2hpY2h8fChhKGUpLnJlbW92ZSgpLGEoZikuZWFjaChmdW5jdGlvbigpe3ZhciBkPWEodGhpcyksZT1iKGQpLGY9e3JlbGF0ZWRUYXJnZXQ6dGhpc307ZS5oYXNDbGFzcygib3BlbiIpJiYoYyYmImNsaWNrIj09Yy50eXBlJiYvaW5wdXR8dGV4dGFyZWEvaS50ZXN0KGMudGFyZ2V0LnRhZ05hbWUpJiZhLmNvbnRhaW5zKGVbMF0sYy50YXJnZXQpfHwoZS50cmlnZ2VyKGM9YS5FdmVudCgiaGlkZS5icy5kcm9wZG93biIsZikpLGMuaXNEZWZhdWx0UHJldmVudGVkKCl8fChkLmF0dHIoImFyaWEtZXhwYW5kZWQiLCJmYWxzZSIpLGUucmVtb3ZlQ2xhc3MoIm9wZW4iKS50cmlnZ2VyKCJoaWRkZW4uYnMuZHJvcGRvd24iLGYpKSkpfSkpfWZ1bmN0aW9uIGQoYil7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbigpe3ZhciBjPWEodGhpcyksZD1jLmRhdGEoImJzLmRyb3Bkb3duIik7ZHx8Yy5kYXRhKCJicy5kcm9wZG93biIsZD1uZXcgZyh0aGlzKSksInN0cmluZyI9PXR5cGVvZiBiJiZkW2JdLmNhbGwoYyl9KX12YXIgZT0iLmRyb3Bkb3duLWJhY2tkcm9wIixmPSdbZGF0YS10b2dnbGU9ImRyb3Bkb3duIl0nLGc9ZnVuY3Rpb24oYil7YShiKS5vbigiY2xpY2suYnMuZHJvcGRvd24iLHRoaXMudG9nZ2xlKX07Zy5WRVJTSU9OPSIzLjMuNSIsZy5wcm90b3R5cGUudG9nZ2xlPWZ1bmN0aW9uKGQpe3ZhciBlPWEodGhpcyk7aWYoIWUuaXMoIi5kaXNhYmxlZCwgOmRpc2FibGVkIikpe3ZhciBmPWIoZSksZz1mLmhhc0NsYXNzKCJvcGVuIik7aWYoYygpLCFnKXsib250b3VjaHN0YXJ0ImluIGRvY3VtZW50LmRvY3VtZW50RWxlbWVudCYmIWYuY2xvc2VzdCgiLm5hdmJhci1uYXYiKS5sZW5ndGgmJmEoZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2IikpLmFkZENsYXNzKCJkcm9wZG93bi1iYWNrZHJvcCIpLmluc2VydEFmdGVyKGEodGhpcykpLm9uKCJjbGljayIsYyk7dmFyIGg9e3JlbGF0ZWRUYXJnZXQ6dGhpc307aWYoZi50cmlnZ2VyKGQ9YS5FdmVudCgic2hvdy5icy5kcm9wZG93biIsaCkpLGQuaXNEZWZhdWx0UHJldmVudGVkKCkpcmV0dXJuO2UudHJpZ2dlcigiZm9jdXMiKS5hdHRyKCJhcmlhLWV4cGFuZGVkIiwidHJ1ZSIpLGYudG9nZ2xlQ2xhc3MoIm9wZW4iKS50cmlnZ2VyKCJzaG93bi5icy5kcm9wZG93biIsaCl9cmV0dXJuITF9fSxnLnByb3RvdHlwZS5rZXlkb3duPWZ1bmN0aW9uKGMpe2lmKC8oMzh8NDB8Mjd8MzIpLy50ZXN0KGMud2hpY2gpJiYhL2lucHV0fHRleHRhcmVhL2kudGVzdChjLnRhcmdldC50YWdOYW1lKSl7dmFyIGQ9YSh0aGlzKTtpZihjLnByZXZlbnREZWZhdWx0KCksYy5zdG9wUHJvcGFnYXRpb24oKSwhZC5pcygiLmRpc2FibGVkLCA6ZGlzYWJsZWQiKSl7dmFyIGU9YihkKSxnPWUuaGFzQ2xhc3MoIm9wZW4iKTtpZighZyYmMjchPWMud2hpY2h8fGcmJjI3PT1jLndoaWNoKXJldHVybiAyNz09Yy53aGljaCYmZS5maW5kKGYpLnRyaWdnZXIoImZvY3VzIiksZC50cmlnZ2VyKCJjbGljayIpO3ZhciBoPSIgbGk6bm90KC5kaXNhYmxlZCk6dmlzaWJsZSBhIixpPWUuZmluZCgiLmRyb3Bkb3duLW1lbnUiK2gpO2lmKGkubGVuZ3RoKXt2YXIgaj1pLmluZGV4KGMudGFyZ2V0KTszOD09Yy53aGljaCYmaj4wJiZqLS0sNDA9PWMud2hpY2gmJmo8aS5sZW5ndGgtMSYmaisrLH5qfHwoaj0wKSxpLmVxKGopLnRyaWdnZXIoImZvY3VzIil9fX19O3ZhciBoPWEuZm4uZHJvcGRvd247YS5mbi5kcm9wZG93bj1kLGEuZm4uZHJvcGRvd24uQ29uc3RydWN0b3I9ZyxhLmZuLmRyb3Bkb3duLm5vQ29uZmxpY3Q9ZnVuY3Rpb24oKXtyZXR1cm4gYS5mbi5kcm9wZG93bj1oLHRoaXN9LGEoZG9jdW1lbnQpLm9uKCJjbGljay5icy5kcm9wZG93bi5kYXRhLWFwaSIsYykub24oImNsaWNrLmJzLmRyb3Bkb3duLmRhdGEtYXBpIiwiLmRyb3Bkb3duIGZvcm0iLGZ1bmN0aW9uKGEpe2Euc3RvcFByb3BhZ2F0aW9uKCl9KS5vbigiY2xpY2suYnMuZHJvcGRvd24uZGF0YS1hcGkiLGYsZy5wcm90b3R5cGUudG9nZ2xlKS5vbigia2V5ZG93bi5icy5kcm9wZG93bi5kYXRhLWFwaSIsZixnLnByb3RvdHlwZS5rZXlkb3duKS5vbigia2V5ZG93bi5icy5kcm9wZG93bi5kYXRhLWFwaSIsIi5kcm9wZG93bi1tZW51IixnLnByb3RvdHlwZS5rZXlkb3duKX0oalF1ZXJ5KSwrZnVuY3Rpb24oYSl7InVzZSBzdHJpY3QiO2Z1bmN0aW9uIGIoYixkKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGU9YSh0aGlzKSxmPWUuZGF0YSgiYnMubW9kYWwiKSxnPWEuZXh0ZW5kKHt9LGMuREVGQVVMVFMsZS5kYXRhKCksIm9iamVjdCI9PXR5cGVvZiBiJiZiKTtmfHxlLmRhdGEoImJzLm1vZGFsIixmPW5ldyBjKHRoaXMsZykpLCJzdHJpbmciPT10eXBlb2YgYj9mW2JdKGQpOmcuc2hvdyYmZi5zaG93KGQpfSl9dmFyIGM9ZnVuY3Rpb24oYixjKXt0aGlzLm9wdGlvbnM9Yyx0aGlzLiRib2R5PWEoZG9jdW1lbnQuYm9keSksdGhpcy4kZWxlbWVudD1hKGIpLHRoaXMuJGRpYWxvZz10aGlzLiRlbGVtZW50LmZpbmQoIi5tb2RhbC1kaWFsb2ciKSx0aGlzLiRiYWNrZHJvcD1udWxsLHRoaXMuaXNTaG93bj1udWxsLHRoaXMub3JpZ2luYWxCb2R5UGFkPW51bGwsdGhpcy5zY3JvbGxiYXJXaWR0aD0wLHRoaXMuaWdub3JlQmFja2Ryb3BDbGljaz0hMSx0aGlzLm9wdGlvbnMucmVtb3RlJiZ0aGlzLiRlbGVtZW50LmZpbmQoIi5tb2RhbC1jb250ZW50IikubG9hZCh0aGlzLm9wdGlvbnMucmVtb3RlLGEucHJveHkoZnVuY3Rpb24oKXt0aGlzLiRlbGVtZW50LnRyaWdnZXIoImxvYWRlZC5icy5tb2RhbCIpfSx0aGlzKSl9O2MuVkVSU0lPTj0iMy4zLjUiLGMuVFJBTlNJVElPTl9EVVJBVElPTj0zMDAsYy5CQUNLRFJPUF9UUkFOU0lUSU9OX0RVUkFUSU9OPTE1MCxjLkRFRkFVTFRTPXtiYWNrZHJvcDohMCxrZXlib2FyZDohMCxzaG93OiEwfSxjLnByb3RvdHlwZS50b2dnbGU9ZnVuY3Rpb24oYSl7cmV0dXJuIHRoaXMuaXNTaG93bj90aGlzLmhpZGUoKTp0aGlzLnNob3coYSl9LGMucHJvdG90eXBlLnNob3c9ZnVuY3Rpb24oYil7dmFyIGQ9dGhpcyxlPWEuRXZlbnQoInNob3cuYnMubW9kYWwiLHtyZWxhdGVkVGFyZ2V0OmJ9KTt0aGlzLiRlbGVtZW50LnRyaWdnZXIoZSksdGhpcy5pc1Nob3dufHxlLmlzRGVmYXVsdFByZXZlbnRlZCgpfHwodGhpcy5pc1Nob3duPSEwLHRoaXMuY2hlY2tTY3JvbGxiYXIoKSx0aGlzLnNldFNjcm9sbGJhcigpLHRoaXMuJGJvZHkuYWRkQ2xhc3MoIm1vZGFsLW9wZW4iKSx0aGlzLmVzY2FwZSgpLHRoaXMucmVzaXplKCksdGhpcy4kZWxlbWVudC5vbigiY2xpY2suZGlzbWlzcy5icy5tb2RhbCIsJ1tkYXRhLWRpc21pc3M9Im1vZGFsIl0nLGEucHJveHkodGhpcy5oaWRlLHRoaXMpKSx0aGlzLiRkaWFsb2cub24oIm1vdXNlZG93bi5kaXNtaXNzLmJzLm1vZGFsIixmdW5jdGlvbigpe2QuJGVsZW1lbnQub25lKCJtb3VzZXVwLmRpc21pc3MuYnMubW9kYWwiLGZ1bmN0aW9uKGIpe2EoYi50YXJnZXQpLmlzKGQuJGVsZW1lbnQpJiYoZC5pZ25vcmVCYWNrZHJvcENsaWNrPSEwKX0pfSksdGhpcy5iYWNrZHJvcChmdW5jdGlvbigpe3ZhciBlPWEuc3VwcG9ydC50cmFuc2l0aW9uJiZkLiRlbGVtZW50Lmhhc0NsYXNzKCJmYWRlIik7ZC4kZWxlbWVudC5wYXJlbnQoKS5sZW5ndGh8fGQuJGVsZW1lbnQuYXBwZW5kVG8oZC4kYm9keSksZC4kZWxlbWVudC5zaG93KCkuc2Nyb2xsVG9wKDApLGQuYWRqdXN0RGlhbG9nKCksZSYmZC4kZWxlbWVudFswXS5vZmZzZXRXaWR0aCxkLiRlbGVtZW50LmFkZENsYXNzKCJpbiIpLGQuZW5mb3JjZUZvY3VzKCk7dmFyIGY9YS5FdmVudCgic2hvd24uYnMubW9kYWwiLHtyZWxhdGVkVGFyZ2V0OmJ9KTtlP2QuJGRpYWxvZy5vbmUoImJzVHJhbnNpdGlvbkVuZCIsZnVuY3Rpb24oKXtkLiRlbGVtZW50LnRyaWdnZXIoImZvY3VzIikudHJpZ2dlcihmKX0pLmVtdWxhdGVUcmFuc2l0aW9uRW5kKGMuVFJBTlNJVElPTl9EVVJBVElPTik6ZC4kZWxlbWVudC50cmlnZ2VyKCJmb2N1cyIpLnRyaWdnZXIoZil9KSl9LGMucHJvdG90eXBlLmhpZGU9ZnVuY3Rpb24oYil7YiYmYi5wcmV2ZW50RGVmYXVsdCgpLGI9YS5FdmVudCgiaGlkZS5icy5tb2RhbCIpLHRoaXMuJGVsZW1lbnQudHJpZ2dlcihiKSx0aGlzLmlzU2hvd24mJiFiLmlzRGVmYXVsdFByZXZlbnRlZCgpJiYodGhpcy5pc1Nob3duPSExLHRoaXMuZXNjYXBlKCksdGhpcy5yZXNpemUoKSxhKGRvY3VtZW50KS5vZmYoImZvY3VzaW4uYnMubW9kYWwiKSx0aGlzLiRlbGVtZW50LnJlbW92ZUNsYXNzKCJpbiIpLm9mZigiY2xpY2suZGlzbWlzcy5icy5tb2RhbCIpLm9mZigibW91c2V1cC5kaXNtaXNzLmJzLm1vZGFsIiksdGhpcy4kZGlhbG9nLm9mZigibW91c2Vkb3duLmRpc21pc3MuYnMubW9kYWwiKSxhLnN1cHBvcnQudHJhbnNpdGlvbiYmdGhpcy4kZWxlbWVudC5oYXNDbGFzcygiZmFkZSIpP3RoaXMuJGVsZW1lbnQub25lKCJic1RyYW5zaXRpb25FbmQiLGEucHJveHkodGhpcy5oaWRlTW9kYWwsdGhpcykpLmVtdWxhdGVUcmFuc2l0aW9uRW5kKGMuVFJBTlNJVElPTl9EVVJBVElPTik6dGhpcy5oaWRlTW9kYWwoKSl9LGMucHJvdG90eXBlLmVuZm9yY2VGb2N1cz1mdW5jdGlvbigpe2EoZG9jdW1lbnQpLm9mZigiZm9jdXNpbi5icy5tb2RhbCIpLm9uKCJmb2N1c2luLmJzLm1vZGFsIixhLnByb3h5KGZ1bmN0aW9uKGEpe3RoaXMuJGVsZW1lbnRbMF09PT1hLnRhcmdldHx8dGhpcy4kZWxlbWVudC5oYXMoYS50YXJnZXQpLmxlbmd0aHx8dGhpcy4kZWxlbWVudC50cmlnZ2VyKCJmb2N1cyIpfSx0aGlzKSl9LGMucHJvdG90eXBlLmVzY2FwZT1mdW5jdGlvbigpe3RoaXMuaXNTaG93biYmdGhpcy5vcHRpb25zLmtleWJvYXJkP3RoaXMuJGVsZW1lbnQub24oImtleWRvd24uZGlzbWlzcy5icy5tb2RhbCIsYS5wcm94eShmdW5jdGlvbihhKXsyNz09YS53aGljaCYmdGhpcy5oaWRlKCl9LHRoaXMpKTp0aGlzLmlzU2hvd258fHRoaXMuJGVsZW1lbnQub2ZmKCJrZXlkb3duLmRpc21pc3MuYnMubW9kYWwiKX0sYy5wcm90b3R5cGUucmVzaXplPWZ1bmN0aW9uKCl7dGhpcy5pc1Nob3duP2Eod2luZG93KS5vbigicmVzaXplLmJzLm1vZGFsIixhLnByb3h5KHRoaXMuaGFuZGxlVXBkYXRlLHRoaXMpKTphKHdpbmRvdykub2ZmKCJyZXNpemUuYnMubW9kYWwiKX0sYy5wcm90b3R5cGUuaGlkZU1vZGFsPWZ1bmN0aW9uKCl7dmFyIGE9dGhpczt0aGlzLiRlbGVtZW50LmhpZGUoKSx0aGlzLmJhY2tkcm9wKGZ1bmN0aW9uKCl7YS4kYm9keS5yZW1vdmVDbGFzcygibW9kYWwtb3BlbiIpLGEucmVzZXRBZGp1c3RtZW50cygpLGEucmVzZXRTY3JvbGxiYXIoKSxhLiRlbGVtZW50LnRyaWdnZXIoImhpZGRlbi5icy5tb2RhbCIpfSl9LGMucHJvdG90eXBlLnJlbW92ZUJhY2tkcm9wPWZ1bmN0aW9uKCl7dGhpcy4kYmFja2Ryb3AmJnRoaXMuJGJhY2tkcm9wLnJlbW92ZSgpLHRoaXMuJGJhY2tkcm9wPW51bGx9LGMucHJvdG90eXBlLmJhY2tkcm9wPWZ1bmN0aW9uKGIpe3ZhciBkPXRoaXMsZT10aGlzLiRlbGVtZW50Lmhhc0NsYXNzKCJmYWRlIik/ImZhZGUiOiIiO2lmKHRoaXMuaXNTaG93biYmdGhpcy5vcHRpb25zLmJhY2tkcm9wKXt2YXIgZj1hLnN1cHBvcnQudHJhbnNpdGlvbiYmZTtpZih0aGlzLiRiYWNrZHJvcD1hKGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImRpdiIpKS5hZGRDbGFzcygibW9kYWwtYmFja2Ryb3AgIitlKS5hcHBlbmRUbyh0aGlzLiRib2R5KSx0aGlzLiRlbGVtZW50Lm9uKCJjbGljay5kaXNtaXNzLmJzLm1vZGFsIixhLnByb3h5KGZ1bmN0aW9uKGEpe3JldHVybiB0aGlzLmlnbm9yZUJhY2tkcm9wQ2xpY2s/dm9pZCh0aGlzLmlnbm9yZUJhY2tkcm9wQ2xpY2s9ITEpOnZvaWQoYS50YXJnZXQ9PT1hLmN1cnJlbnRUYXJnZXQmJigic3RhdGljIj09dGhpcy5vcHRpb25zLmJhY2tkcm9wP3RoaXMuJGVsZW1lbnRbMF0uZm9jdXMoKTp0aGlzLmhpZGUoKSkpfSx0aGlzKSksZiYmdGhpcy4kYmFja2Ryb3BbMF0ub2Zmc2V0V2lkdGgsdGhpcy4kYmFja2Ryb3AuYWRkQ2xhc3MoImluIiksIWIpcmV0dXJuO2Y/dGhpcy4kYmFja2Ryb3Aub25lKCJic1RyYW5zaXRpb25FbmQiLGIpLmVtdWxhdGVUcmFuc2l0aW9uRW5kKGMuQkFDS0RST1BfVFJBTlNJVElPTl9EVVJBVElPTik6YigpfWVsc2UgaWYoIXRoaXMuaXNTaG93biYmdGhpcy4kYmFja2Ryb3Ape3RoaXMuJGJhY2tkcm9wLnJlbW92ZUNsYXNzKCJpbiIpO3ZhciBnPWZ1bmN0aW9uKCl7ZC5yZW1vdmVCYWNrZHJvcCgpLGImJmIoKX07YS5zdXBwb3J0LnRyYW5zaXRpb24mJnRoaXMuJGVsZW1lbnQuaGFzQ2xhc3MoImZhZGUiKT90aGlzLiRiYWNrZHJvcC5vbmUoImJzVHJhbnNpdGlvbkVuZCIsZykuZW11bGF0ZVRyYW5zaXRpb25FbmQoYy5CQUNLRFJPUF9UUkFOU0lUSU9OX0RVUkFUSU9OKTpnKCl9ZWxzZSBiJiZiKCl9LGMucHJvdG90eXBlLmhhbmRsZVVwZGF0ZT1mdW5jdGlvbigpe3RoaXMuYWRqdXN0RGlhbG9nKCl9LGMucHJvdG90eXBlLmFkanVzdERpYWxvZz1mdW5jdGlvbigpe3ZhciBhPXRoaXMuJGVsZW1lbnRbMF0uc2Nyb2xsSGVpZ2h0PmRvY3VtZW50LmRvY3VtZW50RWxlbWVudC5jbGllbnRIZWlnaHQ7dGhpcy4kZWxlbWVudC5jc3Moe3BhZGRpbmdMZWZ0OiF0aGlzLmJvZHlJc092ZXJmbG93aW5nJiZhP3RoaXMuc2Nyb2xsYmFyV2lkdGg6IiIscGFkZGluZ1JpZ2h0OnRoaXMuYm9keUlzT3ZlcmZsb3dpbmcmJiFhP3RoaXMuc2Nyb2xsYmFyV2lkdGg6IiJ9KX0sYy5wcm90b3R5cGUucmVzZXRBZGp1c3RtZW50cz1mdW5jdGlvbigpe3RoaXMuJGVsZW1lbnQuY3NzKHtwYWRkaW5nTGVmdDoiIixwYWRkaW5nUmlnaHQ6IiJ9KX0sYy5wcm90b3R5cGUuY2hlY2tTY3JvbGxiYXI9ZnVuY3Rpb24oKXt2YXIgYT13aW5kb3cuaW5uZXJXaWR0aDtpZighYSl7dmFyIGI9ZG9jdW1lbnQuZG9jdW1lbnRFbGVtZW50LmdldEJvdW5kaW5nQ2xpZW50UmVjdCgpO2E9Yi5yaWdodC1NYXRoLmFicyhiLmxlZnQpfXRoaXMuYm9keUlzT3ZlcmZsb3dpbmc9ZG9jdW1lbnQuYm9keS5jbGllbnRXaWR0aDxhLHRoaXMuc2Nyb2xsYmFyV2lkdGg9dGhpcy5tZWFzdXJlU2Nyb2xsYmFyKCl9LGMucHJvdG90eXBlLnNldFNjcm9sbGJhcj1mdW5jdGlvbigpe3ZhciBhPXBhcnNlSW50KHRoaXMuJGJvZHkuY3NzKCJwYWRkaW5nLXJpZ2h0Iil8fDAsMTApO3RoaXMub3JpZ2luYWxCb2R5UGFkPWRvY3VtZW50LmJvZHkuc3R5bGUucGFkZGluZ1JpZ2h0fHwiIix0aGlzLmJvZHlJc092ZXJmbG93aW5nJiZ0aGlzLiRib2R5LmNzcygicGFkZGluZy1yaWdodCIsYSt0aGlzLnNjcm9sbGJhcldpZHRoKX0sYy5wcm90b3R5cGUucmVzZXRTY3JvbGxiYXI9ZnVuY3Rpb24oKXt0aGlzLiRib2R5LmNzcygicGFkZGluZy1yaWdodCIsdGhpcy5vcmlnaW5hbEJvZHlQYWQpfSxjLnByb3RvdHlwZS5tZWFzdXJlU2Nyb2xsYmFyPWZ1bmN0aW9uKCl7dmFyIGE9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7YS5jbGFzc05hbWU9Im1vZGFsLXNjcm9sbGJhci1tZWFzdXJlIix0aGlzLiRib2R5LmFwcGVuZChhKTt2YXIgYj1hLm9mZnNldFdpZHRoLWEuY2xpZW50V2lkdGg7cmV0dXJuIHRoaXMuJGJvZHlbMF0ucmVtb3ZlQ2hpbGQoYSksYn07dmFyIGQ9YS5mbi5tb2RhbDthLmZuLm1vZGFsPWIsYS5mbi5tb2RhbC5Db25zdHJ1Y3Rvcj1jLGEuZm4ubW9kYWwubm9Db25mbGljdD1mdW5jdGlvbigpe3JldHVybiBhLmZuLm1vZGFsPWQsdGhpc30sYShkb2N1bWVudCkub24oImNsaWNrLmJzLm1vZGFsLmRhdGEtYXBpIiwnW2RhdGEtdG9nZ2xlPSJtb2RhbCJdJyxmdW5jdGlvbihjKXt2YXIgZD1hKHRoaXMpLGU9ZC5hdHRyKCJocmVmIiksZj1hKGQuYXR0cigiZGF0YS10YXJnZXQiKXx8ZSYmZS5yZXBsYWNlKC8uKig/PSNbXlxzXSskKS8sIiIpKSxnPWYuZGF0YSgiYnMubW9kYWwiKT8idG9nZ2xlIjphLmV4dGVuZCh7cmVtb3RlOiEvIy8udGVzdChlKSYmZX0sZi5kYXRhKCksZC5kYXRhKCkpO2QuaXMoImEiKSYmYy5wcmV2ZW50RGVmYXVsdCgpLGYub25lKCJzaG93LmJzLm1vZGFsIixmdW5jdGlvbihhKXthLmlzRGVmYXVsdFByZXZlbnRlZCgpfHxmLm9uZSgiaGlkZGVuLmJzLm1vZGFsIixmdW5jdGlvbigpe2QuaXMoIjp2aXNpYmxlIikmJmQudHJpZ2dlcigiZm9jdXMiKX0pfSksYi5jYWxsKGYsZyx0aGlzKX0pfShqUXVlcnkpLCtmdW5jdGlvbihhKXsidXNlIHN0cmljdCI7ZnVuY3Rpb24gYihiKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGQ9YSh0aGlzKSxlPWQuZGF0YSgiYnMudG9vbHRpcCIpLGY9Im9iamVjdCI9PXR5cGVvZiBiJiZiOyhlfHwhL2Rlc3Ryb3l8aGlkZS8udGVzdChiKSkmJihlfHxkLmRhdGEoImJzLnRvb2x0aXAiLGU9bmV3IGModGhpcyxmKSksInN0cmluZyI9PXR5cGVvZiBiJiZlW2JdKCkpfSl9dmFyIGM9ZnVuY3Rpb24oYSxiKXt0aGlzLnR5cGU9bnVsbCx0aGlzLm9wdGlvbnM9bnVsbCx0aGlzLmVuYWJsZWQ9bnVsbCx0aGlzLnRpbWVvdXQ9bnVsbCx0aGlzLmhvdmVyU3RhdGU9bnVsbCx0aGlzLiRlbGVtZW50PW51bGwsdGhpcy5pblN0YXRlPW51bGwsdGhpcy5pbml0KCJ0b29sdGlwIixhLGIpfTtjLlZFUlNJT049IjMuMy41IixjLlRSQU5TSVRJT05fRFVSQVRJT049MTUwLGMuREVGQVVMVFM9e2FuaW1hdGlvbjohMCxwbGFjZW1lbnQ6InRvcCIsc2VsZWN0b3I6ITEsdGVtcGxhdGU6JzxkaXYgY2xhc3M9InRvb2x0aXAiIHJvbGU9InRvb2x0aXAiPjxkaXYgY2xhc3M9InRvb2x0aXAtYXJyb3ciPjwvZGl2PjxkaXYgY2xhc3M9InRvb2x0aXAtaW5uZXIiPjwvZGl2PjwvZGl2PicsdHJpZ2dlcjoiaG92ZXIgZm9jdXMiLHRpdGxlOiIiLGRlbGF5OjAsaHRtbDohMSxjb250YWluZXI6ITEsdmlld3BvcnQ6e3NlbGVjdG9yOiJib2R5IixwYWRkaW5nOjB9fSxjLnByb3RvdHlwZS5pbml0PWZ1bmN0aW9uKGIsYyxkKXtpZih0aGlzLmVuYWJsZWQ9ITAsdGhpcy50eXBlPWIsdGhpcy4kZWxlbWVudD1hKGMpLHRoaXMub3B0aW9ucz10aGlzLmdldE9wdGlvbnMoZCksdGhpcy4kdmlld3BvcnQ9dGhpcy5vcHRpb25zLnZpZXdwb3J0JiZhKGEuaXNGdW5jdGlvbih0aGlzLm9wdGlvbnMudmlld3BvcnQpP3RoaXMub3B0aW9ucy52aWV3cG9ydC5jYWxsKHRoaXMsdGhpcy4kZWxlbWVudCk6dGhpcy5vcHRpb25zLnZpZXdwb3J0LnNlbGVjdG9yfHx0aGlzLm9wdGlvbnMudmlld3BvcnQpLHRoaXMuaW5TdGF0ZT17Y2xpY2s6ITEsaG92ZXI6ITEsZm9jdXM6ITF9LHRoaXMuJGVsZW1lbnRbMF1pbnN0YW5jZW9mIGRvY3VtZW50LmNvbnN0cnVjdG9yJiYhdGhpcy5vcHRpb25zLnNlbGVjdG9yKXRocm93IG5ldyBFcnJvcigiYHNlbGVjdG9yYCBvcHRpb24gbXVzdCBiZSBzcGVjaWZpZWQgd2hlbiBpbml0aWFsaXppbmcgIit0aGlzLnR5cGUrIiBvbiB0aGUgd2luZG93LmRvY3VtZW50IG9iamVjdCEiKTtmb3IodmFyIGU9dGhpcy5vcHRpb25zLnRyaWdnZXIuc3BsaXQoIiAiKSxmPWUubGVuZ3RoO2YtLTspe3ZhciBnPWVbZl07aWYoImNsaWNrIj09Zyl0aGlzLiRlbGVtZW50Lm9uKCJjbGljay4iK3RoaXMudHlwZSx0aGlzLm9wdGlvbnMuc2VsZWN0b3IsYS5wcm94eSh0aGlzLnRvZ2dsZSx0aGlzKSk7ZWxzZSBpZigibWFudWFsIiE9Zyl7dmFyIGg9ImhvdmVyIj09Zz8ibW91c2VlbnRlciI6ImZvY3VzaW4iLGk9ImhvdmVyIj09Zz8ibW91c2VsZWF2ZSI6ImZvY3Vzb3V0Ijt0aGlzLiRlbGVtZW50Lm9uKGgrIi4iK3RoaXMudHlwZSx0aGlzLm9wdGlvbnMuc2VsZWN0b3IsYS5wcm94eSh0aGlzLmVudGVyLHRoaXMpKSx0aGlzLiRlbGVtZW50Lm9uKGkrIi4iK3RoaXMudHlwZSx0aGlzLm9wdGlvbnMuc2VsZWN0b3IsYS5wcm94eSh0aGlzLmxlYXZlLHRoaXMpKX19dGhpcy5vcHRpb25zLnNlbGVjdG9yP3RoaXMuX29wdGlvbnM9YS5leHRlbmQoe30sdGhpcy5vcHRpb25zLHt0cmlnZ2VyOiJtYW51YWwiLHNlbGVjdG9yOiIifSk6dGhpcy5maXhUaXRsZSgpfSxjLnByb3RvdHlwZS5nZXREZWZhdWx0cz1mdW5jdGlvbigpe3JldHVybiBjLkRFRkFVTFRTfSxjLnByb3RvdHlwZS5nZXRPcHRpb25zPWZ1bmN0aW9uKGIpe3JldHVybiBiPWEuZXh0ZW5kKHt9LHRoaXMuZ2V0RGVmYXVsdHMoKSx0aGlzLiRlbGVtZW50LmRhdGEoKSxiKSxiLmRlbGF5JiYibnVtYmVyIj09dHlwZW9mIGIuZGVsYXkmJihiLmRlbGF5PXtzaG93OmIuZGVsYXksaGlkZTpiLmRlbGF5fSksYn0sYy5wcm90b3R5cGUuZ2V0RGVsZWdhdGVPcHRpb25zPWZ1bmN0aW9uKCl7dmFyIGI9e30sYz10aGlzLmdldERlZmF1bHRzKCk7cmV0dXJuIHRoaXMuX29wdGlvbnMmJmEuZWFjaCh0aGlzLl9vcHRpb25zLGZ1bmN0aW9uKGEsZCl7Y1thXSE9ZCYmKGJbYV09ZCl9KSxifSxjLnByb3RvdHlwZS5lbnRlcj1mdW5jdGlvbihiKXt2YXIgYz1iIGluc3RhbmNlb2YgdGhpcy5jb25zdHJ1Y3Rvcj9iOmEoYi5jdXJyZW50VGFyZ2V0KS5kYXRhKCJicy4iK3RoaXMudHlwZSk7cmV0dXJuIGN8fChjPW5ldyB0aGlzLmNvbnN0cnVjdG9yKGIuY3VycmVudFRhcmdldCx0aGlzLmdldERlbGVnYXRlT3B0aW9ucygpKSxhKGIuY3VycmVudFRhcmdldCkuZGF0YSgiYnMuIit0aGlzLnR5cGUsYykpLGIgaW5zdGFuY2VvZiBhLkV2ZW50JiYoYy5pblN0YXRlWyJmb2N1c2luIj09Yi50eXBlPyJmb2N1cyI6ImhvdmVyIl09ITApLGMudGlwKCkuaGFzQ2xhc3MoImluIil8fCJpbiI9PWMuaG92ZXJTdGF0ZT92b2lkKGMuaG92ZXJTdGF0ZT0iaW4iKTooY2xlYXJUaW1lb3V0KGMudGltZW91dCksYy5ob3ZlclN0YXRlPSJpbiIsYy5vcHRpb25zLmRlbGF5JiZjLm9wdGlvbnMuZGVsYXkuc2hvdz92b2lkKGMudGltZW91dD1zZXRUaW1lb3V0KGZ1bmN0aW9uKCl7ImluIj09Yy5ob3ZlclN0YXRlJiZjLnNob3coKX0sYy5vcHRpb25zLmRlbGF5LnNob3cpKTpjLnNob3coKSl9LGMucHJvdG90eXBlLmlzSW5TdGF0ZVRydWU9ZnVuY3Rpb24oKXtmb3IodmFyIGEgaW4gdGhpcy5pblN0YXRlKWlmKHRoaXMuaW5TdGF0ZVthXSlyZXR1cm4hMDtyZXR1cm4hMX0sYy5wcm90b3R5cGUubGVhdmU9ZnVuY3Rpb24oYil7dmFyIGM9YiBpbnN0YW5jZW9mIHRoaXMuY29uc3RydWN0b3I/YjphKGIuY3VycmVudFRhcmdldCkuZGF0YSgiYnMuIit0aGlzLnR5cGUpO3JldHVybiBjfHwoYz1uZXcgdGhpcy5jb25zdHJ1Y3RvcihiLmN1cnJlbnRUYXJnZXQsdGhpcy5nZXREZWxlZ2F0ZU9wdGlvbnMoKSksYShiLmN1cnJlbnRUYXJnZXQpLmRhdGEoImJzLiIrdGhpcy50eXBlLGMpKSxiIGluc3RhbmNlb2YgYS5FdmVudCYmKGMuaW5TdGF0ZVsiZm9jdXNvdXQiPT1iLnR5cGU/ImZvY3VzIjoiaG92ZXIiXT0hMSksYy5pc0luU3RhdGVUcnVlKCk/dm9pZCAwOihjbGVhclRpbWVvdXQoYy50aW1lb3V0KSxjLmhvdmVyU3RhdGU9Im91dCIsYy5vcHRpb25zLmRlbGF5JiZjLm9wdGlvbnMuZGVsYXkuaGlkZT92b2lkKGMudGltZW91dD1zZXRUaW1lb3V0KGZ1bmN0aW9uKCl7Im91dCI9PWMuaG92ZXJTdGF0ZSYmYy5oaWRlKCl9LGMub3B0aW9ucy5kZWxheS5oaWRlKSk6Yy5oaWRlKCkpfSxjLnByb3RvdHlwZS5zaG93PWZ1bmN0aW9uKCl7dmFyIGI9YS5FdmVudCgic2hvdy5icy4iK3RoaXMudHlwZSk7aWYodGhpcy5oYXNDb250ZW50KCkmJnRoaXMuZW5hYmxlZCl7dGhpcy4kZWxlbWVudC50cmlnZ2VyKGIpO3ZhciBkPWEuY29udGFpbnModGhpcy4kZWxlbWVudFswXS5vd25lckRvY3VtZW50LmRvY3VtZW50RWxlbWVudCx0aGlzLiRlbGVtZW50WzBdKTtpZihiLmlzRGVmYXVsdFByZXZlbnRlZCgpfHwhZClyZXR1cm47dmFyIGU9dGhpcyxmPXRoaXMudGlwKCksZz10aGlzLmdldFVJRCh0aGlzLnR5cGUpO3RoaXMuc2V0Q29udGVudCgpLGYuYXR0cigiaWQiLGcpLHRoaXMuJGVsZW1lbnQuYXR0cigiYXJpYS1kZXNjcmliZWRieSIsZyksdGhpcy5vcHRpb25zLmFuaW1hdGlvbiYmZi5hZGRDbGFzcygiZmFkZSIpO3ZhciBoPSJmdW5jdGlvbiI9PXR5cGVvZiB0aGlzLm9wdGlvbnMucGxhY2VtZW50P3RoaXMub3B0aW9ucy5wbGFjZW1lbnQuY2FsbCh0aGlzLGZbMF0sdGhpcy4kZWxlbWVudFswXSk6dGhpcy5vcHRpb25zLnBsYWNlbWVudCxpPS9ccz9hdXRvP1xzPy9pLGo9aS50ZXN0KGgpO2omJihoPWgucmVwbGFjZShpLCIiKXx8InRvcCIpLGYuZGV0YWNoKCkuY3NzKHt0b3A6MCxsZWZ0OjAsZGlzcGxheToiYmxvY2sifSkuYWRkQ2xhc3MoaCkuZGF0YSgiYnMuIit0aGlzLnR5cGUsdGhpcyksdGhpcy5vcHRpb25zLmNvbnRhaW5lcj9mLmFwcGVuZFRvKHRoaXMub3B0aW9ucy5jb250YWluZXIpOmYuaW5zZXJ0QWZ0ZXIodGhpcy4kZWxlbWVudCksdGhpcy4kZWxlbWVudC50cmlnZ2VyKCJpbnNlcnRlZC5icy4iK3RoaXMudHlwZSk7dmFyIGs9dGhpcy5nZXRQb3NpdGlvbigpLGw9ZlswXS5vZmZzZXRXaWR0aCxtPWZbMF0ub2Zmc2V0SGVpZ2h0O2lmKGope3ZhciBuPWgsbz10aGlzLmdldFBvc2l0aW9uKHRoaXMuJHZpZXdwb3J0KTtoPSJib3R0b20iPT1oJiZrLmJvdHRvbSttPm8uYm90dG9tPyJ0b3AiOiJ0b3AiPT1oJiZrLnRvcC1tPG8udG9wPyJib3R0b20iOiJyaWdodCI9PWgmJmsucmlnaHQrbD5vLndpZHRoPyJsZWZ0IjoibGVmdCI9PWgmJmsubGVmdC1sPG8ubGVmdD8icmlnaHQiOmgsZi5yZW1vdmVDbGFzcyhuKS5hZGRDbGFzcyhoKX12YXIgcD10aGlzLmdldENhbGN1bGF0ZWRPZmZzZXQoaCxrLGwsbSk7dGhpcy5hcHBseVBsYWNlbWVudChwLGgpO3ZhciBxPWZ1bmN0aW9uKCl7dmFyIGE9ZS5ob3ZlclN0YXRlO2UuJGVsZW1lbnQudHJpZ2dlcigic2hvd24uYnMuIitlLnR5cGUpLGUuaG92ZXJTdGF0ZT1udWxsLCJvdXQiPT1hJiZlLmxlYXZlKGUpfTthLnN1cHBvcnQudHJhbnNpdGlvbiYmdGhpcy4kdGlwLmhhc0NsYXNzKCJmYWRlIik/Zi5vbmUoImJzVHJhbnNpdGlvbkVuZCIscSkuZW11bGF0ZVRyYW5zaXRpb25FbmQoYy5UUkFOU0lUSU9OX0RVUkFUSU9OKTpxKCl9fSxjLnByb3RvdHlwZS5hcHBseVBsYWNlbWVudD1mdW5jdGlvbihiLGMpe3ZhciBkPXRoaXMudGlwKCksZT1kWzBdLm9mZnNldFdpZHRoLGY9ZFswXS5vZmZzZXRIZWlnaHQsZz1wYXJzZUludChkLmNzcygibWFyZ2luLXRvcCIpLDEwKSxoPXBhcnNlSW50KGQuY3NzKCJtYXJnaW4tbGVmdCIpLDEwKTtpc05hTihnKSYmKGc9MCksaXNOYU4oaCkmJihoPTApLGIudG9wKz1nLGIubGVmdCs9aCxhLm9mZnNldC5zZXRPZmZzZXQoZFswXSxhLmV4dGVuZCh7dXNpbmc6ZnVuY3Rpb24oYSl7ZC5jc3Moe3RvcDpNYXRoLnJvdW5kKGEudG9wKSxsZWZ0Ok1hdGgucm91bmQoYS5sZWZ0KX0pfX0sYiksMCksZC5hZGRDbGFzcygiaW4iKTt2YXIgaT1kWzBdLm9mZnNldFdpZHRoLGo9ZFswXS5vZmZzZXRIZWlnaHQ7InRvcCI9PWMmJmohPWYmJihiLnRvcD1iLnRvcCtmLWopO3ZhciBrPXRoaXMuZ2V0Vmlld3BvcnRBZGp1c3RlZERlbHRhKGMsYixpLGopO2subGVmdD9iLmxlZnQrPWsubGVmdDpiLnRvcCs9ay50b3A7dmFyIGw9L3RvcHxib3R0b20vLnRlc3QoYyksbT1sPzIqay5sZWZ0LWUraToyKmsudG9wLWYraixuPWw/Im9mZnNldFdpZHRoIjoib2Zmc2V0SGVpZ2h0IjtkLm9mZnNldChiKSx0aGlzLnJlcGxhY2VBcnJvdyhtLGRbMF1bbl0sbCl9LGMucHJvdG90eXBlLnJlcGxhY2VBcnJvdz1mdW5jdGlvbihhLGIsYyl7dGhpcy5hcnJvdygpLmNzcyhjPyJsZWZ0IjoidG9wIiw1MCooMS1hL2IpKyIlIikuY3NzKGM/InRvcCI6ImxlZnQiLCIiKX0sYy5wcm90b3R5cGUuc2V0Q29udGVudD1mdW5jdGlvbigpe3ZhciBhPXRoaXMudGlwKCksYj10aGlzLmdldFRpdGxlKCk7YS5maW5kKCIudG9vbHRpcC1pbm5lciIpW3RoaXMub3B0aW9ucy5odG1sPyJodG1sIjoidGV4dCJdKGIpLGEucmVtb3ZlQ2xhc3MoImZhZGUgaW4gdG9wIGJvdHRvbSBsZWZ0IHJpZ2h0Iil9LGMucHJvdG90eXBlLmhpZGU9ZnVuY3Rpb24oYil7ZnVuY3Rpb24gZCgpeyJpbiIhPWUuaG92ZXJTdGF0ZSYmZi5kZXRhY2goKSxlLiRlbGVtZW50LnJlbW92ZUF0dHIoImFyaWEtZGVzY3JpYmVkYnkiKS50cmlnZ2VyKCJoaWRkZW4uYnMuIitlLnR5cGUpLGImJmIoKX12YXIgZT10aGlzLGY9YSh0aGlzLiR0aXApLGc9YS5FdmVudCgiaGlkZS5icy4iK3RoaXMudHlwZSk7cmV0dXJuIHRoaXMuJGVsZW1lbnQudHJpZ2dlcihnKSxnLmlzRGVmYXVsdFByZXZlbnRlZCgpP3ZvaWQgMDooZi5yZW1vdmVDbGFzcygiaW4iKSxhLnN1cHBvcnQudHJhbnNpdGlvbiYmZi5oYXNDbGFzcygiZmFkZSIpP2Yub25lKCJic1RyYW5zaXRpb25FbmQiLGQpLmVtdWxhdGVUcmFuc2l0aW9uRW5kKGMuVFJBTlNJVElPTl9EVVJBVElPTik6ZCgpLHRoaXMuaG92ZXJTdGF0ZT1udWxsLHRoaXMpfSxjLnByb3RvdHlwZS5maXhUaXRsZT1mdW5jdGlvbigpe3ZhciBhPXRoaXMuJGVsZW1lbnQ7KGEuYXR0cigidGl0bGUiKXx8InN0cmluZyIhPXR5cGVvZiBhLmF0dHIoImRhdGEtb3JpZ2luYWwtdGl0bGUiKSkmJmEuYXR0cigiZGF0YS1vcmlnaW5hbC10aXRsZSIsYS5hdHRyKCJ0aXRsZSIpfHwiIikuYXR0cigidGl0bGUiLCIiKX0sYy5wcm90b3R5cGUuaGFzQ29udGVudD1mdW5jdGlvbigpe3JldHVybiB0aGlzLmdldFRpdGxlKCl9LGMucHJvdG90eXBlLmdldFBvc2l0aW9uPWZ1bmN0aW9uKGIpe2I9Ynx8dGhpcy4kZWxlbWVudDt2YXIgYz1iWzBdLGQ9IkJPRFkiPT1jLnRhZ05hbWUsZT1jLmdldEJvdW5kaW5nQ2xpZW50UmVjdCgpO251bGw9PWUud2lkdGgmJihlPWEuZXh0ZW5kKHt9LGUse3dpZHRoOmUucmlnaHQtZS5sZWZ0LGhlaWdodDplLmJvdHRvbS1lLnRvcH0pKTt2YXIgZj1kP3t0b3A6MCxsZWZ0OjB9OmIub2Zmc2V0KCksZz17c2Nyb2xsOmQ/ZG9jdW1lbnQuZG9jdW1lbnRFbGVtZW50LnNjcm9sbFRvcHx8ZG9jdW1lbnQuYm9keS5zY3JvbGxUb3A6Yi5zY3JvbGxUb3AoKX0saD1kP3t3aWR0aDphKHdpbmRvdykud2lkdGgoKSxoZWlnaHQ6YSh3aW5kb3cpLmhlaWdodCgpfTpudWxsO3JldHVybiBhLmV4dGVuZCh7fSxlLGcsaCxmKX0sYy5wcm90b3R5cGUuZ2V0Q2FsY3VsYXRlZE9mZnNldD1mdW5jdGlvbihhLGIsYyxkKXtyZXR1cm4iYm90dG9tIj09YT97dG9wOmIudG9wK2IuaGVpZ2h0LGxlZnQ6Yi5sZWZ0K2Iud2lkdGgvMi1jLzJ9OiJ0b3AiPT1hP3t0b3A6Yi50b3AtZCxsZWZ0OmIubGVmdCtiLndpZHRoLzItYy8yfToibGVmdCI9PWE/e3RvcDpiLnRvcCtiLmhlaWdodC8yLWQvMixsZWZ0OmIubGVmdC1jfTp7dG9wOmIudG9wK2IuaGVpZ2h0LzItZC8yLGxlZnQ6Yi5sZWZ0K2Iud2lkdGh9fSxjLnByb3RvdHlwZS5nZXRWaWV3cG9ydEFkanVzdGVkRGVsdGE9ZnVuY3Rpb24oYSxiLGMsZCl7dmFyIGU9e3RvcDowLGxlZnQ6MH07aWYoIXRoaXMuJHZpZXdwb3J0KXJldHVybiBlO3ZhciBmPXRoaXMub3B0aW9ucy52aWV3cG9ydCYmdGhpcy5vcHRpb25zLnZpZXdwb3J0LnBhZGRpbmd8fDAsZz10aGlzLmdldFBvc2l0aW9uKHRoaXMuJHZpZXdwb3J0KTtpZigvcmlnaHR8bGVmdC8udGVzdChhKSl7dmFyIGg9Yi50b3AtZi1nLnNjcm9sbCxpPWIudG9wK2YtZy5zY3JvbGwrZDtoPGcudG9wP2UudG9wPWcudG9wLWg6aT5nLnRvcCtnLmhlaWdodCYmKGUudG9wPWcudG9wK2cuaGVpZ2h0LWkpfWVsc2V7dmFyIGo9Yi5sZWZ0LWYsaz1iLmxlZnQrZitjO2o8Zy5sZWZ0P2UubGVmdD1nLmxlZnQtajprPmcucmlnaHQmJihlLmxlZnQ9Zy5sZWZ0K2cud2lkdGgtayl9cmV0dXJuIGV9LGMucHJvdG90eXBlLmdldFRpdGxlPWZ1bmN0aW9uKCl7dmFyIGEsYj10aGlzLiRlbGVtZW50LGM9dGhpcy5vcHRpb25zO3JldHVybiBhPWIuYXR0cigiZGF0YS1vcmlnaW5hbC10aXRsZSIpfHwoImZ1bmN0aW9uIj09dHlwZW9mIGMudGl0bGU/Yy50aXRsZS5jYWxsKGJbMF0pOmMudGl0bGUpfSxjLnByb3RvdHlwZS5nZXRVSUQ9ZnVuY3Rpb24oYSl7ZG8gYSs9fn4oMWU2Kk1hdGgucmFuZG9tKCkpO3doaWxlKGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKGEpKTtyZXR1cm4gYX0sYy5wcm90b3R5cGUudGlwPWZ1bmN0aW9uKCl7aWYoIXRoaXMuJHRpcCYmKHRoaXMuJHRpcD1hKHRoaXMub3B0aW9ucy50ZW1wbGF0ZSksMSE9dGhpcy4kdGlwLmxlbmd0aCkpdGhyb3cgbmV3IEVycm9yKHRoaXMudHlwZSsiIGB0ZW1wbGF0ZWAgb3B0aW9uIG11c3QgY29uc2lzdCBvZiBleGFjdGx5IDEgdG9wLWxldmVsIGVsZW1lbnQhIik7cmV0dXJuIHRoaXMuJHRpcH0sYy5wcm90b3R5cGUuYXJyb3c9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy4kYXJyb3c9dGhpcy4kYXJyb3d8fHRoaXMudGlwKCkuZmluZCgiLnRvb2x0aXAtYXJyb3ciKX0sYy5wcm90b3R5cGUuZW5hYmxlPWZ1bmN0aW9uKCl7dGhpcy5lbmFibGVkPSEwfSxjLnByb3RvdHlwZS5kaXNhYmxlPWZ1bmN0aW9uKCl7dGhpcy5lbmFibGVkPSExfSxjLnByb3RvdHlwZS50b2dnbGVFbmFibGVkPWZ1bmN0aW9uKCl7dGhpcy5lbmFibGVkPSF0aGlzLmVuYWJsZWR9LGMucHJvdG90eXBlLnRvZ2dsZT1mdW5jdGlvbihiKXt2YXIgYz10aGlzO2ImJihjPWEoYi5jdXJyZW50VGFyZ2V0KS5kYXRhKCJicy4iK3RoaXMudHlwZSksY3x8KGM9bmV3IHRoaXMuY29uc3RydWN0b3IoYi5jdXJyZW50VGFyZ2V0LHRoaXMuZ2V0RGVsZWdhdGVPcHRpb25zKCkpLGEoYi5jdXJyZW50VGFyZ2V0KS5kYXRhKCJicy4iK3RoaXMudHlwZSxjKSkpLGI/KGMuaW5TdGF0ZS5jbGljaz0hYy5pblN0YXRlLmNsaWNrLGMuaXNJblN0YXRlVHJ1ZSgpP2MuZW50ZXIoYyk6Yy5sZWF2ZShjKSk6Yy50aXAoKS5oYXNDbGFzcygiaW4iKT9jLmxlYXZlKGMpOmMuZW50ZXIoYyl9LGMucHJvdG90eXBlLmRlc3Ryb3k9ZnVuY3Rpb24oKXt2YXIgYT10aGlzO2NsZWFyVGltZW91dCh0aGlzLnRpbWVvdXQpLHRoaXMuaGlkZShmdW5jdGlvbigpe2EuJGVsZW1lbnQub2ZmKCIuIithLnR5cGUpLnJlbW92ZURhdGEoImJzLiIrYS50eXBlKSxhLiR0aXAmJmEuJHRpcC5kZXRhY2goKSxhLiR0aXA9bnVsbCxhLiRhcnJvdz1udWxsLGEuJHZpZXdwb3J0PW51bGx9KX07dmFyIGQ9YS5mbi50b29sdGlwO2EuZm4udG9vbHRpcD1iLGEuZm4udG9vbHRpcC5Db25zdHJ1Y3Rvcj1jLGEuZm4udG9vbHRpcC5ub0NvbmZsaWN0PWZ1bmN0aW9uKCl7cmV0dXJuIGEuZm4udG9vbHRpcD1kLHRoaXN9fShqUXVlcnkpLCtmdW5jdGlvbihhKXsidXNlIHN0cmljdCI7ZnVuY3Rpb24gYihiKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGQ9YSh0aGlzKSxlPWQuZGF0YSgiYnMucG9wb3ZlciIpLGY9Im9iamVjdCI9PXR5cGVvZiBiJiZiOyhlfHwhL2Rlc3Ryb3l8aGlkZS8udGVzdChiKSkmJihlfHxkLmRhdGEoImJzLnBvcG92ZXIiLGU9bmV3IGModGhpcyxmKSksInN0cmluZyI9PXR5cGVvZiBiJiZlW2JdKCkpfSl9dmFyIGM9ZnVuY3Rpb24oYSxiKXt0aGlzLmluaXQoInBvcG92ZXIiLGEsYil9O2lmKCFhLmZuLnRvb2x0aXApdGhyb3cgbmV3IEVycm9yKCJQb3BvdmVyIHJlcXVpcmVzIHRvb2x0aXAuanMiKTtjLlZFUlNJT049IjMuMy41IixjLkRFRkFVTFRTPWEuZXh0ZW5kKHt9LGEuZm4udG9vbHRpcC5Db25zdHJ1Y3Rvci5ERUZBVUxUUyx7cGxhY2VtZW50OiJyaWdodCIsdHJpZ2dlcjoiY2xpY2siLGNvbnRlbnQ6IiIsdGVtcGxhdGU6JzxkaXYgY2xhc3M9InBvcG92ZXIiIHJvbGU9InRvb2x0aXAiPjxkaXYgY2xhc3M9ImFycm93Ij48L2Rpdj48aDMgY2xhc3M9InBvcG92ZXItdGl0bGUiPjwvaDM+PGRpdiBjbGFzcz0icG9wb3Zlci1jb250ZW50Ij48L2Rpdj48L2Rpdj4nfSksYy5wcm90b3R5cGU9YS5leHRlbmQoe30sYS5mbi50b29sdGlwLkNvbnN0cnVjdG9yLnByb3RvdHlwZSksYy5wcm90b3R5cGUuY29uc3RydWN0b3I9YyxjLnByb3RvdHlwZS5nZXREZWZhdWx0cz1mdW5jdGlvbigpe3JldHVybiBjLkRFRkFVTFRTfSxjLnByb3RvdHlwZS5zZXRDb250ZW50PWZ1bmN0aW9uKCl7dmFyIGE9dGhpcy50aXAoKSxiPXRoaXMuZ2V0VGl0bGUoKSxjPXRoaXMuZ2V0Q29udGVudCgpO2EuZmluZCgiLnBvcG92ZXItdGl0bGUiKVt0aGlzLm9wdGlvbnMuaHRtbD8iaHRtbCI6InRleHQiXShiKSxhLmZpbmQoIi5wb3BvdmVyLWNvbnRlbnQiKS5jaGlsZHJlbigpLmRldGFjaCgpLmVuZCgpW3RoaXMub3B0aW9ucy5odG1sPyJzdHJpbmciPT10eXBlb2YgYz8iaHRtbCI6ImFwcGVuZCI6InRleHQiXShjKSxhLnJlbW92ZUNsYXNzKCJmYWRlIHRvcCBib3R0b20gbGVmdCByaWdodCBpbiIpLGEuZmluZCgiLnBvcG92ZXItdGl0bGUiKS5odG1sKCl8fGEuZmluZCgiLnBvcG92ZXItdGl0bGUiKS5oaWRlKCl9LGMucHJvdG90eXBlLmhhc0NvbnRlbnQ9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5nZXRUaXRsZSgpfHx0aGlzLmdldENvbnRlbnQoKX0sYy5wcm90b3R5cGUuZ2V0Q29udGVudD1mdW5jdGlvbigpe3ZhciBhPXRoaXMuJGVsZW1lbnQsYj10aGlzLm9wdGlvbnM7cmV0dXJuIGEuYXR0cigiZGF0YS1jb250ZW50Iil8fCgiZnVuY3Rpb24iPT10eXBlb2YgYi5jb250ZW50P2IuY29udGVudC5jYWxsKGFbMF0pOmIuY29udGVudCl9LGMucHJvdG90eXBlLmFycm93PWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuJGFycm93PXRoaXMuJGFycm93fHx0aGlzLnRpcCgpLmZpbmQoIi5hcnJvdyIpfTt2YXIgZD1hLmZuLnBvcG92ZXI7YS5mbi5wb3BvdmVyPWIsYS5mbi5wb3BvdmVyLkNvbnN0cnVjdG9yPWMsYS5mbi5wb3BvdmVyLm5vQ29uZmxpY3Q9ZnVuY3Rpb24oKXtyZXR1cm4gYS5mbi5wb3BvdmVyPWQsdGhpc319KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKGMsZCl7dGhpcy4kYm9keT1hKGRvY3VtZW50LmJvZHkpLHRoaXMuJHNjcm9sbEVsZW1lbnQ9YShhKGMpLmlzKGRvY3VtZW50LmJvZHkpP3dpbmRvdzpjKSx0aGlzLm9wdGlvbnM9YS5leHRlbmQoe30sYi5ERUZBVUxUUyxkKSx0aGlzLnNlbGVjdG9yPSh0aGlzLm9wdGlvbnMudGFyZ2V0fHwiIikrIiAubmF2IGxpID4gYSIsdGhpcy5vZmZzZXRzPVtdLHRoaXMudGFyZ2V0cz1bXSx0aGlzLmFjdGl2ZVRhcmdldD1udWxsLHRoaXMuc2Nyb2xsSGVpZ2h0PTAsdGhpcy4kc2Nyb2xsRWxlbWVudC5vbigic2Nyb2xsLmJzLnNjcm9sbHNweSIsYS5wcm94eSh0aGlzLnByb2Nlc3MsdGhpcykpLHRoaXMucmVmcmVzaCgpLHRoaXMucHJvY2VzcygpfWZ1bmN0aW9uIGMoYyl7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbigpe3ZhciBkPWEodGhpcyksZT1kLmRhdGEoImJzLnNjcm9sbHNweSIpLGY9Im9iamVjdCI9PXR5cGVvZiBjJiZjO2V8fGQuZGF0YSgiYnMuc2Nyb2xsc3B5IixlPW5ldyBiKHRoaXMsZikpLCJzdHJpbmciPT10eXBlb2YgYyYmZVtjXSgpfSl9Yi5WRVJTSU9OPSIzLjMuNSIsYi5ERUZBVUxUUz17b2Zmc2V0OjEwfSxiLnByb3RvdHlwZS5nZXRTY3JvbGxIZWlnaHQ9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy4kc2Nyb2xsRWxlbWVudFswXS5zY3JvbGxIZWlnaHR8fE1hdGgubWF4KHRoaXMuJGJvZHlbMF0uc2Nyb2xsSGVpZ2h0LGRvY3VtZW50LmRvY3VtZW50RWxlbWVudC5zY3JvbGxIZWlnaHQpfSxiLnByb3RvdHlwZS5yZWZyZXNoPWZ1bmN0aW9uKCl7dmFyIGI9dGhpcyxjPSJvZmZzZXQiLGQ9MDt0aGlzLm9mZnNldHM9W10sdGhpcy50YXJnZXRzPVtdLHRoaXMuc2Nyb2xsSGVpZ2h0PXRoaXMuZ2V0U2Nyb2xsSGVpZ2h0KCksYS5pc1dpbmRvdyh0aGlzLiRzY3JvbGxFbGVtZW50WzBdKXx8KGM9InBvc2l0aW9uIixkPXRoaXMuJHNjcm9sbEVsZW1lbnQuc2Nyb2xsVG9wKCkpLHRoaXMuJGJvZHkuZmluZCh0aGlzLnNlbGVjdG9yKS5tYXAoZnVuY3Rpb24oKXt2YXIgYj1hKHRoaXMpLGU9Yi5kYXRhKCJ0YXJnZXQiKXx8Yi5hdHRyKCJocmVmIiksZj0vXiMuLy50ZXN0KGUpJiZhKGUpO3JldHVybiBmJiZmLmxlbmd0aCYmZi5pcygiOnZpc2libGUiKSYmW1tmW2NdKCkudG9wK2QsZV1dfHxudWxsfSkuc29ydChmdW5jdGlvbihhLGIpe3JldHVybiBhWzBdLWJbMF19KS5lYWNoKGZ1bmN0aW9uKCl7Yi5vZmZzZXRzLnB1c2godGhpc1swXSksYi50YXJnZXRzLnB1c2godGhpc1sxXSl9KX0sYi5wcm90b3R5cGUucHJvY2Vzcz1mdW5jdGlvbigpe3ZhciBhLGI9dGhpcy4kc2Nyb2xsRWxlbWVudC5zY3JvbGxUb3AoKSt0aGlzLm9wdGlvbnMub2Zmc2V0LGM9dGhpcy5nZXRTY3JvbGxIZWlnaHQoKSxkPXRoaXMub3B0aW9ucy5vZmZzZXQrYy10aGlzLiRzY3JvbGxFbGVtZW50LmhlaWdodCgpLGU9dGhpcy5vZmZzZXRzLGY9dGhpcy50YXJnZXRzLGc9dGhpcy5hY3RpdmVUYXJnZXQ7aWYodGhpcy5zY3JvbGxIZWlnaHQhPWMmJnRoaXMucmVmcmVzaCgpLGI+PWQpcmV0dXJuIGchPShhPWZbZi5sZW5ndGgtMV0pJiZ0aGlzLmFjdGl2YXRlKGEpO2lmKGcmJmI8ZVswXSlyZXR1cm4gdGhpcy5hY3RpdmVUYXJnZXQ9bnVsbCx0aGlzLmNsZWFyKCk7Zm9yKGE9ZS5sZW5ndGg7YS0tOylnIT1mW2FdJiZiPj1lW2FdJiYodm9pZCAwPT09ZVthKzFdfHxiPGVbYSsxXSkmJnRoaXMuYWN0aXZhdGUoZlthXSl9LGIucHJvdG90eXBlLmFjdGl2YXRlPWZ1bmN0aW9uKGIpe3RoaXMuYWN0aXZlVGFyZ2V0PWIsdGhpcy5jbGVhcigpO3ZhciBjPXRoaXMuc2VsZWN0b3IrJ1tkYXRhLXRhcmdldD0iJytiKyciXSwnK3RoaXMuc2VsZWN0b3IrJ1tocmVmPSInK2IrJyJdJyxkPWEoYykucGFyZW50cygibGkiKS5hZGRDbGFzcygiYWN0aXZlIik7ZC5wYXJlbnQoIi5kcm9wZG93bi1tZW51IikubGVuZ3RoJiYoZD1kLmNsb3Nlc3QoImxpLmRyb3Bkb3duIikuYWRkQ2xhc3MoImFjdGl2ZSIpKSwKZC50cmlnZ2VyKCJhY3RpdmF0ZS5icy5zY3JvbGxzcHkiKX0sYi5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXthKHRoaXMuc2VsZWN0b3IpLnBhcmVudHNVbnRpbCh0aGlzLm9wdGlvbnMudGFyZ2V0LCIuYWN0aXZlIikucmVtb3ZlQ2xhc3MoImFjdGl2ZSIpfTt2YXIgZD1hLmZuLnNjcm9sbHNweTthLmZuLnNjcm9sbHNweT1jLGEuZm4uc2Nyb2xsc3B5LkNvbnN0cnVjdG9yPWIsYS5mbi5zY3JvbGxzcHkubm9Db25mbGljdD1mdW5jdGlvbigpe3JldHVybiBhLmZuLnNjcm9sbHNweT1kLHRoaXN9LGEod2luZG93KS5vbigibG9hZC5icy5zY3JvbGxzcHkuZGF0YS1hcGkiLGZ1bmN0aW9uKCl7YSgnW2RhdGEtc3B5PSJzY3JvbGwiXScpLmVhY2goZnVuY3Rpb24oKXt2YXIgYj1hKHRoaXMpO2MuY2FsbChiLGIuZGF0YSgpKX0pfSl9KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKGIpe3JldHVybiB0aGlzLmVhY2goZnVuY3Rpb24oKXt2YXIgZD1hKHRoaXMpLGU9ZC5kYXRhKCJicy50YWIiKTtlfHxkLmRhdGEoImJzLnRhYiIsZT1uZXcgYyh0aGlzKSksInN0cmluZyI9PXR5cGVvZiBiJiZlW2JdKCl9KX12YXIgYz1mdW5jdGlvbihiKXt0aGlzLmVsZW1lbnQ9YShiKX07Yy5WRVJTSU9OPSIzLjMuNSIsYy5UUkFOU0lUSU9OX0RVUkFUSU9OPTE1MCxjLnByb3RvdHlwZS5zaG93PWZ1bmN0aW9uKCl7dmFyIGI9dGhpcy5lbGVtZW50LGM9Yi5jbG9zZXN0KCJ1bDpub3QoLmRyb3Bkb3duLW1lbnUpIiksZD1iLmRhdGEoInRhcmdldCIpO2lmKGR8fChkPWIuYXR0cigiaHJlZiIpLGQ9ZCYmZC5yZXBsYWNlKC8uKig/PSNbXlxzXSokKS8sIiIpKSwhYi5wYXJlbnQoImxpIikuaGFzQ2xhc3MoImFjdGl2ZSIpKXt2YXIgZT1jLmZpbmQoIi5hY3RpdmU6bGFzdCBhIiksZj1hLkV2ZW50KCJoaWRlLmJzLnRhYiIse3JlbGF0ZWRUYXJnZXQ6YlswXX0pLGc9YS5FdmVudCgic2hvdy5icy50YWIiLHtyZWxhdGVkVGFyZ2V0OmVbMF19KTtpZihlLnRyaWdnZXIoZiksYi50cmlnZ2VyKGcpLCFnLmlzRGVmYXVsdFByZXZlbnRlZCgpJiYhZi5pc0RlZmF1bHRQcmV2ZW50ZWQoKSl7dmFyIGg9YShkKTt0aGlzLmFjdGl2YXRlKGIuY2xvc2VzdCgibGkiKSxjKSx0aGlzLmFjdGl2YXRlKGgsaC5wYXJlbnQoKSxmdW5jdGlvbigpe2UudHJpZ2dlcih7dHlwZToiaGlkZGVuLmJzLnRhYiIscmVsYXRlZFRhcmdldDpiWzBdfSksYi50cmlnZ2VyKHt0eXBlOiJzaG93bi5icy50YWIiLHJlbGF0ZWRUYXJnZXQ6ZVswXX0pfSl9fX0sYy5wcm90b3R5cGUuYWN0aXZhdGU9ZnVuY3Rpb24oYixkLGUpe2Z1bmN0aW9uIGYoKXtnLnJlbW92ZUNsYXNzKCJhY3RpdmUiKS5maW5kKCI+IC5kcm9wZG93bi1tZW51ID4gLmFjdGl2ZSIpLnJlbW92ZUNsYXNzKCJhY3RpdmUiKS5lbmQoKS5maW5kKCdbZGF0YS10b2dnbGU9InRhYiJdJykuYXR0cigiYXJpYS1leHBhbmRlZCIsITEpLGIuYWRkQ2xhc3MoImFjdGl2ZSIpLmZpbmQoJ1tkYXRhLXRvZ2dsZT0idGFiIl0nKS5hdHRyKCJhcmlhLWV4cGFuZGVkIiwhMCksaD8oYlswXS5vZmZzZXRXaWR0aCxiLmFkZENsYXNzKCJpbiIpKTpiLnJlbW92ZUNsYXNzKCJmYWRlIiksYi5wYXJlbnQoIi5kcm9wZG93bi1tZW51IikubGVuZ3RoJiZiLmNsb3Nlc3QoImxpLmRyb3Bkb3duIikuYWRkQ2xhc3MoImFjdGl2ZSIpLmVuZCgpLmZpbmQoJ1tkYXRhLXRvZ2dsZT0idGFiIl0nKS5hdHRyKCJhcmlhLWV4cGFuZGVkIiwhMCksZSYmZSgpfXZhciBnPWQuZmluZCgiPiAuYWN0aXZlIiksaD1lJiZhLnN1cHBvcnQudHJhbnNpdGlvbiYmKGcubGVuZ3RoJiZnLmhhc0NsYXNzKCJmYWRlIil8fCEhZC5maW5kKCI+IC5mYWRlIikubGVuZ3RoKTtnLmxlbmd0aCYmaD9nLm9uZSgiYnNUcmFuc2l0aW9uRW5kIixmKS5lbXVsYXRlVHJhbnNpdGlvbkVuZChjLlRSQU5TSVRJT05fRFVSQVRJT04pOmYoKSxnLnJlbW92ZUNsYXNzKCJpbiIpfTt2YXIgZD1hLmZuLnRhYjthLmZuLnRhYj1iLGEuZm4udGFiLkNvbnN0cnVjdG9yPWMsYS5mbi50YWIubm9Db25mbGljdD1mdW5jdGlvbigpe3JldHVybiBhLmZuLnRhYj1kLHRoaXN9O3ZhciBlPWZ1bmN0aW9uKGMpe2MucHJldmVudERlZmF1bHQoKSxiLmNhbGwoYSh0aGlzKSwic2hvdyIpfTthKGRvY3VtZW50KS5vbigiY2xpY2suYnMudGFiLmRhdGEtYXBpIiwnW2RhdGEtdG9nZ2xlPSJ0YWIiXScsZSkub24oImNsaWNrLmJzLnRhYi5kYXRhLWFwaSIsJ1tkYXRhLXRvZ2dsZT0icGlsbCJdJyxlKX0oalF1ZXJ5KSwrZnVuY3Rpb24oYSl7InVzZSBzdHJpY3QiO2Z1bmN0aW9uIGIoYil7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbigpe3ZhciBkPWEodGhpcyksZT1kLmRhdGEoImJzLmFmZml4IiksZj0ib2JqZWN0Ij09dHlwZW9mIGImJmI7ZXx8ZC5kYXRhKCJicy5hZmZpeCIsZT1uZXcgYyh0aGlzLGYpKSwic3RyaW5nIj09dHlwZW9mIGImJmVbYl0oKX0pfXZhciBjPWZ1bmN0aW9uKGIsZCl7dGhpcy5vcHRpb25zPWEuZXh0ZW5kKHt9LGMuREVGQVVMVFMsZCksdGhpcy4kdGFyZ2V0PWEodGhpcy5vcHRpb25zLnRhcmdldCkub24oInNjcm9sbC5icy5hZmZpeC5kYXRhLWFwaSIsYS5wcm94eSh0aGlzLmNoZWNrUG9zaXRpb24sdGhpcykpLm9uKCJjbGljay5icy5hZmZpeC5kYXRhLWFwaSIsYS5wcm94eSh0aGlzLmNoZWNrUG9zaXRpb25XaXRoRXZlbnRMb29wLHRoaXMpKSx0aGlzLiRlbGVtZW50PWEoYiksdGhpcy5hZmZpeGVkPW51bGwsdGhpcy51bnBpbj1udWxsLHRoaXMucGlubmVkT2Zmc2V0PW51bGwsdGhpcy5jaGVja1Bvc2l0aW9uKCl9O2MuVkVSU0lPTj0iMy4zLjUiLGMuUkVTRVQ9ImFmZml4IGFmZml4LXRvcCBhZmZpeC1ib3R0b20iLGMuREVGQVVMVFM9e29mZnNldDowLHRhcmdldDp3aW5kb3d9LGMucHJvdG90eXBlLmdldFN0YXRlPWZ1bmN0aW9uKGEsYixjLGQpe3ZhciBlPXRoaXMuJHRhcmdldC5zY3JvbGxUb3AoKSxmPXRoaXMuJGVsZW1lbnQub2Zmc2V0KCksZz10aGlzLiR0YXJnZXQuaGVpZ2h0KCk7aWYobnVsbCE9YyYmInRvcCI9PXRoaXMuYWZmaXhlZClyZXR1cm4gYz5lPyJ0b3AiOiExO2lmKCJib3R0b20iPT10aGlzLmFmZml4ZWQpcmV0dXJuIG51bGwhPWM/ZSt0aGlzLnVucGluPD1mLnRvcD8hMToiYm90dG9tIjphLWQ+PWUrZz8hMToiYm90dG9tIjt2YXIgaD1udWxsPT10aGlzLmFmZml4ZWQsaT1oP2U6Zi50b3Asaj1oP2c6YjtyZXR1cm4gbnVsbCE9YyYmYz49ZT8idG9wIjpudWxsIT1kJiZpK2o+PWEtZD8iYm90dG9tIjohMX0sYy5wcm90b3R5cGUuZ2V0UGlubmVkT2Zmc2V0PWZ1bmN0aW9uKCl7aWYodGhpcy5waW5uZWRPZmZzZXQpcmV0dXJuIHRoaXMucGlubmVkT2Zmc2V0O3RoaXMuJGVsZW1lbnQucmVtb3ZlQ2xhc3MoYy5SRVNFVCkuYWRkQ2xhc3MoImFmZml4Iik7dmFyIGE9dGhpcy4kdGFyZ2V0LnNjcm9sbFRvcCgpLGI9dGhpcy4kZWxlbWVudC5vZmZzZXQoKTtyZXR1cm4gdGhpcy5waW5uZWRPZmZzZXQ9Yi50b3AtYX0sYy5wcm90b3R5cGUuY2hlY2tQb3NpdGlvbldpdGhFdmVudExvb3A9ZnVuY3Rpb24oKXtzZXRUaW1lb3V0KGEucHJveHkodGhpcy5jaGVja1Bvc2l0aW9uLHRoaXMpLDEpfSxjLnByb3RvdHlwZS5jaGVja1Bvc2l0aW9uPWZ1bmN0aW9uKCl7aWYodGhpcy4kZWxlbWVudC5pcygiOnZpc2libGUiKSl7dmFyIGI9dGhpcy4kZWxlbWVudC5oZWlnaHQoKSxkPXRoaXMub3B0aW9ucy5vZmZzZXQsZT1kLnRvcCxmPWQuYm90dG9tLGc9TWF0aC5tYXgoYShkb2N1bWVudCkuaGVpZ2h0KCksYShkb2N1bWVudC5ib2R5KS5oZWlnaHQoKSk7Im9iamVjdCIhPXR5cGVvZiBkJiYoZj1lPWQpLCJmdW5jdGlvbiI9PXR5cGVvZiBlJiYoZT1kLnRvcCh0aGlzLiRlbGVtZW50KSksImZ1bmN0aW9uIj09dHlwZW9mIGYmJihmPWQuYm90dG9tKHRoaXMuJGVsZW1lbnQpKTt2YXIgaD10aGlzLmdldFN0YXRlKGcsYixlLGYpO2lmKHRoaXMuYWZmaXhlZCE9aCl7bnVsbCE9dGhpcy51bnBpbiYmdGhpcy4kZWxlbWVudC5jc3MoInRvcCIsIiIpO3ZhciBpPSJhZmZpeCIrKGg/Ii0iK2g6IiIpLGo9YS5FdmVudChpKyIuYnMuYWZmaXgiKTtpZih0aGlzLiRlbGVtZW50LnRyaWdnZXIoaiksai5pc0RlZmF1bHRQcmV2ZW50ZWQoKSlyZXR1cm47dGhpcy5hZmZpeGVkPWgsdGhpcy51bnBpbj0iYm90dG9tIj09aD90aGlzLmdldFBpbm5lZE9mZnNldCgpOm51bGwsdGhpcy4kZWxlbWVudC5yZW1vdmVDbGFzcyhjLlJFU0VUKS5hZGRDbGFzcyhpKS50cmlnZ2VyKGkucmVwbGFjZSgiYWZmaXgiLCJhZmZpeGVkIikrIi5icy5hZmZpeCIpfSJib3R0b20iPT1oJiZ0aGlzLiRlbGVtZW50Lm9mZnNldCh7dG9wOmctYi1mfSl9fTt2YXIgZD1hLmZuLmFmZml4O2EuZm4uYWZmaXg9YixhLmZuLmFmZml4LkNvbnN0cnVjdG9yPWMsYS5mbi5hZmZpeC5ub0NvbmZsaWN0PWZ1bmN0aW9uKCl7cmV0dXJuIGEuZm4uYWZmaXg9ZCx0aGlzfSxhKHdpbmRvdykub24oImxvYWQiLGZ1bmN0aW9uKCl7YSgnW2RhdGEtc3B5PSJhZmZpeCJdJykuZWFjaChmdW5jdGlvbigpe3ZhciBjPWEodGhpcyksZD1jLmRhdGEoKTtkLm9mZnNldD1kLm9mZnNldHx8e30sbnVsbCE9ZC5vZmZzZXRCb3R0b20mJihkLm9mZnNldC5ib3R0b209ZC5vZmZzZXRCb3R0b20pLG51bGwhPWQub2Zmc2V0VG9wJiYoZC5vZmZzZXQudG9wPWQub2Zmc2V0VG9wKSxiLmNhbGwoYyxkKX0pfSl9KGpRdWVyeSk7"></script> +<script src="data:application/x-javascript;base64,LyoqCiogQHByZXNlcnZlIEhUTUw1IFNoaXYgMy43LjIgfCBAYWZhcmthcyBAamRhbHRvbiBAam9uX25lYWwgQHJlbSB8IE1JVC9HUEwyIExpY2Vuc2VkCiovCi8vIE9ubHkgcnVuIHRoaXMgY29kZSBpbiBJRSA4CmlmICghIXdpbmRvdy5uYXZpZ2F0b3IudXNlckFnZW50Lm1hdGNoKCJNU0lFIDgiKSkgewohZnVuY3Rpb24oYSxiKXtmdW5jdGlvbiBjKGEsYil7dmFyIGM9YS5jcmVhdGVFbGVtZW50KCJwIiksZD1hLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJoZWFkIilbMF18fGEuZG9jdW1lbnRFbGVtZW50O3JldHVybiBjLmlubmVySFRNTD0ieDxzdHlsZT4iK2IrIjwvc3R5bGU+IixkLmluc2VydEJlZm9yZShjLmxhc3RDaGlsZCxkLmZpcnN0Q2hpbGQpfWZ1bmN0aW9uIGQoKXt2YXIgYT10LmVsZW1lbnRzO3JldHVybiJzdHJpbmciPT10eXBlb2YgYT9hLnNwbGl0KCIgIik6YX1mdW5jdGlvbiBlKGEsYil7dmFyIGM9dC5lbGVtZW50czsic3RyaW5nIiE9dHlwZW9mIGMmJihjPWMuam9pbigiICIpKSwic3RyaW5nIiE9dHlwZW9mIGEmJihhPWEuam9pbigiICIpKSx0LmVsZW1lbnRzPWMrIiAiK2EsaihiKX1mdW5jdGlvbiBmKGEpe3ZhciBiPXNbYVtxXV07cmV0dXJuIGJ8fChiPXt9LHIrKyxhW3FdPXIsc1tyXT1iKSxifWZ1bmN0aW9uIGcoYSxjLGQpe2lmKGN8fChjPWIpLGwpcmV0dXJuIGMuY3JlYXRlRWxlbWVudChhKTtkfHwoZD1mKGMpKTt2YXIgZTtyZXR1cm4gZT1kLmNhY2hlW2FdP2QuY2FjaGVbYV0uY2xvbmVOb2RlKCk6cC50ZXN0KGEpPyhkLmNhY2hlW2FdPWQuY3JlYXRlRWxlbShhKSkuY2xvbmVOb2RlKCk6ZC5jcmVhdGVFbGVtKGEpLCFlLmNhbkhhdmVDaGlsZHJlbnx8by50ZXN0KGEpfHxlLnRhZ1Vybj9lOmQuZnJhZy5hcHBlbmRDaGlsZChlKX1mdW5jdGlvbiBoKGEsYyl7aWYoYXx8KGE9YiksbClyZXR1cm4gYS5jcmVhdGVEb2N1bWVudEZyYWdtZW50KCk7Yz1jfHxmKGEpO2Zvcih2YXIgZT1jLmZyYWcuY2xvbmVOb2RlKCksZz0wLGg9ZCgpLGk9aC5sZW5ndGg7aT5nO2crKyllLmNyZWF0ZUVsZW1lbnQoaFtnXSk7cmV0dXJuIGV9ZnVuY3Rpb24gaShhLGIpe2IuY2FjaGV8fChiLmNhY2hlPXt9LGIuY3JlYXRlRWxlbT1hLmNyZWF0ZUVsZW1lbnQsYi5jcmVhdGVGcmFnPWEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudCxiLmZyYWc9Yi5jcmVhdGVGcmFnKCkpLGEuY3JlYXRlRWxlbWVudD1mdW5jdGlvbihjKXtyZXR1cm4gdC5zaGl2TWV0aG9kcz9nKGMsYSxiKTpiLmNyZWF0ZUVsZW0oYyl9LGEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudD1GdW5jdGlvbigiaCxmIiwicmV0dXJuIGZ1bmN0aW9uKCl7dmFyIG49Zi5jbG9uZU5vZGUoKSxjPW4uY3JlYXRlRWxlbWVudDtoLnNoaXZNZXRob2RzJiYoIitkKCkuam9pbigpLnJlcGxhY2UoL1tcd1wtOl0rL2csZnVuY3Rpb24oYSl7cmV0dXJuIGIuY3JlYXRlRWxlbShhKSxiLmZyYWcuY3JlYXRlRWxlbWVudChhKSwnYygiJythKyciKSd9KSsiKTtyZXR1cm4gbn0iKSh0LGIuZnJhZyl9ZnVuY3Rpb24gaihhKXthfHwoYT1iKTt2YXIgZD1mKGEpO3JldHVybiF0LnNoaXZDU1N8fGt8fGQuaGFzQ1NTfHwoZC5oYXNDU1M9ISFjKGEsImFydGljbGUsYXNpZGUsZGlhbG9nLGZpZ2NhcHRpb24sZmlndXJlLGZvb3RlcixoZWFkZXIsaGdyb3VwLG1haW4sbmF2LHNlY3Rpb257ZGlzcGxheTpibG9ja31tYXJre2JhY2tncm91bmQ6I0ZGMDtjb2xvcjojMDAwfXRlbXBsYXRle2Rpc3BsYXk6bm9uZX0iKSksbHx8aShhLGQpLGF9dmFyIGssbCxtPSIzLjcuMiIsbj1hLmh0bWw1fHx7fSxvPS9ePHxeKD86YnV0dG9ufG1hcHxzZWxlY3R8dGV4dGFyZWF8b2JqZWN0fGlmcmFtZXxvcHRpb258b3B0Z3JvdXApJC9pLHA9L14oPzphfGJ8Y29kZXxkaXZ8ZmllbGRzZXR8aDF8aDJ8aDN8aDR8aDV8aDZ8aXxsYWJlbHxsaXxvbHxwfHF8c3BhbnxzdHJvbmd8c3R5bGV8dGFibGV8dGJvZHl8dGR8dGh8dHJ8dWwpJC9pLHE9Il9odG1sNXNoaXYiLHI9MCxzPXt9OyFmdW5jdGlvbigpe3RyeXt2YXIgYT1iLmNyZWF0ZUVsZW1lbnQoImEiKTthLmlubmVySFRNTD0iPHh5ej48L3h5ej4iLGs9ImhpZGRlbiJpbiBhLGw9MT09YS5jaGlsZE5vZGVzLmxlbmd0aHx8ZnVuY3Rpb24oKXtiLmNyZWF0ZUVsZW1lbnQoImEiKTt2YXIgYT1iLmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTtyZXR1cm4idW5kZWZpbmVkIj09dHlwZW9mIGEuY2xvbmVOb2RlfHwidW5kZWZpbmVkIj09dHlwZW9mIGEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudHx8InVuZGVmaW5lZCI9PXR5cGVvZiBhLmNyZWF0ZUVsZW1lbnR9KCl9Y2F0Y2goYyl7az0hMCxsPSEwfX0oKTt2YXIgdD17ZWxlbWVudHM6bi5lbGVtZW50c3x8ImFiYnIgYXJ0aWNsZSBhc2lkZSBhdWRpbyBiZGkgY2FudmFzIGRhdGEgZGF0YWxpc3QgZGV0YWlscyBkaWFsb2cgZmlnY2FwdGlvbiBmaWd1cmUgZm9vdGVyIGhlYWRlciBoZ3JvdXAgbWFpbiBtYXJrIG1ldGVyIG5hdiBvdXRwdXQgcGljdHVyZSBwcm9ncmVzcyBzZWN0aW9uIHN1bW1hcnkgdGVtcGxhdGUgdGltZSB2aWRlbyIsdmVyc2lvbjptLHNoaXZDU1M6bi5zaGl2Q1NTIT09ITEsc3VwcG9ydHNVbmtub3duRWxlbWVudHM6bCxzaGl2TWV0aG9kczpuLnNoaXZNZXRob2RzIT09ITEsdHlwZToiZGVmYXVsdCIsc2hpdkRvY3VtZW50OmosY3JlYXRlRWxlbWVudDpnLGNyZWF0ZURvY3VtZW50RnJhZ21lbnQ6aCxhZGRFbGVtZW50czplfTthLmh0bWw1PXQsaihiKX0odGhpcyxkb2N1bWVudCk7Cn07Cg=="></script> +<script src="data:application/x-javascript;base64,LyohIFJlc3BvbmQuanMgdjEuNC4yOiBtaW4vbWF4LXdpZHRoIG1lZGlhIHF1ZXJ5IHBvbHlmaWxsICogQ29weXJpZ2h0IDIwMTMgU2NvdHQgSmVobAogKiBMaWNlbnNlZCB1bmRlciBodHRwczovL2dpdGh1Yi5jb20vc2NvdHRqZWhsL1Jlc3BvbmQvYmxvYi9tYXN0ZXIvTElDRU5TRS1NSVQKICogICovCgovLyBPbmx5IHJ1biB0aGlzIGNvZGUgaW4gSUUgOAppZiAoISF3aW5kb3cubmF2aWdhdG9yLnVzZXJBZ2VudC5tYXRjaCgiTVNJRSA4IikpIHsKIWZ1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjthLm1hdGNoTWVkaWE9YS5tYXRjaE1lZGlhfHxmdW5jdGlvbihhKXt2YXIgYixjPWEuZG9jdW1lbnRFbGVtZW50LGQ9Yy5maXJzdEVsZW1lbnRDaGlsZHx8Yy5maXJzdENoaWxkLGU9YS5jcmVhdGVFbGVtZW50KCJib2R5IiksZj1hLmNyZWF0ZUVsZW1lbnQoImRpdiIpO3JldHVybiBmLmlkPSJtcS10ZXN0LTEiLGYuc3R5bGUuY3NzVGV4dD0icG9zaXRpb246YWJzb2x1dGU7dG9wOi0xMDBlbSIsZS5zdHlsZS5iYWNrZ3JvdW5kPSJub25lIixlLmFwcGVuZENoaWxkKGYpLGZ1bmN0aW9uKGEpe3JldHVybiBmLmlubmVySFRNTD0nJnNoeTs8c3R5bGUgbWVkaWE9IicrYSsnIj4gI21xLXRlc3QtMSB7IHdpZHRoOiA0MnB4OyB9PC9zdHlsZT4nLGMuaW5zZXJ0QmVmb3JlKGUsZCksYj00Mj09PWYub2Zmc2V0V2lkdGgsYy5yZW1vdmVDaGlsZChlKSx7bWF0Y2hlczpiLG1lZGlhOmF9fX0oYS5kb2N1bWVudCl9KHRoaXMpLGZ1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKCl7dSghMCl9dmFyIGM9e307YS5yZXNwb25kPWMsYy51cGRhdGU9ZnVuY3Rpb24oKXt9O3ZhciBkPVtdLGU9ZnVuY3Rpb24oKXt2YXIgYj0hMTt0cnl7Yj1uZXcgYS5YTUxIdHRwUmVxdWVzdH1jYXRjaChjKXtiPW5ldyBhLkFjdGl2ZVhPYmplY3QoIk1pY3Jvc29mdC5YTUxIVFRQIil9cmV0dXJuIGZ1bmN0aW9uKCl7cmV0dXJuIGJ9fSgpLGY9ZnVuY3Rpb24oYSxiKXt2YXIgYz1lKCk7YyYmKGMub3BlbigiR0VUIixhLCEwKSxjLm9ucmVhZHlzdGF0ZWNoYW5nZT1mdW5jdGlvbigpezQhPT1jLnJlYWR5U3RhdGV8fDIwMCE9PWMuc3RhdHVzJiYzMDQhPT1jLnN0YXR1c3x8YihjLnJlc3BvbnNlVGV4dCl9LDQhPT1jLnJlYWR5U3RhdGUmJmMuc2VuZChudWxsKSl9O2lmKGMuYWpheD1mLGMucXVldWU9ZCxjLnJlZ2V4PXttZWRpYTovQG1lZGlhW15ce10rXHsoW15ce1x9XSpce1teXH1ce10qXH0pKy9naSxrZXlmcmFtZXM6L0AoPzpcLSg/Om98bW96fHdlYmtpdClcLSk/a2V5ZnJhbWVzW15ce10rXHsoPzpbXlx7XH1dKlx7W15cfVx7XSpcfSkrW15cfV0qXH0vZ2ksdXJsczovKHVybFwoKVsnIl0/KFteXC9cKSciXVteOlwpJyJdKylbJyJdPyhcKSkvZyxmaW5kU3R5bGVzOi9AbWVkaWEgKihbXlx7XSspXHsoW1xTXHNdKz8pJC8sb25seTovKG9ubHlccyspPyhbYS16QS1aXSspXHM/LyxtaW53Oi9cKFtcc10qbWluXC13aWR0aFxzKjpbXHNdKihbXHNdKlswLTlcLl0rKShweHxlbSlbXHNdKlwpLyxtYXh3Oi9cKFtcc10qbWF4XC13aWR0aFxzKjpbXHNdKihbXHNdKlswLTlcLl0rKShweHxlbSlbXHNdKlwpL30sYy5tZWRpYVF1ZXJpZXNTdXBwb3J0ZWQ9YS5tYXRjaE1lZGlhJiZudWxsIT09YS5tYXRjaE1lZGlhKCJvbmx5IGFsbCIpJiZhLm1hdGNoTWVkaWEoIm9ubHkgYWxsIikubWF0Y2hlcywhYy5tZWRpYVF1ZXJpZXNTdXBwb3J0ZWQpe3ZhciBnLGgsaSxqPWEuZG9jdW1lbnQsaz1qLmRvY3VtZW50RWxlbWVudCxsPVtdLG09W10sbj1bXSxvPXt9LHA9MzAscT1qLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJoZWFkIilbMF18fGsscj1qLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJiYXNlIilbMF0scz1xLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJsaW5rIiksdD1mdW5jdGlvbigpe3ZhciBhLGI9ai5jcmVhdGVFbGVtZW50KCJkaXYiKSxjPWouYm9keSxkPWsuc3R5bGUuZm9udFNpemUsZT1jJiZjLnN0eWxlLmZvbnRTaXplLGY9ITE7cmV0dXJuIGIuc3R5bGUuY3NzVGV4dD0icG9zaXRpb246YWJzb2x1dGU7Zm9udC1zaXplOjFlbTt3aWR0aDoxZW0iLGN8fChjPWY9ai5jcmVhdGVFbGVtZW50KCJib2R5IiksYy5zdHlsZS5iYWNrZ3JvdW5kPSJub25lIiksay5zdHlsZS5mb250U2l6ZT0iMTAwJSIsYy5zdHlsZS5mb250U2l6ZT0iMTAwJSIsYy5hcHBlbmRDaGlsZChiKSxmJiZrLmluc2VydEJlZm9yZShjLGsuZmlyc3RDaGlsZCksYT1iLm9mZnNldFdpZHRoLGY/ay5yZW1vdmVDaGlsZChjKTpjLnJlbW92ZUNoaWxkKGIpLGsuc3R5bGUuZm9udFNpemU9ZCxlJiYoYy5zdHlsZS5mb250U2l6ZT1lKSxhPWk9cGFyc2VGbG9hdChhKX0sdT1mdW5jdGlvbihiKXt2YXIgYz0iY2xpZW50V2lkdGgiLGQ9a1tjXSxlPSJDU1MxQ29tcGF0Ij09PWouY29tcGF0TW9kZSYmZHx8ai5ib2R5W2NdfHxkLGY9e30sbz1zW3MubGVuZ3RoLTFdLHI9KG5ldyBEYXRlKS5nZXRUaW1lKCk7aWYoYiYmZyYmcD5yLWcpcmV0dXJuIGEuY2xlYXJUaW1lb3V0KGgpLGg9YS5zZXRUaW1lb3V0KHUscCksdm9pZCAwO2c9cjtmb3IodmFyIHYgaW4gbClpZihsLmhhc093blByb3BlcnR5KHYpKXt2YXIgdz1sW3ZdLHg9dy5taW53LHk9dy5tYXh3LHo9bnVsbD09PXgsQT1udWxsPT09eSxCPSJlbSI7eCYmKHg9cGFyc2VGbG9hdCh4KSooeC5pbmRleE9mKEIpPi0xP2l8fHQoKToxKSkseSYmKHk9cGFyc2VGbG9hdCh5KSooeS5pbmRleE9mKEIpPi0xP2l8fHQoKToxKSksdy5oYXNxdWVyeSYmKHomJkF8fCEoenx8ZT49eCl8fCEoQXx8eT49ZSkpfHwoZlt3Lm1lZGlhXXx8KGZbdy5tZWRpYV09W10pLGZbdy5tZWRpYV0ucHVzaChtW3cucnVsZXNdKSl9Zm9yKHZhciBDIGluIG4pbi5oYXNPd25Qcm9wZXJ0eShDKSYmbltDXSYmbltDXS5wYXJlbnROb2RlPT09cSYmcS5yZW1vdmVDaGlsZChuW0NdKTtuLmxlbmd0aD0wO2Zvcih2YXIgRCBpbiBmKWlmKGYuaGFzT3duUHJvcGVydHkoRCkpe3ZhciBFPWouY3JlYXRlRWxlbWVudCgic3R5bGUiKSxGPWZbRF0uam9pbigiXG4iKTtFLnR5cGU9InRleHQvY3NzIixFLm1lZGlhPUQscS5pbnNlcnRCZWZvcmUoRSxvLm5leHRTaWJsaW5nKSxFLnN0eWxlU2hlZXQ/RS5zdHlsZVNoZWV0LmNzc1RleHQ9RjpFLmFwcGVuZENoaWxkKGouY3JlYXRlVGV4dE5vZGUoRikpLG4ucHVzaChFKX19LHY9ZnVuY3Rpb24oYSxiLGQpe3ZhciBlPWEucmVwbGFjZShjLnJlZ2V4LmtleWZyYW1lcywiIikubWF0Y2goYy5yZWdleC5tZWRpYSksZj1lJiZlLmxlbmd0aHx8MDtiPWIuc3Vic3RyaW5nKDAsYi5sYXN0SW5kZXhPZigiLyIpKTt2YXIgZz1mdW5jdGlvbihhKXtyZXR1cm4gYS5yZXBsYWNlKGMucmVnZXgudXJscywiJDEiK2IrIiQyJDMiKX0saD0hZiYmZDtiLmxlbmd0aCYmKGIrPSIvIiksaCYmKGY9MSk7Zm9yKHZhciBpPTA7Zj5pO2krKyl7dmFyIGosayxuLG87aD8oaj1kLG0ucHVzaChnKGEpKSk6KGo9ZVtpXS5tYXRjaChjLnJlZ2V4LmZpbmRTdHlsZXMpJiZSZWdFeHAuJDEsbS5wdXNoKFJlZ0V4cC4kMiYmZyhSZWdFeHAuJDIpKSksbj1qLnNwbGl0KCIsIiksbz1uLmxlbmd0aDtmb3IodmFyIHA9MDtvPnA7cCsrKWs9bltwXSxsLnB1c2goe21lZGlhOmsuc3BsaXQoIigiKVswXS5tYXRjaChjLnJlZ2V4Lm9ubHkpJiZSZWdFeHAuJDJ8fCJhbGwiLHJ1bGVzOm0ubGVuZ3RoLTEsaGFzcXVlcnk6ay5pbmRleE9mKCIoIik+LTEsbWludzprLm1hdGNoKGMucmVnZXgubWludykmJnBhcnNlRmxvYXQoUmVnRXhwLiQxKSsoUmVnRXhwLiQyfHwiIiksbWF4dzprLm1hdGNoKGMucmVnZXgubWF4dykmJnBhcnNlRmxvYXQoUmVnRXhwLiQxKSsoUmVnRXhwLiQyfHwiIil9KX11KCl9LHc9ZnVuY3Rpb24oKXtpZihkLmxlbmd0aCl7dmFyIGI9ZC5zaGlmdCgpO2YoYi5ocmVmLGZ1bmN0aW9uKGMpe3YoYyxiLmhyZWYsYi5tZWRpYSksb1tiLmhyZWZdPSEwLGEuc2V0VGltZW91dChmdW5jdGlvbigpe3coKX0sMCl9KX19LHg9ZnVuY3Rpb24oKXtmb3IodmFyIGI9MDtiPHMubGVuZ3RoO2IrKyl7dmFyIGM9c1tiXSxlPWMuaHJlZixmPWMubWVkaWEsZz1jLnJlbCYmInN0eWxlc2hlZXQiPT09Yy5yZWwudG9Mb3dlckNhc2UoKTtlJiZnJiYhb1tlXSYmKGMuc3R5bGVTaGVldCYmYy5zdHlsZVNoZWV0LnJhd0Nzc1RleHQ/KHYoYy5zdHlsZVNoZWV0LnJhd0Nzc1RleHQsZSxmKSxvW2VdPSEwKTooIS9eKFthLXpBLVo6XSpcL1wvKS8udGVzdChlKSYmIXJ8fGUucmVwbGFjZShSZWdFeHAuJDEsIiIpLnNwbGl0KCIvIilbMF09PT1hLmxvY2F0aW9uLmhvc3QpJiYoIi8vIj09PWUuc3Vic3RyaW5nKDAsMikmJihlPWEubG9jYXRpb24ucHJvdG9jb2wrZSksZC5wdXNoKHtocmVmOmUsbWVkaWE6Zn0pKSl9dygpfTt4KCksYy51cGRhdGU9eCxjLmdldEVtVmFsdWU9dCxhLmFkZEV2ZW50TGlzdGVuZXI/YS5hZGRFdmVudExpc3RlbmVyKCJyZXNpemUiLGIsITEpOmEuYXR0YWNoRXZlbnQmJmEuYXR0YWNoRXZlbnQoIm9ucmVzaXplIixiKX19KHRoaXMpOwp9Owo="></script> + +<style type="text/css">code{white-space: pre;}</style> +<link href="data:text/css;charset=utf-8,pre%20%2Eoperator%2C%0Apre%20%2Eparen%20%7B%0Acolor%3A%20rgb%28104%2C%20118%2C%20135%29%0A%7D%0Apre%20%2Eliteral%20%7B%0Acolor%3A%20%23990073%0A%7D%0Apre%20%2Enumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0Apre%20%2Ecomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%0A%7D%0Apre%20%2Ekeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%0A%7D%0Apre%20%2Eidentifier%20%7B%0Acolor%3A%20rgb%280%2C%200%2C%200%29%3B%0A%7D%0Apre%20%2Estring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" type="text/css" /> +<script src="data:application/x-javascript;base64,CnZhciBobGpzPW5ldyBmdW5jdGlvbigpe2Z1bmN0aW9uIG0ocCl7cmV0dXJuIHAucmVwbGFjZSgvJi9nbSwiJmFtcDsiKS5yZXBsYWNlKC88L2dtLCImbHQ7Iil9ZnVuY3Rpb24gZihyLHEscCl7cmV0dXJuIFJlZ0V4cChxLCJtIisoci5jST8iaSI6IiIpKyhwPyJnIjoiIikpfWZ1bmN0aW9uIGIocil7Zm9yKHZhciBwPTA7cDxyLmNoaWxkTm9kZXMubGVuZ3RoO3ArKyl7dmFyIHE9ci5jaGlsZE5vZGVzW3BdO2lmKHEubm9kZU5hbWU9PSJDT0RFIil7cmV0dXJuIHF9aWYoIShxLm5vZGVUeXBlPT0zJiZxLm5vZGVWYWx1ZS5tYXRjaCgvXHMrLykpKXticmVha319fWZ1bmN0aW9uIGgodCxzKXt2YXIgcD0iIjtmb3IodmFyIHI9MDtyPHQuY2hpbGROb2Rlcy5sZW5ndGg7cisrKXtpZih0LmNoaWxkTm9kZXNbcl0ubm9kZVR5cGU9PTMpe3ZhciBxPXQuY2hpbGROb2Rlc1tyXS5ub2RlVmFsdWU7aWYocyl7cT1xLnJlcGxhY2UoL1xuL2csIiIpfXArPXF9ZWxzZXtpZih0LmNoaWxkTm9kZXNbcl0ubm9kZU5hbWU9PSJCUiIpe3ArPSJcbiJ9ZWxzZXtwKz1oKHQuY2hpbGROb2Rlc1tyXSl9fX1pZigvTVNJRSBbNjc4XS8udGVzdChuYXZpZ2F0b3IudXNlckFnZW50KSl7cD1wLnJlcGxhY2UoL1xyL2csIlxuIil9cmV0dXJuIHB9ZnVuY3Rpb24gYShzKXt2YXIgcj1zLmNsYXNzTmFtZS5zcGxpdCgvXHMrLyk7cj1yLmNvbmNhdChzLnBhcmVudE5vZGUuY2xhc3NOYW1lLnNwbGl0KC9ccysvKSk7Zm9yKHZhciBxPTA7cTxyLmxlbmd0aDtxKyspe3ZhciBwPXJbcV0ucmVwbGFjZSgvXmxhbmd1YWdlLS8sIiIpO2lmKGVbcF0pe3JldHVybiBwfX19ZnVuY3Rpb24gYyhxKXt2YXIgcD1bXTsoZnVuY3Rpb24ocyx0KXtmb3IodmFyIHI9MDtyPHMuY2hpbGROb2Rlcy5sZW5ndGg7cisrKXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZVR5cGU9PTMpe3QrPXMuY2hpbGROb2Rlc1tyXS5ub2RlVmFsdWUubGVuZ3RofWVsc2V7aWYocy5jaGlsZE5vZGVzW3JdLm5vZGVOYW1lPT0iQlIiKXt0Kz0xfWVsc2V7aWYocy5jaGlsZE5vZGVzW3JdLm5vZGVUeXBlPT0xKXtwLnB1c2goe2V2ZW50OiJzdGFydCIsb2Zmc2V0OnQsbm9kZTpzLmNoaWxkTm9kZXNbcl19KTt0PWFyZ3VtZW50cy5jYWxsZWUocy5jaGlsZE5vZGVzW3JdLHQpO3AucHVzaCh7ZXZlbnQ6InN0b3AiLG9mZnNldDp0LG5vZGU6cy5jaGlsZE5vZGVzW3JdfSl9fX19cmV0dXJuIHR9KShxLDApO3JldHVybiBwfWZ1bmN0aW9uIGsoeSx3LHgpe3ZhciBxPTA7dmFyIHo9IiI7dmFyIHM9W107ZnVuY3Rpb24gdSgpe2lmKHkubGVuZ3RoJiZ3Lmxlbmd0aCl7aWYoeVswXS5vZmZzZXQhPXdbMF0ub2Zmc2V0KXtyZXR1cm4oeVswXS5vZmZzZXQ8d1swXS5vZmZzZXQpP3k6d31lbHNle3JldHVybiB3WzBdLmV2ZW50PT0ic3RhcnQiP3k6d319ZWxzZXtyZXR1cm4geS5sZW5ndGg/eTp3fX1mdW5jdGlvbiB0KEQpe3ZhciBBPSI8IitELm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk7Zm9yKHZhciBCPTA7QjxELmF0dHJpYnV0ZXMubGVuZ3RoO0IrKyl7dmFyIEM9RC5hdHRyaWJ1dGVzW0JdO0ErPSIgIitDLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk7aWYoQy52YWx1ZSE9PXVuZGVmaW5lZCYmQy52YWx1ZSE9PWZhbHNlJiZDLnZhbHVlIT09bnVsbCl7QSs9Jz0iJyttKEMudmFsdWUpKyciJ319cmV0dXJuIEErIj4ifXdoaWxlKHkubGVuZ3RofHx3Lmxlbmd0aCl7dmFyIHY9dSgpLnNwbGljZSgwLDEpWzBdO3orPW0oeC5zdWJzdHIocSx2Lm9mZnNldC1xKSk7cT12Lm9mZnNldDtpZih2LmV2ZW50PT0ic3RhcnQiKXt6Kz10KHYubm9kZSk7cy5wdXNoKHYubm9kZSl9ZWxzZXtpZih2LmV2ZW50PT0ic3RvcCIpe3ZhciBwLHI9cy5sZW5ndGg7ZG97ci0tO3A9c1tyXTt6Kz0oIjwvIitwLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCkrIj4iKX13aGlsZShwIT12Lm5vZGUpO3Muc3BsaWNlKHIsMSk7d2hpbGUocjxzLmxlbmd0aCl7eis9dChzW3JdKTtyKyt9fX19cmV0dXJuIHorbSh4LnN1YnN0cihxKSl9ZnVuY3Rpb24gaigpe2Z1bmN0aW9uIHEoeCx5LHYpe2lmKHguY29tcGlsZWQpe3JldHVybn12YXIgdTt2YXIgcz1bXTtpZih4Lmspe3gubFI9Zih5LHgubHx8aGxqcy5JUix0cnVlKTtmb3IodmFyIHcgaW4geC5rKXtpZigheC5rLmhhc093blByb3BlcnR5KHcpKXtjb250aW51ZX1pZih4Lmtbd10gaW5zdGFuY2VvZiBPYmplY3Qpe3U9eC5rW3ddfWVsc2V7dT14Lms7dz0ia2V5d29yZCJ9Zm9yKHZhciByIGluIHUpe2lmKCF1Lmhhc093blByb3BlcnR5KHIpKXtjb250aW51ZX14Lmtbcl09W3csdVtyXV07cy5wdXNoKHIpfX19aWYoIXYpe2lmKHguYldLKXt4LmI9IlxcYigiK3Muam9pbigifCIpKyIpXFxzIn14LmJSPWYoeSx4LmI/eC5iOiJcXEJ8XFxiIik7aWYoIXguZSYmIXguZVcpe3guZT0iXFxCfFxcYiJ9aWYoeC5lKXt4LmVSPWYoeSx4LmUpfX1pZih4Lmkpe3guaVI9Zih5LHguaSl9aWYoeC5yPT09dW5kZWZpbmVkKXt4LnI9MX1pZigheC5jKXt4LmM9W119eC5jb21waWxlZD10cnVlO2Zvcih2YXIgdD0wO3Q8eC5jLmxlbmd0aDt0Kyspe2lmKHguY1t0XT09InNlbGYiKXt4LmNbdF09eH1xKHguY1t0XSx5LGZhbHNlKX1pZih4LnN0YXJ0cyl7cSh4LnN0YXJ0cyx5LGZhbHNlKX19Zm9yKHZhciBwIGluIGUpe2lmKCFlLmhhc093blByb3BlcnR5KHApKXtjb250aW51ZX1xKGVbcF0uZE0sZVtwXSx0cnVlKX19ZnVuY3Rpb24gZChCLEMpe2lmKCFqLmNhbGxlZCl7aigpO2ouY2FsbGVkPXRydWV9ZnVuY3Rpb24gcShyLE0pe2Zvcih2YXIgTD0wO0w8TS5jLmxlbmd0aDtMKyspe2lmKChNLmNbTF0uYlIuZXhlYyhyKXx8W251bGxdKVswXT09cil7cmV0dXJuIE0uY1tMXX19fWZ1bmN0aW9uIHYoTCxyKXtpZihEW0xdLmUmJkRbTF0uZVIudGVzdChyKSl7cmV0dXJuIDF9aWYoRFtMXS5lVyl7dmFyIE09dihMLTEscik7cmV0dXJuIE0/TSsxOjB9cmV0dXJuIDB9ZnVuY3Rpb24gdyhyLEwpe3JldHVybiBMLmkmJkwuaVIudGVzdChyKX1mdW5jdGlvbiBLKE4sTyl7dmFyIE09W107Zm9yKHZhciBMPTA7TDxOLmMubGVuZ3RoO0wrKyl7TS5wdXNoKE4uY1tMXS5iKX12YXIgcj1ELmxlbmd0aC0xO2Rve2lmKERbcl0uZSl7TS5wdXNoKERbcl0uZSl9ci0tfXdoaWxlKERbcisxXS5lVyk7aWYoTi5pKXtNLnB1c2goTi5pKX1yZXR1cm4gZihPLE0uam9pbigifCIpLHRydWUpfWZ1bmN0aW9uIHAoTSxMKXt2YXIgTj1EW0QubGVuZ3RoLTFdO2lmKCFOLnQpe04udD1LKE4sRSl9Ti50Lmxhc3RJbmRleD1MO3ZhciByPU4udC5leGVjKE0pO3JldHVybiByP1tNLnN1YnN0cihMLHIuaW5kZXgtTCksclswXSxmYWxzZV06W00uc3Vic3RyKEwpLCIiLHRydWVdfWZ1bmN0aW9uIHooTixyKXt2YXIgTD1FLmNJP3JbMF0udG9Mb3dlckNhc2UoKTpyWzBdO3ZhciBNPU4ua1tMXTtpZihNJiZNIGluc3RhbmNlb2YgQXJyYXkpe3JldHVybiBNfXJldHVybiBmYWxzZX1mdW5jdGlvbiBGKEwsUCl7TD1tKEwpO2lmKCFQLmspe3JldHVybiBMfXZhciByPSIiO3ZhciBPPTA7UC5sUi5sYXN0SW5kZXg9MDt2YXIgTT1QLmxSLmV4ZWMoTCk7d2hpbGUoTSl7cis9TC5zdWJzdHIoTyxNLmluZGV4LU8pO3ZhciBOPXooUCxNKTtpZihOKXt4Kz1OWzFdO3IrPSc8c3BhbiBjbGFzcz0iJytOWzBdKyciPicrTVswXSsiPC9zcGFuPiJ9ZWxzZXtyKz1NWzBdfU89UC5sUi5sYXN0SW5kZXg7TT1QLmxSLmV4ZWMoTCl9cmV0dXJuIHIrTC5zdWJzdHIoTyxMLmxlbmd0aC1PKX1mdW5jdGlvbiBKKEwsTSl7aWYoTS5zTCYmZVtNLnNMXSl7dmFyIHI9ZChNLnNMLEwpO3grPXIua2V5d29yZF9jb3VudDtyZXR1cm4gci52YWx1ZX1lbHNle3JldHVybiBGKEwsTSl9fWZ1bmN0aW9uIEkoTSxyKXt2YXIgTD1NLmNOPyc8c3BhbiBjbGFzcz0iJytNLmNOKyciPic6IiI7aWYoTS5yQil7eSs9TDtNLmJ1ZmZlcj0iIn1lbHNle2lmKE0uZUIpe3krPW0ocikrTDtNLmJ1ZmZlcj0iIn1lbHNle3krPUw7TS5idWZmZXI9cn19RC5wdXNoKE0pO0ErPU0ucn1mdW5jdGlvbiBHKE4sTSxRKXt2YXIgUj1EW0QubGVuZ3RoLTFdO2lmKFEpe3krPUooUi5idWZmZXIrTixSKTtyZXR1cm4gZmFsc2V9dmFyIFA9cShNLFIpO2lmKFApe3krPUooUi5idWZmZXIrTixSKTtJKFAsTSk7cmV0dXJuIFAuckJ9dmFyIEw9dihELmxlbmd0aC0xLE0pO2lmKEwpe3ZhciBPPVIuY04/Ijwvc3Bhbj4iOiIiO2lmKFIuckUpe3krPUooUi5idWZmZXIrTixSKStPfWVsc2V7aWYoUi5lRSl7eSs9SihSLmJ1ZmZlcitOLFIpK08rbShNKX1lbHNle3krPUooUi5idWZmZXIrTitNLFIpK099fXdoaWxlKEw+MSl7Tz1EW0QubGVuZ3RoLTJdLmNOPyI8L3NwYW4+IjoiIjt5Kz1PO0wtLTtELmxlbmd0aC0tfXZhciByPURbRC5sZW5ndGgtMV07RC5sZW5ndGgtLTtEW0QubGVuZ3RoLTFdLmJ1ZmZlcj0iIjtpZihyLnN0YXJ0cyl7SShyLnN0YXJ0cywiIil9cmV0dXJuIFIuckV9aWYodyhNLFIpKXt0aHJvdyJJbGxlZ2FsIn19dmFyIEU9ZVtCXTt2YXIgRD1bRS5kTV07dmFyIEE9MDt2YXIgeD0wO3ZhciB5PSIiO3RyeXt2YXIgcyx1PTA7RS5kTS5idWZmZXI9IiI7ZG97cz1wKEMsdSk7dmFyIHQ9RyhzWzBdLHNbMV0sc1syXSk7dSs9c1swXS5sZW5ndGg7aWYoIXQpe3UrPXNbMV0ubGVuZ3RofX13aGlsZSghc1syXSk7aWYoRC5sZW5ndGg+MSl7dGhyb3ciSWxsZWdhbCJ9cmV0dXJue3I6QSxrZXl3b3JkX2NvdW50OngsdmFsdWU6eX19Y2F0Y2goSCl7aWYoSD09IklsbGVnYWwiKXtyZXR1cm57cjowLGtleXdvcmRfY291bnQ6MCx2YWx1ZTptKEMpfX1lbHNle3Rocm93IEh9fX1mdW5jdGlvbiBnKHQpe3ZhciBwPXtrZXl3b3JkX2NvdW50OjAscjowLHZhbHVlOm0odCl9O3ZhciByPXA7Zm9yKHZhciBxIGluIGUpe2lmKCFlLmhhc093blByb3BlcnR5KHEpKXtjb250aW51ZX12YXIgcz1kKHEsdCk7cy5sYW5ndWFnZT1xO2lmKHMua2V5d29yZF9jb3VudCtzLnI+ci5rZXl3b3JkX2NvdW50K3Iucil7cj1zfWlmKHMua2V5d29yZF9jb3VudCtzLnI+cC5rZXl3b3JkX2NvdW50K3Aucil7cj1wO3A9c319aWYoci5sYW5ndWFnZSl7cC5zZWNvbmRfYmVzdD1yfXJldHVybiBwfWZ1bmN0aW9uIGkocixxLHApe2lmKHEpe3I9ci5yZXBsYWNlKC9eKCg8W14+XSs+fFx0KSspL2dtLGZ1bmN0aW9uKHQsdyx2LHUpe3JldHVybiB3LnJlcGxhY2UoL1x0L2cscSl9KX1pZihwKXtyPXIucmVwbGFjZSgvXG4vZywiPGJyPiIpfXJldHVybiByfWZ1bmN0aW9uIG4odCx3LHIpe3ZhciB4PWgodCxyKTt2YXIgdj1hKHQpO3ZhciB5LHM7aWYodil7eT1kKHYseCl9ZWxzZXtyZXR1cm59dmFyIHE9Yyh0KTtpZihxLmxlbmd0aCl7cz1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJwcmUiKTtzLmlubmVySFRNTD15LnZhbHVlO3kudmFsdWU9ayhxLGMocykseCl9eS52YWx1ZT1pKHkudmFsdWUsdyxyKTt2YXIgdT10LmNsYXNzTmFtZTtpZighdS5tYXRjaCgiKFxcc3xeKShsYW5ndWFnZS0pPyIrdisiKFxcc3wkKSIpKXt1PXU/KHUrIiAiK3YpOnZ9aWYoL01TSUUgWzY3OF0vLnRlc3QobmF2aWdhdG9yLnVzZXJBZ2VudCkmJnQudGFnTmFtZT09IkNPREUiJiZ0LnBhcmVudE5vZGUudGFnTmFtZT09IlBSRSIpe3M9dC5wYXJlbnROb2RlO3ZhciBwPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImRpdiIpO3AuaW5uZXJIVE1MPSI8cHJlPjxjb2RlPiIreS52YWx1ZSsiPC9jb2RlPjwvcHJlPiI7dD1wLmZpcnN0Q2hpbGQuZmlyc3RDaGlsZDtwLmZpcnN0Q2hpbGQuY049cy5jTjtzLnBhcmVudE5vZGUucmVwbGFjZUNoaWxkKHAuZmlyc3RDaGlsZCxzKX1lbHNle3QuaW5uZXJIVE1MPXkudmFsdWV9dC5jbGFzc05hbWU9dTt0LnJlc3VsdD17bGFuZ3VhZ2U6dixrdzp5LmtleXdvcmRfY291bnQscmU6eS5yfTtpZih5LnNlY29uZF9iZXN0KXt0LnNlY29uZF9iZXN0PXtsYW5ndWFnZTp5LnNlY29uZF9iZXN0Lmxhbmd1YWdlLGt3Onkuc2Vjb25kX2Jlc3Qua2V5d29yZF9jb3VudCxyZTp5LnNlY29uZF9iZXN0LnJ9fX1mdW5jdGlvbiBvKCl7aWYoby5jYWxsZWQpe3JldHVybn1vLmNhbGxlZD10cnVlO3ZhciByPWRvY3VtZW50LmdldEVsZW1lbnRzQnlUYWdOYW1lKCJwcmUiKTtmb3IodmFyIHA9MDtwPHIubGVuZ3RoO3ArKyl7dmFyIHE9YihyW3BdKTtpZihxKXtuKHEsaGxqcy50YWJSZXBsYWNlKX19fWZ1bmN0aW9uIGwoKXtpZih3aW5kb3cuYWRkRXZlbnRMaXN0ZW5lcil7d2luZG93LmFkZEV2ZW50TGlzdGVuZXIoIkRPTUNvbnRlbnRMb2FkZWQiLG8sZmFsc2UpO3dpbmRvdy5hZGRFdmVudExpc3RlbmVyKCJsb2FkIixvLGZhbHNlKX1lbHNle2lmKHdpbmRvdy5hdHRhY2hFdmVudCl7d2luZG93LmF0dGFjaEV2ZW50KCJvbmxvYWQiLG8pfWVsc2V7d2luZG93Lm9ubG9hZD1vfX19dmFyIGU9e307dGhpcy5MQU5HVUFHRVM9ZTt0aGlzLmhpZ2hsaWdodD1kO3RoaXMuaGlnaGxpZ2h0QXV0bz1nO3RoaXMuZml4TWFya3VwPWk7dGhpcy5oaWdobGlnaHRCbG9jaz1uO3RoaXMuaW5pdEhpZ2hsaWdodGluZz1vO3RoaXMuaW5pdEhpZ2hsaWdodGluZ09uTG9hZD1sO3RoaXMuSVI9IlthLXpBLVpdW2EtekEtWjAtOV9dKiI7dGhpcy5VSVI9IlthLXpBLVpfXVthLXpBLVowLTlfXSoiO3RoaXMuTlI9IlxcYlxcZCsoXFwuXFxkKyk/Ijt0aGlzLkNOUj0iXFxiKDBbeFhdW2EtZkEtRjAtOV0rfChcXGQrKFxcLlxcZCopP3xcXC5cXGQrKShbZUVdWy0rXT9cXGQrKT8pIjt0aGlzLkJOUj0iXFxiKDBiWzAxXSspIjt0aGlzLlJTUj0iIXwhPXwhPT18JXwlPXwmfCYmfCY9fFxcKnxcXCo9fFxcK3xcXCs9fCx8XFwufC18LT18L3wvPXw6fDt8PHw8PHw8PD18PD18PXw9PXw9PT18Pnw+PXw+Pnw+Pj18Pj4+fD4+Pj18XFw/fFxcW3xcXHt8XFwofFxcXnxcXF49fFxcfHxcXHw9fFxcfFxcfHx+Ijt0aGlzLkVSPSIoPyFbXFxzXFxTXSkiO3RoaXMuQkU9e2I6IlxcXFwuIixyOjB9O3RoaXMuQVNNPXtjTjoic3RyaW5nIixiOiInIixlOiInIixpOiJcXG4iLGM6W3RoaXMuQkVdLHI6MH07dGhpcy5RU009e2NOOiJzdHJpbmciLGI6JyInLGU6JyInLGk6IlxcbiIsYzpbdGhpcy5CRV0scjowfTt0aGlzLkNMQ009e2NOOiJjb21tZW50IixiOiIvLyIsZToiJCJ9O3RoaXMuQ0JMQ0xNPXtjTjoiY29tbWVudCIsYjoiL1xcKiIsZToiXFwqLyJ9O3RoaXMuSENNPXtjTjoiY29tbWVudCIsYjoiIyIsZToiJCJ9O3RoaXMuTk09e2NOOiJudW1iZXIiLGI6dGhpcy5OUixyOjB9O3RoaXMuQ05NPXtjTjoibnVtYmVyIixiOnRoaXMuQ05SLHI6MH07dGhpcy5CTk09e2NOOiJudW1iZXIiLGI6dGhpcy5CTlIscjowfTt0aGlzLmluaGVyaXQ9ZnVuY3Rpb24ocixzKXt2YXIgcD17fTtmb3IodmFyIHEgaW4gcil7cFtxXT1yW3FdfWlmKHMpe2Zvcih2YXIgcSBpbiBzKXtwW3FdPXNbcV19fXJldHVybiBwfX0oKTtobGpzLkxBTkdVQUdFUy5jcHA9ZnVuY3Rpb24oKXt2YXIgYT17a2V5d29yZDp7ImZhbHNlIjoxLCJpbnQiOjEsImZsb2F0IjoxLCJ3aGlsZSI6MSwicHJpdmF0ZSI6MSwiY2hhciI6MSwiY2F0Y2giOjEsImV4cG9ydCI6MSx2aXJ0dWFsOjEsb3BlcmF0b3I6MixzaXplb2Y6MixkeW5hbWljX2Nhc3Q6Mix0eXBlZGVmOjIsY29uc3RfY2FzdDoyLCJjb25zdCI6MSxzdHJ1Y3Q6MSwiZm9yIjoxLHN0YXRpY19jYXN0OjIsdW5pb246MSxuYW1lc3BhY2U6MSx1bnNpZ25lZDoxLCJsb25nIjoxLCJ0aHJvdyI6MSwidm9sYXRpbGUiOjIsInN0YXRpYyI6MSwicHJvdGVjdGVkIjoxLGJvb2w6MSx0ZW1wbGF0ZToxLG11dGFibGU6MSwiaWYiOjEsInB1YmxpYyI6MSxmcmllbmQ6MiwiZG8iOjEsInJldHVybiI6MSwiZ290byI6MSxhdXRvOjEsInZvaWQiOjIsImVudW0iOjEsImVsc2UiOjEsImJyZWFrIjoxLCJuZXciOjEsZXh0ZXJuOjEsdXNpbmc6MSwidHJ1ZSI6MSwiY2xhc3MiOjEsYXNtOjEsImNhc2UiOjEsdHlwZWlkOjEsInNob3J0IjoxLHJlaW50ZXJwcmV0X2Nhc3Q6MiwiZGVmYXVsdCI6MSwiZG91YmxlIjoxLHJlZ2lzdGVyOjEsZXhwbGljaXQ6MSxzaWduZWQ6MSx0eXBlbmFtZToxLCJ0cnkiOjEsInRoaXMiOjEsInN3aXRjaCI6MSwiY29udGludWUiOjEsd2NoYXJfdDoxLGlubGluZToxLCJkZWxldGUiOjEsYWxpZ25vZjoxLGNoYXIxNl90OjEsY2hhcjMyX3Q6MSxjb25zdGV4cHI6MSxkZWNsdHlwZToxLG5vZXhjZXB0OjEsbnVsbHB0cjoxLHN0YXRpY19hc3NlcnQ6MSx0aHJlYWRfbG9jYWw6MSxyZXN0cmljdDoxLF9Cb29sOjEsY29tcGxleDoxfSxidWlsdF9pbjp7c3RkOjEsc3RyaW5nOjEsY2luOjEsY291dDoxLGNlcnI6MSxjbG9nOjEsc3RyaW5nc3RyZWFtOjEsaXN0cmluZ3N0cmVhbToxLG9zdHJpbmdzdHJlYW06MSxhdXRvX3B0cjoxLGRlcXVlOjEsbGlzdDoxLHF1ZXVlOjEsc3RhY2s6MSx2ZWN0b3I6MSxtYXA6MSxzZXQ6MSxiaXRzZXQ6MSxtdWx0aXNldDoxLG11bHRpbWFwOjEsdW5vcmRlcmVkX3NldDoxLHVub3JkZXJlZF9tYXA6MSx1bm9yZGVyZWRfbXVsdGlzZXQ6MSx1bm9yZGVyZWRfbXVsdGltYXA6MSxhcnJheToxLHNoYXJlZF9wdHI6MX19O3JldHVybntkTTp7azphLGk6IjwvIixjOltobGpzLkNMQ00saGxqcy5DQkxDTE0saGxqcy5RU00se2NOOiJzdHJpbmciLGI6IidcXFxcPy4iLGU6IiciLGk6Ii4ifSx7Y046Im51bWJlciIsYjoiXFxiKFxcZCsoXFwuXFxkKik/fFxcLlxcZCspKHV8VXxsfEx8dWx8VUx8ZnxGKSJ9LGhsanMuQ05NLHtjTjoicHJlcHJvY2Vzc29yIixiOiIjIixlOiIkIn0se2NOOiJzdGxfY29udGFpbmVyIixiOiJcXGIoZGVxdWV8bGlzdHxxdWV1ZXxzdGFja3x2ZWN0b3J8bWFwfHNldHxiaXRzZXR8bXVsdGlzZXR8bXVsdGltYXB8dW5vcmRlcmVkX21hcHx1bm9yZGVyZWRfc2V0fHVub3JkZXJlZF9tdWx0aXNldHx1bm9yZGVyZWRfbXVsdGltYXB8YXJyYXkpXFxzKjwiLGU6Ij4iLGs6YSxyOjEwLGM6WyJzZWxmIl19XX19fSgpO2hsanMuTEFOR1VBR0VTLnI9e2RNOntjOltobGpzLkhDTSx7Y046Im51bWJlciIsYjoiXFxiMFt4WF1bMC05YS1mQS1GXStbTGldP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9MXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcYlxcZCtcXC4oPyFcXGQpKD86aVxcYik/IixlOmhsanMuSU1NRURJQVRFX1JFLHI6MX0se2NOOiJudW1iZXIiLGI6IlxcYlxcZCsoPzpcXC5cXGQqKT8oPzpbZUVdWytcXC1dP1xcZCopP2k/XFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcLlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP2k/XFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MX0se2NOOiJrZXl3b3JkIixiOiIoPzp0cnlDYXRjaHxsaWJyYXJ5fHNldEdlbmVyaWN8c2V0R3JvdXBHZW5lcmljKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046ImtleXdvcmQiLGI6IlxcLlxcLlxcLiIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046ImtleXdvcmQiLGI6IlxcLlxcLlxcZCsoPyFbXFx3Ll0pIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MTB9LHtjTjoia2V5d29yZCIsYjoiXFxiKD86ZnVuY3Rpb24pIixlOmhsanMuSU1NRURJQVRFX1JFLHI6Mn0se2NOOiJrZXl3b3JkIixiOiIoPzppZnxpbnxicmVha3xuZXh0fHJlcGVhdHxlbHNlfGZvcnxyZXR1cm58c3dpdGNofHdoaWxlfHRyeXxzdG9wfHdhcm5pbmd8cmVxdWlyZXxhdHRhY2h8ZGV0YWNofHNvdXJjZXxzZXRNZXRob2R8c2V0Q2xhc3MpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MX0se2NOOiJsaXRlcmFsIixiOiIoPzpOQXxOQV9pbnRlZ2VyX3xOQV9yZWFsX3xOQV9jaGFyYWN0ZXJffE5BX2NvbXBsZXhfKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046ImxpdGVyYWwiLGI6Iig/Ok5VTEx8VFJVRXxGQUxTRXxUfEZ8SW5mfE5hTilcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxfSx7Y046ImlkZW50aWZpZXIiLGI6IlthLXpBLVouXVthLXpBLVowLTkuX10qXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJvcGVyYXRvciIsYjoiPFxcLSg/IVxccypcXGQpIixlOmhsanMuSU1NRURJQVRFX1JFLHI6Mn0se2NOOiJvcGVyYXRvciIsYjoiXFwtPnw8XFwtIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MX0se2NOOiJvcGVyYXRvciIsYjoiJSV8fiIsZTpobGpzLklNTUVESUFURV9SRX0se2NOOiJvcGVyYXRvciIsYjoiPj18PD18PT18IT18XFx8XFx8fCYmfD18XFwrfFxcLXxcXCp8L3xcXF58Pnw8fCF8JnxcXHx8XFwkfDoiLGU6aGxqcy5JTU1FRElBVEVfUkUscjowfSx7Y046Im9wZXJhdG9yIixiOiIlIixlOiIlIixpOiJcXG4iLHI6MX0se2NOOiJpZGVudGlmaWVyIixiOiJgIixlOiJgIixyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOltobGpzLkJFXSxyOjB9LHtjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFXSxyOjB9LHtjTjoicGFyZW4iLGI6IltbKHtcXF0pfV0iLGU6aGxqcy5JTU1FRElBVEVfUkUscjowfV19fTsKaGxqcy5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkKCk7Cgo="></script> +<style type="text/css"> + pre:not([class]) { + background-color: white; + } +</style> +<script type="text/javascript"> +if (window.hljs && document.readyState && document.readyState === "complete") { + window.setTimeout(function() { + hljs.initHighlighting(); + }, 0); +} +</script> + + + +<style type="text/css"> +h1 { + font-size: 34px; +} +h1.title { + font-size: 38px; +} +h2 { + font-size: 30px; +} +h3 { + font-size: 24px; +} +h4 { + font-size: 18px; +} +h5 { + font-size: 16px; +} +h6 { + font-size: 12px; +} +.table th:not([align]) { + text-align: left; +} +</style> + + +</head> + +<body> + +<style type="text/css"> +.main-container { + max-width: 940px; + margin-left: auto; + margin-right: auto; +} +code { + color: inherit; + background-color: rgba(0, 0, 0, 0.04); +} +img { + max-width:100%; + height: auto; +} +.tabbed-pane { + padding-top: 12px; +} +button.code-folding-btn:focus { + outline: none; +} +</style> + + +<div class="container-fluid main-container"> + +<!-- tabsets --> +<script src="data:application/x-javascript;base64,Cgp3aW5kb3cuYnVpbGRUYWJzZXRzID0gZnVuY3Rpb24odG9jSUQpIHsKCiAgLy8gYnVpbGQgYSB0YWJzZXQgZnJvbSBhIHNlY3Rpb24gZGl2IHdpdGggdGhlIC50YWJzZXQgY2xhc3MKICBmdW5jdGlvbiBidWlsZFRhYnNldCh0YWJzZXQpIHsKCiAgICAvLyBjaGVjayBmb3IgZmFkZSBhbmQgcGlsbHMgb3B0aW9ucwogICAgdmFyIGZhZGUgPSB0YWJzZXQuaGFzQ2xhc3MoInRhYnNldC1mYWRlIik7CiAgICB2YXIgcGlsbHMgPSB0YWJzZXQuaGFzQ2xhc3MoInRhYnNldC1waWxscyIpOwogICAgdmFyIG5hdkNsYXNzID0gcGlsbHMgPyAibmF2LXBpbGxzIiA6ICJuYXYtdGFicyI7CgogICAgLy8gZGV0ZXJtaW5lIHRoZSBoZWFkaW5nIGxldmVsIG9mIHRoZSB0YWJzZXQgYW5kIHRhYnMKICAgIHZhciBtYXRjaCA9IHRhYnNldC5hdHRyKCdjbGFzcycpLm1hdGNoKC9sZXZlbChcZCkgLyk7CiAgICBpZiAobWF0Y2ggPT09IG51bGwpCiAgICAgIHJldHVybjsKICAgIHZhciB0YWJzZXRMZXZlbCA9IE51bWJlcihtYXRjaFsxXSk7CiAgICB2YXIgdGFiTGV2ZWwgPSB0YWJzZXRMZXZlbCArIDE7CgogICAgLy8gZmluZCBhbGwgc3ViaGVhZGluZ3MgaW1tZWRpYXRlbHkgYmVsb3cKICAgIHZhciB0YWJzID0gdGFic2V0LmZpbmQoImRpdi5zZWN0aW9uLmxldmVsIiArIHRhYkxldmVsKTsKICAgIGlmICghdGFicy5sZW5ndGgpCiAgICAgIHJldHVybjsKCiAgICAvLyBjcmVhdGUgdGFibGlzdCBhbmQgdGFiLWNvbnRlbnQgZWxlbWVudHMKICAgIHZhciB0YWJMaXN0ID0gJCgnPHVsIGNsYXNzPSJuYXYgJyArIG5hdkNsYXNzICsgJyIgcm9sZT0idGFibGlzdCI+PC91bD4nKTsKICAgICQodGFic1swXSkuYmVmb3JlKHRhYkxpc3QpOwogICAgdmFyIHRhYkNvbnRlbnQgPSAkKCc8ZGl2IGNsYXNzPSJ0YWItY29udGVudCI+PC9kaXY+Jyk7CiAgICAkKHRhYnNbMF0pLmJlZm9yZSh0YWJDb250ZW50KTsKCiAgICAvLyBidWlsZCB0aGUgdGFic2V0CiAgICB0YWJzLmVhY2goZnVuY3Rpb24oaSkgewoKICAgICAgLy8gZ2V0IHRoZSB0YWIgZGl2CiAgICAgIHZhciB0YWIgPSAkKHRhYnNbaV0pOwoKICAgICAgLy8gZ2V0IHRoZSBpZCB0aGVuIHNhbml0aXplIGl0IGZvciB1c2Ugd2l0aCBib290c3RyYXAgdGFicwogICAgICB2YXIgaWQgPSB0YWIuYXR0cignaWQnKTsKCiAgICAgIC8vIHJlbW92ZSBhbnkgdGFibGUgb2YgY29udGVudHMgZW50cmllcyBhc3NvY2lhdGVkIHdpdGgKICAgICAgLy8gdGhpcyBJRCAoc2luY2Ugd2UnbGwgYmUgcmVtb3ZpbmcgdGhlIGhlYWRpbmcgZWxlbWVudCkKICAgICAgJCgiZGl2IyIgKyB0b2NJRCArICIgbGkgYVtocmVmPScjIiArIGlkICsgIiddIikucGFyZW50KCkucmVtb3ZlKCk7CgogICAgICAvLyBzYW5pdGl6ZSB0aGUgaWQgZm9yIHVzZSB3aXRoIGJvb3RzdHJhcCB0YWJzCiAgICAgIGlkID0gaWQucmVwbGFjZSgvWy5cLz8mISM8Pl0vZywgJycpLnJlcGxhY2UoL1xzL2csICdfJyk7CiAgICAgIHRhYi5hdHRyKCdpZCcsIGlkKTsKCiAgICAgIC8vIGdldCB0aGUgaGVhZGluZyBlbGVtZW50IHdpdGhpbiBpdCwgZ3JhYiBpdCdzIHRleHQsIHRoZW4gcmVtb3ZlIGl0CiAgICAgIHZhciBoZWFkaW5nID0gdGFiLmZpbmQoJ2gnICsgdGFiTGV2ZWwgKyAnOmZpcnN0Jyk7CiAgICAgIHZhciBoZWFkaW5nVGV4dCA9IGhlYWRpbmcuaHRtbCgpOwogICAgICBoZWFkaW5nLnJlbW92ZSgpOwoKICAgICAgLy8gYnVpbGQgYW5kIGFwcGVuZCB0aGUgdGFiIGxpc3QgaXRlbQogICAgICB2YXIgYSA9ICQoJzxhIHJvbGU9InRhYiIgZGF0YS10b2dnbGU9InRhYiI+JyArIGhlYWRpbmdUZXh0ICsgJzwvYT4nKTsKICAgICAgYS5hdHRyKCdocmVmJywgJyMnICsgaWQpOwogICAgICBhLmF0dHIoJ2FyaWEtY29udHJvbHMnLCBpZCk7CiAgICAgIHZhciBsaSA9ICQoJzxsaSByb2xlPSJwcmVzZW50YXRpb24iPjwvbGk+Jyk7CiAgICAgIGxpLmFwcGVuZChhKTsKICAgICAgaWYgKGkgPT09IDApCiAgICAgICAgbGkuYXR0cignY2xhc3MnLCAnYWN0aXZlJyk7CiAgICAgIHRhYkxpc3QuYXBwZW5kKGxpKTsKCiAgICAgIC8vIHNldCBpdCdzIGF0dHJpYnV0ZXMKICAgICAgdGFiLmF0dHIoJ3JvbGUnLCAndGFicGFuZWwnKTsKICAgICAgdGFiLmFkZENsYXNzKCd0YWItcGFuZScpOwogICAgICB0YWIuYWRkQ2xhc3MoJ3RhYmJlZC1wYW5lJyk7CiAgICAgIGlmIChmYWRlKQogICAgICAgIHRhYi5hZGRDbGFzcygnZmFkZScpOwogICAgICBpZiAoaSA9PT0gMCkgewogICAgICAgIHRhYi5hZGRDbGFzcygnYWN0aXZlJyk7CiAgICAgICAgaWYgKGZhZGUpCiAgICAgICAgICB0YWIuYWRkQ2xhc3MoJ2luJyk7CiAgICAgIH0KCiAgICAgIC8vIG1vdmUgaXQgaW50byB0aGUgdGFiIGNvbnRlbnQgZGl2CiAgICAgIHRhYi5kZXRhY2goKS5hcHBlbmRUbyh0YWJDb250ZW50KTsKICAgIH0pOwogIH0KCiAgLy8gY29udmVydCBzZWN0aW9uIGRpdnMgd2l0aCB0aGUgLnRhYnNldCBjbGFzcyB0byB0YWJzZXRzCiAgdmFyIHRhYnNldHMgPSAkKCJkaXYuc2VjdGlvbi50YWJzZXQiKTsKICB0YWJzZXRzLmVhY2goZnVuY3Rpb24oaSkgewogICAgYnVpbGRUYWJzZXQoJCh0YWJzZXRzW2ldKSk7CiAgfSk7Cn07Cgo="></script> +<script> +$(document).ready(function () { + window.buildTabsets("TOC"); +}); +</script> + +<!-- code folding --> + + + + + + +<div class="fluid-row" id="header"> + + + +<h1 class="title toc-ignore">Laundry, Energy & Time (ER&SS submission)</h1> +<h4 class="author"><em>Ben Anderson (<a href="mailto:b.anderson@soton.ac.uk/@dataknut">b.anderson@soton.ac.uk/@dataknut</a>) [Energy & Climate Change, Faculty of Engineering & Environment, University of Southampton]</em></h4> +<h4 class="date"><em>Last run at: 2016-08-01 12:14:07</em></h4> + +</div> + +<div id="TOC"> +<ul> +<li><a href="#data-analysis-for-laundry-paper"><span class="toc-section-number">1</span> Data analysis for ‘Laundry’ paper:</a></li> +<li><a href="#mtus-codes-of-interest"><span class="toc-section-number">2</span> MTUS codes of interest:</a></li> +<li><a href="#analysing-loaded-data"><span class="toc-section-number">3</span> Analysing loaded data</a><ul> +<li><a href="#efsfes-data"><span class="toc-section-number">3.1</span> EFS/FES data</a></li> +<li><a href="#mtus-episodes"><span class="toc-section-number">3.2</span> MTUS episodes</a></li> +<li><a href="#switch-to-survey-analysis-of-half-hour-sampled-data"><span class="toc-section-number">3.3</span> Switch to survey analysis of half hour sampled data</a></li> +</ul></li> +</ul> +</div> + +<div id="data-analysis-for-laundry-paper" class="section level1"> +<h1><span class="header-section-number">1</span> Data analysis for ‘Laundry’ paper:</h1> +<p>Use MTUS World 6 time-use data (UK subset) to examine: * distributions of laundry in 1985 & 2005 * changing laundry practice * data source: www.timeuse.org/mtus * data already in long format (but episodes) processed using DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-data-processing.R</p> +<p>Uses FES/EFS/LCFS to examine: * historical ownership of washing machines/tumble dryers * Data source: <a href="http://discover.ukdataservice.ac.uk/series/?sn=200016" class="uri">http://discover.ukdataservice.ac.uk/series/?sn=200016</a></p> +<p>Uses SPRG water practices survey: * reported laundry practices * data source: <a href="http://www.sprg.ac.uk/projects-fellowships/patterns-of-water" class="uri">http://www.sprg.ac.uk/projects-fellowships/patterns-of-water</a></p> +<p>This work was funded by RCUK through the End User Energy Demand Centres Programme via the “DEMAND: Dynamics of Energy, Mobility and Demand” Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1)</p> +<blockquote> +<p>This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License (<a href="http://choosealicense.com/licenses/gpl-2.0/" class="uri">http://choosealicense.com/licenses/gpl-2.0/</a>), or (at your option) any later version.</p> +</blockquote> +<blockquote> +<p>This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.</p> +</blockquote> +</div> +<div id="mtus-codes-of-interest" class="section level1"> +<h1><span class="header-section-number">2</span> MTUS codes of interest:</h1> +<p>1983/4/7: Main/Sec21 Laundry, ironing, clothing repair * 0701 Wash clothes, hang out / bring in washing * 0702 Iron clothes * 0801 Repair, upkeep of clothes so may over-estimate laundry</p> +<p>2005: Main/Sec21 Laundry, ironing, clothing repair * Pact=7 (washing clothes)</p> +<pre><code>## [1] "Feedback: Loading ~/Data/Family Expenditure Survey/1985/stata8//hchars.dta"</code></pre> +<pre><code>## [1] "Feedback: Loading ~/Data/Expenditure and Food Survey/2004-2005/stata/dvhh.dta"</code></pre> +<pre><code>## [1] "Loading via gunzip -c ~/Data/MTUS/World_6/processed/MTUSW6UKsurveyCore_DT.csv.gz"</code></pre> +<pre><code>## [1] "Feedback: Done loading TU survey data"</code></pre> +<pre><code>## [1] "Loading via gunzip -c ~/Data/MTUS/World_6/processed/MTUSW6UKdiaryEps_DT.csv.gz"</code></pre> +<pre><code>## +Read 60.8% of 1364047 rows +Read 1364047 rows and 17 (of 17) columns from 0.299 GB file in 00:00:03</code></pre> +<pre><code>## [1] "Feedback: Done loading TU episodes data"</code></pre> +<pre><code>## [1] "Loading via gunzip -c ~/Data/MTUS/World_6/processed/MTUSW6UKdiarySampled_DT.csv.gz"</code></pre> +<pre><code>## +Read 0.0% of 8164512 rows +Read 9.8% of 8164512 rows +Read 20.3% of 8164512 rows +Read 30.1% of 8164512 rows +Read 38.6% of 8164512 rows +Read 46.5% of 8164512 rows +Read 56.1% of 8164512 rows +Read 65.4% of 8164512 rows +Read 74.6% of 8164512 rows +Read 81.9% of 8164512 rows +Read 89.8% of 8164512 rows +Read 98.1% of 8164512 rows +Read 8164512 rows and 21 (of 21) columns from 1.412 GB file in 00:00:17</code></pre> +<pre><code>## [1] "Feedback: Done loading TU sampled data"</code></pre> +<pre><code>## [1] "Loading via gunzip -c ~/Data/MTUS/World_6/processed/MTUSW6UK_halfhours_laundry_DT.csv.gz"</code></pre> +<pre><code>## +Read 63.2% of 2721504 rows +Read 2721504 rows and 20 (of 20) columns from 0.190 GB file in 00:00:03</code></pre> +<pre><code>## [1] "Feedback: Done loading TU sampled laundry data aggregated to half hour level"</code></pre> +</div> +<div id="analysing-loaded-data" class="section level1"> +<h1><span class="header-section-number">3</span> Analysing loaded data</h1> +<div id="efsfes-data" class="section level2"> +<h2><span class="header-section-number">3.1</span> EFS/FES data</h2> +<pre><code>## +## not recorded washing machine +## 0.1699943 0.8300057</code></pre> +<pre><code>## [1] "Feedback: Loading ~/Data/Family Expenditure Survey/1985/stata8//hchars.dta"</code></pre> +<pre><code>## +## not recorded washing machine +## 0.1699943 0.8300057</code></pre> +<pre><code>## +## washing machine no washing machine present +## 0.95013239 0.04986761</code></pre> +<pre><code>## +## tumble drier tumble drier not present +## 0.5854663 0.4145337</code></pre> +</div> +<div id="mtus-episodes" class="section level2"> +<h2><span class="header-section-number">3.2</span> MTUS episodes</h2> +<pre><code>## [1] "Feedback: Writing results to ~/Dropbox/Work/DraftPapers/The Time and Timing of Demand - Laundry/results/"</code></pre> +<table> +<caption>n episodes in total per year</caption> +<thead> +<tr class="header"> +<th align="left">ba_survey</th> +<th align="right">N</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">1974</td> +<td align="right">301586</td> +</tr> +<tr class="even"> +<td align="left">1985</td> +<td align="right">474096</td> +</tr> +<tr class="odd"> +<td align="left">1995</td> +<td align="right">28165</td> +</tr> +<tr class="even"> +<td align="left">2000</td> +<td align="right">464164</td> +</tr> +<tr class="odd"> +<td align="left">2005</td> +<td align="right">96036</td> +</tr> +</tbody> +</table> +<pre><code>## ba_survey +## laundry_p 1974 1985 1995 2000 2005 +## 0 300350 466018 27647 454161 94660 +## 1 1236 8078 518 10003 1376</code></pre> +<pre><code>## ba_survey +## laundry_s 1974 1985 1995 2000 2005 +## 0 300936 471850 28165 462685 95898 +## 1 650 2246 0 1479 138</code></pre> +<pre><code>## ba_survey +## laundry_all 1974 1985 1995 2000 2005 +## 0 299700 463889 27647 452745 94522 +## 1 1886 10207 518 11419 1514</code></pre> +<pre><code>## [1] "Feedback: # n episodes by duration - to show how recording period varies things"</code></pre> +<pre><code>## ba_survey +## time 1974 1985 1995 2000 2005 +## 5 0 5833 0 0 0 +## 10 29987 6853 0 186507 20482 +## 15 0 197190 5129 0 0 +## 20 17382 2673 0 74010 14714 +## 25 0 612 0 0 0 +## 30 146905 81790 7060 52123 17602 +## 35 0 285 0 0 0 +## 40 223 1023 0 29261 4769 +## 45 0 43099 1721 0 0 +## 50 4557 599 0 19905 3442 +## 55 0 124 0 0 0 +## 60 30764 27370 3857 16775 7463 +## 65 0 65 0 0 0 +## 70 20 246 0 9689 2002 +## 75 0 16343 577 0 0 +## 80 1845 227 0 6852 1422 +## 85 0 27 0 0 0 +## 90 11858 11943 1178 6088 2915 +## 95 0 17 0 0 0 +## 100 18 114 0 4333 1013 +## 105 0 9370 416 0 0 +## 110 1024 74 0 4138 963 +## 115 0 1 0 0 0 +## 120 7881 8490 1406 4479 2684 +## 125 0 3 0 0 0 +## 130 10 55 0 2893 711 +## 135 0 6413 319 0 0 +## 140 748 34 0 2422 624 +## 150 6754 5342 693 2754 1556 +## 155 0 1 0 0 0 +## 160 15 30 0 2054 525 +## 165 0 5456 244 0 0 +## 170 819 22 0 2087 558 +## 175 0 3 0 0 0 +## 180 7354 4919 963 3877 1826 +## 190 27 8 0 1702 517 +## 195 0 4256 191 0 0 +## 200 924 7 0 1732 399 +## 210 7437 3824 606 2274 1332 +## 220 21 4 0 1649 345 +## 225 0 4103 211 0 0 +## 230 811 1 0 1878 356 +## 240 7255 4178 815 2910 1339 +## 250 6 3 0 1750 373 +## 255 0 3372 156 0 0 +## 260 578 2 0 1570 313 +## 270 5926 2852 511 1999 979 +## 280 5 1 0 1466 273 +## 285 0 3105 150 0 0 +## 290 357 0 0 1483 346 +## 300 3931 3005 636 2437 1150 +## 310 2 1 0 1357 249 +## 315 0 2138 119 0 0 +## 320 193 1 0 1025 225 +## 330 1887 1549 308 1276 646 +## 340 1 1 0 756 159 +## 345 0 1230 78 0 0 +## 350 152 0 0 633 177 +## 360 986 1065 340 1741 598 +## 370 2 0 0 850 78 +## 375 0 598 42 0 0 +## 380 90 0 0 320 62 +## 390 494 343 88 399 178 +## 400 1 0 0 229 38 +## 405 0 276 21 0 0 +## 410 60 0 0 206 50 +## 420 323 226 84 325 154 +## 430 5 0 0 176 31 +## 435 0 149 12 0 0 +## 440 49 0 0 99 19 +## 450 240 119 37 146 49 +## 460 0 0 0 111 18 +## 465 0 94 13 0 0 +## 470 43 0 0 91 14 +## 480 386 194 40 175 74 +## 490 1 0 0 127 15 +## 495 0 103 10 0 0 +## 500 46 0 0 71 17 +## 510 372 77 21 97 35 +## 520 0 0 0 78 13 +## 525 0 83 6 0 0 +## 530 56 0 0 65 6 +## 540 258 88 21 110 36 +## 550 0 0 0 81 6 +## 555 0 70 8 0 0 +## 560 49 0 0 55 11 +## 570 116 45 12 41 19 +## 580 0 0 0 39 5 +## 585 0 31 6 0 0 +## 590 16 0 0 34 7 +## 600 83 36 23 60 14 +## 610 0 0 0 38 7 +## 615 0 28 0 0 0 +## 620 14 0 0 21 4 +## 630 52 18 5 28 8 +## 640 0 0 0 19 1 +## 645 0 17 3 0 0 +## 650 24 0 0 17 0 +## 660 36 18 5 21 3 +## 670 0 0 0 18 1 +## 675 0 17 1 0 0 +## 680 8 0 0 9 2 +## 690 26 9 5 9 3 +## 700 0 0 0 7 1 +## 705 0 9 0 0 0 +## 710 8 0 0 10 0 +## 720 25 9 6 27 4 +## 730 0 0 0 9 1 +## 735 0 9 1 0 0 +## 740 3 0 0 7 3 +## 750 2 8 1 5 1 +## 760 0 0 0 3 0 +## 765 0 4 2 0 0 +## 770 1 0 0 3 0 +## 780 11 5 1 11 0 +## 790 0 0 0 4 0 +## 795 0 1 0 0 0 +## 800 0 0 0 5 0 +## 810 2 5 2 0 1 +## 820 0 0 0 3 0 +## 825 0 2 0 0 0 +## 830 0 0 0 2 0 +## 840 5 1 0 3 0 +## 850 0 0 0 1 0 +## 855 0 2 0 0 0 +## 860 2 0 0 2 0 +## 870 3 3 1 1 0 +## 880 0 0 0 1 0 +## 885 0 2 0 0 0 +## 890 1 0 0 2 0 +## 900 0 4 1 1 0 +## 915 0 2 0 0 0 +## 930 2 2 1 1 0 +## 945 0 3 0 0 0 +## 960 2 10 1 1 0 +## 975 0 7 0 0 0 +## 980 1 0 0 0 0 +## 990 0 3 0 0 0 +## 1000 0 0 0 1 0 +## 1005 0 2 0 0 0 +## 1010 0 0 0 1 0 +## 1020 2 4 0 0 0 +## 1050 1 2 0 1 0 +## 1065 0 1 0 0 0 +## 1070 0 0 0 1 0 +## 1080 2 1 1 1 0 +## 1095 0 1 0 0 0 +## 1125 0 1 0 0 0 +## 1140 0 1 0 0 0 +## 1170 0 1 0 0 0</code></pre> +<pre><code>## [1] "Feedback: # n episodes of laundry as a primary act by duration (to show how recording period varies things)"</code></pre> +<pre><code>## ba_survey +## time 1974 1985 1995 2000 2005 +## 5 0 73 0 0 0 +## 10 0 81 0 5347 324 +## 15 0 3865 91 0 0 +## 20 51 27 0 1815 209 +## 25 0 4 0 0 0 +## 30 859 1512 152 961 283 +## 35 0 3 0 0 0 +## 40 0 11 0 550 79 +## 45 0 893 39 0 0 +## 50 14 4 0 415 67 +## 55 0 0 0 0 0 +## 60 173 659 124 332 175 +## 65 0 0 0 0 0 +## 70 0 4 0 180 41 +## 75 0 371 15 0 0 +## 80 4 1 0 127 24 +## 85 0 0 0 0 0 +## 90 68 213 22 84 64 +## 95 0 0 0 0 0 +## 100 0 0 0 58 13 +## 105 0 144 3 0 0 +## 110 0 0 0 40 16 +## 115 0 0 0 0 0 +## 120 33 85 37 31 30 +## 125 0 0 0 0 0 +## 130 0 0 0 19 3 +## 135 0 52 3 0 0 +## 140 1 1 0 12 6 +## 150 12 24 8 9 14 +## 155 0 0 0 0 0 +## 160 0 0 0 8 3 +## 165 0 16 1 0 0 +## 170 1 0 0 3 5 +## 175 0 0 0 0 0 +## 180 6 14 8 5 8 +## 190 0 0 0 2 1 +## 195 0 7 2 0 0 +## 200 0 0 0 0 0 +## 210 5 4 8 1 7 +## 220 0 0 0 2 0 +## 225 0 4 0 0 0 +## 230 0 0 0 0 1 +## 240 3 3 4 0 1 +## 250 0 0 0 1 0 +## 255 0 2 0 0 0 +## 260 0 0 0 0 0 +## 270 2 0 1 1 1 +## 280 0 0 0 0 0 +## 285 0 0 0 0 0 +## 290 0 0 0 0 0 +## 300 4 1 0 0 0 +## 310 0 0 0 0 0 +## 315 0 0 0 0 0 +## 320 0 0 0 0 0 +## 330 0 0 0 0 0 +## 340 0 0 0 0 0 +## 345 0 0 0 0 0 +## 350 0 0 0 0 0 +## 360 0 0 0 0 0 +## 370 0 0 0 0 0 +## 375 0 0 0 0 0 +## 380 0 0 0 0 0 +## 390 0 0 0 0 0 +## 400 0 0 0 0 0 +## 405 0 0 0 0 0 +## 410 0 0 0 0 0 +## 420 0 0 0 0 0 +## 430 0 0 0 0 0 +## 435 0 0 0 0 0 +## 440 0 0 0 0 0 +## 450 0 0 0 0 1 +## 460 0 0 0 0 0 +## 465 0 0 0 0 0 +## 470 0 0 0 0 0 +## 480 0 0 0 0 0 +## 490 0 0 0 0 0 +## 495 0 0 0 0 0 +## 500 0 0 0 0 0 +## 510 0 0 0 0 0 +## 520 0 0 0 0 0 +## 525 0 0 0 0 0 +## 530 0 0 0 0 0 +## 540 0 0 0 0 0 +## 550 0 0 0 0 0 +## 555 0 0 0 0 0 +## 560 0 0 0 0 0 +## 570 0 0 0 0 0 +## 580 0 0 0 0 0 +## 585 0 0 0 0 0 +## 590 0 0 0 0 0 +## 600 0 0 0 0 0 +## 610 0 0 0 0 0 +## 615 0 0 0 0 0 +## 620 0 0 0 0 0 +## 630 0 0 0 0 0 +## 640 0 0 0 0 0 +## 645 0 0 0 0 0 +## 650 0 0 0 0 0 +## 660 0 0 0 0 0 +## 670 0 0 0 0 0 +## 675 0 0 0 0 0 +## 680 0 0 0 0 0 +## 690 0 0 0 0 0 +## 700 0 0 0 0 0 +## 705 0 0 0 0 0 +## 710 0 0 0 0 0 +## 720 0 0 0 0 0 +## 730 0 0 0 0 0 +## 735 0 0 0 0 0 +## 740 0 0 0 0 0 +## 750 0 0 0 0 0 +## 760 0 0 0 0 0 +## 765 0 0 0 0 0 +## 770 0 0 0 0 0 +## 780 0 0 0 0 0 +## 790 0 0 0 0 0 +## 795 0 0 0 0 0 +## 800 0 0 0 0 0 +## 810 0 0 0 0 0 +## 820 0 0 0 0 0 +## 825 0 0 0 0 0 +## 830 0 0 0 0 0 +## 840 0 0 0 0 0 +## 850 0 0 0 0 0 +## 855 0 0 0 0 0 +## 860 0 0 0 0 0 +## 870 0 0 0 0 0 +## 880 0 0 0 0 0 +## 885 0 0 0 0 0 +## 890 0 0 0 0 0 +## 900 0 0 0 0 0 +## 915 0 0 0 0 0 +## 930 0 0 0 0 0 +## 945 0 0 0 0 0 +## 960 0 0 0 0 0 +## 975 0 0 0 0 0 +## 980 0 0 0 0 0 +## 990 0 0 0 0 0 +## 1000 0 0 0 0 0 +## 1005 0 0 0 0 0 +## 1010 0 0 0 0 0 +## 1020 0 0 0 0 0 +## 1050 0 0 0 0 0 +## 1065 0 0 0 0 0 +## 1070 0 0 0 0 0 +## 1080 0 0 0 0 0 +## 1095 0 0 0 0 0 +## 1125 0 0 0 0 0 +## 1140 0 0 0 0 0 +## 1170 0 0 0 0 0</code></pre> +<pre><code>## [1] "% episodes that are laundry_all in 1985 = 2.15293948904863"</code></pre> +<pre><code>## [1] "% episodes that are laundry_all in 2005 = 1.57649214877754"</code></pre> +<pre><code>## [1] "Feedback: Plotting 1985 all episodes start"</code></pre> +<p><img src="" alt /><!-- --></p> +<pre><code>## [1] "Feedback: Plotting 1985 laundry episodes start"</code></pre> +<p><img src="" alt /><!-- --></p> +<pre><code>## [1] "Feedback: Plotting 2005 all episodes start"</code></pre> +<p><img src="" alt /><!-- --></p> +<pre><code>## [1] "Feedback: Plotting 2005 laundry episodes start"</code></pre> +<p><img src="" alt /><!-- --><img src="" alt /><!-- --></p> +<pre><code>## [1] "Feedback: Saving episodes results into: ~/Dropbox/Work/DraftPapers/The Time and Timing of Demand - Laundry/results/"</code></pre> +<table> +<caption>Main acts before laundry in 1985</caption> +<thead> +<tr class="header"> +<th align="left">V1</th> +<th align="right">N</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">laundry, ironing, clothing repair</td> +<td align="right">16.07</td> +</tr> +<tr class="even"> +<td align="left">cleaning</td> +<td align="right">10.72</td> +</tr> +<tr class="odd"> +<td align="left">meals or snacks in other places</td> +<td align="right">10.66</td> +</tr> +<tr class="even"> +<td align="left">set table, wash/put away dishes</td> +<td align="right">10.32</td> +</tr> +<tr class="odd"> +<td align="left">food preparation, cooking</td> +<td align="right">8.60</td> +</tr> +<tr class="even"> +<td align="left">wash, dress, care for self</td> +<td align="right">7.02</td> +</tr> +</tbody> +</table> +<table> +<caption>Main acts after laundry in 1985</caption> +<thead> +<tr class="header"> +<th align="left">V1</th> +<th align="right">N</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">laundry, ironing, clothing repair</td> +<td align="right">16.07</td> +</tr> +<tr class="even"> +<td align="left">cleaning</td> +<td align="right">10.72</td> +</tr> +<tr class="odd"> +<td align="left">meals or snacks in other places</td> +<td align="right">10.66</td> +</tr> +<tr class="even"> +<td align="left">set table, wash/put away dishes</td> +<td align="right">10.32</td> +</tr> +<tr class="odd"> +<td align="left">food preparation, cooking</td> +<td align="right">8.60</td> +</tr> +<tr class="even"> +<td align="left">wash, dress, care for self</td> +<td align="right">7.02</td> +</tr> +</tbody> +</table> +<table> +<caption>Main acts after laundry in 2005</caption> +<thead> +<tr class="header"> +<th align="left">V1</th> +<th align="right">N</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">meals or snacks in other places</td> +<td align="right">20.64</td> +</tr> +<tr class="even"> +<td align="left">cleaning</td> +<td align="right">13.23</td> +</tr> +<tr class="odd"> +<td align="left">food preparation, cooking</td> +<td align="right">12.14</td> +</tr> +<tr class="even"> +<td align="left">wash, dress, care for self</td> +<td align="right">8.07</td> +</tr> +<tr class="odd"> +<td align="left">laundry, ironing, clothing repair</td> +<td align="right">6.69</td> +</tr> +<tr class="even"> +<td align="left">watch TV, video, DVD, streamed film</td> +<td align="right">5.89</td> +</tr> +</tbody> +</table> +<table> +<caption>Main acts after laundry in 2005</caption> +<thead> +<tr class="header"> +<th align="left">V1</th> +<th align="right">N</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">food preparation, cooking</td> +<td align="right">16.42</td> +</tr> +<tr class="even"> +<td align="left">cleaning</td> +<td align="right">12.35</td> +</tr> +<tr class="odd"> +<td align="left">watch TV, video, DVD, streamed film</td> +<td align="right">10.17</td> +</tr> +<tr class="even"> +<td align="left">meals or snacks in other places</td> +<td align="right">7.49</td> +</tr> +<tr class="odd"> +<td align="left">laundry, ironing, clothing repair</td> +<td align="right">6.69</td> +</tr> +<tr class="even"> +<td align="left">wash, dress, care for self</td> +<td align="right">6.69</td> +</tr> +</tbody> +</table> +<table> +<caption>Main acts after early weekday morning laundry in 2005</caption> +<thead> +<tr class="header"> +<th align="left">V1</th> +<th align="right">N</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">cleaning</td> +<td align="right">21.78</td> +</tr> +<tr class="even"> +<td align="left">food preparation, cooking</td> +<td align="right">12.38</td> +</tr> +<tr class="odd"> +<td align="left">wash, dress, care for self</td> +<td align="right">7.92</td> +</tr> +<tr class="even"> +<td align="left">laundry, ironing, clothing repair</td> +<td align="right">7.43</td> +</tr> +<tr class="odd"> +<td align="left">travel to/from work</td> +<td align="right">7.43</td> +</tr> +<tr class="even"> +<td align="left">meals or snacks in other places</td> +<td align="right">6.93</td> +</tr> +</tbody> +</table> +<table> +<caption>Main acts 2 after early weekday morning laundry in 2005</caption> +<thead> +<tr class="header"> +<th align="left">V1</th> +<th align="right">N</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">food preparation, cooking</td> +<td align="right">10.89</td> +</tr> +<tr class="even"> +<td align="left">meals or snacks in other places</td> +<td align="right">9.90</td> +</tr> +<tr class="odd"> +<td align="left">laundry, ironing, clothing repair</td> +<td align="right">9.41</td> +</tr> +<tr class="even"> +<td align="left">paid work-main job (not at home)</td> +<td align="right">8.42</td> +</tr> +<tr class="odd"> +<td align="left">cleaning</td> +<td align="right">7.43</td> +</tr> +<tr class="even"> +<td align="left">other travel</td> +<td align="right">5.94</td> +</tr> +</tbody> +</table> +<table> +<caption>Main acts 3 after early weekday morning laundry in 2005</caption> +<thead> +<tr class="header"> +<th align="left">V1</th> +<th align="right">N</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">shop, person/hhld care travel</td> +<td align="right">10.40</td> +</tr> +<tr class="even"> +<td align="left">food preparation, cooking</td> +<td align="right">9.41</td> +</tr> +<tr class="odd"> +<td align="left">meals or snacks in other places</td> +<td align="right">8.91</td> +</tr> +<tr class="even"> +<td align="left">other travel</td> +<td align="right">8.91</td> +</tr> +<tr class="odd"> +<td align="left">purchase goods</td> +<td align="right">8.42</td> +</tr> +<tr class="even"> +<td align="left">paid work-main job (not at home)</td> +<td align="right">7.43</td> +</tr> +</tbody> +</table> +<table> +<caption>Main acts before evening peak weekday laundry in 2005</caption> +<thead> +<tr class="header"> +<th align="left">V1</th> +<th align="right">N</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">meals or snacks in other places</td> +<td align="right">32.16</td> +</tr> +<tr class="even"> +<td align="left">food preparation, cooking</td> +<td align="right">11.70</td> +</tr> +<tr class="odd"> +<td align="left">cleaning</td> +<td align="right">8.77</td> +</tr> +<tr class="even"> +<td align="left">physical, medical child care</td> +<td align="right">7.02</td> +</tr> +<tr class="odd"> +<td align="left">watch TV, video, DVD, streamed film</td> +<td align="right">7.02</td> +</tr> +<tr class="even"> +<td align="left">other travel</td> +<td align="right">5.85</td> +</tr> +</tbody> +</table> +<table> +<caption>Main acts before evening peak weekday laundry in 2005</caption> +<thead> +<tr class="header"> +<th align="left">V1</th> +<th align="right">N</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">watch TV, video, DVD, streamed film</td> +<td align="right">25.15</td> +</tr> +<tr class="even"> +<td align="left">food preparation, cooking</td> +<td align="right">15.79</td> +</tr> +<tr class="odd"> +<td align="left">meals or snacks in other places</td> +<td align="right">9.36</td> +</tr> +<tr class="even"> +<td align="left">cleaning</td> +<td align="right">7.02</td> +</tr> +<tr class="odd"> +<td align="left">wash, dress, care for self</td> +<td align="right">6.43</td> +</tr> +<tr class="even"> +<td align="left">laundry, ironing, clothing repair</td> +<td align="right">5.85</td> +</tr> +</tbody> +</table> +<pre><code>## [1] "Feedback: Done analysing episode file"</code></pre> +</div> +<div id="switch-to-survey-analysis-of-half-hour-sampled-data" class="section level2"> +<h2><span class="header-section-number">3.3</span> Switch to survey analysis of half hour sampled data</h2> +<pre><code>## [1] "Feedback: Join survey to derived half hour data"</code></pre> +<pre><code>## ba_survey ba_diarypid diarypid pid ba_pid r_month r_dow r_hour +## 1: 1985 14899 316349 193929 2609 10 Friday 0 +## 2: 1985 14899 316349 193929 2609 10 Friday 0 +## 3: 1985 14899 316349 193929 2609 10 Friday 1 +## 4: 1985 14899 316349 193929 2609 10 Friday 1 +## 5: 1985 14899 316349 193929 2609 10 Friday 2 +## 6: 1985 14899 316349 193929 2609 10 Friday 2 +## st_halfhour N_obs N_laundry_p N_laundry_ph N_laundry_photh +## 1: 00:00 3 0 0 0 +## 2: 00:30 3 0 0 0 +## 3: 01:00 3 0 0 0 +## 4: 01:30 3 0 0 0 +## 5: 02:00 3 0 0 0 +## 6: 02:30 3 0 0 0 +## N_laundry_psh N_laundry_poth Any_laundry_p Any_laundry_ph +## 1: 0 0 0 0 +## 2: 0 0 0 0 +## 3: 0 0 0 0 +## 4: 0 0 0 0 +## 5: 0 0 0 0 +## 6: 0 0 0 0 +## Any_laundry_photh Any_laundry_psh Any_laundry_poth countrya +## 1: 0 0 0 United Kingdom +## 2: 0 0 0 United Kingdom +## 3: 0 0 0 United Kingdom +## 4: 0 0 0 United Kingdom +## 5: 0 0 0 United Kingdom +## 6: 0 0 0 United Kingdom +## survey swave msamp hldid persid id +## 1: 1983 not longitudinal study/case 1 sample 1 4.940656e-324 1 +## 2: 1983 not longitudinal study/case 1 sample 1 4.940656e-324 1 +## 3: 1983 not longitudinal study/case 1 sample 1 4.940656e-324 1 +## 4: 1983 not longitudinal study/case 1 sample 1 4.940656e-324 1 +## 5: 1983 not longitudinal study/case 1 sample 1 4.940656e-324 1 +## 6: 1983 not longitudinal study/case 1 sample 1 4.940656e-324 1 +## diary mtus_day mtus_month mtus_year empstat occup +## 1: 1st diary day Wednesday November 1983 part-time missing +## 2: 1st diary day Wednesday November 1983 part-time missing +## 3: 1st diary day Wednesday November 1983 part-time missing +## 4: 1st diary day Wednesday November 1983 part-time missing +## 5: 1st diary day Wednesday November 1983 part-time missing +## 6: 1st diary day Wednesday November 1983 part-time missing +## urban badcase sex hhtype income +## 1: urban/suburban good case Woman Married/cohabiting couple alone missing +## 2: urban/suburban good case Woman Married/cohabiting couple alone missing +## 3: urban/suburban good case Woman Married/cohabiting couple alone missing +## 4: urban/suburban good case Woman Married/cohabiting couple alone missing +## 5: urban/suburban good case Woman Married/cohabiting couple alone missing +## 6: urban/suburban good case Woman Married/cohabiting couple alone missing +## propwt i.ba_survey i.ba_pid age ba_age_cohort ba_age_r ba_nchild +## 1: 1.07194 1985 2599 26 (1.95e+03,1.96e+03] (25,35] 0 +## 2: 1.07194 1985 2599 26 (1.95e+03,1.96e+03] (25,35] 0 +## 3: 1.07194 1985 2599 26 (1.95e+03,1.96e+03] (25,35] 0 +## 4: 1.07194 1985 2599 26 (1.95e+03,1.96e+03] (25,35] 0 +## 5: 1.07194 1985 2599 26 (1.95e+03,1.96e+03] (25,35] 0 +## 6: 1.07194 1985 2599 26 (1.95e+03,1.96e+03] (25,35] 0 +## ba_npeople +## 1: 2 +## 2: 2 +## 3: 2 +## 4: 2 +## 5: 2 +## 6: 2</code></pre> +<pre><code>## ba_survey ba_diarypid diarypid pid ba_pid r_month r_dow r_hour +## 1: NA 58940 NA NA NA NA NA NA +## 2: NA 58941 NA NA NA NA NA NA +## 3: NA 58942 NA NA NA NA NA NA +## 4: NA 58943 NA NA NA NA NA NA +## 5: NA 58944 NA NA NA NA NA NA +## 6: NA 58945 NA NA NA NA NA NA +## st_halfhour N_obs N_laundry_p N_laundry_ph N_laundry_photh +## 1: NA NA NA NA NA +## 2: NA NA NA NA NA +## 3: NA NA NA NA NA +## 4: NA NA NA NA NA +## 5: NA NA NA NA NA +## 6: NA NA NA NA NA +## N_laundry_psh N_laundry_poth Any_laundry_p Any_laundry_ph +## 1: NA NA NA NA +## 2: NA NA NA NA +## 3: NA NA NA NA +## 4: NA NA NA NA +## 5: NA NA NA NA +## 6: NA NA NA NA +## Any_laundry_photh Any_laundry_psh Any_laundry_poth countrya +## 1: NA NA NA United Kingdom +## 2: NA NA NA United Kingdom +## 3: NA NA NA United Kingdom +## 4: NA NA NA United Kingdom +## 5: NA NA NA United Kingdom +## 6: NA NA NA United Kingdom +## survey swave msamp hldid persid id +## 1: 2005 not longitudinal study/case 1 sample 0 9.906327e-312 1 +## 2: 2005 not longitudinal study/case 1 sample 0 9.906327e-312 1 +## 3: 2005 not longitudinal study/case 1 sample 0 9.906327e-312 1 +## 4: 2005 not longitudinal study/case 1 sample 0 9.906327e-312 1 +## 5: 2005 not longitudinal study/case 1 sample 0 9.906327e-312 1 +## 6: 2005 not longitudinal study/case 1 sample 0 9.906327e-312 1 +## diary mtus_day mtus_month mtus_year empstat +## 1: 1st diary day Saturday June 2005 not in paid work +## 2: 1st diary day Saturday June 2005 not in paid work +## 3: 1st diary day Tuesday June 2005 not in paid work +## 4: 1st diary day Tuesday June 2005 part-time +## 5: 1st diary day Tuesday June 2005 full-time +## 6: 1st diary day Monday June 2005 not in paid work +## occup urban badcase sex +## 1: clerical/office support could not be created good case Man +## 2: sales/services/art support/clean could not be created good case Woman +## 3: construct, asmble/repair, transpt could not be created good case Man +## 4: sales/services/art support/clean could not be created good case Woman +## 5: construct, asmble/repair, transpt could not be created good case Man +## 6: construct, asmble/repair, transpt could not be created good case Man +## hhtype income propwt +## 1: 1 person household lowest 25% 1.3073545 +## 2: 1 person household lowest 25% 0.9952479 +## 3: 1 person household middle 50% 0.6583855 +## 4: Married/cohabiting couple + others lowest 25% 0.9510369 +## 5: Married/cohabiting couple + others middle 50% 1.0930131 +## 6: Other household types could not be created 1.9905120 +## i.ba_survey i.ba_pid age ba_age_cohort ba_age_r ba_nchild +## 1: 2005 21033 37 (1.96e+03,1.97e+03] (35,45] 0 +## 2: 2005 21034 79 (1.92e+03,1.93e+03] (75,85] 0 +## 3: 2005 21035 80 (1.92e+03,1.93e+03] (75,85] 0 +## 4: 2005 21036 46 (1.95e+03,1.96e+03] (45,55] 1 +## 5: 2005 21037 47 (1.95e+03,1.96e+03] (45,55] 0 +## 6: 2005 21038 19 (1.98e+03,1.99e+03] (16,25] 1 +## ba_npeople +## 1: 1 +## 2: 1 +## 3: 1 +## 4: 4 +## 5: 3 +## 6: 5+</code></pre> +<pre><code>## +## 1985 2005 <NA> +## 903600 125136 3405</code></pre> +<pre><code>## +## 1985 2005 <NA> +## 903600 125136 0</code></pre> +<pre><code>## [1] "Recode to 'at a home' vs 'not at a home'"</code></pre> +<pre><code>## Any_laundry_nothome +## Any_laundry_home 0 1 +## 0 1014861 109 +## 1 13760 6</code></pre> +<pre><code>## [1] "create types of laundry here so become part of survey design object"</code></pre> +<pre><code>## [1] "Weekday early morning 06:00-09:00"</code></pre> +<pre><code>## r_dow +## r_hour Friday Monday Thursday Tuesday Wednesday +## 6 12 13 13 12 5 +## 7 43 68 70 55 50 +## 8 106 154 123 123 94</code></pre> +<pre><code>## [1] "Weekday morning 09:00-12:00"</code></pre> +<pre><code>## r_dow +## r_hour Friday Monday Thursday Tuesday Wednesday +## 9 146 268 156 211 174 +## 10 171 280 213 217 217 +## 11 136 234 147 174 168</code></pre> +<pre><code>## [1] "Weekday evening peak 18:00-21:00"</code></pre> +<pre><code>## r_dow +## r_hour Friday Monday Thursday Tuesday Wednesday +## 18 98 123 101 97 94 +## 19 100 134 117 111 90 +## 20 83 162 124 107 115</code></pre> +<pre><code>## [1] "Sunday morning 09:00-12:00"</code></pre> +<pre><code>## r_dow +## r_hour Sunday +## 9 159 +## 10 243 +## 11 238</code></pre> +<pre><code>## [1] "Other"</code></pre> +<pre><code>## r_dow +## r_hour Friday Monday Saturday Sunday Thursday Tuesday Wednesday +## 0 4 4 7 4 3 3 5 +## 1 0 1 2 0 0 0 0 +## 2 1 0 0 0 0 0 0 +## 5 2 0 0 0 4 2 4 +## 6 0 0 7 6 0 0 0 +## 7 0 0 20 13 0 0 0 +## 8 0 0 93 68 0 0 0 +## 9 0 0 177 0 0 0 0 +## 10 0 0 256 0 0 0 0 +## 11 0 0 208 0 0 0 0 +## 12 101 145 136 197 117 121 99 +## 13 99 159 113 155 120 128 131 +## 14 122 215 114 154 147 158 157 +## 15 96 157 118 166 126 147 119 +## 16 88 127 103 165 123 133 112 +## 17 67 78 83 109 61 70 72 +## 18 0 0 67 143 0 0 0 +## 19 0 0 76 131 0 0 0 +## 20 0 0 67 108 0 0 0 +## 21 72 111 48 62 79 74 91 +## 22 46 43 24 51 30 51 50 +## 23 14 9 15 13 10 14 16</code></pre> +<pre><code>## [1] "Set survey data"</code></pre> +<pre><code>## N_laundry_p 0 1 2 3 +## ba_survey sex +## 1985 Man 401562.51212 1540.82666 1511.61154 2716.63159 +## Woman 492799.58642 1842.90609 1897.28811 3057.06516 +## 2005 Man 57753.36741 146.73099 121.74276 334.35365 +## Woman 64015.33611 179.27798 98.40996 451.94026</code></pre> +<pre><code>## Any_laundry_p 0 1 +## ba_survey +## 1985 894362.099 12566.329 +## 2005 121768.704 1332.456</code></pre> +<pre><code>## Any_laundry_ph 0 1 +## ba_survey +## 1985 894547.098 12381.330 +## 2005 121905.662 1195.497</code></pre> +<pre><code>## Any_laundry_photh 0 1 +## ba_survey +## 1985 906836.0839 92.3438 +## 2005 123101.1591 0.0000</code></pre> +<pre><code>## Any_laundry_psh 0 1 +## ba_survey +## 1985 906883.14313 45.28458 +## 2005 123101.15912 0.00000</code></pre> +<pre><code>## Any_laundry_poth 0 1 +## ba_survey +## 1985 906891.39666 37.03104 +## 2005 123066.25706 34.90206</code></pre> +<pre><code>## Any_laundry_home 0 1 +## ba_survey +## 1985 894457.981 12470.447 +## 2005 121905.662 1195.497</code></pre> +<pre><code>## Any_laundry_nothome 0 1 +## ba_survey +## 1985 906846.11209 82.31562 +## 2005 123066.25706 34.90206</code></pre> +<pre><code>## Any_laundry_p 0 1 +## ba_survey sex +## 1985 Man 401562.5121 5769.0698 +## Woman 492799.5864 6797.2594 +## 2005 Man 57753.3674 602.8274 +## Woman 64015.3361 729.6282</code></pre> +<pre><code>## ba_survey sex Any_laundry_p se +## 1985.Man 1985 Man 0.01416308 0.0003752841 +## 2005.Man 2005 Man 0.01033014 0.0007438422 +## 1985.Woman 1985 Woman 0.01360549 0.0003142107 +## 2005.Woman 2005 Woman 0.01126927 0.0008500319</code></pre> +<pre><code>## A B +## sexMan 0.460605995 0.009544019 +## sexWoman 0.539394005 0.009544019</code></pre> +<pre><code>## A B +## sexMan 0.45021585 0.02965884 +## sexWoman 0.54978415 0.02965884</code></pre> +<pre><code>## Any_laundry_home 0 1 +## ba_survey sex +## 1985 Man 401587.6193 5743.9626 +## Woman 492870.3615 6726.4843 +## 2005 Man 57817.9630 538.2318 +## Woman 64087.6989 657.2654</code></pre> +<pre><code>## Any_laundry_nothome 0 1 +## ba_survey sex +## 1985 Man 407311.11628 20.46565 +## Woman 499534.99581 61.84997 +## 2005 Man 58339.72499 16.46982 +## Woman 64726.53207 18.43225</code></pre> +<pre><code>## r_dow ba_survey Any_laundry_home se +## Friday.1985 Friday 1985 0.010865766 0.0005378271 +## Monday.1985 Monday 1985 0.017711811 0.0007584997 +## Saturday.1985 Saturday 1985 0.012607221 0.0005939453 +## Sunday.1985 Sunday 1985 0.015019823 0.0006972744 +## Thursday.1985 Thursday 1985 0.012867461 0.0006046819 +## Tuesday.1985 Tuesday 1985 0.013982255 0.0006303033 +## Wednesday.1985 Wednesday 1985 0.013261458 0.0006007659 +## Friday.2005 Friday 2005 0.012043510 0.0021621787 +## Monday.2005 Monday 2005 0.010206423 0.0014793119 +## Saturday.2005 Saturday 2005 0.006371568 0.0012558053 +## Sunday.2005 Sunday 2005 0.013427341 0.0016461126 +## Thursday.2005 Thursday 2005 0.007598394 0.0009421517 +## Tuesday.2005 Tuesday 2005 0.010437059 0.0014434330 +## Wednesday.2005 Wednesday 2005 0.007927659 0.0012847600</code></pre> +<pre><code>## ba_survey +## r_dow 1985 2005 +## Friday 1410.61966 163.11676 +## Monday 2297.16559 186.56677 +## Saturday 1624.93405 87.58688 +## Sunday 1937.75346 250.47835 +## Thursday 1672.77956 158.76879 +## Tuesday 1810.65085 199.10762 +## Wednesday 1716.54372 149.87204</code></pre> +<pre><code>## [1] "Feedback: Any laundry by day of the week: 1985"</code></pre> +<pre><code>## mean SE +## r_dowFriday 0.11312 0.0057 +## r_dowMonday 0.18421 0.0078 +## r_dowSaturday 0.13030 0.0063 +## r_dowSunday 0.15539 0.0072 +## r_dowThursday 0.13414 0.0064 +## r_dowTuesday 0.14520 0.0066 +## r_dowWednesday 0.13765 0.0064</code></pre> +<pre><code>## 2.5 % 97.5 % +## r_dowFriday 0.1018914 0.1243426 +## r_dowMonday 0.1689999 0.1994177 +## r_dowSaturday 0.1180454 0.1425602 +## r_dowSunday 0.1413386 0.1694367 +## r_dowThursday 0.1216119 0.1466671 +## r_dowTuesday 0.1321790 0.1582117 +## r_dowWednesday 0.1251639 0.1501340</code></pre> +<pre><code>## [1] "Feedback: Any laundry by day of the week: 2005"</code></pre> +<pre><code>## mean SE +## r_dowFriday 0.136443 0.0239 +## r_dowMonday 0.156058 0.0222 +## r_dowSaturday 0.073264 0.0146 +## r_dowSunday 0.209518 0.0248 +## r_dowThursday 0.132806 0.0171 +## r_dowTuesday 0.166548 0.0226 +## r_dowWednesday 0.125364 0.0199</code></pre> +<pre><code>## 2.5 % 97.5 % +## r_dowFriday 0.08963304 0.1832522 +## r_dowMonday 0.11259840 0.1995174 +## r_dowSaturday 0.04467508 0.1018529 +## r_dowSunday 0.16086621 0.2581701 +## r_dowThursday 0.09930392 0.1663074 +## r_dowTuesday 0.12219560 0.2109003 +## r_dowWednesday 0.08627837 0.1644492</code></pre> +<pre><code>## [1] "Feedback: Any laundry by day of the week/gender: 1985"</code></pre> +<pre><code>## sex r_dowFriday r_dowMonday r_dowSaturday r_dowSunday +## Man Man 0.1055920 0.1821372 0.1357020 0.1695936 +## Woman Woman 0.1195429 0.1859777 0.1256922 0.1432567 +## r_dowThursday r_dowTuesday r_dowWednesday se.r_dowFriday +## Man 0.1272811 0.1418606 0.1378335 0.008412166 +## Woman 0.1399961 0.1480430 0.1374913 0.007814887 +## se.r_dowMonday se.r_dowSaturday se.r_dowSunday se.r_dowThursday +## Man 0.01198236 0.009668095 0.011367669 0.009525777 +## Woman 0.01011515 0.008138816 0.009051124 0.008614564 +## se.r_dowTuesday se.r_dowWednesday +## Man 0.009719074 0.009392583 +## Woman 0.009090003 0.008668376</code></pre> +<pre><code>## 2.5 % 97.5 % +## Man:r_dowFriday 0.08910442 0.1220795 +## Woman:r_dowFriday 0.10422600 0.1348598 +## Man:r_dowMonday 0.15865219 0.2056222 +## Woman:r_dowMonday 0.16615242 0.2058031 +## Man:r_dowSaturday 0.11675290 0.1546511 +## Woman:r_dowSaturday 0.10974043 0.1416440 +## Man:r_dowSunday 0.14731339 0.1918738 +## Woman:r_dowSunday 0.12551685 0.1609966 +## Man:r_dowThursday 0.10861091 0.1459513 +## Woman:r_dowThursday 0.12311189 0.1568804 +## Man:r_dowTuesday 0.12281159 0.1609097 +## Woman:r_dowTuesday 0.13022689 0.1658590 +## Man:r_dowWednesday 0.11942438 0.1562426 +## Woman:r_dowWednesday 0.12050162 0.1544810</code></pre> +<pre><code>## [1] "Feedback: Any laundry by day of the week/gender: 2005"</code></pre> +<pre><code>## sex r_dowFriday r_dowMonday r_dowSaturday r_dowSunday +## Man Man 0.1453014 0.1804492 0.03721916 0.2015636 +## Woman Woman 0.1291882 0.1360840 0.10278092 0.2160321 +## r_dowThursday r_dowTuesday r_dowWednesday se.r_dowFriday +## Man 0.17908932 0.1452861 0.1110913 0.03343892 +## Woman 0.09490417 0.1839592 0.1370515 0.03372592 +## se.r_dowMonday se.r_dowSaturday se.r_dowSunday se.r_dowThursday +## Man 0.03381096 0.01509652 0.03255327 0.02936094 +## Woman 0.02906129 0.02342899 0.03641104 0.01878978 +## se.r_dowTuesday se.r_dowWednesday +## Man 0.02719683 0.02290164 +## Woman 0.03445224 0.03092716</code></pre> +<pre><code>## 2.5 % 97.5 % +## Man:r_dowFriday 0.079762279 0.21084044 +## Woman:r_dowFriday 0.063086625 0.19528982 +## Man:r_dowMonday 0.114180901 0.24671745 +## Woman:r_dowMonday 0.079124887 0.19304305 +## Man:r_dowSaturday 0.007630535 0.06680779 +## Woman:r_dowSaturday 0.056860938 0.14870090 +## Man:r_dowSunday 0.137760360 0.26536684 +## Woman:r_dowSunday 0.144667736 0.28739641 +## Man:r_dowThursday 0.121542927 0.23663570 +## Woman:r_dowThursday 0.058076882 0.13173146 +## Man:r_dowTuesday 0.091981316 0.19859092 +## Woman:r_dowTuesday 0.116434027 0.25148434 +## Man:r_dowWednesday 0.066204872 0.15597767 +## Woman:r_dowWednesday 0.076435336 0.19766759</code></pre> +<table> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="left">empstat</th> +<th align="right">ba_survey</th> +<th align="right">se</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">full-time</td> +<td align="left">full-time</td> +<td align="right">789134291</td> +<td align="right">7373041</td> +</tr> +<tr class="even"> +<td align="left">not in paid work</td> +<td align="left">not in paid work</td> +<td align="right">772129046</td> +<td align="right">7093351</td> +</tr> +<tr class="odd"> +<td align="left">part-time</td> +<td align="left">part-time</td> +<td align="right">434979443</td> +<td align="right">5963395</td> +</tr> +<tr class="even"> +<td align="left">unknown job hours</td> +<td align="left">unknown job hours</td> +<td align="right">50827974</td> +<td align="right">2306812</td> +</tr> +</tbody> +</table> +<table> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="left">empstat</th> +<th align="left">r_dow</th> +<th align="right">Any_laundry_home</th> +<th align="right">se</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">full-time.Friday</td> +<td align="left">full-time</td> +<td align="left">Friday</td> +<td align="right">0.0097277</td> +<td align="right">0.0014502</td> +</tr> +<tr class="even"> +<td align="left">not in paid work.Friday</td> +<td align="left">not in paid work</td> +<td align="left">Friday</td> +<td align="right">0.0115259</td> +<td align="right">0.0010299</td> +</tr> +<tr class="odd"> +<td align="left">part-time.Friday</td> +<td align="left">part-time</td> +<td align="left">Friday</td> +<td align="right">0.0117574</td> +<td align="right">0.0013751</td> +</tr> +<tr class="even"> +<td align="left">unknown job hours.Friday</td> +<td align="left">unknown job hours</td> +<td align="left">Friday</td> +<td align="right">0.0143683</td> +<td align="right">0.0078934</td> +</tr> +<tr class="odd"> +<td align="left">full-time.Monday</td> +<td align="left">full-time</td> +<td align="left">Monday</td> +<td align="right">0.0163043</td> +<td align="right">0.0021178</td> +</tr> +<tr class="even"> +<td align="left">not in paid work.Monday</td> +<td align="left">not in paid work</td> +<td align="left">Monday</td> +<td align="right">0.0194740</td> +<td align="right">0.0014878</td> +</tr> +<tr class="odd"> +<td align="left">part-time.Monday</td> +<td align="left">part-time</td> +<td align="left">Monday</td> +<td align="right">0.0146389</td> +<td align="right">0.0014712</td> +</tr> +<tr class="even"> +<td align="left">unknown job hours.Monday</td> +<td align="left">unknown job hours</td> +<td align="left">Monday</td> +<td align="right">0.0208089</td> +<td align="right">0.0071219</td> +</tr> +<tr class="odd"> +<td align="left">full-time.Saturday</td> +<td align="left">full-time</td> +<td align="left">Saturday</td> +<td align="right">0.0101133</td> +<td align="right">0.0015787</td> +</tr> +<tr class="even"> +<td align="left">not in paid work.Saturday</td> +<td align="left">not in paid work</td> +<td align="left">Saturday</td> +<td align="right">0.0120256</td> +<td align="right">0.0010891</td> +</tr> +<tr class="odd"> +<td align="left">part-time.Saturday</td> +<td align="left">part-time</td> +<td align="left">Saturday</td> +<td align="right">0.0129356</td> +<td align="right">0.0014742</td> +</tr> +<tr class="even"> +<td align="left">unknown job hours.Saturday</td> +<td align="left">unknown job hours</td> +<td align="left">Saturday</td> +<td align="right">0.0182949</td> +<td align="right">0.0059958</td> +</tr> +<tr class="odd"> +<td align="left">full-time.Sunday</td> +<td align="left">full-time</td> +<td align="left">Sunday</td> +<td align="right">0.0108672</td> +<td align="right">0.0014745</td> +</tr> +<tr class="even"> +<td align="left">not in paid work.Sunday</td> +<td align="left">not in paid work</td> +<td align="left">Sunday</td> +<td align="right">0.0139046</td> +<td align="right">0.0012393</td> +</tr> +<tr class="odd"> +<td align="left">part-time.Sunday</td> +<td align="left">part-time</td> +<td align="left">Sunday</td> +<td align="right">0.0154109</td> +<td align="right">0.0017824</td> +</tr> +<tr class="even"> +<td align="left">unknown job hours.Sunday</td> +<td align="left">unknown job hours</td> +<td align="left">Sunday</td> +<td align="right">0.0069965</td> +<td align="right">0.0038260</td> +</tr> +<tr class="odd"> +<td align="left">full-time.Thursday</td> +<td align="left">full-time</td> +<td align="left">Thursday</td> +<td align="right">0.0111536</td> +<td align="right">0.0015468</td> +</tr> +<tr class="even"> +<td align="left">not in paid work.Thursday</td> +<td align="left">not in paid work</td> +<td align="left">Thursday</td> +<td align="right">0.0126719</td> +<td align="right">0.0011539</td> +</tr> +<tr class="odd"> +<td align="left">part-time.Thursday</td> +<td align="left">part-time</td> +<td align="left">Thursday</td> +<td align="right">0.0147599</td> +<td align="right">0.0015171</td> +</tr> +<tr class="even"> +<td align="left">unknown job hours.Thursday</td> +<td align="left">unknown job hours</td> +<td align="left">Thursday</td> +<td align="right">0.0191084</td> +<td align="right">0.0076637</td> +</tr> +<tr class="odd"> +<td align="left">full-time.Tuesday</td> +<td align="left">full-time</td> +<td align="left">Tuesday</td> +<td align="right">0.0129177</td> +<td align="right">0.0017908</td> +</tr> +<tr class="even"> +<td align="left">not in paid work.Tuesday</td> +<td align="left">not in paid work</td> +<td align="left">Tuesday</td> +<td align="right">0.0146600</td> +<td align="right">0.0013045</td> +</tr> +<tr class="odd"> +<td align="left">part-time.Tuesday</td> +<td align="left">part-time</td> +<td align="left">Tuesday</td> +<td align="right">0.0126611</td> +<td align="right">0.0014005</td> +</tr> +<tr class="even"> +<td align="left">unknown job hours.Tuesday</td> +<td align="left">unknown job hours</td> +<td align="left">Tuesday</td> +<td align="right">0.0235239</td> +<td align="right">0.0085679</td> +</tr> +<tr class="odd"> +<td align="left">full-time.Wednesday</td> +<td align="left">full-time</td> +<td align="left">Wednesday</td> +<td align="right">0.0121377</td> +<td align="right">0.0017207</td> +</tr> +<tr class="even"> +<td align="left">not in paid work.Wednesday</td> +<td align="left">not in paid work</td> +<td align="left">Wednesday</td> +<td align="right">0.0139568</td> +<td align="right">0.0012700</td> +</tr> +<tr class="odd"> +<td align="left">part-time.Wednesday</td> +<td align="left">part-time</td> +<td align="left">Wednesday</td> +<td align="right">0.0119973</td> +<td align="right">0.0013507</td> +</tr> +<tr class="even"> +<td align="left">unknown job hours.Wednesday</td> +<td align="left">unknown job hours</td> +<td align="left">Wednesday</td> +<td align="right">0.0153026</td> +<td align="right">0.0053168</td> +</tr> +</tbody> +</table> +<pre><code>## [1] "Feedback: Any laundry by day of the week/women/labour market status: 1985"</code></pre> +<table> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="left">empstat</th> +<th align="right">r_dowFriday</th> +<th align="right">r_dowMonday</th> +<th align="right">r_dowSaturday</th> +<th align="right">r_dowSunday</th> +<th align="right">r_dowThursday</th> +<th align="right">r_dowTuesday</th> +<th align="right">r_dowWednesday</th> +<th align="right">se.r_dowFriday</th> +<th align="right">se.r_dowMonday</th> +<th align="right">se.r_dowSaturday</th> +<th align="right">se.r_dowSunday</th> +<th align="right">se.r_dowThursday</th> +<th align="right">se.r_dowTuesday</th> +<th align="right">se.r_dowWednesday</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">full-time</td> +<td align="left">full-time</td> +<td align="right">0.1179904</td> +<td align="right">0.1985796</td> +<td align="right">0.1176123</td> +<td align="right">0.1216512</td> +<td align="right">0.1363593</td> +<td align="right">0.1593790</td> +<td align="right">0.1484283</td> +<td align="right">0.0178056</td> +<td align="right">0.0246750</td> +<td align="right">0.0184813</td> +<td align="right">0.0171994</td> +<td align="right">0.0191377</td> +<td align="right">0.0217594</td> +<td align="right">0.0208917</td> +</tr> +<tr class="even"> +<td align="left">not in paid work</td> +<td align="left">not in paid work</td> +<td align="right">0.1186923</td> +<td align="right">0.2017162</td> +<td align="right">0.1240708</td> +<td align="right">0.1458790</td> +<td align="right">0.1286404</td> +<td align="right">0.1464133</td> +<td align="right">0.1345879</td> +<td align="right">0.0109782</td> +<td align="right">0.0152157</td> +<td align="right">0.0115232</td> +<td align="right">0.0130310</td> +<td align="right">0.0119272</td> +<td align="right">0.0131036</td> +<td align="right">0.0124293</td> +</tr> +<tr class="odd"> +<td align="left">part-time</td> +<td align="left">part-time</td> +<td align="right">0.1224041</td> +<td align="right">0.1546634</td> +<td align="right">0.1297886</td> +<td align="right">0.1568272</td> +<td align="right">0.1602732</td> +<td align="right">0.1407495</td> +<td align="right">0.1352940</td> +<td align="right">0.0145667</td> +<td align="right">0.0159786</td> +<td align="right">0.0150606</td> +<td align="right">0.0178133</td> +<td align="right">0.0166367</td> +<td align="right">0.0156954</td> +<td align="right">0.0153613</td> +</tr> +<tr class="even"> +<td align="left">unknown job hours</td> +<td align="left">unknown job hours</td> +<td align="right">0.1105719</td> +<td align="right">0.1671910</td> +<td align="right">0.1726642</td> +<td align="right">0.0625853</td> +<td align="right">0.1414491</td> +<td align="right">0.1990554</td> +<td align="right">0.1464830</td> +<td align="right">0.0604227</td> +<td align="right">0.0619587</td> +<td align="right">0.0603682</td> +<td align="right">0.0354488</td> +<td align="right">0.0603233</td> +<td align="right">0.0737225</td> +<td align="right">0.0552000</td> +</tr> +</tbody> +</table> +<pre><code>## [1] "Feedback: Any laundry by day of the week/women/labour market status: 1985"</code></pre> +<table> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="left">empstat</th> +<th align="right">r_dowFriday</th> +<th align="right">r_dowMonday</th> +<th align="right">r_dowSaturday</th> +<th align="right">r_dowSunday</th> +<th align="right">r_dowThursday</th> +<th align="right">r_dowTuesday</th> +<th align="right">r_dowWednesday</th> +<th align="right">se.r_dowFriday</th> +<th align="right">se.r_dowMonday</th> +<th align="right">se.r_dowSaturday</th> +<th align="right">se.r_dowSunday</th> +<th align="right">se.r_dowThursday</th> +<th align="right">se.r_dowTuesday</th> +<th align="right">se.r_dowWednesday</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">full-time</td> +<td align="left">full-time</td> +<td align="right">0.2240102</td> +<td align="right">0.0630661</td> +<td align="right">0.0859171</td> +<td align="right">0.2447814</td> +<td align="right">0.1197949</td> +<td align="right">0.1765103</td> +<td align="right">0.0859201</td> +<td align="right">0.0799600</td> +<td align="right">0.0275682</td> +<td align="right">0.0343156</td> +<td align="right">0.0671075</td> +<td align="right">0.0411371</td> +<td align="right">0.0638993</td> +<td align="right">0.0626110</td> +</tr> +<tr class="even"> +<td align="left">not in paid work</td> +<td align="left">not in paid work</td> +<td align="right">0.0533881</td> +<td align="right">0.1715071</td> +<td align="right">0.1001408</td> +<td align="right">0.2633564</td> +<td align="right">0.0708324</td> +<td align="right">0.1814197</td> +<td align="right">0.1593556</td> +<td align="right">0.0258744</td> +<td align="right">0.0463328</td> +<td align="right">0.0320004</td> +<td align="right">0.0602603</td> +<td align="right">0.0220217</td> +<td align="right">0.0510785</td> +<td align="right">0.0458664</td> +</tr> +<tr class="odd"> +<td align="left">part-time</td> +<td align="left">part-time</td> +<td align="right">0.1240366</td> +<td align="right">0.1801231</td> +<td align="right">0.1318491</td> +<td align="right">0.0916947</td> +<td align="right">0.1008414</td> +<td align="right">0.1991970</td> +<td align="right">0.1722580</td> +<td align="right">0.0502480</td> +<td align="right">0.0760273</td> +<td align="right">0.0622046</td> +<td align="right">0.0444446</td> +<td align="right">0.0347197</td> +<td align="right">0.0659764</td> +<td align="right">0.0506492</td> +</tr> +</tbody> +</table> +<table> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="left">st_halfhour</th> +<th align="right">ba_survey</th> +<th align="right">Any_laundry_home</th> +<th align="right">se</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">00:00.1985</td> +<td align="left">00:00</td> +<td align="right">1985</td> +<td align="right">0.0010556</td> +<td align="right">0.0002491</td> +</tr> +<tr class="even"> +<td align="left">00:30.1985</td> +<td align="left">00:30</td> +<td align="right">1985</td> +<td align="right">0.0005721</td> +<td align="right">0.0001813</td> +</tr> +<tr class="odd"> +<td align="left">01:00.1985</td> +<td align="left">01:00</td> +<td align="right">1985</td> +<td align="right">0.0001816</td> +<td align="right">0.0001048</td> +</tr> +<tr class="even"> +<td align="left">01:30.1985</td> +<td align="left">01:30</td> +<td align="right">1985</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.1985</td> +<td align="left">02:00</td> +<td align="right">1985</td> +<td align="right">0.0000567</td> +<td align="right">0.0000567</td> +</tr> +<tr class="even"> +<td align="left">02:30.1985</td> +<td align="left">02:30</td> +<td align="right">1985</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.1985</td> +<td align="left">03:00</td> +<td align="right">1985</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.1985</td> +<td align="left">03:30</td> +<td align="right">1985</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.1985</td> +<td align="left">04:00</td> +<td align="right">1985</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.1985</td> +<td align="left">04:30</td> +<td align="right">1985</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.1985</td> +<td align="left">05:00</td> +<td align="right">1985</td> +<td align="right">0.0001084</td> +<td align="right">0.0000767</td> +</tr> +<tr class="even"> +<td align="left">05:30.1985</td> +<td align="left">05:30</td> +<td align="right">1985</td> +<td align="right">0.0003492</td> +<td align="right">0.0001432</td> +</tr> +<tr class="odd"> +<td align="left">06:00.1985</td> +<td align="left">06:00</td> +<td align="right">1985</td> +<td align="right">0.0009972</td> +<td align="right">0.0002422</td> +</tr> +<tr class="even"> +<td align="left">06:30.1985</td> +<td align="left">06:30</td> +<td align="right">1985</td> +<td align="right">0.0021780</td> +<td align="right">0.0003543</td> +</tr> +<tr class="odd"> +<td align="left">07:00.1985</td> +<td align="left">07:00</td> +<td align="right">1985</td> +<td align="right">0.0052767</td> +<td align="right">0.0005480</td> +</tr> +<tr class="even"> +<td align="left">07:30.1985</td> +<td align="left">07:30</td> +<td align="right">1985</td> +<td align="right">0.0074772</td> +<td align="right">0.0006465</td> +</tr> +<tr class="odd"> +<td align="left">08:00.1985</td> +<td align="left">08:00</td> +<td align="right">1985</td> +<td align="right">0.0137881</td> +<td align="right">0.0008801</td> +</tr> +<tr class="even"> +<td align="left">08:30.1985</td> +<td align="left">08:30</td> +<td align="right">1985</td> +<td align="right">0.0202534</td> +<td align="right">0.0010663</td> +</tr> +<tr class="odd"> +<td align="left">09:00.1985</td> +<td align="left">09:00</td> +<td align="right">1985</td> +<td align="right">0.0261384</td> +<td align="right">0.0012092</td> +</tr> +<tr class="even"> +<td align="left">09:30.1985</td> +<td align="left">09:30</td> +<td align="right">1985</td> +<td align="right">0.0346053</td> +<td align="right">0.0013847</td> +</tr> +<tr class="odd"> +<td align="left">10:00.1985</td> +<td align="left">10:00</td> +<td align="right">1985</td> +<td align="right">0.0371609</td> +<td align="right">0.0014307</td> +</tr> +<tr class="even"> +<td align="left">10:30.1985</td> +<td align="left">10:30</td> +<td align="right">1985</td> +<td align="right">0.0383388</td> +<td align="right">0.0014500</td> +</tr> +<tr class="odd"> +<td align="left">11:00.1985</td> +<td align="left">11:00</td> +<td align="right">1985</td> +<td align="right">0.0322811</td> +<td align="right">0.0013371</td> +</tr> +<tr class="even"> +<td align="left">11:30.1985</td> +<td align="left">11:30</td> +<td align="right">1985</td> +<td align="right">0.0310342</td> +<td align="right">0.0013132</td> +</tr> +<tr class="odd"> +<td align="left">12:00.1985</td> +<td align="left">12:00</td> +<td align="right">1985</td> +<td align="right">0.0222697</td> +<td align="right">0.0011172</td> +</tr> +<tr class="even"> +<td align="left">12:30.1985</td> +<td align="left">12:30</td> +<td align="right">1985</td> +<td align="right">0.0220213</td> +<td align="right">0.0011134</td> +</tr> +<tr class="odd"> +<td align="left">13:00.1985</td> +<td align="left">13:00</td> +<td align="right">1985</td> +<td align="right">0.0191961</td> +<td align="right">0.0010389</td> +</tr> +<tr class="even"> +<td align="left">13:30.1985</td> +<td align="left">13:30</td> +<td align="right">1985</td> +<td align="right">0.0244418</td> +<td align="right">0.0011707</td> +</tr> +<tr class="odd"> +<td align="left">14:00.1985</td> +<td align="left">14:00</td> +<td align="right">1985</td> +<td align="right">0.0271532</td> +<td align="right">0.0012306</td> +</tr> +<tr class="even"> +<td align="left">14:30.1985</td> +<td align="left">14:30</td> +<td align="right">1985</td> +<td align="right">0.0253324</td> +<td align="right">0.0011907</td> +</tr> +<tr class="odd"> +<td align="left">15:00.1985</td> +<td align="left">15:00</td> +<td align="right">1985</td> +<td align="right">0.0226200</td> +<td align="right">0.0011250</td> +</tr> +<tr class="even"> +<td align="left">15:30.1985</td> +<td align="left">15:30</td> +<td align="right">1985</td> +<td align="right">0.0231902</td> +<td align="right">0.0011389</td> +</tr> +<tr class="odd"> +<td align="left">16:00.1985</td> +<td align="left">16:00</td> +<td align="right">1985</td> +<td align="right">0.0217943</td> +<td align="right">0.0011069</td> +</tr> +<tr class="even"> +<td align="left">16:30.1985</td> +<td align="left">16:30</td> +<td align="right">1985</td> +<td align="right">0.0198137</td> +<td align="right">0.0010567</td> +</tr> +<tr class="odd"> +<td align="left">17:00.1985</td> +<td align="left">17:00</td> +<td align="right">1985</td> +<td align="right">0.0120270</td> +<td align="right">0.0008239</td> +</tr> +<tr class="even"> +<td align="left">17:30.1985</td> +<td align="left">17:30</td> +<td align="right">1985</td> +<td align="right">0.0133019</td> +<td align="right">0.0008650</td> +</tr> +<tr class="odd"> +<td align="left">18:00.1985</td> +<td align="left">18:00</td> +<td align="right">1985</td> +<td align="right">0.0152872</td> +<td align="right">0.0009250</td> +</tr> +<tr class="even"> +<td align="left">18:30.1985</td> +<td align="left">18:30</td> +<td align="right">1985</td> +<td align="right">0.0191294</td> +<td align="right">0.0010358</td> +</tr> +<tr class="odd"> +<td align="left">19:00.1985</td> +<td align="left">19:00</td> +<td align="right">1985</td> +<td align="right">0.0190732</td> +<td align="right">0.0010400</td> +</tr> +<tr class="even"> +<td align="left">19:30.1985</td> +<td align="left">19:30</td> +<td align="right">1985</td> +<td align="right">0.0180119</td> +<td align="right">0.0010104</td> +</tr> +<tr class="odd"> +<td align="left">20:00.1985</td> +<td align="left">20:00</td> +<td align="right">1985</td> +<td align="right">0.0189935</td> +<td align="right">0.0010328</td> +</tr> +<tr class="even"> +<td align="left">20:30.1985</td> +<td align="left">20:30</td> +<td align="right">1985</td> +<td align="right">0.0185356</td> +<td align="right">0.0010190</td> +</tr> +<tr class="odd"> +<td align="left">21:00.1985</td> +<td align="left">21:00</td> +<td align="right">1985</td> +<td align="right">0.0144381</td> +<td align="right">0.0009011</td> +</tr> +<tr class="even"> +<td align="left">21:30.1985</td> +<td align="left">21:30</td> +<td align="right">1985</td> +<td align="right">0.0123343</td> +<td align="right">0.0008312</td> +</tr> +<tr class="odd"> +<td align="left">22:00.1985</td> +<td align="left">22:00</td> +<td align="right">1985</td> +<td align="right">0.0091150</td> +<td align="right">0.0007132</td> +</tr> +<tr class="even"> +<td align="left">22:30.1985</td> +<td align="left">22:30</td> +<td align="right">1985</td> +<td align="right">0.0055409</td> +<td align="right">0.0005603</td> +</tr> +<tr class="odd"> +<td align="left">23:00.1985</td> +<td align="left">23:00</td> +<td align="right">1985</td> +<td align="right">0.0030516</td> +<td align="right">0.0004164</td> +</tr> +<tr class="even"> +<td align="left">23:30.1985</td> +<td align="left">23:30</td> +<td align="right">1985</td> +<td align="right">0.0014843</td> +<td align="right">0.0002922</td> +</tr> +<tr class="odd"> +<td align="left">00:00.2005</td> +<td align="left">00:00</td> +<td align="right">2005</td> +<td align="right">0.0004289</td> +<td align="right">0.0004288</td> +</tr> +<tr class="even"> +<td align="left">00:30.2005</td> +<td align="left">00:30</td> +<td align="right">2005</td> +<td align="right">0.0004289</td> +<td align="right">0.0004288</td> +</tr> +<tr class="odd"> +<td align="left">01:00.2005</td> +<td align="left">01:00</td> +<td align="right">2005</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.2005</td> +<td align="left">01:30</td> +<td align="right">2005</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.2005</td> +<td align="left">02:00</td> +<td align="right">2005</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.2005</td> +<td align="left">02:30</td> +<td align="right">2005</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.2005</td> +<td align="left">03:00</td> +<td align="right">2005</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.2005</td> +<td align="left">03:30</td> +<td align="right">2005</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.2005</td> +<td align="left">04:00</td> +<td align="right">2005</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.2005</td> +<td align="left">04:30</td> +<td align="right">2005</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.2005</td> +<td align="left">05:00</td> +<td align="right">2005</td> +<td align="right">0.0005382</td> +<td align="right">0.0005380</td> +</tr> +<tr class="even"> +<td align="left">05:30.2005</td> +<td align="left">05:30</td> +<td align="right">2005</td> +<td align="right">0.0012199</td> +<td align="right">0.0007245</td> +</tr> +<tr class="odd"> +<td align="left">06:00.2005</td> +<td align="left">06:00</td> +<td align="right">2005</td> +<td align="right">0.0015144</td> +<td align="right">0.0007819</td> +</tr> +<tr class="even"> +<td align="left">06:30.2005</td> +<td align="left">06:30</td> +<td align="right">2005</td> +<td align="right">0.0043039</td> +<td align="right">0.0015482</td> +</tr> +<tr class="odd"> +<td align="left">07:00.2005</td> +<td align="left">07:00</td> +<td align="right">2005</td> +<td align="right">0.0103922</td> +<td align="right">0.0021535</td> +</tr> +<tr class="even"> +<td align="left">07:30.2005</td> +<td align="left">07:30</td> +<td align="right">2005</td> +<td align="right">0.0161986</td> +<td align="right">0.0026600</td> +</tr> +<tr class="odd"> +<td align="left">08:00.2005</td> +<td align="left">08:00</td> +<td align="right">2005</td> +<td align="right">0.0187639</td> +<td align="right">0.0028371</td> +</tr> +<tr class="even"> +<td align="left">08:30.2005</td> +<td align="left">08:30</td> +<td align="right">2005</td> +<td align="right">0.0239451</td> +<td align="right">0.0031630</td> +</tr> +<tr class="odd"> +<td align="left">09:00.2005</td> +<td align="left">09:00</td> +<td align="right">2005</td> +<td align="right">0.0282875</td> +<td align="right">0.0033952</td> +</tr> +<tr class="even"> +<td align="left">09:30.2005</td> +<td align="left">09:30</td> +<td align="right">2005</td> +<td align="right">0.0250066</td> +<td align="right">0.0031481</td> +</tr> +<tr class="odd"> +<td align="left">10:00.2005</td> +<td align="left">10:00</td> +<td align="right">2005</td> +<td align="right">0.0303511</td> +<td align="right">0.0034738</td> +</tr> +<tr class="even"> +<td align="left">10:30.2005</td> +<td align="left">10:30</td> +<td align="right">2005</td> +<td align="right">0.0220304</td> +<td align="right">0.0029144</td> +</tr> +<tr class="odd"> +<td align="left">11:00.2005</td> +<td align="left">11:00</td> +<td align="right">2005</td> +<td align="right">0.0167036</td> +<td align="right">0.0025672</td> +</tr> +<tr class="even"> +<td align="left">11:30.2005</td> +<td align="left">11:30</td> +<td align="right">2005</td> +<td align="right">0.0146088</td> +<td align="right">0.0025741</td> +</tr> +<tr class="odd"> +<td align="left">12:00.2005</td> +<td align="left">12:00</td> +<td align="right">2005</td> +<td align="right">0.0120755</td> +<td align="right">0.0022353</td> +</tr> +<tr class="even"> +<td align="left">12:30.2005</td> +<td align="left">12:30</td> +<td align="right">2005</td> +<td align="right">0.0113019</td> +<td align="right">0.0022600</td> +</tr> +<tr class="odd"> +<td align="left">13:00.2005</td> +<td align="left">13:00</td> +<td align="right">2005</td> +<td align="right">0.0142415</td> +<td align="right">0.0024589</td> +</tr> +<tr class="even"> +<td align="left">13:30.2005</td> +<td align="left">13:30</td> +<td align="right">2005</td> +<td align="right">0.0170105</td> +<td align="right">0.0026592</td> +</tr> +<tr class="odd"> +<td align="left">14:00.2005</td> +<td align="left">14:00</td> +<td align="right">2005</td> +<td align="right">0.0143518</td> +<td align="right">0.0023896</td> +</tr> +<tr class="even"> +<td align="left">14:30.2005</td> +<td align="left">14:30</td> +<td align="right">2005</td> +<td align="right">0.0121984</td> +<td align="right">0.0021457</td> +</tr> +<tr class="odd"> +<td align="left">15:00.2005</td> +<td align="left">15:00</td> +<td align="right">2005</td> +<td align="right">0.0125262</td> +<td align="right">0.0022281</td> +</tr> +<tr class="even"> +<td align="left">15:30.2005</td> +<td align="left">15:30</td> +<td align="right">2005</td> +<td align="right">0.0145229</td> +<td align="right">0.0024785</td> +</tr> +<tr class="odd"> +<td align="left">16:00.2005</td> +<td align="left">16:00</td> +<td align="right">2005</td> +<td align="right">0.0147880</td> +<td align="right">0.0027606</td> +</tr> +<tr class="even"> +<td align="left">16:30.2005</td> +<td align="left">16:30</td> +<td align="right">2005</td> +<td align="right">0.0130933</td> +<td align="right">0.0024381</td> +</tr> +<tr class="odd"> +<td align="left">17:00.2005</td> +<td align="left">17:00</td> +<td align="right">2005</td> +<td align="right">0.0104090</td> +<td align="right">0.0021998</td> +</tr> +<tr class="even"> +<td align="left">17:30.2005</td> +<td align="left">17:30</td> +<td align="right">2005</td> +<td align="right">0.0083849</td> +<td align="right">0.0019649</td> +</tr> +<tr class="odd"> +<td align="left">18:00.2005</td> +<td align="left">18:00</td> +<td align="right">2005</td> +<td align="right">0.0104222</td> +<td align="right">0.0022736</td> +</tr> +<tr class="even"> +<td align="left">18:30.2005</td> +<td align="left">18:30</td> +<td align="right">2005</td> +<td align="right">0.0117916</td> +<td align="right">0.0023978</td> +</tr> +<tr class="odd"> +<td align="left">19:00.2005</td> +<td align="left">19:00</td> +<td align="right">2005</td> +<td align="right">0.0149155</td> +<td align="right">0.0026367</td> +</tr> +<tr class="even"> +<td align="left">19:30.2005</td> +<td align="left">19:30</td> +<td align="right">2005</td> +<td align="right">0.0116972</td> +<td align="right">0.0023677</td> +</tr> +<tr class="odd"> +<td align="left">20:00.2005</td> +<td align="left">20:00</td> +<td align="right">2005</td> +<td align="right">0.0132548</td> +<td align="right">0.0023569</td> +</tr> +<tr class="even"> +<td align="left">20:30.2005</td> +<td align="left">20:30</td> +<td align="right">2005</td> +<td align="right">0.0115057</td> +<td align="right">0.0021052</td> +</tr> +<tr class="odd"> +<td align="left">21:00.2005</td> +<td align="left">21:00</td> +<td align="right">2005</td> +<td align="right">0.0076453</td> +<td align="right">0.0017000</td> +</tr> +<tr class="even"> +<td align="left">21:30.2005</td> +<td align="left">21:30</td> +<td align="right">2005</td> +<td align="right">0.0056360</td> +<td align="right">0.0014326</td> +</tr> +<tr class="odd"> +<td align="left">22:00.2005</td> +<td align="left">22:00</td> +<td align="right">2005</td> +<td align="right">0.0045470</td> +<td align="right">0.0012778</td> +</tr> +<tr class="even"> +<td align="left">22:30.2005</td> +<td align="left">22:30</td> +<td align="right">2005</td> +<td align="right">0.0023425</td> +<td align="right">0.0009693</td> +</tr> +<tr class="odd"> +<td align="left">23:00.2005</td> +<td align="left">23:00</td> +<td align="right">2005</td> +<td align="right">0.0022741</td> +<td align="right">0.0009411</td> +</tr> +<tr class="even"> +<td align="left">23:30.2005</td> +<td align="left">23:30</td> +<td align="right">2005</td> +<td align="right">0.0004944</td> +<td align="right">0.0004943</td> +</tr> +</tbody> +</table> +<table> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="left">st_halfhour</th> +<th align="left">r_dow</th> +<th align="right">Any_laundry_home</th> +<th align="right">se</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">00:00.Friday</td> +<td align="left">00:00</td> +<td align="left">Friday</td> +<td align="right">0.0003901</td> +<td align="right">0.0003901</td> +</tr> +<tr class="even"> +<td align="left">00:30.Friday</td> +<td align="left">00:30</td> +<td align="left">Friday</td> +<td align="right">0.0003901</td> +<td align="right">0.0003901</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Friday</td> +<td align="left">01:00</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.Friday</td> +<td align="left">01:30</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Friday</td> +<td align="left">02:00</td> +<td align="left">Friday</td> +<td align="right">0.0003963</td> +<td align="right">0.0003963</td> +</tr> +<tr class="even"> +<td align="left">02:30.Friday</td> +<td align="left">02:30</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Friday</td> +<td align="left">03:00</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Friday</td> +<td align="left">03:30</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Friday</td> +<td align="left">04:00</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Friday</td> +<td align="left">04:30</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Friday</td> +<td align="left">05:00</td> +<td align="left">Friday</td> +<td align="right">0.0003712</td> +<td align="right">0.0003711</td> +</tr> +<tr class="even"> +<td align="left">05:30.Friday</td> +<td align="left">05:30</td> +<td align="left">Friday</td> +<td align="right">0.0004278</td> +<td align="right">0.0004277</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Friday</td> +<td align="left">06:00</td> +<td align="left">Friday</td> +<td align="right">0.0012271</td> +<td align="right">0.0007102</td> +</tr> +<tr class="even"> +<td align="left">06:30.Friday</td> +<td align="left">06:30</td> +<td align="left">Friday</td> +<td align="right">0.0028209</td> +<td align="right">0.0010662</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Friday</td> +<td align="left">07:00</td> +<td align="left">Friday</td> +<td align="right">0.0057709</td> +<td align="right">0.0014910</td> +</tr> +<tr class="even"> +<td align="left">07:30.Friday</td> +<td align="left">07:30</td> +<td align="left">Friday</td> +<td align="right">0.0050491</td> +<td align="right">0.0014024</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Friday</td> +<td align="left">08:00</td> +<td align="left">Friday</td> +<td align="right">0.0136752</td> +<td align="right">0.0023368</td> +</tr> +<tr class="even"> +<td align="left">08:30.Friday</td> +<td align="left">08:30</td> +<td align="left">Friday</td> +<td align="right">0.0189521</td> +<td align="right">0.0027182</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Friday</td> +<td align="left">09:00</td> +<td align="left">Friday</td> +<td align="right">0.0196416</td> +<td align="right">0.0027592</td> +</tr> +<tr class="even"> +<td align="left">09:30.Friday</td> +<td align="left">09:30</td> +<td align="left">Friday</td> +<td align="right">0.0264381</td> +<td align="right">0.0031963</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Friday</td> +<td align="left">10:00</td> +<td align="left">Friday</td> +<td align="right">0.0297190</td> +<td align="right">0.0033927</td> +</tr> +<tr class="even"> +<td align="left">10:30.Friday</td> +<td align="left">10:30</td> +<td align="left">Friday</td> +<td align="right">0.0230931</td> +<td align="right">0.0029824</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Friday</td> +<td align="left">11:00</td> +<td align="left">Friday</td> +<td align="right">0.0203808</td> +<td align="right">0.0028327</td> +</tr> +<tr class="even"> +<td align="left">11:30.Friday</td> +<td align="left">11:30</td> +<td align="left">Friday</td> +<td align="right">0.0263012</td> +<td align="right">0.0031824</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Friday</td> +<td align="left">12:00</td> +<td align="left">Friday</td> +<td align="right">0.0183270</td> +<td align="right">0.0026590</td> +</tr> +<tr class="even"> +<td align="left">12:30.Friday</td> +<td align="left">12:30</td> +<td align="left">Friday</td> +<td align="right">0.0153362</td> +<td align="right">0.0024453</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Friday</td> +<td align="left">13:00</td> +<td align="left">Friday</td> +<td align="right">0.0133169</td> +<td align="right">0.0022760</td> +</tr> +<tr class="even"> +<td align="left">13:30.Friday</td> +<td align="left">13:30</td> +<td align="left">Friday</td> +<td align="right">0.0188765</td> +<td align="right">0.0027088</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Friday</td> +<td align="left">14:00</td> +<td align="left">Friday</td> +<td align="right">0.0207969</td> +<td align="right">0.0028606</td> +</tr> +<tr class="even"> +<td align="left">14:30.Friday</td> +<td align="left">14:30</td> +<td align="left">Friday</td> +<td align="right">0.0184069</td> +<td align="right">0.0026940</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Friday</td> +<td align="left">15:00</td> +<td align="left">Friday</td> +<td align="right">0.0158436</td> +<td align="right">0.0024908</td> +</tr> +<tr class="even"> +<td align="left">15:30.Friday</td> +<td align="left">15:30</td> +<td align="left">Friday</td> +<td align="right">0.0155307</td> +<td align="right">0.0024744</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Friday</td> +<td align="left">16:00</td> +<td align="left">Friday</td> +<td align="right">0.0139625</td> +<td align="right">0.0023499</td> +</tr> +<tr class="even"> +<td align="left">16:30.Friday</td> +<td align="left">16:30</td> +<td align="left">Friday</td> +<td align="right">0.0167389</td> +<td align="right">0.0025674</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Friday</td> +<td align="left">17:00</td> +<td align="left">Friday</td> +<td align="right">0.0129159</td> +<td align="right">0.0022758</td> +</tr> +<tr class="even"> +<td align="left">17:30.Friday</td> +<td align="left">17:30</td> +<td align="left">Friday</td> +<td align="right">0.0109492</td> +<td align="right">0.0020681</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Friday</td> +<td align="left">18:00</td> +<td align="left">Friday</td> +<td align="right">0.0148877</td> +<td align="right">0.0023762</td> +</tr> +<tr class="even"> +<td align="left">18:30.Friday</td> +<td align="left">18:30</td> +<td align="left">Friday</td> +<td align="right">0.0181360</td> +<td align="right">0.0026323</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Friday</td> +<td align="left">19:00</td> +<td align="left">Friday</td> +<td align="right">0.0162720</td> +<td align="right">0.0025288</td> +</tr> +<tr class="even"> +<td align="left">19:30.Friday</td> +<td align="left">19:30</td> +<td align="left">Friday</td> +<td align="right">0.0179092</td> +<td align="right">0.0026536</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Friday</td> +<td align="left">20:00</td> +<td align="left">Friday</td> +<td align="right">0.0125907</td> +<td align="right">0.0022203</td> +</tr> +<tr class="even"> +<td align="left">20:30.Friday</td> +<td align="left">20:30</td> +<td align="left">Friday</td> +<td align="right">0.0133482</td> +<td align="right">0.0022826</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Friday</td> +<td align="left">21:00</td> +<td align="left">Friday</td> +<td align="right">0.0114288</td> +<td align="right">0.0021175</td> +</tr> +<tr class="even"> +<td align="left">21:30.Friday</td> +<td align="left">21:30</td> +<td align="left">Friday</td> +<td align="right">0.0108226</td> +<td align="right">0.0020406</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Friday</td> +<td align="left">22:00</td> +<td align="left">Friday</td> +<td align="right">0.0096640</td> +<td align="right">0.0019324</td> +</tr> +<tr class="even"> +<td align="left">22:30.Friday</td> +<td align="left">22:30</td> +<td align="left">Friday</td> +<td align="right">0.0057181</td> +<td align="right">0.0014781</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Friday</td> +<td align="left">23:00</td> +<td align="left">Friday</td> +<td align="right">0.0027772</td> +<td align="right">0.0010539</td> +</tr> +<tr class="even"> +<td align="left">23:30.Friday</td> +<td align="left">23:30</td> +<td align="left">Friday</td> +<td align="right">0.0019566</td> +<td align="right">0.0008776</td> +</tr> +<tr class="odd"> +<td align="left">00:00.Monday</td> +<td align="left">00:00</td> +<td align="left">Monday</td> +<td align="right">0.0008133</td> +<td align="right">0.0005749</td> +</tr> +<tr class="even"> +<td align="left">00:30.Monday</td> +<td align="left">00:30</td> +<td align="left">Monday</td> +<td align="right">0.0007668</td> +<td align="right">0.0005427</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Monday</td> +<td align="left">01:00</td> +<td align="left">Monday</td> +<td align="right">0.0004258</td> +<td align="right">0.0004257</td> +</tr> +<tr class="even"> +<td align="left">01:30.Monday</td> +<td align="left">01:30</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Monday</td> +<td align="left">02:00</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Monday</td> +<td align="left">02:30</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Monday</td> +<td align="left">03:00</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Monday</td> +<td align="left">03:30</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Monday</td> +<td align="left">04:00</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Monday</td> +<td align="left">04:30</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Monday</td> +<td align="left">05:00</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">05:30.Monday</td> +<td align="left">05:30</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Monday</td> +<td align="left">06:00</td> +<td align="left">Monday</td> +<td align="right">0.0004608</td> +<td align="right">0.0004606</td> +</tr> +<tr class="even"> +<td align="left">06:30.Monday</td> +<td align="left">06:30</td> +<td align="left">Monday</td> +<td align="right">0.0032522</td> +<td align="right">0.0011505</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Monday</td> +<td align="left">07:00</td> +<td align="left">Monday</td> +<td align="right">0.0084495</td> +<td align="right">0.0018425</td> +</tr> +<tr class="even"> +<td align="left">07:30.Monday</td> +<td align="left">07:30</td> +<td align="left">Monday</td> +<td align="right">0.0098686</td> +<td align="right">0.0019712</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Monday</td> +<td align="left">08:00</td> +<td align="left">Monday</td> +<td align="right">0.0154802</td> +<td align="right">0.0024384</td> +</tr> +<tr class="even"> +<td align="left">08:30.Monday</td> +<td align="left">08:30</td> +<td align="left">Monday</td> +<td align="right">0.0275616</td> +<td align="right">0.0032629</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Monday</td> +<td align="left">09:00</td> +<td align="left">Monday</td> +<td align="right">0.0418493</td> +<td align="right">0.0040108</td> +</tr> +<tr class="even"> +<td align="left">09:30.Monday</td> +<td align="left">09:30</td> +<td align="left">Monday</td> +<td align="right">0.0484774</td> +<td align="right">0.0042968</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Monday</td> +<td align="left">10:00</td> +<td align="left">Monday</td> +<td align="right">0.0483581</td> +<td align="right">0.0042848</td> +</tr> +<tr class="even"> +<td align="left">10:30.Monday</td> +<td align="left">10:30</td> +<td align="left">Monday</td> +<td align="right">0.0450101</td> +<td align="right">0.0041339</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Monday</td> +<td align="left">11:00</td> +<td align="left">Monday</td> +<td align="right">0.0434075</td> +<td align="right">0.0040796</td> +</tr> +<tr class="even"> +<td align="left">11:30.Monday</td> +<td align="left">11:30</td> +<td align="left">Monday</td> +<td align="right">0.0373854</td> +<td align="right">0.0037960</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Monday</td> +<td align="left">12:00</td> +<td align="left">Monday</td> +<td align="right">0.0238394</td> +<td align="right">0.0030518</td> +</tr> +<tr class="even"> +<td align="left">12:30.Monday</td> +<td align="left">12:30</td> +<td align="left">Monday</td> +<td align="right">0.0244933</td> +<td align="right">0.0031069</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Monday</td> +<td align="left">13:00</td> +<td align="left">Monday</td> +<td align="right">0.0261203</td> +<td align="right">0.0031830</td> +</tr> +<tr class="even"> +<td align="left">13:30.Monday</td> +<td align="left">13:30</td> +<td align="left">Monday</td> +<td align="right">0.0321368</td> +<td align="right">0.0035435</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Monday</td> +<td align="left">14:00</td> +<td align="left">Monday</td> +<td align="right">0.0377973</td> +<td align="right">0.0038167</td> +</tr> +<tr class="even"> +<td align="left">14:30.Monday</td> +<td align="left">14:30</td> +<td align="left">Monday</td> +<td align="right">0.0386287</td> +<td align="right">0.0038590</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Monday</td> +<td align="left">15:00</td> +<td align="left">Monday</td> +<td align="right">0.0299300</td> +<td align="right">0.0034149</td> +</tr> +<tr class="even"> +<td align="left">15:30.Monday</td> +<td align="left">15:30</td> +<td align="left">Monday</td> +<td align="right">0.0282619</td> +<td align="right">0.0033177</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Monday</td> +<td align="left">16:00</td> +<td align="left">Monday</td> +<td align="right">0.0263313</td> +<td align="right">0.0032080</td> +</tr> +<tr class="even"> +<td align="left">16:30.Monday</td> +<td align="left">16:30</td> +<td align="left">Monday</td> +<td align="right">0.0213524</td> +<td align="right">0.0029105</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Monday</td> +<td align="left">17:00</td> +<td align="left">Monday</td> +<td align="right">0.0115651</td> +<td align="right">0.0021404</td> +</tr> +<tr class="even"> +<td align="left">17:30.Monday</td> +<td align="left">17:30</td> +<td align="left">Monday</td> +<td align="right">0.0145834</td> +<td align="right">0.0023892</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Monday</td> +<td align="left">18:00</td> +<td align="left">Monday</td> +<td align="right">0.0187620</td> +<td align="right">0.0026937</td> +</tr> +<tr class="even"> +<td align="left">18:30.Monday</td> +<td align="left">18:30</td> +<td align="left">Monday</td> +<td align="right">0.0221181</td> +<td align="right">0.0029324</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Monday</td> +<td align="left">19:00</td> +<td align="left">Monday</td> +<td align="right">0.0248732</td> +<td align="right">0.0031048</td> +</tr> +<tr class="even"> +<td align="left">19:30.Monday</td> +<td align="left">19:30</td> +<td align="left">Monday</td> +<td align="right">0.0214987</td> +<td align="right">0.0029060</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Monday</td> +<td align="left">20:00</td> +<td align="left">Monday</td> +<td align="right">0.0290735</td> +<td align="right">0.0033862</td> +</tr> +<tr class="even"> +<td align="left">20:30.Monday</td> +<td align="left">20:30</td> +<td align="left">Monday</td> +<td align="right">0.0290144</td> +<td align="right">0.0033583</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Monday</td> +<td align="left">21:00</td> +<td align="left">Monday</td> +<td align="right">0.0211871</td> +<td align="right">0.0028646</td> +</tr> +<tr class="even"> +<td align="left">21:30.Monday</td> +<td align="left">21:30</td> +<td align="left">Monday</td> +<td align="right">0.0191816</td> +<td align="right">0.0027237</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Monday</td> +<td align="left">22:00</td> +<td align="left">Monday</td> +<td align="right">0.0083826</td> +<td align="right">0.0017859</td> +</tr> +<tr class="even"> +<td align="left">22:30.Monday</td> +<td align="left">22:30</td> +<td align="left">Monday</td> +<td align="right">0.0062310</td> +<td align="right">0.0015590</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Monday</td> +<td align="left">23:00</td> +<td align="left">Monday</td> +<td align="right">0.0024715</td> +<td align="right">0.0010104</td> +</tr> +<tr class="even"> +<td align="left">23:30.Monday</td> +<td align="left">23:30</td> +<td align="left">Monday</td> +<td align="right">0.0007671</td> +<td align="right">0.0005454</td> +</tr> +<tr class="odd"> +<td align="left">00:00.Saturday</td> +<td align="left">00:00</td> +<td align="left">Saturday</td> +<td align="right">0.0016283</td> +<td align="right">0.0008153</td> +</tr> +<tr class="even"> +<td align="left">00:30.Saturday</td> +<td align="left">00:30</td> +<td align="left">Saturday</td> +<td align="right">0.0012065</td> +<td align="right">0.0006978</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Saturday</td> +<td align="left">01:00</td> +<td align="left">Saturday</td> +<td align="right">0.0008492</td> +<td align="right">0.0006003</td> +</tr> +<tr class="even"> +<td align="left">01:30.Saturday</td> +<td align="left">01:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Saturday</td> +<td align="left">02:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Saturday</td> +<td align="left">02:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Saturday</td> +<td align="left">03:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Saturday</td> +<td align="left">03:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Saturday</td> +<td align="left">04:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Saturday</td> +<td align="left">04:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Saturday</td> +<td align="left">05:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">05:30.Saturday</td> +<td align="left">05:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Saturday</td> +<td align="left">06:00</td> +<td align="left">Saturday</td> +<td align="right">0.0008344</td> +<td align="right">0.0005900</td> +</tr> +<tr class="even"> +<td align="left">06:30.Saturday</td> +<td align="left">06:30</td> +<td align="left">Saturday</td> +<td align="right">0.0020597</td> +<td align="right">0.0009216</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Saturday</td> +<td align="left">07:00</td> +<td align="left">Saturday</td> +<td align="right">0.0021065</td> +<td align="right">0.0009417</td> +</tr> +<tr class="even"> +<td align="left">07:30.Saturday</td> +<td align="left">07:30</td> +<td align="left">Saturday</td> +<td align="right">0.0037099</td> +<td align="right">0.0012375</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Saturday</td> +<td align="left">08:00</td> +<td align="left">Saturday</td> +<td align="right">0.0124805</td> +<td align="right">0.0022358</td> +</tr> +<tr class="even"> +<td align="left">08:30.Saturday</td> +<td align="left">08:30</td> +<td align="left">Saturday</td> +<td align="right">0.0197570</td> +<td align="right">0.0028038</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Saturday</td> +<td align="left">09:00</td> +<td align="left">Saturday</td> +<td align="right">0.0244138</td> +<td align="right">0.0031214</td> +</tr> +<tr class="even"> +<td align="left">09:30.Saturday</td> +<td align="left">09:30</td> +<td align="left">Saturday</td> +<td align="right">0.0359478</td> +<td align="right">0.0037532</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Saturday</td> +<td align="left">10:00</td> +<td align="left">Saturday</td> +<td align="right">0.0387591</td> +<td align="right">0.0038714</td> +</tr> +<tr class="even"> +<td align="left">10:30.Saturday</td> +<td align="left">10:30</td> +<td align="left">Saturday</td> +<td align="right">0.0501596</td> +<td align="right">0.0043687</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Saturday</td> +<td align="left">11:00</td> +<td align="left">Saturday</td> +<td align="right">0.0375079</td> +<td align="right">0.0038086</td> +</tr> +<tr class="even"> +<td align="left">11:30.Saturday</td> +<td align="left">11:30</td> +<td align="left">Saturday</td> +<td align="right">0.0329629</td> +<td align="right">0.0035907</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Saturday</td> +<td align="left">12:00</td> +<td align="left">Saturday</td> +<td align="right">0.0229262</td> +<td align="right">0.0030109</td> +</tr> +<tr class="even"> +<td align="left">12:30.Saturday</td> +<td align="left">12:30</td> +<td align="left">Saturday</td> +<td align="right">0.0219463</td> +<td align="right">0.0029612</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Saturday</td> +<td align="left">13:00</td> +<td align="left">Saturday</td> +<td align="right">0.0170481</td> +<td align="right">0.0026152</td> +</tr> +<tr class="even"> +<td align="left">13:30.Saturday</td> +<td align="left">13:30</td> +<td align="left">Saturday</td> +<td align="right">0.0229396</td> +<td align="right">0.0030144</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Saturday</td> +<td align="left">14:00</td> +<td align="left">Saturday</td> +<td align="right">0.0242461</td> +<td align="right">0.0030785</td> +</tr> +<tr class="even"> +<td align="left">14:30.Saturday</td> +<td align="left">14:30</td> +<td align="left">Saturday</td> +<td align="right">0.0188707</td> +<td align="right">0.0027322</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Saturday</td> +<td align="left">15:00</td> +<td align="left">Saturday</td> +<td align="right">0.0225764</td> +<td align="right">0.0029679</td> +</tr> +<tr class="even"> +<td align="left">15:30.Saturday</td> +<td align="left">15:30</td> +<td align="left">Saturday</td> +<td align="right">0.0218942</td> +<td align="right">0.0029326</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Saturday</td> +<td align="left">16:00</td> +<td align="left">Saturday</td> +<td align="right">0.0190385</td> +<td align="right">0.0027323</td> +</tr> +<tr class="even"> +<td align="left">16:30.Saturday</td> +<td align="left">16:30</td> +<td align="left">Saturday</td> +<td align="right">0.0166619</td> +<td align="right">0.0025574</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Saturday</td> +<td align="left">17:00</td> +<td align="left">Saturday</td> +<td align="right">0.0140586</td> +<td align="right">0.0023346</td> +</tr> +<tr class="even"> +<td align="left">17:30.Saturday</td> +<td align="left">17:30</td> +<td align="left">Saturday</td> +<td align="right">0.0139002</td> +<td align="right">0.0023409</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Saturday</td> +<td align="left">18:00</td> +<td align="left">Saturday</td> +<td align="right">0.0109572</td> +<td align="right">0.0021024</td> +</tr> +<tr class="even"> +<td align="left">18:30.Saturday</td> +<td align="left">18:30</td> +<td align="left">Saturday</td> +<td align="right">0.0112983</td> +<td align="right">0.0021292</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Saturday</td> +<td align="left">19:00</td> +<td align="left">Saturday</td> +<td align="right">0.0147115</td> +<td align="right">0.0024420</td> +</tr> +<tr class="even"> +<td align="left">19:30.Saturday</td> +<td align="left">19:30</td> +<td align="left">Saturday</td> +<td align="right">0.0118358</td> +<td align="right">0.0021922</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Saturday</td> +<td align="left">20:00</td> +<td align="left">Saturday</td> +<td align="right">0.0124971</td> +<td align="right">0.0022366</td> +</tr> +<tr class="even"> +<td align="left">20:30.Saturday</td> +<td align="left">20:30</td> +<td align="left">Saturday</td> +<td align="right">0.0107063</td> +<td align="right">0.0020566</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Saturday</td> +<td align="left">21:00</td> +<td align="left">Saturday</td> +<td align="right">0.0082614</td> +<td align="right">0.0018005</td> +</tr> +<tr class="even"> +<td align="left">21:30.Saturday</td> +<td align="left">21:30</td> +<td align="left">Saturday</td> +<td align="right">0.0089101</td> +<td align="right">0.0018960</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Saturday</td> +<td align="left">22:00</td> +<td align="left">Saturday</td> +<td align="right">0.0064642</td> +<td align="right">0.0016153</td> +</tr> +<tr class="even"> +<td align="left">22:30.Saturday</td> +<td align="left">22:30</td> +<td align="left">Saturday</td> +<td align="right">0.0029249</td> +<td align="right">0.0011079</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Saturday</td> +<td align="left">23:00</td> +<td align="left">Saturday</td> +<td align="right">0.0036366</td> +<td align="right">0.0012136</td> +</tr> +<tr class="even"> +<td align="left">23:30.Saturday</td> +<td align="left">23:30</td> +<td align="left">Saturday</td> +<td align="right">0.0024535</td> +<td align="right">0.0010025</td> +</tr> +<tr class="odd"> +<td align="left">00:00.Sunday</td> +<td align="left">00:00</td> +<td align="left">Sunday</td> +<td align="right">0.0008473</td> +<td align="right">0.0005991</td> +</tr> +<tr class="even"> +<td align="left">00:30.Sunday</td> +<td align="left">00:30</td> +<td align="left">Sunday</td> +<td align="right">0.0007739</td> +<td align="right">0.0005481</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Sunday</td> +<td align="left">01:00</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.Sunday</td> +<td align="left">01:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Sunday</td> +<td align="left">02:00</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Sunday</td> +<td align="left">02:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Sunday</td> +<td align="left">03:00</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Sunday</td> +<td align="left">03:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Sunday</td> +<td align="left">04:00</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Sunday</td> +<td align="left">04:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Sunday</td> +<td align="left">05:00</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">05:30.Sunday</td> +<td align="left">05:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Sunday</td> +<td align="left">06:00</td> +<td align="left">Sunday</td> +<td align="right">0.0012605</td> +<td align="right">0.0007274</td> +</tr> +<tr class="even"> +<td align="left">06:30.Sunday</td> +<td align="left">06:30</td> +<td align="left">Sunday</td> +<td align="right">0.0011475</td> +<td align="right">0.0006651</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Sunday</td> +<td align="left">07:00</td> +<td align="left">Sunday</td> +<td align="right">0.0007562</td> +<td align="right">0.0005355</td> +</tr> +<tr class="even"> +<td align="left">07:30.Sunday</td> +<td align="left">07:30</td> +<td align="left">Sunday</td> +<td align="right">0.0032101</td> +<td align="right">0.0011384</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Sunday</td> +<td align="left">08:00</td> +<td align="left">Sunday</td> +<td align="right">0.0068598</td> +<td align="right">0.0016168</td> +</tr> +<tr class="even"> +<td align="left">08:30.Sunday</td> +<td align="left">08:30</td> +<td align="left">Sunday</td> +<td align="right">0.0129800</td> +<td align="right">0.0022535</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Sunday</td> +<td align="left">09:00</td> +<td align="left">Sunday</td> +<td align="right">0.0208784</td> +<td align="right">0.0028751</td> +</tr> +<tr class="even"> +<td align="left">09:30.Sunday</td> +<td align="left">09:30</td> +<td align="left">Sunday</td> +<td align="right">0.0278524</td> +<td align="right">0.0032943</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Sunday</td> +<td align="left">10:00</td> +<td align="left">Sunday</td> +<td align="right">0.0346985</td> +<td align="right">0.0036679</td> +</tr> +<tr class="even"> +<td align="left">10:30.Sunday</td> +<td align="left">10:30</td> +<td align="left">Sunday</td> +<td align="right">0.0406372</td> +<td align="right">0.0039368</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Sunday</td> +<td align="left">11:00</td> +<td align="left">Sunday</td> +<td align="right">0.0350324</td> +<td align="right">0.0037023</td> +</tr> +<tr class="even"> +<td align="left">11:30.Sunday</td> +<td align="left">11:30</td> +<td align="left">Sunday</td> +<td align="right">0.0450061</td> +<td align="right">0.0041703</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Sunday</td> +<td align="left">12:00</td> +<td align="left">Sunday</td> +<td align="right">0.0363888</td> +<td align="right">0.0037750</td> +</tr> +<tr class="even"> +<td align="left">12:30.Sunday</td> +<td align="left">12:30</td> +<td align="left">Sunday</td> +<td align="right">0.0329210</td> +<td align="right">0.0035872</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Sunday</td> +<td align="left">13:00</td> +<td align="left">Sunday</td> +<td align="right">0.0255788</td> +<td align="right">0.0031663</td> +</tr> +<tr class="even"> +<td align="left">13:30.Sunday</td> +<td align="left">13:30</td> +<td align="left">Sunday</td> +<td align="right">0.0244238</td> +<td align="right">0.0030981</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Sunday</td> +<td align="left">14:00</td> +<td align="left">Sunday</td> +<td align="right">0.0240375</td> +<td align="right">0.0030528</td> +</tr> +<tr class="even"> +<td align="left">14:30.Sunday</td> +<td align="left">14:30</td> +<td align="left">Sunday</td> +<td align="right">0.0248046</td> +<td align="right">0.0031210</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Sunday</td> +<td align="left">15:00</td> +<td align="left">Sunday</td> +<td align="right">0.0243976</td> +<td align="right">0.0030975</td> +</tr> +<tr class="even"> +<td align="left">15:30.Sunday</td> +<td align="left">15:30</td> +<td align="left">Sunday</td> +<td align="right">0.0284220</td> +<td align="right">0.0033382</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Sunday</td> +<td align="left">16:00</td> +<td align="left">Sunday</td> +<td align="right">0.0264053</td> +<td align="right">0.0032409</td> +</tr> +<tr class="even"> +<td align="left">16:30.Sunday</td> +<td align="left">16:30</td> +<td align="left">Sunday</td> +<td align="right">0.0264804</td> +<td align="right">0.0032496</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Sunday</td> +<td align="left">17:00</td> +<td align="left">Sunday</td> +<td align="right">0.0176915</td> +<td align="right">0.0026503</td> +</tr> +<tr class="even"> +<td align="left">17:30.Sunday</td> +<td align="left">17:30</td> +<td align="left">Sunday</td> +<td align="right">0.0186955</td> +<td align="right">0.0027355</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Sunday</td> +<td align="left">18:00</td> +<td align="left">Sunday</td> +<td align="right">0.0226005</td> +<td align="right">0.0029949</td> +</tr> +<tr class="even"> +<td align="left">18:30.Sunday</td> +<td align="left">18:30</td> +<td align="left">Sunday</td> +<td align="right">0.0276144</td> +<td align="right">0.0033114</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Sunday</td> +<td align="left">19:00</td> +<td align="left">Sunday</td> +<td align="right">0.0260492</td> +<td align="right">0.0032230</td> +</tr> +<tr class="even"> +<td align="left">19:30.Sunday</td> +<td align="left">19:30</td> +<td align="left">Sunday</td> +<td align="right">0.0213771</td> +<td align="right">0.0029118</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Sunday</td> +<td align="left">20:00</td> +<td align="left">Sunday</td> +<td align="right">0.0186157</td> +<td align="right">0.0026966</td> +</tr> +<tr class="even"> +<td align="left">20:30.Sunday</td> +<td align="left">20:30</td> +<td align="left">Sunday</td> +<td align="right">0.0167842</td> +<td align="right">0.0025743</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Sunday</td> +<td align="left">21:00</td> +<td align="left">Sunday</td> +<td align="right">0.0102985</td> +<td align="right">0.0020166</td> +</tr> +<tr class="even"> +<td align="left">21:30.Sunday</td> +<td align="left">21:30</td> +<td align="left">Sunday</td> +<td align="right">0.0102994</td> +<td align="right">0.0020165</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Sunday</td> +<td align="left">22:00</td> +<td align="left">Sunday</td> +<td align="right">0.0107437</td> +<td align="right">0.0020650</td> +</tr> +<tr class="even"> +<td align="left">22:30.Sunday</td> +<td align="left">22:30</td> +<td align="left">Sunday</td> +<td align="right">0.0068068</td> +<td align="right">0.0016511</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Sunday</td> +<td align="left">23:00</td> +<td align="left">Sunday</td> +<td align="right">0.0028992</td> +<td align="right">0.0010279</td> +</tr> +<tr class="even"> +<td align="left">23:30.Sunday</td> +<td align="left">23:30</td> +<td align="left">Sunday</td> +<td align="right">0.0014970</td> +<td align="right">0.0007509</td> +</tr> +<tr class="odd"> +<td align="left">00:00.Thursday</td> +<td align="left">00:00</td> +<td align="left">Thursday</td> +<td align="right">0.0008468</td> +<td align="right">0.0005988</td> +</tr> +<tr class="even"> +<td align="left">00:30.Thursday</td> +<td align="left">00:30</td> +<td align="left">Thursday</td> +<td align="right">0.0004347</td> +<td align="right">0.0004346</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Thursday</td> +<td align="left">01:00</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.Thursday</td> +<td align="left">01:30</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Thursday</td> +<td align="left">02:00</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Thursday</td> +<td align="left">02:30</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Thursday</td> +<td align="left">03:00</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Thursday</td> +<td align="left">03:30</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Thursday</td> +<td align="left">04:00</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Thursday</td> +<td align="left">04:30</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Thursday</td> +<td align="left">05:00</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">05:30.Thursday</td> +<td align="left">05:30</td> +<td align="left">Thursday</td> +<td align="right">0.0011943</td> +<td align="right">0.0006940</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Thursday</td> +<td align="left">06:00</td> +<td align="left">Thursday</td> +<td align="right">0.0019919</td> +<td align="right">0.0008913</td> +</tr> +<tr class="even"> +<td align="left">06:30.Thursday</td> +<td align="left">06:30</td> +<td align="left">Thursday</td> +<td align="right">0.0018997</td> +<td align="right">0.0008508</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Thursday</td> +<td align="left">07:00</td> +<td align="left">Thursday</td> +<td align="right">0.0076987</td> +<td align="right">0.0017212</td> +</tr> +<tr class="even"> +<td align="left">07:30.Thursday</td> +<td align="left">07:30</td> +<td align="left">Thursday</td> +<td align="right">0.0104279</td> +<td align="right">0.0020049</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Thursday</td> +<td align="left">08:00</td> +<td align="left">Thursday</td> +<td align="right">0.0180155</td> +<td align="right">0.0026735</td> +</tr> +<tr class="even"> +<td align="left">08:30.Thursday</td> +<td align="left">08:30</td> +<td align="left">Thursday</td> +<td align="right">0.0213863</td> +<td align="right">0.0029140</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Thursday</td> +<td align="left">09:00</td> +<td align="left">Thursday</td> +<td align="right">0.0197452</td> +<td align="right">0.0027734</td> +</tr> +<tr class="even"> +<td align="left">09:30.Thursday</td> +<td align="left">09:30</td> +<td align="left">Thursday</td> +<td align="right">0.0319658</td> +<td align="right">0.0035258</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Thursday</td> +<td align="left">10:00</td> +<td align="left">Thursday</td> +<td align="right">0.0364103</td> +<td align="right">0.0037379</td> +</tr> +<tr class="even"> +<td align="left">10:30.Thursday</td> +<td align="left">10:30</td> +<td align="left">Thursday</td> +<td align="right">0.0354102</td> +<td align="right">0.0036979</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Thursday</td> +<td align="left">11:00</td> +<td align="left">Thursday</td> +<td align="right">0.0278652</td> +<td align="right">0.0032742</td> +</tr> +<tr class="even"> +<td align="left">11:30.Thursday</td> +<td align="left">11:30</td> +<td align="left">Thursday</td> +<td align="right">0.0221087</td> +<td align="right">0.0029593</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Thursday</td> +<td align="left">12:00</td> +<td align="left">Thursday</td> +<td align="right">0.0177031</td> +<td align="right">0.0026508</td> +</tr> +<tr class="even"> +<td align="left">12:30.Thursday</td> +<td align="left">12:30</td> +<td align="left">Thursday</td> +<td align="right">0.0209848</td> +<td align="right">0.0028600</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Thursday</td> +<td align="left">13:00</td> +<td align="left">Thursday</td> +<td align="right">0.0174340</td> +<td align="right">0.0026122</td> +</tr> +<tr class="even"> +<td align="left">13:30.Thursday</td> +<td align="left">13:30</td> +<td align="left">Thursday</td> +<td align="right">0.0201856</td> +<td align="right">0.0028053</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Thursday</td> +<td align="left">14:00</td> +<td align="left">Thursday</td> +<td align="right">0.0245708</td> +<td align="right">0.0030938</td> +</tr> +<tr class="even"> +<td align="left">14:30.Thursday</td> +<td align="left">14:30</td> +<td align="left">Thursday</td> +<td align="right">0.0217070</td> +<td align="right">0.0029083</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Thursday</td> +<td align="left">15:00</td> +<td align="left">Thursday</td> +<td align="right">0.0204246</td> +<td align="right">0.0028164</td> +</tr> +<tr class="even"> +<td align="left">15:30.Thursday</td> +<td align="left">15:30</td> +<td align="left">Thursday</td> +<td align="right">0.0224539</td> +<td align="right">0.0029533</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Thursday</td> +<td align="left">16:00</td> +<td align="left">Thursday</td> +<td align="right">0.0236558</td> +<td align="right">0.0030328</td> +</tr> +<tr class="even"> +<td align="left">16:30.Thursday</td> +<td align="left">16:30</td> +<td align="left">Thursday</td> +<td align="right">0.0179555</td> +<td align="right">0.0026381</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Thursday</td> +<td align="left">17:00</td> +<td align="left">Thursday</td> +<td align="right">0.0072596</td> +<td align="right">0.0016693</td> +</tr> +<tr class="even"> +<td align="left">17:30.Thursday</td> +<td align="left">17:30</td> +<td align="left">Thursday</td> +<td align="right">0.0118715</td> +<td align="right">0.0021297</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Thursday</td> +<td align="left">18:00</td> +<td align="left">Thursday</td> +<td align="right">0.0136105</td> +<td align="right">0.0022944</td> +</tr> +<tr class="even"> +<td align="left">18:30.Thursday</td> +<td align="left">18:30</td> +<td align="left">Thursday</td> +<td align="right">0.0194210</td> +<td align="right">0.0027572</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Thursday</td> +<td align="left">19:00</td> +<td align="left">Thursday</td> +<td align="right">0.0199375</td> +<td align="right">0.0028008</td> +</tr> +<tr class="even"> +<td align="left">19:30.Thursday</td> +<td align="left">19:30</td> +<td align="left">Thursday</td> +<td align="right">0.0189277</td> +<td align="right">0.0027434</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Thursday</td> +<td align="left">20:00</td> +<td align="left">Thursday</td> +<td align="right">0.0239789</td> +<td align="right">0.0030447</td> +</tr> +<tr class="even"> +<td align="left">20:30.Thursday</td> +<td align="left">20:30</td> +<td align="left">Thursday</td> +<td align="right">0.0186605</td> +<td align="right">0.0027058</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Thursday</td> +<td align="left">21:00</td> +<td align="left">Thursday</td> +<td align="right">0.0157042</td> +<td align="right">0.0025033</td> +</tr> +<tr class="even"> +<td align="left">21:30.Thursday</td> +<td align="left">21:30</td> +<td align="left">Thursday</td> +<td align="right">0.0106970</td> +<td align="right">0.0020555</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Thursday</td> +<td align="left">22:00</td> +<td align="left">Thursday</td> +<td align="right">0.0072075</td> +<td align="right">0.0016530</td> +</tr> +<tr class="even"> +<td align="left">22:30.Thursday</td> +<td align="left">22:30</td> +<td align="left">Thursday</td> +<td align="right">0.0024017</td> +<td align="right">0.0009819</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Thursday</td> +<td align="left">23:00</td> +<td align="left">Thursday</td> +<td align="right">0.0023223</td> +<td align="right">0.0009498</td> +</tr> +<tr class="even"> +<td align="left">23:30.Thursday</td> +<td align="left">23:30</td> +<td align="left">Thursday</td> +<td align="right">0.0011620</td> +<td align="right">0.0006722</td> +</tr> +<tr class="odd"> +<td align="left">00:00.Tuesday</td> +<td align="left">00:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0011632</td> +<td align="right">0.0006717</td> +</tr> +<tr class="even"> +<td align="left">00:30.Tuesday</td> +<td align="left">00:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Tuesday</td> +<td align="left">01:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.Tuesday</td> +<td align="left">01:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Tuesday</td> +<td align="left">02:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Tuesday</td> +<td align="left">02:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Tuesday</td> +<td align="left">03:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Tuesday</td> +<td align="left">03:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Tuesday</td> +<td align="left">04:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Tuesday</td> +<td align="left">04:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Tuesday</td> +<td align="left">05:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">05:30.Tuesday</td> +<td align="left">05:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Tuesday</td> +<td align="left">06:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0004047</td> +<td align="right">0.0004046</td> +</tr> +<tr class="even"> +<td align="left">06:30.Tuesday</td> +<td align="left">06:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0027227</td> +<td align="right">0.0010345</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Tuesday</td> +<td align="left">07:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0065418</td> +<td align="right">0.0016378</td> +</tr> +<tr class="even"> +<td align="left">07:30.Tuesday</td> +<td align="left">07:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0094940</td> +<td align="right">0.0019382</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Tuesday</td> +<td align="left">08:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0173656</td> +<td align="right">0.0026056</td> +</tr> +<tr class="even"> +<td align="left">08:30.Tuesday</td> +<td align="left">08:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0234043</td> +<td align="right">0.0030457</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Tuesday</td> +<td align="left">09:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0305405</td> +<td align="right">0.0034604</td> +</tr> +<tr class="even"> +<td align="left">09:30.Tuesday</td> +<td align="left">09:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0367231</td> +<td align="right">0.0037719</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Tuesday</td> +<td align="left">10:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0336252</td> +<td align="right">0.0035998</td> +</tr> +<tr class="even"> +<td align="left">10:30.Tuesday</td> +<td align="left">10:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0349350</td> +<td align="right">0.0036537</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Tuesday</td> +<td align="left">11:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0293146</td> +<td align="right">0.0033470</td> +</tr> +<tr class="even"> +<td align="left">11:30.Tuesday</td> +<td align="left">11:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0273602</td> +<td align="right">0.0032391</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Tuesday</td> +<td align="left">12:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0202424</td> +<td align="right">0.0027889</td> +</tr> +<tr class="even"> +<td align="left">12:30.Tuesday</td> +<td align="left">12:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0206631</td> +<td align="right">0.0028471</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Tuesday</td> +<td align="left">13:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0164942</td> +<td align="right">0.0025642</td> +</tr> +<tr class="even"> +<td align="left">13:30.Tuesday</td> +<td align="left">13:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0265493</td> +<td align="right">0.0032353</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Tuesday</td> +<td align="left">14:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0296586</td> +<td align="right">0.0034068</td> +</tr> +<tr class="even"> +<td align="left">14:30.Tuesday</td> +<td align="left">14:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0263515</td> +<td align="right">0.0032095</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Tuesday</td> +<td align="left">15:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0252749</td> +<td align="right">0.0031539</td> +</tr> +<tr class="even"> +<td align="left">15:30.Tuesday</td> +<td align="left">15:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0258691</td> +<td align="right">0.0031780</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Tuesday</td> +<td align="left">16:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0250524</td> +<td align="right">0.0031522</td> +</tr> +<tr class="even"> +<td align="left">16:30.Tuesday</td> +<td align="left">16:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0228410</td> +<td align="right">0.0030011</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Tuesday</td> +<td align="left">17:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0092998</td> +<td align="right">0.0019361</td> +</tr> +<tr class="even"> +<td align="left">17:30.Tuesday</td> +<td align="left">17:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0128449</td> +<td align="right">0.0022634</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Tuesday</td> +<td align="left">18:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0138945</td> +<td align="right">0.0023405</td> +</tr> +<tr class="even"> +<td align="left">18:30.Tuesday</td> +<td align="left">18:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0174506</td> +<td align="right">0.0026182</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Tuesday</td> +<td align="left">19:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0179921</td> +<td align="right">0.0026957</td> +</tr> +<tr class="even"> +<td align="left">19:30.Tuesday</td> +<td align="left">19:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0185667</td> +<td align="right">0.0027472</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Tuesday</td> +<td align="left">20:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0166979</td> +<td align="right">0.0025940</td> +</tr> +<tr class="even"> +<td align="left">20:30.Tuesday</td> +<td align="left">20:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0209572</td> +<td align="right">0.0028860</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Tuesday</td> +<td align="left">21:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0164042</td> +<td align="right">0.0025520</td> +</tr> +<tr class="even"> +<td align="left">21:30.Tuesday</td> +<td align="left">21:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0121794</td> +<td align="right">0.0021816</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Tuesday</td> +<td align="left">22:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0106101</td> +<td align="right">0.0020364</td> +</tr> +<tr class="even"> +<td align="left">22:30.Tuesday</td> +<td align="left">22:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0074836</td> +<td align="right">0.0017163</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Tuesday</td> +<td align="left">23:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0032517</td> +<td align="right">0.0011515</td> +</tr> +<tr class="even"> +<td align="left">23:30.Tuesday</td> +<td align="left">23:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0009242</td> +<td align="right">0.0006532</td> +</tr> +<tr class="odd"> +<td align="left">00:00.Wednesday</td> +<td align="left">00:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0017059</td> +<td align="right">0.0008536</td> +</tr> +<tr class="even"> +<td align="left">00:30.Wednesday</td> +<td align="left">00:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0004360</td> +<td align="right">0.0004359</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Wednesday</td> +<td align="left">01:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.Wednesday</td> +<td align="left">01:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Wednesday</td> +<td align="left">02:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Wednesday</td> +<td align="left">02:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Wednesday</td> +<td align="left">03:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Wednesday</td> +<td align="left">03:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Wednesday</td> +<td align="left">04:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Wednesday</td> +<td align="left">04:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Wednesday</td> +<td align="left">05:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0003874</td> +<td align="right">0.0003873</td> +</tr> +<tr class="even"> +<td align="left">05:30.Wednesday</td> +<td align="left">05:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0008184</td> +<td align="right">0.0005793</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Wednesday</td> +<td align="left">06:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0007962</td> +<td align="right">0.0005647</td> +</tr> +<tr class="even"> +<td align="left">06:30.Wednesday</td> +<td align="left">06:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0013411</td> +<td align="right">0.0007747</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Wednesday</td> +<td align="left">07:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0055860</td> +<td align="right">0.0014962</td> +</tr> +<tr class="even"> +<td align="left">07:30.Wednesday</td> +<td align="left">07:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0105585</td> +<td align="right">0.0019952</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Wednesday</td> +<td align="left">08:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0126192</td> +<td align="right">0.0022250</td> +</tr> +<tr class="even"> +<td align="left">08:30.Wednesday</td> +<td align="left">08:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0177218</td> +<td align="right">0.0026293</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Wednesday</td> +<td align="left">09:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0259123</td> +<td align="right">0.0031819</td> +</tr> +<tr class="even"> +<td align="left">09:30.Wednesday</td> +<td align="left">09:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0348525</td> +<td align="right">0.0036829</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Wednesday</td> +<td align="left">10:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0385703</td> +<td align="right">0.0038711</td> +</tr> +<tr class="even"> +<td align="left">10:30.Wednesday</td> +<td align="left">10:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0392206</td> +<td align="right">0.0039139</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Wednesday</td> +<td align="left">11:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0325124</td> +<td align="right">0.0035652</td> +</tr> +<tr class="even"> +<td align="left">11:30.Wednesday</td> +<td align="left">11:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0261493</td> +<td align="right">0.0032100</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Wednesday</td> +<td align="left">12:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0164774</td> +<td align="right">0.0025593</td> +</tr> +<tr class="even"> +<td align="left">12:30.Wednesday</td> +<td align="left">12:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0178117</td> +<td align="right">0.0026680</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Wednesday</td> +<td align="left">13:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0183765</td> +<td align="right">0.0026933</td> +</tr> +<tr class="even"> +<td align="left">13:30.Wednesday</td> +<td align="left">13:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0259931</td> +<td align="right">0.0031936</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Wednesday</td> +<td align="left">14:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0289639</td> +<td align="right">0.0033770</td> +</tr> +<tr class="even"> +<td align="left">14:30.Wednesday</td> +<td align="left">14:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0285402</td> +<td align="right">0.0033502</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Wednesday</td> +<td align="left">15:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0199043</td> +<td align="right">0.0027966</td> +</tr> +<tr class="even"> +<td align="left">15:30.Wednesday</td> +<td align="left">15:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0199029</td> +<td align="right">0.0027952</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Wednesday</td> +<td align="left">16:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0181022</td> +<td align="right">0.0026550</td> +</tr> +<tr class="even"> +<td align="left">16:30.Wednesday</td> +<td align="left">16:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0166576</td> +<td align="right">0.0025569</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Wednesday</td> +<td align="left">17:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0114209</td> +<td align="right">0.0021159</td> +</tr> +<tr class="even"> +<td align="left">17:30.Wednesday</td> +<td align="left">17:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0102762</td> +<td align="right">0.0020104</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Wednesday</td> +<td align="left">18:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0122735</td> +<td align="right">0.0021986</td> +</tr> +<tr class="even"> +<td align="left">18:30.Wednesday</td> +<td align="left">18:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0178214</td> +<td align="right">0.0026430</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Wednesday</td> +<td align="left">19:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0136438</td> +<td align="right">0.0023284</td> +</tr> +<tr class="even"> +<td align="left">19:30.Wednesday</td> +<td align="left">19:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0159270</td> +<td align="right">0.0024734</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Wednesday</td> +<td align="left">20:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0194519</td> +<td align="right">0.0027338</td> +</tr> +<tr class="even"> +<td align="left">20:30.Wednesday</td> +<td align="left">20:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0202401</td> +<td align="right">0.0027873</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Wednesday</td> +<td align="left">21:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0177501</td> +<td align="right">0.0026328</td> +</tr> +<tr class="even"> +<td align="left">21:30.Wednesday</td> +<td align="left">21:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0142354</td> +<td align="right">0.0023635</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Wednesday</td> +<td align="left">22:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0107275</td> +<td align="right">0.0020592</td> +</tr> +<tr class="even"> +<td align="left">22:30.Wednesday</td> +<td align="left">22:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0072182</td> +<td align="right">0.0017016</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Wednesday</td> +<td align="left">23:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0040105</td> +<td align="right">0.0012692</td> +</tr> +<tr class="even"> +<td align="left">23:30.Wednesday</td> +<td align="left">23:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0016356</td> +<td align="right">0.0008201</td> +</tr> +</tbody> +</table> +<table> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="left">st_halfhour</th> +<th align="left">r_dow</th> +<th align="right">Any_laundry_home</th> +<th align="right">se</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">00:00.Friday</td> +<td align="left">00:00</td> +<td align="left">Friday</td> +<td align="right">0.0038984</td> +<td align="right">0.0038905</td> +</tr> +<tr class="even"> +<td align="left">00:30.Friday</td> +<td align="left">00:30</td> +<td align="left">Friday</td> +<td align="right">0.0038984</td> +<td align="right">0.0038905</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Friday</td> +<td align="left">01:00</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.Friday</td> +<td align="left">01:30</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Friday</td> +<td align="left">02:00</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Friday</td> +<td align="left">02:30</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Friday</td> +<td align="left">03:00</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Friday</td> +<td align="left">03:30</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Friday</td> +<td align="left">04:00</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Friday</td> +<td align="left">04:30</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Friday</td> +<td align="left">05:00</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">05:30.Friday</td> +<td align="left">05:30</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Friday</td> +<td align="left">06:00</td> +<td align="left">Friday</td> +<td align="right">0.0026770</td> +<td align="right">0.0026749</td> +</tr> +<tr class="even"> +<td align="left">06:30.Friday</td> +<td align="left">06:30</td> +<td align="left">Friday</td> +<td align="right">0.0026770</td> +<td align="right">0.0026749</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Friday</td> +<td align="left">07:00</td> +<td align="left">Friday</td> +<td align="right">0.0170177</td> +<td align="right">0.0077478</td> +</tr> +<tr class="even"> +<td align="left">07:30.Friday</td> +<td align="left">07:30</td> +<td align="left">Friday</td> +<td align="right">0.0242379</td> +<td align="right">0.0092930</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Friday</td> +<td align="left">08:00</td> +<td align="left">Friday</td> +<td align="right">0.0268128</td> +<td align="right">0.0095394</td> +</tr> +<tr class="even"> +<td align="left">08:30.Friday</td> +<td align="left">08:30</td> +<td align="left">Friday</td> +<td align="right">0.0267058</td> +<td align="right">0.0101583</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Friday</td> +<td align="left">09:00</td> +<td align="left">Friday</td> +<td align="right">0.0253632</td> +<td align="right">0.0097334</td> +</tr> +<tr class="even"> +<td align="left">09:30.Friday</td> +<td align="left">09:30</td> +<td align="left">Friday</td> +<td align="right">0.0315013</td> +<td align="right">0.0106625</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Friday</td> +<td align="left">10:00</td> +<td align="left">Friday</td> +<td align="right">0.0359375</td> +<td align="right">0.0114386</td> +</tr> +<tr class="even"> +<td align="left">10:30.Friday</td> +<td align="left">10:30</td> +<td align="left">Friday</td> +<td align="right">0.0342891</td> +<td align="right">0.0114405</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Friday</td> +<td align="left">11:00</td> +<td align="left">Friday</td> +<td align="right">0.0218640</td> +<td align="right">0.0091293</td> +</tr> +<tr class="even"> +<td align="left">11:30.Friday</td> +<td align="left">11:30</td> +<td align="left">Friday</td> +<td align="right">0.0157292</td> +<td align="right">0.0072380</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Friday</td> +<td align="left">12:00</td> +<td align="left">Friday</td> +<td align="right">0.0129413</td> +<td align="right">0.0065281</td> +</tr> +<tr class="even"> +<td align="left">12:30.Friday</td> +<td align="left">12:30</td> +<td align="left">Friday</td> +<td align="right">0.0073232</td> +<td align="right">0.0053240</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Friday</td> +<td align="left">13:00</td> +<td align="left">Friday</td> +<td align="right">0.0094221</td> +<td align="right">0.0057152</td> +</tr> +<tr class="even"> +<td align="left">13:30.Friday</td> +<td align="left">13:30</td> +<td align="left">Friday</td> +<td align="right">0.0178800</td> +<td align="right">0.0082194</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Friday</td> +<td align="left">14:00</td> +<td align="left">Friday</td> +<td align="right">0.0244474</td> +<td align="right">0.0094421</td> +</tr> +<tr class="even"> +<td align="left">14:30.Friday</td> +<td align="left">14:30</td> +<td align="left">Friday</td> +<td align="right">0.0167299</td> +<td align="right">0.0069318</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Friday</td> +<td align="left">15:00</td> +<td align="left">Friday</td> +<td align="right">0.0140319</td> +<td align="right">0.0063902</td> +</tr> +<tr class="even"> +<td align="left">15:30.Friday</td> +<td align="left">15:30</td> +<td align="left">Friday</td> +<td align="right">0.0159001</td> +<td align="right">0.0071352</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Friday</td> +<td align="left">16:00</td> +<td align="left">Friday</td> +<td align="right">0.0213837</td> +<td align="right">0.0110187</td> +</tr> +<tr class="even"> +<td align="left">16:30.Friday</td> +<td align="left">16:30</td> +<td align="left">Friday</td> +<td align="right">0.0065331</td> +<td align="right">0.0046715</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Friday</td> +<td align="left">17:00</td> +<td align="left">Friday</td> +<td align="right">0.0181322</td> +<td align="right">0.0105596</td> +</tr> +<tr class="even"> +<td align="left">17:30.Friday</td> +<td align="left">17:30</td> +<td align="left">Friday</td> +<td align="right">0.0126491</td> +<td align="right">0.0098732</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Friday</td> +<td align="left">18:00</td> +<td align="left">Friday</td> +<td align="right">0.0136120</td> +<td align="right">0.0102127</td> +</tr> +<tr class="even"> +<td align="left">18:30.Friday</td> +<td align="left">18:30</td> +<td align="left">Friday</td> +<td align="right">0.0166877</td> +<td align="right">0.0106364</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Friday</td> +<td align="left">19:00</td> +<td align="left">Friday</td> +<td align="right">0.0163883</td> +<td align="right">0.0105279</td> +</tr> +<tr class="even"> +<td align="left">19:30.Friday</td> +<td align="left">19:30</td> +<td align="left">Friday</td> +<td align="right">0.0094389</td> +<td align="right">0.0093673</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Friday</td> +<td align="left">20:00</td> +<td align="left">Friday</td> +<td align="right">0.0119430</td> +<td align="right">0.0069458</td> +</tr> +<tr class="even"> +<td align="left">20:30.Friday</td> +<td align="left">20:30</td> +<td align="left">Friday</td> +<td align="right">0.0163535</td> +<td align="right">0.0073656</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Friday</td> +<td align="left">21:00</td> +<td align="left">Friday</td> +<td align="right">0.0167281</td> +<td align="right">0.0075331</td> +</tr> +<tr class="even"> +<td align="left">21:30.Friday</td> +<td align="left">21:30</td> +<td align="left">Friday</td> +<td align="right">0.0152585</td> +<td align="right">0.0075713</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Friday</td> +<td align="left">22:00</td> +<td align="left">Friday</td> +<td align="right">0.0038984</td> +<td align="right">0.0038905</td> +</tr> +<tr class="even"> +<td align="left">22:30.Friday</td> +<td align="left">22:30</td> +<td align="left">Friday</td> +<td align="right">0.0038984</td> +<td align="right">0.0038905</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Friday</td> +<td align="left">23:00</td> +<td align="left">Friday</td> +<td align="right">0.0038984</td> +<td align="right">0.0038905</td> +</tr> +<tr class="even"> +<td align="left">23:30.Friday</td> +<td align="left">23:30</td> +<td align="left">Friday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">00:00.Monday</td> +<td align="left">00:00</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">00:30.Monday</td> +<td align="left">00:30</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Monday</td> +<td align="left">01:00</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.Monday</td> +<td align="left">01:30</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Monday</td> +<td align="left">02:00</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Monday</td> +<td align="left">02:30</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Monday</td> +<td align="left">03:00</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Monday</td> +<td align="left">03:30</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Monday</td> +<td align="left">04:00</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Monday</td> +<td align="left">04:30</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Monday</td> +<td align="left">05:00</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">05:30.Monday</td> +<td align="left">05:30</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Monday</td> +<td align="left">06:00</td> +<td align="left">Monday</td> +<td align="right">0.0025772</td> +<td align="right">0.0025744</td> +</tr> +<tr class="even"> +<td align="left">06:30.Monday</td> +<td align="left">06:30</td> +<td align="left">Monday</td> +<td align="right">0.0084764</td> +<td align="right">0.0049191</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Monday</td> +<td align="left">07:00</td> +<td align="left">Monday</td> +<td align="right">0.0128566</td> +<td align="right">0.0058477</td> +</tr> +<tr class="even"> +<td align="left">07:30.Monday</td> +<td align="left">07:30</td> +<td align="left">Monday</td> +<td align="right">0.0304536</td> +<td align="right">0.0092724</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Monday</td> +<td align="left">08:00</td> +<td align="left">Monday</td> +<td align="right">0.0372646</td> +<td align="right">0.0105226</td> +</tr> +<tr class="even"> +<td align="left">08:30.Monday</td> +<td align="left">08:30</td> +<td align="left">Monday</td> +<td align="right">0.0361415</td> +<td align="right">0.0105416</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Monday</td> +<td align="left">09:00</td> +<td align="left">Monday</td> +<td align="right">0.0333648</td> +<td align="right">0.0092779</td> +</tr> +<tr class="even"> +<td align="left">09:30.Monday</td> +<td align="left">09:30</td> +<td align="left">Monday</td> +<td align="right">0.0250119</td> +<td align="right">0.0084171</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Monday</td> +<td align="left">10:00</td> +<td align="left">Monday</td> +<td align="right">0.0286481</td> +<td align="right">0.0087626</td> +</tr> +<tr class="even"> +<td align="left">10:30.Monday</td> +<td align="left">10:30</td> +<td align="left">Monday</td> +<td align="right">0.0214633</td> +<td align="right">0.0077000</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Monday</td> +<td align="left">11:00</td> +<td align="left">Monday</td> +<td align="right">0.0216576</td> +<td align="right">0.0076848</td> +</tr> +<tr class="even"> +<td align="left">11:30.Monday</td> +<td align="left">11:30</td> +<td align="left">Monday</td> +<td align="right">0.0170215</td> +<td align="right">0.0065341</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Monday</td> +<td align="left">12:00</td> +<td align="left">Monday</td> +<td align="right">0.0159740</td> +<td align="right">0.0065412</td> +</tr> +<tr class="even"> +<td align="left">12:30.Monday</td> +<td align="left">12:30</td> +<td align="left">Monday</td> +<td align="right">0.0112036</td> +<td align="right">0.0056444</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Monday</td> +<td align="left">13:00</td> +<td align="left">Monday</td> +<td align="right">0.0060717</td> +<td align="right">0.0043284</td> +</tr> +<tr class="even"> +<td align="left">13:30.Monday</td> +<td align="left">13:30</td> +<td align="left">Monday</td> +<td align="right">0.0083280</td> +<td align="right">0.0049194</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Monday</td> +<td align="left">14:00</td> +<td align="left">Monday</td> +<td align="right">0.0137849</td> +<td align="right">0.0058541</td> +</tr> +<tr class="even"> +<td align="left">14:30.Monday</td> +<td align="left">14:30</td> +<td align="left">Monday</td> +<td align="right">0.0137849</td> +<td align="right">0.0058541</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Monday</td> +<td align="left">15:00</td> +<td align="left">Monday</td> +<td align="right">0.0067633</td> +<td align="right">0.0039973</td> +</tr> +<tr class="even"> +<td align="left">15:30.Monday</td> +<td align="left">15:30</td> +<td align="left">Monday</td> +<td align="right">0.0067633</td> +<td align="right">0.0039973</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Monday</td> +<td align="left">16:00</td> +<td align="left">Monday</td> +<td align="right">0.0117024</td> +<td align="right">0.0079286</td> +</tr> +<tr class="even"> +<td align="left">16:30.Monday</td> +<td align="left">16:30</td> +<td align="left">Monday</td> +<td align="right">0.0097672</td> +<td align="right">0.0076597</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Monday</td> +<td align="left">17:00</td> +<td align="left">Monday</td> +<td align="right">0.0050275</td> +<td align="right">0.0035488</td> +</tr> +<tr class="even"> +<td align="left">17:30.Monday</td> +<td align="left">17:30</td> +<td align="left">Monday</td> +<td align="right">0.0073960</td> +<td align="right">0.0043126</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Monday</td> +<td align="left">18:00</td> +<td align="left">Monday</td> +<td align="right">0.0115815</td> +<td align="right">0.0063117</td> +</tr> +<tr class="even"> +<td align="left">18:30.Monday</td> +<td align="left">18:30</td> +<td align="left">Monday</td> +<td align="right">0.0107879</td> +<td align="right">0.0064776</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Monday</td> +<td align="left">19:00</td> +<td align="left">Monday</td> +<td align="right">0.0160005</td> +<td align="right">0.0075062</td> +</tr> +<tr class="even"> +<td align="left">19:30.Monday</td> +<td align="left">19:30</td> +<td align="left">Monday</td> +<td align="right">0.0154671</td> +<td align="right">0.0073514</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Monday</td> +<td align="left">20:00</td> +<td align="left">Monday</td> +<td align="right">0.0146169</td> +<td align="right">0.0060750</td> +</tr> +<tr class="even"> +<td align="left">20:30.Monday</td> +<td align="left">20:30</td> +<td align="left">Monday</td> +<td align="right">0.0122765</td> +<td align="right">0.0056461</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Monday</td> +<td align="left">21:00</td> +<td align="left">Monday</td> +<td align="right">0.0034208</td> +<td align="right">0.0024221</td> +</tr> +<tr class="even"> +<td align="left">21:30.Monday</td> +<td align="left">21:30</td> +<td align="left">Monday</td> +<td align="right">0.0055495</td> +<td align="right">0.0032217</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Monday</td> +<td align="left">22:00</td> +<td align="left">Monday</td> +<td align="right">0.0064419</td> +<td align="right">0.0037149</td> +</tr> +<tr class="even"> +<td align="left">22:30.Monday</td> +<td align="left">22:30</td> +<td align="left">Monday</td> +<td align="right">0.0022617</td> +<td align="right">0.0022600</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Monday</td> +<td align="left">23:00</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">23:30.Monday</td> +<td align="left">23:30</td> +<td align="left">Monday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">00:00.Saturday</td> +<td align="left">00:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">00:30.Saturday</td> +<td align="left">00:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Saturday</td> +<td align="left">01:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.Saturday</td> +<td align="left">01:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Saturday</td> +<td align="left">02:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Saturday</td> +<td align="left">02:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Saturday</td> +<td align="left">03:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Saturday</td> +<td align="left">03:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Saturday</td> +<td align="left">04:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Saturday</td> +<td align="left">04:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Saturday</td> +<td align="left">05:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">05:30.Saturday</td> +<td align="left">05:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Saturday</td> +<td align="left">06:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">06:30.Saturday</td> +<td align="left">06:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Saturday</td> +<td align="left">07:00</td> +<td align="left">Saturday</td> +<td align="right">0.0020800</td> +<td align="right">0.0020796</td> +</tr> +<tr class="even"> +<td align="left">07:30.Saturday</td> +<td align="left">07:30</td> +<td align="left">Saturday</td> +<td align="right">0.0119694</td> +<td align="right">0.0061040</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Saturday</td> +<td align="left">08:00</td> +<td align="left">Saturday</td> +<td align="right">0.0116605</td> +<td align="right">0.0059290</td> +</tr> +<tr class="even"> +<td align="left">08:30.Saturday</td> +<td align="left">08:30</td> +<td align="left">Saturday</td> +<td align="right">0.0190270</td> +<td align="right">0.0081409</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Saturday</td> +<td align="left">09:00</td> +<td align="left">Saturday</td> +<td align="right">0.0259417</td> +<td align="right">0.0095114</td> +</tr> +<tr class="even"> +<td align="left">09:30.Saturday</td> +<td align="left">09:30</td> +<td align="left">Saturday</td> +<td align="right">0.0333173</td> +<td align="right">0.0109988</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Saturday</td> +<td align="left">10:00</td> +<td align="left">Saturday</td> +<td align="right">0.0259460</td> +<td align="right">0.0093380</td> +</tr> +<tr class="even"> +<td align="left">10:30.Saturday</td> +<td align="left">10:30</td> +<td align="left">Saturday</td> +<td align="right">0.0154620</td> +<td align="right">0.0063145</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Saturday</td> +<td align="left">11:00</td> +<td align="left">Saturday</td> +<td align="right">0.0124675</td> +<td align="right">0.0055724</td> +</tr> +<tr class="even"> +<td align="left">11:30.Saturday</td> +<td align="left">11:30</td> +<td align="left">Saturday</td> +<td align="right">0.0051512</td> +<td align="right">0.0036448</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Saturday</td> +<td align="left">12:00</td> +<td align="left">Saturday</td> +<td align="right">0.0105112</td> +<td align="right">0.0067676</td> +</tr> +<tr class="even"> +<td align="left">12:30.Saturday</td> +<td align="left">12:30</td> +<td align="left">Saturday</td> +<td align="right">0.0188715</td> +<td align="right">0.0096156</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Saturday</td> +<td align="left">13:00</td> +<td align="left">Saturday</td> +<td align="right">0.0105063</td> +<td align="right">0.0066532</td> +</tr> +<tr class="even"> +<td align="left">13:30.Saturday</td> +<td align="left">13:30</td> +<td align="left">Saturday</td> +<td align="right">0.0020800</td> +<td align="right">0.0020796</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Saturday</td> +<td align="left">14:00</td> +<td align="left">Saturday</td> +<td align="right">0.0036136</td> +<td align="right">0.0036073</td> +</tr> +<tr class="even"> +<td align="left">14:30.Saturday</td> +<td align="left">14:30</td> +<td align="left">Saturday</td> +<td align="right">0.0059125</td> +<td align="right">0.0042729</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Saturday</td> +<td align="left">15:00</td> +<td align="left">Saturday</td> +<td align="right">0.0036136</td> +<td align="right">0.0036073</td> +</tr> +<tr class="even"> +<td align="left">15:30.Saturday</td> +<td align="left">15:30</td> +<td align="left">Saturday</td> +<td align="right">0.0114240</td> +<td align="right">0.0065741</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Saturday</td> +<td align="left">16:00</td> +<td align="left">Saturday</td> +<td align="right">0.0079475</td> +<td align="right">0.0056048</td> +</tr> +<tr class="even"> +<td align="left">16:30.Saturday</td> +<td align="left">16:30</td> +<td align="left">Saturday</td> +<td align="right">0.0097744</td> +<td align="right">0.0057138</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Saturday</td> +<td align="left">17:00</td> +<td align="left">Saturday</td> +<td align="right">0.0057436</td> +<td align="right">0.0041049</td> +</tr> +<tr class="even"> +<td align="left">17:30.Saturday</td> +<td align="left">17:30</td> +<td align="left">Saturday</td> +<td align="right">0.0081214</td> +<td align="right">0.0047387</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Saturday</td> +<td align="left">18:00</td> +<td align="left">Saturday</td> +<td align="right">0.0083488</td> +<td align="right">0.0048567</td> +</tr> +<tr class="even"> +<td align="left">18:30.Saturday</td> +<td align="left">18:30</td> +<td align="left">Saturday</td> +<td align="right">0.0034279</td> +<td align="right">0.0034227</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Saturday</td> +<td align="left">19:00</td> +<td align="left">Saturday</td> +<td align="right">0.0072689</td> +<td align="right">0.0051300</td> +</tr> +<tr class="even"> +<td align="left">19:30.Saturday</td> +<td align="left">19:30</td> +<td align="left">Saturday</td> +<td align="right">0.0072689</td> +<td align="right">0.0051300</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Saturday</td> +<td align="left">20:00</td> +<td align="left">Saturday</td> +<td align="right">0.0072689</td> +<td align="right">0.0051300</td> +</tr> +<tr class="even"> +<td align="left">20:30.Saturday</td> +<td align="left">20:30</td> +<td align="left">Saturday</td> +<td align="right">0.0072689</td> +<td align="right">0.0051300</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Saturday</td> +<td align="left">21:00</td> +<td align="left">Saturday</td> +<td align="right">0.0038410</td> +<td align="right">0.0038334</td> +</tr> +<tr class="even"> +<td align="left">21:30.Saturday</td> +<td align="left">21:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Saturday</td> +<td align="left">22:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">22:30.Saturday</td> +<td align="left">22:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Saturday</td> +<td align="left">23:00</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">23:30.Saturday</td> +<td align="left">23:30</td> +<td align="left">Saturday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">00:00.Sunday</td> +<td align="left">00:00</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">00:30.Sunday</td> +<td align="left">00:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Sunday</td> +<td align="left">01:00</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.Sunday</td> +<td align="left">01:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Sunday</td> +<td align="left">02:00</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Sunday</td> +<td align="left">02:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Sunday</td> +<td align="left">03:00</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Sunday</td> +<td align="left">03:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Sunday</td> +<td align="left">04:00</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Sunday</td> +<td align="left">04:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Sunday</td> +<td align="left">05:00</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">05:30.Sunday</td> +<td align="left">05:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Sunday</td> +<td align="left">06:00</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">06:30.Sunday</td> +<td align="left">06:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Sunday</td> +<td align="left">07:00</td> +<td align="left">Sunday</td> +<td align="right">0.0017522</td> +<td align="right">0.0017516</td> +</tr> +<tr class="even"> +<td align="left">07:30.Sunday</td> +<td align="left">07:30</td> +<td align="left">Sunday</td> +<td align="right">0.0058872</td> +<td align="right">0.0041663</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Sunday</td> +<td align="left">08:00</td> +<td align="left">Sunday</td> +<td align="right">0.0142934</td> +<td align="right">0.0063965</td> +</tr> +<tr class="even"> +<td align="left">08:30.Sunday</td> +<td align="left">08:30</td> +<td align="left">Sunday</td> +<td align="right">0.0259706</td> +<td align="right">0.0082367</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Sunday</td> +<td align="left">09:00</td> +<td align="left">Sunday</td> +<td align="right">0.0355208</td> +<td align="right">0.0091828</td> +</tr> +<tr class="even"> +<td align="left">09:30.Sunday</td> +<td align="left">09:30</td> +<td align="left">Sunday</td> +<td align="right">0.0311270</td> +<td align="right">0.0092836</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Sunday</td> +<td align="left">10:00</td> +<td align="left">Sunday</td> +<td align="right">0.0538965</td> +<td align="right">0.0118618</td> +</tr> +<tr class="even"> +<td align="left">10:30.Sunday</td> +<td align="left">10:30</td> +<td align="left">Sunday</td> +<td align="right">0.0379432</td> +<td align="right">0.0098284</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Sunday</td> +<td align="left">11:00</td> +<td align="left">Sunday</td> +<td align="right">0.0309188</td> +<td align="right">0.0089866</td> +</tr> +<tr class="even"> +<td align="left">11:30.Sunday</td> +<td align="left">11:30</td> +<td align="left">Sunday</td> +<td align="right">0.0253200</td> +<td align="right">0.0079866</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Sunday</td> +<td align="left">12:00</td> +<td align="left">Sunday</td> +<td align="right">0.0187598</td> +<td align="right">0.0066967</td> +</tr> +<tr class="even"> +<td align="left">12:30.Sunday</td> +<td align="left">12:30</td> +<td align="left">Sunday</td> +<td align="right">0.0202072</td> +<td align="right">0.0080422</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Sunday</td> +<td align="left">13:00</td> +<td align="left">Sunday</td> +<td align="right">0.0247415</td> +<td align="right">0.0085821</td> +</tr> +<tr class="even"> +<td align="left">13:30.Sunday</td> +<td align="left">13:30</td> +<td align="left">Sunday</td> +<td align="right">0.0343488</td> +<td align="right">0.0098328</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Sunday</td> +<td align="left">14:00</td> +<td align="left">Sunday</td> +<td align="right">0.0384619</td> +<td align="right">0.0098068</td> +</tr> +<tr class="even"> +<td align="left">14:30.Sunday</td> +<td align="left">14:30</td> +<td align="left">Sunday</td> +<td align="right">0.0152902</td> +<td align="right">0.0058437</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Sunday</td> +<td align="left">15:00</td> +<td align="left">Sunday</td> +<td align="right">0.0235043</td> +<td align="right">0.0075190</td> +</tr> +<tr class="even"> +<td align="left">15:30.Sunday</td> +<td align="left">15:30</td> +<td align="left">Sunday</td> +<td align="right">0.0316686</td> +<td align="right">0.0092213</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Sunday</td> +<td align="left">16:00</td> +<td align="left">Sunday</td> +<td align="right">0.0350214</td> +<td align="right">0.0102298</td> +</tr> +<tr class="even"> +<td align="left">16:30.Sunday</td> +<td align="left">16:30</td> +<td align="left">Sunday</td> +<td align="right">0.0204069</td> +<td align="right">0.0072664</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Sunday</td> +<td align="left">17:00</td> +<td align="left">Sunday</td> +<td align="right">0.0133188</td> +<td align="right">0.0066222</td> +</tr> +<tr class="even"> +<td align="left">17:30.Sunday</td> +<td align="left">17:30</td> +<td align="left">Sunday</td> +<td align="right">0.0052372</td> +<td align="right">0.0038641</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Sunday</td> +<td align="left">18:00</td> +<td align="left">Sunday</td> +<td align="right">0.0105661</td> +<td align="right">0.0054807</td> +</tr> +<tr class="even"> +<td align="left">18:30.Sunday</td> +<td align="left">18:30</td> +<td align="left">Sunday</td> +<td align="right">0.0059875</td> +<td align="right">0.0042638</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Sunday</td> +<td align="left">19:00</td> +<td align="left">Sunday</td> +<td align="right">0.0139238</td> +<td align="right">0.0067357</td> +</tr> +<tr class="even"> +<td align="left">19:30.Sunday</td> +<td align="left">19:30</td> +<td align="left">Sunday</td> +<td align="right">0.0123865</td> +<td align="right">0.0061241</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Sunday</td> +<td align="left">20:00</td> +<td align="left">Sunday</td> +<td align="right">0.0188551</td> +<td align="right">0.0074522</td> +</tr> +<tr class="even"> +<td align="left">20:30.Sunday</td> +<td align="left">20:30</td> +<td align="left">Sunday</td> +<td align="right">0.0157974</td> +<td align="right">0.0066759</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Sunday</td> +<td align="left">21:00</td> +<td align="left">Sunday</td> +<td align="right">0.0122935</td> +<td align="right">0.0061597</td> +</tr> +<tr class="even"> +<td align="left">21:30.Sunday</td> +<td align="left">21:30</td> +<td align="left">Sunday</td> +<td align="right">0.0043588</td> +<td align="right">0.0031019</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Sunday</td> +<td align="left">22:00</td> +<td align="left">Sunday</td> +<td align="right">0.0043588</td> +<td align="right">0.0031019</td> +</tr> +<tr class="even"> +<td align="left">22:30.Sunday</td> +<td align="left">22:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Sunday</td> +<td align="left">23:00</td> +<td align="left">Sunday</td> +<td align="right">0.0023884</td> +<td align="right">0.0023860</td> +</tr> +<tr class="even"> +<td align="left">23:30.Sunday</td> +<td align="left">23:30</td> +<td align="left">Sunday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">00:00.Thursday</td> +<td align="left">00:00</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">00:30.Thursday</td> +<td align="left">00:30</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Thursday</td> +<td align="left">01:00</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.Thursday</td> +<td align="left">01:30</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Thursday</td> +<td align="left">02:00</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Thursday</td> +<td align="left">02:30</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Thursday</td> +<td align="left">03:00</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Thursday</td> +<td align="left">03:30</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Thursday</td> +<td align="left">04:00</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Thursday</td> +<td align="left">04:30</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Thursday</td> +<td align="left">05:00</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">05:30.Thursday</td> +<td align="left">05:30</td> +<td align="left">Thursday</td> +<td align="right">0.0017615</td> +<td align="right">0.0017606</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Thursday</td> +<td align="left">06:00</td> +<td align="left">Thursday</td> +<td align="right">0.0017615</td> +<td align="right">0.0017606</td> +</tr> +<tr class="even"> +<td align="left">06:30.Thursday</td> +<td align="left">06:30</td> +<td align="left">Thursday</td> +<td align="right">0.0042723</td> +<td align="right">0.0030616</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Thursday</td> +<td align="left">07:00</td> +<td align="left">Thursday</td> +<td align="right">0.0144892</td> +<td align="right">0.0059183</td> +</tr> +<tr class="even"> +<td align="left">07:30.Thursday</td> +<td align="left">07:30</td> +<td align="left">Thursday</td> +<td align="right">0.0181486</td> +<td align="right">0.0064627</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Thursday</td> +<td align="left">08:00</td> +<td align="left">Thursday</td> +<td align="right">0.0150695</td> +<td align="right">0.0057093</td> +</tr> +<tr class="even"> +<td align="left">08:30.Thursday</td> +<td align="left">08:30</td> +<td align="left">Thursday</td> +<td align="right">0.0130474</td> +<td align="right">0.0054379</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Thursday</td> +<td align="left">09:00</td> +<td align="left">Thursday</td> +<td align="right">0.0144778</td> +<td align="right">0.0060546</td> +</tr> +<tr class="even"> +<td align="left">09:30.Thursday</td> +<td align="left">09:30</td> +<td align="left">Thursday</td> +<td align="right">0.0103292</td> +<td align="right">0.0047090</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Thursday</td> +<td align="left">10:00</td> +<td align="left">Thursday</td> +<td align="right">0.0114390</td> +<td align="right">0.0052532</td> +</tr> +<tr class="even"> +<td align="left">10:30.Thursday</td> +<td align="left">10:30</td> +<td align="left">Thursday</td> +<td align="right">0.0037632</td> +<td align="right">0.0026634</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Thursday</td> +<td align="left">11:00</td> +<td align="left">Thursday</td> +<td align="right">0.0073763</td> +<td align="right">0.0044661</td> +</tr> +<tr class="even"> +<td align="left">11:30.Thursday</td> +<td align="left">11:30</td> +<td align="left">Thursday</td> +<td align="right">0.0039276</td> +<td align="right">0.0028243</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Thursday</td> +<td align="left">12:00</td> +<td align="left">Thursday</td> +<td align="right">0.0055342</td> +<td align="right">0.0032469</td> +</tr> +<tr class="even"> +<td align="left">12:30.Thursday</td> +<td align="left">12:30</td> +<td align="left">Thursday</td> +<td align="right">0.0106057</td> +<td align="right">0.0049100</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Thursday</td> +<td align="left">13:00</td> +<td align="left">Thursday</td> +<td align="right">0.0215173</td> +<td align="right">0.0073213</td> +</tr> +<tr class="even"> +<td align="left">13:30.Thursday</td> +<td align="left">13:30</td> +<td align="left">Thursday</td> +<td align="right">0.0137892</td> +<td align="right">0.0057665</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Thursday</td> +<td align="left">14:00</td> +<td align="left">Thursday</td> +<td align="right">0.0100902</td> +<td align="right">0.0045491</td> +</tr> +<tr class="even"> +<td align="left">14:30.Thursday</td> +<td align="left">14:30</td> +<td align="left">Thursday</td> +<td align="right">0.0081116</td> +<td align="right">0.0041029</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Thursday</td> +<td align="left">15:00</td> +<td align="left">Thursday</td> +<td align="right">0.0140320</td> +<td align="right">0.0059088</td> +</tr> +<tr class="even"> +<td align="left">15:30.Thursday</td> +<td align="left">15:30</td> +<td align="left">Thursday</td> +<td align="right">0.0107233</td> +<td align="right">0.0054381</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Thursday</td> +<td align="left">16:00</td> +<td align="left">Thursday</td> +<td align="right">0.0086119</td> +<td align="right">0.0050214</td> +</tr> +<tr class="even"> +<td align="left">16:30.Thursday</td> +<td align="left">16:30</td> +<td align="left">Thursday</td> +<td align="right">0.0158073</td> +<td align="right">0.0065324</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Thursday</td> +<td align="left">17:00</td> +<td align="left">Thursday</td> +<td align="right">0.0082402</td> +<td align="right">0.0047446</td> +</tr> +<tr class="even"> +<td align="left">17:30.Thursday</td> +<td align="left">17:30</td> +<td align="left">Thursday</td> +<td align="right">0.0057025</td> +<td align="right">0.0040204</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Thursday</td> +<td align="left">18:00</td> +<td align="left">Thursday</td> +<td align="right">0.0127536</td> +<td align="right">0.0057537</td> +</tr> +<tr class="even"> +<td align="left">18:30.Thursday</td> +<td align="left">18:30</td> +<td align="left">Thursday</td> +<td align="right">0.0138595</td> +<td align="right">0.0057318</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Thursday</td> +<td align="left">19:00</td> +<td align="left">Thursday</td> +<td align="right">0.0220689</td> +<td align="right">0.0070922</td> +</tr> +<tr class="even"> +<td align="left">19:30.Thursday</td> +<td align="left">19:30</td> +<td align="left">Thursday</td> +<td align="right">0.0102572</td> +<td align="right">0.0045872</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Thursday</td> +<td align="left">20:00</td> +<td align="left">Thursday</td> +<td align="right">0.0110372</td> +<td align="right">0.0049213</td> +</tr> +<tr class="even"> +<td align="left">20:30.Thursday</td> +<td align="left">20:30</td> +<td align="left">Thursday</td> +<td align="right">0.0121501</td> +<td align="right">0.0049883</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Thursday</td> +<td align="left">21:00</td> +<td align="left">Thursday</td> +<td align="right">0.0080370</td> +<td align="right">0.0040263</td> +</tr> +<tr class="even"> +<td align="left">21:30.Thursday</td> +<td align="left">21:30</td> +<td align="left">Thursday</td> +<td align="right">0.0104456</td> +<td align="right">0.0047686</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Thursday</td> +<td align="left">22:00</td> +<td align="left">Thursday</td> +<td align="right">0.0072626</td> +<td align="right">0.0036492</td> +</tr> +<tr class="even"> +<td align="left">22:30.Thursday</td> +<td align="left">22:30</td> +<td align="left">Thursday</td> +<td align="right">0.0021114</td> +<td align="right">0.0021097</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Thursday</td> +<td align="left">23:00</td> +<td align="left">Thursday</td> +<td align="right">0.0021114</td> +<td align="right">0.0021097</td> +</tr> +<tr class="even"> +<td align="left">23:30.Thursday</td> +<td align="left">23:30</td> +<td align="left">Thursday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">00:00.Tuesday</td> +<td align="left">00:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">00:30.Tuesday</td> +<td align="left">00:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Tuesday</td> +<td align="left">01:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.Tuesday</td> +<td align="left">01:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Tuesday</td> +<td align="left">02:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Tuesday</td> +<td align="left">02:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Tuesday</td> +<td align="left">03:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Tuesday</td> +<td align="left">03:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Tuesday</td> +<td align="left">04:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Tuesday</td> +<td align="left">04:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Tuesday</td> +<td align="left">05:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0034730</td> +<td align="right">0.0034659</td> +</tr> +<tr class="even"> +<td align="left">05:30.Tuesday</td> +<td align="left">05:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0034730</td> +<td align="right">0.0034659</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Tuesday</td> +<td align="left">06:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0034730</td> +<td align="right">0.0034659</td> +</tr> +<tr class="even"> +<td align="left">06:30.Tuesday</td> +<td align="left">06:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0130702</td> +<td align="right">0.0078660</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Tuesday</td> +<td align="left">07:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0190107</td> +<td align="right">0.0085239</td> +</tr> +<tr class="even"> +<td align="left">07:30.Tuesday</td> +<td align="left">07:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0183694</td> +<td align="right">0.0083424</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Tuesday</td> +<td align="left">08:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0196054</td> +<td align="right">0.0082976</td> +</tr> +<tr class="even"> +<td align="left">08:30.Tuesday</td> +<td align="left">08:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0295522</td> +<td align="right">0.0089120</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Tuesday</td> +<td align="left">09:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0460630</td> +<td align="right">0.0113542</td> +</tr> +<tr class="even"> +<td align="left">09:30.Tuesday</td> +<td align="left">09:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0409067</td> +<td align="right">0.0095814</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Tuesday</td> +<td align="left">10:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0341666</td> +<td align="right">0.0088631</td> +</tr> +<tr class="even"> +<td align="left">10:30.Tuesday</td> +<td align="left">10:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0264463</td> +<td align="right">0.0077323</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Tuesday</td> +<td align="left">11:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0137620</td> +<td align="right">0.0056337</td> +</tr> +<tr class="even"> +<td align="left">11:30.Tuesday</td> +<td align="left">11:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0247419</td> +<td align="right">0.0104107</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Tuesday</td> +<td align="left">12:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0050139</td> +<td align="right">0.0035413</td> +</tr> +<tr class="even"> +<td align="left">12:30.Tuesday</td> +<td align="left">12:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0023929</td> +<td align="right">0.0023906</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Tuesday</td> +<td align="left">13:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0101491</td> +<td align="right">0.0051405</td> +</tr> +<tr class="even"> +<td align="left">13:30.Tuesday</td> +<td align="left">13:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0244274</td> +<td align="right">0.0081159</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Tuesday</td> +<td align="left">14:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0073072</td> +<td align="right">0.0054399</td> +</tr> +<tr class="even"> +<td align="left">14:30.Tuesday</td> +<td align="left">14:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0142718</td> +<td align="right">0.0068462</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Tuesday</td> +<td align="left">15:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0113797</td> +<td align="right">0.0061541</td> +</tr> +<tr class="even"> +<td align="left">15:30.Tuesday</td> +<td align="left">15:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0128505</td> +<td align="right">0.0067048</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Tuesday</td> +<td align="left">16:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0023471</td> +<td align="right">0.0023450</td> +</tr> +<tr class="even"> +<td align="left">16:30.Tuesday</td> +<td align="left">16:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0040605</td> +<td align="right">0.0029023</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Tuesday</td> +<td align="left">17:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0126881</td> +<td align="right">0.0052100</td> +</tr> +<tr class="even"> +<td align="left">17:30.Tuesday</td> +<td align="left">17:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0108402</td> +<td align="right">0.0049204</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Tuesday</td> +<td align="left">18:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0067786</td> +<td align="right">0.0039761</td> +</tr> +<tr class="even"> +<td align="left">18:30.Tuesday</td> +<td align="left">18:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0153082</td> +<td align="right">0.0059055</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Tuesday</td> +<td align="left">19:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0181895</td> +<td align="right">0.0065229</td> +</tr> +<tr class="even"> +<td align="left">19:30.Tuesday</td> +<td align="left">19:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0105055</td> +<td align="right">0.0052428</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Tuesday</td> +<td align="left">20:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0093384</td> +<td align="right">0.0055313</td> +</tr> +<tr class="even"> +<td align="left">20:30.Tuesday</td> +<td align="left">20:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0067036</td> +<td align="right">0.0039235</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Tuesday</td> +<td align="left">21:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0017134</td> +<td align="right">0.0017129</td> +</tr> +<tr class="even"> +<td align="left">21:30.Tuesday</td> +<td align="left">21:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Tuesday</td> +<td align="left">22:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0030595</td> +<td align="right">0.0030546</td> +</tr> +<tr class="even"> +<td align="left">22:30.Tuesday</td> +<td align="left">22:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0050912</td> +<td align="right">0.0037048</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Tuesday</td> +<td align="left">23:00</td> +<td align="left">Tuesday</td> +<td align="right">0.0072583</td> +<td align="right">0.0042861</td> +</tr> +<tr class="even"> +<td align="left">23:30.Tuesday</td> +<td align="left">23:30</td> +<td align="left">Tuesday</td> +<td align="right">0.0031906</td> +<td align="right">0.0031850</td> +</tr> +<tr class="odd"> +<td align="left">00:00.Wednesday</td> +<td align="left">00:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">00:30.Wednesday</td> +<td align="left">00:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">01:00.Wednesday</td> +<td align="left">01:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">01:30.Wednesday</td> +<td align="left">01:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">02:00.Wednesday</td> +<td align="left">02:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">02:30.Wednesday</td> +<td align="left">02:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">03:00.Wednesday</td> +<td align="left">03:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">03:30.Wednesday</td> +<td align="left">03:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">04:00.Wednesday</td> +<td align="left">04:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">04:30.Wednesday</td> +<td align="left">04:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">05:00.Wednesday</td> +<td align="left">05:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">05:30.Wednesday</td> +<td align="left">05:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0024919</td> +<td align="right">0.0024892</td> +</tr> +<tr class="odd"> +<td align="left">06:00.Wednesday</td> +<td align="left">06:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">06:30.Wednesday</td> +<td align="left">06:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="left">07:00.Wednesday</td> +<td align="left">07:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0046071</td> +<td align="right">0.0032560</td> +</tr> +<tr class="even"> +<td align="left">07:30.Wednesday</td> +<td align="left">07:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0055597</td> +<td align="right">0.0039316</td> +</tr> +<tr class="odd"> +<td align="left">08:00.Wednesday</td> +<td align="left">08:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0079192</td> +<td align="right">0.0045676</td> +</tr> +<tr class="even"> +<td align="left">08:30.Wednesday</td> +<td align="left">08:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0181388</td> +<td align="right">0.0069202</td> +</tr> +<tr class="odd"> +<td align="left">09:00.Wednesday</td> +<td align="left">09:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0173675</td> +<td align="right">0.0071956</td> +</tr> +<tr class="even"> +<td align="left">09:30.Wednesday</td> +<td align="left">09:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0084436</td> +<td align="right">0.0050234</td> +</tr> +<tr class="odd"> +<td align="left">10:00.Wednesday</td> +<td align="left">10:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0250183</td> +<td align="right">0.0085511</td> +</tr> +<tr class="even"> +<td align="left">10:30.Wednesday</td> +<td align="left">10:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0186048</td> +<td align="right">0.0071112</td> +</tr> +<tr class="odd"> +<td align="left">11:00.Wednesday</td> +<td align="left">11:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0105477</td> +<td align="right">0.0053480</td> +</tr> +<tr class="even"> +<td align="left">11:30.Wednesday</td> +<td align="left">11:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0093616</td> +<td align="right">0.0047747</td> +</tr> +<tr class="odd"> +<td align="left">12:00.Wednesday</td> +<td align="left">12:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0165830</td> +<td align="right">0.0074769</td> +</tr> +<tr class="even"> +<td align="left">12:30.Wednesday</td> +<td align="left">12:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0097153</td> +<td align="right">0.0049087</td> +</tr> +<tr class="odd"> +<td align="left">13:00.Wednesday</td> +<td align="left">13:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0140369</td> +<td align="right">0.0058019</td> +</tr> +<tr class="even"> +<td align="left">13:30.Wednesday</td> +<td align="left">13:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0146071</td> +<td align="right">0.0060394</td> +</tr> +<tr class="odd"> +<td align="left">14:00.Wednesday</td> +<td align="left">14:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0035040</td> +<td align="right">0.0024760</td> +</tr> +<tr class="even"> +<td align="left">14:30.Wednesday</td> +<td align="left">14:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0113623</td> +<td align="right">0.0052079</td> +</tr> +<tr class="odd"> +<td align="left">15:00.Wednesday</td> +<td align="left">15:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0121603</td> +<td align="right">0.0055670</td> +</tr> +<tr class="even"> +<td align="left">15:30.Wednesday</td> +<td align="left">15:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0122613</td> +<td align="right">0.0055470</td> +</tr> +<tr class="odd"> +<td align="left">16:00.Wednesday</td> +<td align="left">16:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0174355</td> +<td align="right">0.0066828</td> +</tr> +<tr class="even"> +<td align="left">16:30.Wednesday</td> +<td align="left">16:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0223214</td> +<td align="right">0.0074871</td> +</tr> +<tr class="odd"> +<td align="left">17:00.Wednesday</td> +<td align="left">17:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0106974</td> +<td align="right">0.0053599</td> +</tr> +<tr class="even"> +<td align="left">17:30.Wednesday</td> +<td align="left">17:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0100705</td> +<td align="right">0.0050175</td> +</tr> +<tr class="odd"> +<td align="left">18:00.Wednesday</td> +<td align="left">18:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0094814</td> +<td align="right">0.0054613</td> +</tr> +<tr class="even"> +<td align="left">18:30.Wednesday</td> +<td align="left">18:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0152287</td> +<td align="right">0.0068106</td> +</tr> +<tr class="odd"> +<td align="left">19:00.Wednesday</td> +<td align="left">19:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0081398</td> +<td align="right">0.0046839</td> +</tr> +<tr class="even"> +<td align="left">19:30.Wednesday</td> +<td align="left">19:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0150043</td> +<td align="right">0.0061582</td> +</tr> +<tr class="odd"> +<td align="left">20:00.Wednesday</td> +<td align="left">20:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0181072</td> +<td align="right">0.0068740</td> +</tr> +<tr class="even"> +<td align="left">20:30.Wednesday</td> +<td align="left">20:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0102669</td> +<td align="right">0.0051630</td> +</tr> +<tr class="odd"> +<td align="left">21:00.Wednesday</td> +<td align="left">21:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0089552</td> +<td align="right">0.0044695</td> +</tr> +<tr class="even"> +<td align="left">21:30.Wednesday</td> +<td align="left">21:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0045554</td> +<td align="right">0.0032181</td> +</tr> +<tr class="odd"> +<td align="left">22:00.Wednesday</td> +<td align="left">22:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0051710</td> +<td align="right">0.0036606</td> +</tr> +<tr class="even"> +<td align="left">22:30.Wednesday</td> +<td align="left">22:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0028025</td> +<td align="right">0.0027986</td> +</tr> +<tr class="odd"> +<td align="left">23:00.Wednesday</td> +<td align="left">23:00</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="left">23:30.Wednesday</td> +<td align="left">23:30</td> +<td align="left">Wednesday</td> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +</tbody> +</table> +<table> +<thead> +<tr class="header"> +<th align="right">mean</th> +<th align="right">SE</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="right">0.0015993</td> +<td align="right">0.0003765</td> +</tr> +<tr class="even"> +<td align="right">0.0008668</td> +<td align="right">0.0002739</td> +</tr> +<tr class="odd"> +<td align="right">0.0002751</td> +<td align="right">0.0001588</td> +</tr> +<tr class="even"> +<td align="right">0.0000860</td> +<td align="right">0.0000860</td> +</tr> +<tr class="odd"> +<td align="right">0.0001643</td> +<td align="right">0.0001162</td> +</tr> +<tr class="even"> +<td align="right">0.0005291</td> +<td align="right">0.0002168</td> +</tr> +<tr class="odd"> +<td align="right">0.0015108</td> +<td align="right">0.0003668</td> +</tr> +<tr class="even"> +<td align="right">0.0033000</td> +<td align="right">0.0005367</td> +</tr> +<tr class="odd"> +<td align="right">0.0079948</td> +<td align="right">0.0008263</td> +</tr> +<tr class="even"> +<td align="right">0.0113290</td> +<td align="right">0.0009657</td> +</tr> +<tr class="odd"> +<td align="right">0.0208908</td> +<td align="right">0.0013023</td> +</tr> +<tr class="even"> +<td align="right">0.0306866</td> +<td align="right">0.0015489</td> +</tr> +<tr class="odd"> +<td align="right">0.0396030</td> +<td align="right">0.0017206</td> +</tr> +<tr class="even"> +<td align="right">0.0524314</td> +<td align="right">0.0018897</td> +</tr> +<tr class="odd"> +<td align="right">0.0563036</td> +<td align="right">0.0019350</td> +</tr> +<tr class="even"> +<td align="right">0.0580883</td> +<td align="right">0.0019709</td> +</tr> +<tr class="odd"> +<td align="right">0.0489101</td> +<td align="right">0.0018278</td> +</tr> +<tr class="even"> +<td align="right">0.0470209</td> +<td align="right">0.0017919</td> +</tr> +<tr class="odd"> +<td align="right">0.0337415</td> +<td align="right">0.0015829</td> +</tr> +<tr class="even"> +<td align="right">0.0333651</td> +<td align="right">0.0015621</td> +</tr> +<tr class="odd"> +<td align="right">0.0290846</td> +<td align="right">0.0014742</td> +</tr> +<tr class="even"> +<td align="right">0.0370324</td> +<td align="right">0.0016381</td> +</tr> +<tr class="odd"> +<td align="right">0.0411405</td> +<td align="right">0.0017131</td> +</tr> +<tr class="even"> +<td align="right">0.0383819</td> +<td align="right">0.0016440</td> +</tr> +<tr class="odd"> +<td align="right">0.0342722</td> +<td align="right">0.0015682</td> +</tr> +<tr class="even"> +<td align="right">0.0351362</td> +<td align="right">0.0015841</td> +</tr> +<tr class="odd"> +<td align="right">0.0330212</td> +<td align="right">0.0015609</td> +</tr> +<tr class="even"> +<td align="right">0.0300203</td> +<td align="right">0.0015198</td> +</tr> +<tr class="odd"> +<td align="right">0.0182224</td> +<td align="right">0.0012086</td> +</tr> +<tr class="even"> +<td align="right">0.0201542</td> +<td align="right">0.0012545</td> +</tr> +<tr class="odd"> +<td align="right">0.0231621</td> +<td align="right">0.0013451</td> +</tr> +<tr class="even"> +<td align="right">0.0289836</td> +<td align="right">0.0014898</td> +</tr> +<tr class="odd"> +<td align="right">0.0288983</td> +<td align="right">0.0015035</td> +</tr> +<tr class="even"> +<td align="right">0.0272903</td> +<td align="right">0.0014590</td> +</tr> +<tr class="odd"> +<td align="right">0.0287776</td> +<td align="right">0.0014878</td> +</tr> +<tr class="even"> +<td align="right">0.0280839</td> +<td align="right">0.0014707</td> +</tr> +<tr class="odd"> +<td align="right">0.0218756</td> +<td align="right">0.0013106</td> +</tr> +<tr class="even"> +<td align="right">0.0186880</td> +<td align="right">0.0012136</td> +</tr> +<tr class="odd"> +<td align="right">0.0138104</td> +<td align="right">0.0010518</td> +</tr> +<tr class="even"> +<td align="right">0.0083951</td> +<td align="right">0.0008367</td> +</tr> +<tr class="odd"> +<td align="right">0.0046236</td> +<td align="right">0.0006255</td> +</tr> +<tr class="even"> +<td align="right">0.0022489</td> +<td align="right">0.0004412</td> +</tr> +</tbody> +</table> +<table> +<thead> +<tr class="header"> +<th align="right">mean</th> +<th align="right">SE</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="right">0.0009201</td> +<td align="right">0.0009193</td> +</tr> +<tr class="even"> +<td align="right">0.0009201</td> +<td align="right">0.0009193</td> +</tr> +<tr class="odd"> +<td align="right">0.0011546</td> +<td align="right">0.0011460</td> +</tr> +<tr class="even"> +<td align="right">0.0026169</td> +<td align="right">0.0015420</td> +</tr> +<tr class="odd"> +<td align="right">0.0032488</td> +<td align="right">0.0016590</td> +</tr> +<tr class="even"> +<td align="right">0.0092327</td> +<td align="right">0.0032788</td> +</tr> +<tr class="odd"> +<td align="right">0.0222936</td> +<td align="right">0.0045358</td> +</tr> +<tr class="even"> +<td align="right">0.0347495</td> +<td align="right">0.0054670</td> +</tr> +<tr class="odd"> +<td align="right">0.0402526</td> +<td align="right">0.0056700</td> +</tr> +<tr class="even"> +<td align="right">0.0513676</td> +<td align="right">0.0061640</td> +</tr> +<tr class="odd"> +<td align="right">0.0606829</td> +<td align="right">0.0066371</td> +</tr> +<tr class="even"> +<td align="right">0.0536446</td> +<td align="right">0.0059849</td> +</tr> +<tr class="odd"> +<td align="right">0.0651099</td> +<td align="right">0.0066689</td> +</tr> +<tr class="even"> +<td align="right">0.0472602</td> +<td align="right">0.0058133</td> +</tr> +<tr class="odd"> +<td align="right">0.0358330</td> +<td align="right">0.0051317</td> +</tr> +<tr class="even"> +<td align="right">0.0313392</td> +<td align="right">0.0053081</td> +</tr> +<tr class="odd"> +<td align="right">0.0259045</td> +<td align="right">0.0045836</td> +</tr> +<tr class="even"> +<td align="right">0.0242450</td> +<td align="right">0.0045934</td> +</tr> +<tr class="odd"> +<td align="right">0.0305512</td> +<td align="right">0.0049648</td> +</tr> +<tr class="even"> +<td align="right">0.0364914</td> +<td align="right">0.0052980</td> +</tr> +<tr class="odd"> +<td align="right">0.0307879</td> +<td align="right">0.0049019</td> +</tr> +<tr class="even"> +<td align="right">0.0261682</td> +<td align="right">0.0043371</td> +</tr> +<tr class="odd"> +<td align="right">0.0268714</td> +<td align="right">0.0044923</td> +</tr> +<tr class="even"> +<td align="right">0.0311549</td> +<td align="right">0.0050126</td> +</tr> +<tr class="odd"> +<td align="right">0.0317236</td> +<td align="right">0.0054097</td> +</tr> +<tr class="even"> +<td align="right">0.0280881</td> +<td align="right">0.0050430</td> +</tr> +<tr class="odd"> +<td align="right">0.0223295</td> +<td align="right">0.0044558</td> +</tr> +<tr class="even"> +<td align="right">0.0179874</td> +<td align="right">0.0040419</td> +</tr> +<tr class="odd"> +<td align="right">0.0223579</td> +<td align="right">0.0046056</td> +</tr> +<tr class="even"> +<td align="right">0.0252955</td> +<td align="right">0.0047897</td> +</tr> +<tr class="odd"> +<td align="right">0.0319971</td> +<td align="right">0.0052083</td> +</tr> +<tr class="even"> +<td align="right">0.0250932</td> +<td align="right">0.0046728</td> +</tr> +<tr class="odd"> +<td align="right">0.0284345</td> +<td align="right">0.0049481</td> +</tr> +<tr class="even"> +<td align="right">0.0246823</td> +<td align="right">0.0043784</td> +</tr> +<tr class="odd"> +<td align="right">0.0164008</td> +<td align="right">0.0035563</td> +</tr> +<tr class="even"> +<td align="right">0.0120904</td> +<td align="right">0.0030307</td> +</tr> +<tr class="odd"> +<td align="right">0.0097543</td> +<td align="right">0.0027016</td> +</tr> +<tr class="even"> +<td align="right">0.0050252</td> +<td align="right">0.0020696</td> +</tr> +<tr class="odd"> +<td align="right">0.0048784</td> +<td align="right">0.0020121</td> +</tr> +<tr class="even"> +<td align="right">0.0010607</td> +<td align="right">0.0010593</td> +</tr> +</tbody> +</table> +<table> +<thead> +<tr class="header"> +<th align="right">mean</th> +<th align="right">SE</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000846</td> +<td align="right">0.0000846</td> +</tr> +<tr class="even"> +<td align="right">0.0000846</td> +<td align="right">0.0000846</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000860</td> +<td align="right">0.0000860</td> +</tr> +<tr class="odd"> +<td align="right">0.0000805</td> +<td align="right">0.0000805</td> +</tr> +<tr class="even"> +<td align="right">0.0000928</td> +<td align="right">0.0000928</td> +</tr> +<tr class="odd"> +<td align="right">0.0002661</td> +<td align="right">0.0001541</td> +</tr> +<tr class="even"> +<td align="right">0.0006118</td> +<td align="right">0.0002316</td> +</tr> +<tr class="odd"> +<td align="right">0.0012516</td> +<td align="right">0.0003242</td> +</tr> +<tr class="even"> +<td align="right">0.0010951</td> +<td align="right">0.0003045</td> +</tr> +<tr class="odd"> +<td align="right">0.0029659</td> +<td align="right">0.0005091</td> +</tr> +<tr class="even"> +<td align="right">0.0041104</td> +<td align="right">0.0005926</td> +</tr> +<tr class="odd"> +<td align="right">0.0042599</td> +<td align="right">0.0006010</td> +</tr> +<tr class="even"> +<td align="right">0.0057340</td> +<td align="right">0.0006946</td> +</tr> +<tr class="odd"> +<td align="right">0.0064456</td> +<td align="right">0.0007404</td> +</tr> +<tr class="even"> +<td align="right">0.0050085</td> +<td align="right">0.0006479</td> +</tr> +<tr class="odd"> +<td align="right">0.0044202</td> +<td align="right">0.0006143</td> +</tr> +<tr class="even"> +<td align="right">0.0057043</td> +<td align="right">0.0006912</td> +</tr> +<tr class="odd"> +<td align="right">0.0039748</td> +<td align="right">0.0005785</td> +</tr> +<tr class="even"> +<td align="right">0.0033262</td> +<td align="right">0.0005308</td> +</tr> +<tr class="odd"> +<td align="right">0.0028882</td> +<td align="right">0.0004934</td> +</tr> +<tr class="even"> +<td align="right">0.0040940</td> +<td align="right">0.0005885</td> +</tr> +<tr class="odd"> +<td align="right">0.0045105</td> +<td align="right">0.0006224</td> +</tr> +<tr class="even"> +<td align="right">0.0039922</td> +<td align="right">0.0005851</td> +</tr> +<tr class="odd"> +<td align="right">0.0034362</td> +<td align="right">0.0005409</td> +</tr> +<tr class="even"> +<td align="right">0.0033683</td> +<td align="right">0.0005377</td> +</tr> +<tr class="odd"> +<td align="right">0.0030282</td> +<td align="right">0.0005106</td> +</tr> +<tr class="even"> +<td align="right">0.0036304</td> +<td align="right">0.0005582</td> +</tr> +<tr class="odd"> +<td align="right">0.0028012</td> +<td align="right">0.0004954</td> +</tr> +<tr class="even"> +<td align="right">0.0023747</td> +<td align="right">0.0004491</td> +</tr> +<tr class="odd"> +<td align="right">0.0032289</td> +<td align="right">0.0005170</td> +</tr> +<tr class="even"> +<td align="right">0.0039334</td> +<td align="right">0.0005729</td> +</tr> +<tr class="odd"> +<td align="right">0.0035291</td> +<td align="right">0.0005506</td> +</tr> +<tr class="even"> +<td align="right">0.0038842</td> +<td align="right">0.0005775</td> +</tr> +<tr class="odd"> +<td align="right">0.0027307</td> +<td align="right">0.0004826</td> +</tr> +<tr class="even"> +<td align="right">0.0028950</td> +<td align="right">0.0004959</td> +</tr> +<tr class="odd"> +<td align="right">0.0024787</td> +<td align="right">0.0004599</td> +</tr> +<tr class="even"> +<td align="right">0.0023472</td> +<td align="right">0.0004431</td> +</tr> +<tr class="odd"> +<td align="right">0.0020960</td> +<td align="right">0.0004196</td> +</tr> +<tr class="even"> +<td align="right">0.0012402</td> +<td align="right">0.0003207</td> +</tr> +<tr class="odd"> +<td align="right">0.0006023</td> +<td align="right">0.0002285</td> +</tr> +<tr class="even"> +<td align="right">0.0004243</td> +<td align="right">0.0001904</td> +</tr> +<tr class="odd"> +<td align="right">0.0001762</td> +<td align="right">0.0001244</td> +</tr> +<tr class="even"> +<td align="right">0.0001661</td> +<td align="right">0.0001174</td> +</tr> +<tr class="odd"> +<td align="right">0.0000923</td> +<td align="right">0.0000923</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000998</td> +<td align="right">0.0000998</td> +</tr> +<tr class="even"> +<td align="right">0.0007047</td> +<td align="right">0.0002496</td> +</tr> +<tr class="odd"> +<td align="right">0.0018308</td> +<td align="right">0.0003996</td> +</tr> +<tr class="even"> +<td align="right">0.0021383</td> +<td align="right">0.0004275</td> +</tr> +<tr class="odd"> +<td align="right">0.0033542</td> +<td align="right">0.0005291</td> +</tr> +<tr class="even"> +<td align="right">0.0059719</td> +<td align="right">0.0007080</td> +</tr> +<tr class="odd"> +<td align="right">0.0090676</td> +<td align="right">0.0008674</td> +</tr> +<tr class="even"> +<td align="right">0.0105038</td> +<td align="right">0.0009258</td> +</tr> +<tr class="odd"> +<td align="right">0.0104779</td> +<td align="right">0.0009216</td> +</tr> +<tr class="even"> +<td align="right">0.0097525</td> +<td align="right">0.0008937</td> +</tr> +<tr class="odd"> +<td align="right">0.0094053</td> +<td align="right">0.0008822</td> +</tr> +<tr class="even"> +<td align="right">0.0081004</td> +<td align="right">0.0008191</td> +</tr> +<tr class="odd"> +<td align="right">0.0051654</td> +<td align="right">0.0006586</td> +</tr> +<tr class="even"> +<td align="right">0.0053070</td> +<td align="right">0.0006697</td> +</tr> +<tr class="odd"> +<td align="right">0.0056596</td> +<td align="right">0.0006867</td> +</tr> +<tr class="even"> +<td align="right">0.0069632</td> +<td align="right">0.0007647</td> +</tr> +<tr class="odd"> +<td align="right">0.0081897</td> +<td align="right">0.0008243</td> +</tr> +<tr class="even"> +<td align="right">0.0083698</td> +<td align="right">0.0008322</td> +</tr> +<tr class="odd"> +<td align="right">0.0064850</td> +<td align="right">0.0007360</td> +</tr> +<tr class="even"> +<td align="right">0.0061236</td> +<td align="right">0.0007140</td> +</tr> +<tr class="odd"> +<td align="right">0.0057053</td> +<td align="right">0.0006918</td> +</tr> +<tr class="even"> +<td align="right">0.0046265</td> +<td align="right">0.0006298</td> +</tr> +<tr class="odd"> +<td align="right">0.0025059</td> +<td align="right">0.0004630</td> +</tr> +<tr class="even"> +<td align="right">0.0031598</td> +<td align="right">0.0005160</td> +</tr> +<tr class="odd"> +<td align="right">0.0040652</td> +<td align="right">0.0005839</td> +</tr> +<tr class="even"> +<td align="right">0.0047924</td> +<td align="right">0.0006352</td> +</tr> +<tr class="odd"> +<td align="right">0.0053894</td> +<td align="right">0.0006730</td> +</tr> +<tr class="even"> +<td align="right">0.0046582</td> +<td align="right">0.0006303</td> +</tr> +<tr class="odd"> +<td align="right">0.0062995</td> +<td align="right">0.0007347</td> +</tr> +<tr class="even"> +<td align="right">0.0062867</td> +<td align="right">0.0007298</td> +</tr> +<tr class="odd"> +<td align="right">0.0045907</td> +<td align="right">0.0006206</td> +</tr> +<tr class="even"> +<td align="right">0.0041562</td> +<td align="right">0.0005903</td> +</tr> +<tr class="odd"> +<td align="right">0.0018163</td> +<td align="right">0.0003860</td> +</tr> +<tr class="even"> +<td align="right">0.0013501</td> +<td align="right">0.0003375</td> +</tr> +<tr class="odd"> +<td align="right">0.0005355</td> +<td align="right">0.0002188</td> +</tr> +<tr class="even"> +<td align="right">0.0001662</td> +<td align="right">0.0001182</td> +</tr> +<tr class="odd"> +<td align="right">0.0003506</td> +<td align="right">0.0001756</td> +</tr> +<tr class="even"> +<td align="right">0.0002598</td> +<td align="right">0.0001502</td> +</tr> +<tr class="odd"> +<td align="right">0.0001828</td> +<td align="right">0.0001293</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0001797</td> +<td align="right">0.0001270</td> +</tr> +<tr class="even"> +<td align="right">0.0004435</td> +<td align="right">0.0001985</td> +</tr> +<tr class="odd"> +<td align="right">0.0004536</td> +<td align="right">0.0002029</td> +</tr> +<tr class="even"> +<td align="right">0.0007988</td> +<td align="right">0.0002667</td> +</tr> +<tr class="odd"> +<td align="right">0.0026873</td> +<td align="right">0.0004830</td> +</tr> +<tr class="even"> +<td align="right">0.0042542</td> +<td align="right">0.0006060</td> +</tr> +<tr class="odd"> +<td align="right">0.0052569</td> +<td align="right">0.0006748</td> +</tr> +<tr class="even"> +<td align="right">0.0077404</td> +<td align="right">0.0008130</td> +</tr> +<tr class="odd"> +<td align="right">0.0083458</td> +<td align="right">0.0008390</td> +</tr> +<tr class="even"> +<td align="right">0.0108006</td> +<td align="right">0.0009492</td> +</tr> +<tr class="odd"> +<td align="right">0.0080764</td> +<td align="right">0.0008239</td> +</tr> +<tr class="even"> +<td align="right">0.0070977</td> +<td align="right">0.0007756</td> +</tr> +<tr class="odd"> +<td align="right">0.0049366</td> +<td align="right">0.0006504</td> +</tr> +<tr class="even"> +<td align="right">0.0047256</td> +<td align="right">0.0006392</td> +</tr> +<tr class="odd"> +<td align="right">0.0036709</td> +<td align="right">0.0005638</td> +</tr> +<tr class="even"> +<td align="right">0.0049395</td> +<td align="right">0.0006506</td> +</tr> +<tr class="odd"> +<td align="right">0.0052208</td> +<td align="right">0.0006646</td> +</tr> +<tr class="even"> +<td align="right">0.0040633</td> +<td align="right">0.0005873</td> +</tr> +<tr class="odd"> +<td align="right">0.0048613</td> +<td align="right">0.0006385</td> +</tr> +<tr class="even"> +<td align="right">0.0047144</td> +<td align="right">0.0006307</td> +</tr> +<tr class="odd"> +<td align="right">0.0040994</td> +<td align="right">0.0005888</td> +</tr> +<tr class="even"> +<td align="right">0.0035877</td> +<td align="right">0.0005521</td> +</tr> +<tr class="odd"> +<td align="right">0.0030272</td> +<td align="right">0.0005029</td> +</tr> +<tr class="even"> +<td align="right">0.0029930</td> +<td align="right">0.0005048</td> +</tr> +<tr class="odd"> +<td align="right">0.0023594</td> +<td align="right">0.0004537</td> +</tr> +<tr class="even"> +<td align="right">0.0024328</td> +<td align="right">0.0004587</td> +</tr> +<tr class="odd"> +<td align="right">0.0031677</td> +<td align="right">0.0005274</td> +</tr> +<tr class="even"> +<td align="right">0.0025485</td> +<td align="right">0.0004733</td> +</tr> +<tr class="odd"> +<td align="right">0.0026909</td> +<td align="right">0.0004826</td> +</tr> +<tr class="even"> +<td align="right">0.0023053</td> +<td align="right">0.0004432</td> +</tr> +<tr class="odd"> +<td align="right">0.0017789</td> +<td align="right">0.0003877</td> +</tr> +<tr class="even"> +<td align="right">0.0019186</td> +<td align="right">0.0004081</td> +</tr> +<tr class="odd"> +<td align="right">0.0013919</td> +<td align="right">0.0003474</td> +</tr> +<tr class="even"> +<td align="right">0.0006298</td> +<td align="right">0.0002384</td> +</tr> +<tr class="odd"> +<td align="right">0.0007830</td> +<td align="right">0.0002613</td> +</tr> +<tr class="even"> +<td align="right">0.0005283</td> +<td align="right">0.0002157</td> +</tr> +<tr class="odd"> +<td align="right">0.0001834</td> +<td align="right">0.0001297</td> +</tr> +<tr class="even"> +<td align="right">0.0001675</td> +<td align="right">0.0001186</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0002729</td> +<td align="right">0.0001575</td> +</tr> +<tr class="even"> +<td align="right">0.0002484</td> +<td align="right">0.0001441</td> +</tr> +<tr class="odd"> +<td align="right">0.0001637</td> +<td align="right">0.0001159</td> +</tr> +<tr class="even"> +<td align="right">0.0006949</td> +<td align="right">0.0002463</td> +</tr> +<tr class="odd"> +<td align="right">0.0014851</td> +<td align="right">0.0003502</td> +</tr> +<tr class="even"> +<td align="right">0.0028100</td> +<td align="right">0.0004882</td> +</tr> +<tr class="odd"> +<td align="right">0.0045199</td> +<td align="right">0.0006247</td> +</tr> +<tr class="even"> +<td align="right">0.0060296</td> +<td align="right">0.0007138</td> +</tr> +<tr class="odd"> +<td align="right">0.0075117</td> +<td align="right">0.0007952</td> +</tr> +<tr class="even"> +<td align="right">0.0087974</td> +<td align="right">0.0008545</td> +</tr> +<tr class="odd"> +<td align="right">0.0075840</td> +<td align="right">0.0008005</td> +</tr> +<tr class="even"> +<td align="right">0.0097432</td> +<td align="right">0.0009031</td> +</tr> +<tr class="odd"> +<td align="right">0.0078777</td> +<td align="right">0.0008184</td> +</tr> +<tr class="even"> +<td align="right">0.0071269</td> +<td align="right">0.0007756</td> +</tr> +<tr class="odd"> +<td align="right">0.0055375</td> +<td align="right">0.0006852</td> +</tr> +<tr class="even"> +<td align="right">0.0052874</td> +<td align="right">0.0006709</td> +</tr> +<tr class="odd"> +<td align="right">0.0052038</td> +<td align="right">0.0006609</td> +</tr> +<tr class="even"> +<td align="right">0.0053698</td> +<td align="right">0.0006738</td> +</tr> +<tr class="odd"> +<td align="right">0.0052817</td> +<td align="right">0.0006678</td> +</tr> +<tr class="even"> +<td align="right">0.0061530</td> +<td align="right">0.0007206</td> +</tr> +<tr class="odd"> +<td align="right">0.0057164</td> +<td align="right">0.0007004</td> +</tr> +<tr class="even"> +<td align="right">0.0057326</td> +<td align="right">0.0007018</td> +</tr> +<tr class="odd"> +<td align="right">0.0038299</td> +<td align="right">0.0005729</td> +</tr> +<tr class="even"> +<td align="right">0.0040473</td> +<td align="right">0.0005903</td> +</tr> +<tr class="odd"> +<td align="right">0.0048927</td> +<td align="right">0.0006471</td> +</tr> +<tr class="even"> +<td align="right">0.0059781</td> +<td align="right">0.0007156</td> +</tr> +<tr class="odd"> +<td align="right">0.0056393</td> +<td align="right">0.0006981</td> +</tr> +<tr class="even"> +<td align="right">0.0046278</td> +<td align="right">0.0006288</td> +</tr> +<tr class="odd"> +<td align="right">0.0040300</td> +<td align="right">0.0005821</td> +</tr> +<tr class="even"> +<td align="right">0.0036335</td> +<td align="right">0.0005563</td> +</tr> +<tr class="odd"> +<td align="right">0.0022295</td> +<td align="right">0.0004349</td> +</tr> +<tr class="even"> +<td align="right">0.0022297</td> +<td align="right">0.0004351</td> +</tr> +<tr class="odd"> +<td align="right">0.0023259</td> +<td align="right">0.0004475</td> +</tr> +<tr class="even"> +<td align="right">0.0014736</td> +<td align="right">0.0003579</td> +</tr> +<tr class="odd"> +<td align="right">0.0006276</td> +<td align="right">0.0002227</td> +</tr> +<tr class="even"> +<td align="right">0.0003241</td> +<td align="right">0.0001626</td> +</tr> +<tr class="odd"> +<td align="right">0.0001839</td> +<td align="right">0.0001301</td> +</tr> +<tr class="even"> +<td align="right">0.0000944</td> +<td align="right">0.0000944</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0002594</td> +<td align="right">0.0001508</td> +</tr> +<tr class="odd"> +<td align="right">0.0004326</td> +<td align="right">0.0001938</td> +</tr> +<tr class="even"> +<td align="right">0.0004126</td> +<td align="right">0.0001849</td> +</tr> +<tr class="odd"> +<td align="right">0.0016720</td> +<td align="right">0.0003748</td> +</tr> +<tr class="even"> +<td align="right">0.0022647</td> +<td align="right">0.0004360</td> +</tr> +<tr class="odd"> +<td align="right">0.0039126</td> +<td align="right">0.0005820</td> +</tr> +<tr class="even"> +<td align="right">0.0046447</td> +<td align="right">0.0006353</td> +</tr> +<tr class="odd"> +<td align="right">0.0042883</td> +<td align="right">0.0006038</td> +</tr> +<tr class="even"> +<td align="right">0.0069424</td> +<td align="right">0.0007670</td> +</tr> +<tr class="odd"> +<td align="right">0.0079076</td> +<td align="right">0.0008137</td> +</tr> +<tr class="even"> +<td align="right">0.0076904</td> +<td align="right">0.0008065</td> +</tr> +<tr class="odd"> +<td align="right">0.0060518</td> +<td align="right">0.0007129</td> +</tr> +<tr class="even"> +<td align="right">0.0048016</td> +<td align="right">0.0006430</td> +</tr> +<tr class="odd"> +<td align="right">0.0038448</td> +<td align="right">0.0005767</td> +</tr> +<tr class="even"> +<td align="right">0.0045575</td> +<td align="right">0.0006220</td> +</tr> +<tr class="odd"> +<td align="right">0.0037863</td> +<td align="right">0.0005675</td> +</tr> +<tr class="even"> +<td align="right">0.0043839</td> +<td align="right">0.0006091</td> +</tr> +<tr class="odd"> +<td align="right">0.0053363</td> +<td align="right">0.0006717</td> +</tr> +<tr class="even"> +<td align="right">0.0047144</td> +<td align="right">0.0006311</td> +</tr> +<tr class="odd"> +<td align="right">0.0044358</td> +<td align="right">0.0006116</td> +</tr> +<tr class="even"> +<td align="right">0.0048766</td> +<td align="right">0.0006416</td> +</tr> +<tr class="odd"> +<td align="right">0.0051376</td> +<td align="right">0.0006606</td> +</tr> +<tr class="even"> +<td align="right">0.0038996</td> +<td align="right">0.0005747</td> +</tr> +<tr class="odd"> +<td align="right">0.0015766</td> +<td align="right">0.0003630</td> +</tr> +<tr class="even"> +<td align="right">0.0025783</td> +<td align="right">0.0004623</td> +</tr> +<tr class="odd"> +<td align="right">0.0029559</td> +<td align="right">0.0004981</td> +</tr> +<tr class="even"> +<td align="right">0.0042179</td> +<td align="right">0.0005997</td> +</tr> +<tr class="odd"> +<td align="right">0.0043300</td> +<td align="right">0.0006094</td> +</tr> +<tr class="even"> +<td align="right">0.0041107</td> +<td align="right">0.0005956</td> +</tr> +<tr class="odd"> +<td align="right">0.0052078</td> +<td align="right">0.0006634</td> +</tr> +<tr class="even"> +<td align="right">0.0040527</td> +<td align="right">0.0005889</td> +</tr> +<tr class="odd"> +<td align="right">0.0034107</td> +<td align="right">0.0005450</td> +</tr> +<tr class="even"> +<td align="right">0.0023232</td> +<td align="right">0.0004471</td> +</tr> +<tr class="odd"> +<td align="right">0.0015653</td> +<td align="right">0.0003596</td> +</tr> +<tr class="even"> +<td align="right">0.0005216</td> +<td align="right">0.0002133</td> +</tr> +<tr class="odd"> +<td align="right">0.0005044</td> +<td align="right">0.0002063</td> +</tr> +<tr class="even"> +<td align="right">0.0002524</td> +<td align="right">0.0001460</td> +</tr> +<tr class="odd"> +<td align="right">0.0002517</td> +<td align="right">0.0001453</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000875</td> +<td align="right">0.0000876</td> +</tr> +<tr class="even"> +<td align="right">0.0005890</td> +<td align="right">0.0002241</td> +</tr> +<tr class="odd"> +<td align="right">0.0014152</td> +<td align="right">0.0003551</td> +</tr> +<tr class="even"> +<td align="right">0.0020539</td> +<td align="right">0.0004198</td> +</tr> +<tr class="odd"> +<td align="right">0.0037569</td> +<td align="right">0.0005649</td> +</tr> +<tr class="even"> +<td align="right">0.0050633</td> +<td align="right">0.0006618</td> +</tr> +<tr class="odd"> +<td align="right">0.0066071</td> +<td align="right">0.0007525</td> +</tr> +<tr class="even"> +<td align="right">0.0079446</td> +<td align="right">0.0008187</td> +</tr> +<tr class="odd"> +<td align="right">0.0072744</td> +<td align="right">0.0007796</td> +</tr> +<tr class="even"> +<td align="right">0.0075578</td> +<td align="right">0.0007920</td> +</tr> +<tr class="odd"> +<td align="right">0.0063419</td> +<td align="right">0.0007241</td> +</tr> +<tr class="even"> +<td align="right">0.0059191</td> +<td align="right">0.0007003</td> +</tr> +<tr class="odd"> +<td align="right">0.0043792</td> +<td align="right">0.0006036</td> +</tr> +<tr class="even"> +<td align="right">0.0044702</td> +<td align="right">0.0006153</td> +</tr> +<tr class="odd"> +<td align="right">0.0035683</td> +<td align="right">0.0005549</td> +</tr> +<tr class="even"> +<td align="right">0.0057436</td> +<td align="right">0.0007001</td> +</tr> +<tr class="odd"> +<td align="right">0.0064163</td> +<td align="right">0.0007368</td> +</tr> +<tr class="even"> +<td align="right">0.0057008</td> +<td align="right">0.0006936</td> +</tr> +<tr class="odd"> +<td align="right">0.0054679</td> +<td align="right">0.0006829</td> +</tr> +<tr class="even"> +<td align="right">0.0055965</td> +<td align="right">0.0006886</td> +</tr> +<tr class="odd"> +<td align="right">0.0054198</td> +<td align="right">0.0006829</td> +</tr> +<tr class="even"> +<td align="right">0.0049414</td> +<td align="right">0.0006514</td> +</tr> +<tr class="odd"> +<td align="right">0.0020119</td> +<td align="right">0.0004196</td> +</tr> +<tr class="even"> +<td align="right">0.0027789</td> +<td align="right">0.0004906</td> +</tr> +<tr class="odd"> +<td align="right">0.0030059</td> +<td align="right">0.0005071</td> +</tr> +<tr class="even"> +<td align="right">0.0037752</td> +<td align="right">0.0005675</td> +</tr> +<tr class="odd"> +<td align="right">0.0038924</td> +<td align="right">0.0005843</td> +</tr> +<tr class="even"> +<td align="right">0.0040167</td> +<td align="right">0.0005961</td> +</tr> +<tr class="odd"> +<td align="right">0.0036124</td> +<td align="right">0.0005621</td> +</tr> +<tr class="even"> +<td align="right">0.0045339</td> +<td align="right">0.0006258</td> +</tr> +<tr class="odd"> +<td align="right">0.0035489</td> +<td align="right">0.0005534</td> +</tr> +<tr class="even"> +<td align="right">0.0026349</td> +<td align="right">0.0004723</td> +</tr> +<tr class="odd"> +<td align="right">0.0022954</td> +<td align="right">0.0004410</td> +</tr> +<tr class="even"> +<td align="right">0.0016190</td> +<td align="right">0.0003717</td> +</tr> +<tr class="odd"> +<td align="right">0.0007035</td> +<td align="right">0.0002493</td> +</tr> +<tr class="even"> +<td align="right">0.0001999</td> +<td align="right">0.0001414</td> +</tr> +<tr class="odd"> +<td align="right">0.0003689</td> +<td align="right">0.0001848</td> +</tr> +<tr class="even"> +<td align="right">0.0000943</td> +<td align="right">0.0000943</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000838</td> +<td align="right">0.0000838</td> +</tr> +<tr class="even"> +<td align="right">0.0001770</td> +<td align="right">0.0001253</td> +</tr> +<tr class="odd"> +<td align="right">0.0001722</td> +<td align="right">0.0001221</td> +</tr> +<tr class="even"> +<td align="right">0.0002900</td> +<td align="right">0.0001676</td> +</tr> +<tr class="odd"> +<td align="right">0.0012079</td> +<td align="right">0.0003243</td> +</tr> +<tr class="even"> +<td align="right">0.0022832</td> +<td align="right">0.0004330</td> +</tr> +<tr class="odd"> +<td align="right">0.0027288</td> +<td align="right">0.0004832</td> +</tr> +<tr class="even"> +<td align="right">0.0038322</td> +<td align="right">0.0005698</td> +</tr> +<tr class="odd"> +<td align="right">0.0056033</td> +<td align="right">0.0006909</td> +</tr> +<tr class="even"> +<td align="right">0.0075366</td> +<td align="right">0.0008006</td> +</tr> +<tr class="odd"> +<td align="right">0.0083405</td> +<td align="right">0.0008403</td> +</tr> +<tr class="even"> +<td align="right">0.0084811</td> +<td align="right">0.0008500</td> +</tr> +<tr class="odd"> +<td align="right">0.0070306</td> +<td align="right">0.0007734</td> +</tr> +<tr class="even"> +<td align="right">0.0056546</td> +<td align="right">0.0006949</td> +</tr> +<tr class="odd"> +<td align="right">0.0035631</td> +<td align="right">0.0005534</td> +</tr> +<tr class="even"> +<td align="right">0.0038516</td> +<td align="right">0.0005767</td> +</tr> +<tr class="odd"> +<td align="right">0.0039738</td> +<td align="right">0.0005827</td> +</tr> +<tr class="even"> +<td align="right">0.0056208</td> +<td align="right">0.0006917</td> +</tr> +<tr class="odd"> +<td align="right">0.0062632</td> +<td align="right">0.0007332</td> +</tr> +<tr class="even"> +<td align="right">0.0061716</td> +<td align="right">0.0007268</td> +</tr> +<tr class="odd"> +<td align="right">0.0043042</td> +<td align="right">0.0006053</td> +</tr> +<tr class="even"> +<td align="right">0.0043039</td> +<td align="right">0.0006043</td> +</tr> +<tr class="odd"> +<td align="right">0.0039145</td> +<td align="right">0.0005740</td> +</tr> +<tr class="even"> +<td align="right">0.0036021</td> +<td align="right">0.0005551</td> +</tr> +<tr class="odd"> +<td align="right">0.0024697</td> +<td align="right">0.0004582</td> +</tr> +<tr class="even"> +<td align="right">0.0022222</td> +<td align="right">0.0004350</td> +</tr> +<tr class="odd"> +<td align="right">0.0026540</td> +<td align="right">0.0004764</td> +</tr> +<tr class="even"> +<td align="right">0.0038537</td> +<td align="right">0.0005737</td> +</tr> +<tr class="odd"> +<td align="right">0.0029504</td> +<td align="right">0.0005048</td> +</tr> +<tr class="even"> +<td align="right">0.0034441</td> +<td align="right">0.0005361</td> +</tr> +<tr class="odd"> +<td align="right">0.0042063</td> +<td align="right">0.0005925</td> +</tr> +<tr class="even"> +<td align="right">0.0043768</td> +<td align="right">0.0006040</td> +</tr> +<tr class="odd"> +<td align="right">0.0038383</td> +<td align="right">0.0005706</td> +</tr> +<tr class="even"> +<td align="right">0.0030783</td> +<td align="right">0.0005118</td> +</tr> +<tr class="odd"> +<td align="right">0.0023197</td> +<td align="right">0.0004452</td> +</tr> +<tr class="even"> +<td align="right">0.0015609</td> +<td align="right">0.0003683</td> +</tr> +<tr class="odd"> +<td align="right">0.0008672</td> +<td align="right">0.0002745</td> +</tr> +<tr class="even"> +<td align="right">0.0003537</td> +<td align="right">0.0001774</td> +</tr> +</tbody> +</table> +<table> +<thead> +<tr class="header"> +<th align="right">mean</th> +<th align="right">SE</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="right">0.0009201</td> +<td align="right">0.0009193</td> +</tr> +<tr class="even"> +<td align="right">0.0009201</td> +<td align="right">0.0009193</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0006318</td> +<td align="right">0.0006302</td> +</tr> +<tr class="even"> +<td align="right">0.0006318</td> +<td align="right">0.0006302</td> +</tr> +<tr class="odd"> +<td align="right">0.0040166</td> +<td align="right">0.0018369</td> +</tr> +<tr class="even"> +<td align="right">0.0057207</td> +<td align="right">0.0021865</td> +</tr> +<tr class="odd"> +<td align="right">0.0063285</td> +<td align="right">0.0022487</td> +</tr> +<tr class="even"> +<td align="right">0.0063032</td> +<td align="right">0.0023851</td> +</tr> +<tr class="odd"> +<td align="right">0.0059863</td> +<td align="right">0.0022839</td> +</tr> +<tr class="even"> +<td align="right">0.0074350</td> +<td align="right">0.0025037</td> +</tr> +<tr class="odd"> +<td align="right">0.0084821</td> +<td align="right">0.0026871</td> +</tr> +<tr class="even"> +<td align="right">0.0080931</td> +<td align="right">0.0026868</td> +</tr> +<tr class="odd"> +<td align="right">0.0051604</td> +<td align="right">0.0021352</td> +</tr> +<tr class="even"> +<td align="right">0.0037125</td> +<td align="right">0.0016992</td> +</tr> +<tr class="odd"> +<td align="right">0.0030545</td> +<td align="right">0.0015436</td> +</tr> +<tr class="even"> +<td align="right">0.0017284</td> +<td align="right">0.0012571</td> +</tr> +<tr class="odd"> +<td align="right">0.0022238</td> +<td align="right">0.0013471</td> +</tr> +<tr class="even"> +<td align="right">0.0042201</td> +<td align="right">0.0019472</td> +</tr> +<tr class="odd"> +<td align="right">0.0057702</td> +<td align="right">0.0022389</td> +</tr> +<tr class="even"> +<td align="right">0.0039486</td> +<td align="right">0.0016309</td> +</tr> +<tr class="odd"> +<td align="right">0.0033119</td> +<td align="right">0.0015081</td> +</tr> +<tr class="even"> +<td align="right">0.0037528</td> +<td align="right">0.0016867</td> +</tr> +<tr class="odd"> +<td align="right">0.0050471</td> +<td align="right">0.0025724</td> +</tr> +<tr class="even"> +<td align="right">0.0015420</td> +<td align="right">0.0011052</td> +</tr> +<tr class="odd"> +<td align="right">0.0042796</td> +<td align="right">0.0024693</td> +</tr> +<tr class="even"> +<td align="right">0.0029855</td> +<td align="right">0.0023113</td> +</tr> +<tr class="odd"> +<td align="right">0.0032127</td> +<td align="right">0.0023949</td> +</tr> +<tr class="even"> +<td align="right">0.0039387</td> +<td align="right">0.0024932</td> +</tr> +<tr class="odd"> +<td align="right">0.0038680</td> +<td align="right">0.0024659</td> +</tr> +<tr class="even"> +<td align="right">0.0022278</td> +<td align="right">0.0021970</td> +</tr> +<tr class="odd"> +<td align="right">0.0028188</td> +<td align="right">0.0016505</td> +</tr> +<tr class="even"> +<td align="right">0.0038598</td> +<td align="right">0.0017428</td> +</tr> +<tr class="odd"> +<td align="right">0.0039482</td> +<td align="right">0.0017818</td> +</tr> +<tr class="even"> +<td align="right">0.0036014</td> +<td align="right">0.0017930</td> +</tr> +<tr class="odd"> +<td align="right">0.0009201</td> +<td align="right">0.0009167</td> +</tr> +<tr class="even"> +<td align="right">0.0009201</td> +<td align="right">0.0009167</td> +</tr> +<tr class="odd"> +<td align="right">0.0009201</td> +<td align="right">0.0009167</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0008210</td> +<td align="right">0.0008211</td> +</tr> +<tr class="even"> +<td align="right">0.0027001</td> +<td align="right">0.0015765</td> +</tr> +<tr class="odd"> +<td align="right">0.0040954</td> +<td align="right">0.0018603</td> +</tr> +<tr class="even"> +<td align="right">0.0097008</td> +<td align="right">0.0029644</td> +</tr> +<tr class="odd"> +<td align="right">0.0118705</td> +<td align="right">0.0033179</td> +</tr> +<tr class="even"> +<td align="right">0.0115127</td> +<td align="right">0.0033110</td> +</tr> +<tr class="odd"> +<td align="right">0.0106282</td> +<td align="right">0.0029367</td> +</tr> +<tr class="even"> +<td align="right">0.0079674</td> +<td align="right">0.0026549</td> +</tr> +<tr class="odd"> +<td align="right">0.0091257</td> +<td align="right">0.0027884</td> +</tr> +<tr class="even"> +<td align="right">0.0068370</td> +<td align="right">0.0024476</td> +</tr> +<tr class="odd"> +<td align="right">0.0068989</td> +<td align="right">0.0024213</td> +</tr> +<tr class="even"> +<td align="right">0.0054221</td> +<td align="right">0.0020656</td> +</tr> +<tr class="odd"> +<td align="right">0.0050884</td> +<td align="right">0.0020677</td> +</tr> +<tr class="even"> +<td align="right">0.0035689</td> +<td align="right">0.0017910</td> +</tr> +<tr class="odd"> +<td align="right">0.0019341</td> +<td align="right">0.0013758</td> +</tr> +<tr class="even"> +<td align="right">0.0026528</td> +<td align="right">0.0015629</td> +</tr> +<tr class="odd"> +<td align="right">0.0043911</td> +<td align="right">0.0018602</td> +</tr> +<tr class="even"> +<td align="right">0.0043911</td> +<td align="right">0.0018602</td> +</tr> +<tr class="odd"> +<td align="right">0.0021544</td> +<td align="right">0.0012718</td> +</tr> +<tr class="even"> +<td align="right">0.0021544</td> +<td align="right">0.0012718</td> +</tr> +<tr class="odd"> +<td align="right">0.0037277</td> +<td align="right">0.0025350</td> +</tr> +<tr class="even"> +<td align="right">0.0031113</td> +<td align="right">0.0024501</td> +</tr> +<tr class="odd"> +<td align="right">0.0016015</td> +<td align="right">0.0011324</td> +</tr> +<tr class="even"> +<td align="right">0.0023560</td> +<td align="right">0.0013792</td> +</tr> +<tr class="odd"> +<td align="right">0.0036892</td> +<td align="right">0.0020007</td> +</tr> +<tr class="even"> +<td align="right">0.0034364</td> +<td align="right">0.0020564</td> +</tr> +<tr class="odd"> +<td align="right">0.0050969</td> +<td align="right">0.0023778</td> +</tr> +<tr class="even"> +<td align="right">0.0049270</td> +<td align="right">0.0023284</td> +</tr> +<tr class="odd"> +<td align="right">0.0046561</td> +<td align="right">0.0019400</td> +</tr> +<tr class="even"> +<td align="right">0.0039106</td> +<td align="right">0.0018014</td> +</tr> +<tr class="odd"> +<td align="right">0.0010897</td> +<td align="right">0.0007713</td> +</tr> +<tr class="even"> +<td align="right">0.0017678</td> +<td align="right">0.0010280</td> +</tr> +<tr class="odd"> +<td align="right">0.0020520</td> +<td align="right">0.0011871</td> +</tr> +<tr class="even"> +<td align="right">0.0007205</td> +<td align="right">0.0007197</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0004983</td> +<td align="right">0.0004970</td> +</tr> +<tr class="even"> +<td align="right">0.0028673</td> +<td align="right">0.0014678</td> +</tr> +<tr class="odd"> +<td align="right">0.0027933</td> +<td align="right">0.0014226</td> +</tr> +<tr class="even"> +<td align="right">0.0045580</td> +<td align="right">0.0019612</td> +</tr> +<tr class="odd"> +<td align="right">0.0062144</td> +<td align="right">0.0022908</td> +</tr> +<tr class="even"> +<td align="right">0.0079813</td> +<td align="right">0.0026514</td> +</tr> +<tr class="odd"> +<td align="right">0.0062155</td> +<td align="right">0.0022467</td> +</tr> +<tr class="even"> +<td align="right">0.0037040</td> +<td align="right">0.0015206</td> +</tr> +<tr class="odd"> +<td align="right">0.0029866</td> +<td align="right">0.0013387</td> +</tr> +<tr class="even"> +<td align="right">0.0012340</td> +<td align="right">0.0008731</td> +</tr> +<tr class="odd"> +<td align="right">0.0025180</td> +<td align="right">0.0016246</td> +</tr> +<tr class="even"> +<td align="right">0.0045207</td> +<td align="right">0.0023145</td> +</tr> +<tr class="odd"> +<td align="right">0.0025168</td> +<td align="right">0.0016004</td> +</tr> +<tr class="even"> +<td align="right">0.0004983</td> +<td align="right">0.0004970</td> +</tr> +<tr class="odd"> +<td align="right">0.0008656</td> +<td align="right">0.0008643</td> +</tr> +<tr class="even"> +<td align="right">0.0014164</td> +<td align="right">0.0010250</td> +</tr> +<tr class="odd"> +<td align="right">0.0008656</td> +<td align="right">0.0008643</td> +</tr> +<tr class="even"> +<td align="right">0.0027367</td> +<td align="right">0.0015816</td> +</tr> +<tr class="odd"> +<td align="right">0.0019038</td> +<td align="right">0.0013482</td> +</tr> +<tr class="even"> +<td align="right">0.0023415</td> +<td align="right">0.0013728</td> +</tr> +<tr class="odd"> +<td align="right">0.0013759</td> +<td align="right">0.0009830</td> +</tr> +<tr class="even"> +<td align="right">0.0019455</td> +<td align="right">0.0011343</td> +</tr> +<tr class="odd"> +<td align="right">0.0020000</td> +<td align="right">0.0011663</td> +</tr> +<tr class="even"> +<td align="right">0.0008212</td> +<td align="right">0.0008166</td> +</tr> +<tr class="odd"> +<td align="right">0.0017413</td> +<td align="right">0.0012232</td> +</tr> +<tr class="even"> +<td align="right">0.0017413</td> +<td align="right">0.0012232</td> +</tr> +<tr class="odd"> +<td align="right">0.0017413</td> +<td align="right">0.0012232</td> +</tr> +<tr class="even"> +<td align="right">0.0017413</td> +<td align="right">0.0012232</td> +</tr> +<tr class="odd"> +<td align="right">0.0009201</td> +<td align="right">0.0009176</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0005696</td> +<td align="right">0.0005697</td> +</tr> +<tr class="even"> +<td align="right">0.0019138</td> +<td align="right">0.0013552</td> +</tr> +<tr class="odd"> +<td align="right">0.0046465</td> +<td align="right">0.0020873</td> +</tr> +<tr class="even"> +<td align="right">0.0084425</td> +<td align="right">0.0027115</td> +</tr> +<tr class="odd"> +<td align="right">0.0115471</td> +<td align="right">0.0029948</td> +</tr> +<tr class="even"> +<td align="right">0.0101188</td> +<td align="right">0.0029675</td> +</tr> +<tr class="odd"> +<td align="right">0.0175207</td> +<td align="right">0.0037861</td> +</tr> +<tr class="even"> +<td align="right">0.0123346</td> +<td align="right">0.0031953</td> +</tr> +<tr class="odd"> +<td align="right">0.0100511</td> +<td align="right">0.0029221</td> +</tr> +<tr class="even"> +<td align="right">0.0082310</td> +<td align="right">0.0025960</td> +</tr> +<tr class="odd"> +<td align="right">0.0060985</td> +<td align="right">0.0021711</td> +</tr> +<tr class="even"> +<td align="right">0.0065689</td> +<td align="right">0.0025872</td> +</tr> +<tr class="odd"> +<td align="right">0.0080430</td> +<td align="right">0.0027430</td> +</tr> +<tr class="even"> +<td align="right">0.0111661</td> +<td align="right">0.0031392</td> +</tr> +<tr class="odd"> +<td align="right">0.0125032</td> +<td align="right">0.0031885</td> +</tr> +<tr class="even"> +<td align="right">0.0049705</td> +<td align="right">0.0018805</td> +</tr> +<tr class="odd"> +<td align="right">0.0076408</td> +<td align="right">0.0024249</td> +</tr> +<tr class="even"> +<td align="right">0.0102948</td> +<td align="right">0.0029804</td> +</tr> +<tr class="odd"> +<td align="right">0.0113848</td> +<td align="right">0.0032579</td> +</tr> +<tr class="even"> +<td align="right">0.0066339</td> +<td align="right">0.0023475</td> +</tr> +<tr class="odd"> +<td align="right">0.0043297</td> +<td align="right">0.0021528</td> +</tr> +<tr class="even"> +<td align="right">0.0017025</td> +<td align="right">0.0012540</td> +</tr> +<tr class="odd"> +<td align="right">0.0034348</td> +<td align="right">0.0017804</td> +</tr> +<tr class="even"> +<td align="right">0.0019464</td> +<td align="right">0.0013895</td> +</tr> +<tr class="odd"> +<td align="right">0.0045264</td> +<td align="right">0.0021701</td> +</tr> +<tr class="even"> +<td align="right">0.0040266</td> +<td align="right">0.0019690</td> +</tr> +<tr class="odd"> +<td align="right">0.0061294</td> +<td align="right">0.0024468</td> +</tr> +<tr class="even"> +<td align="right">0.0051354</td> +<td align="right">0.0021755</td> +</tr> +<tr class="odd"> +<td align="right">0.0039964</td> +<td align="right">0.0020062</td> +</tr> +<tr class="even"> +<td align="right">0.0014170</td> +<td align="right">0.0010096</td> +</tr> +<tr class="odd"> +<td align="right">0.0014170</td> +<td align="right">0.0010085</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0007764</td> +<td align="right">0.0007773</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0006414</td> +<td align="right">0.0006413</td> +</tr> +<tr class="odd"> +<td align="right">0.0006414</td> +<td align="right">0.0006413</td> +</tr> +<tr class="even"> +<td align="right">0.0015557</td> +<td align="right">0.0011168</td> +</tr> +<tr class="odd"> +<td align="right">0.0052759</td> +<td align="right">0.0021785</td> +</tr> +<tr class="even"> +<td align="right">0.0066084</td> +<td align="right">0.0023807</td> +</tr> +<tr class="odd"> +<td align="right">0.0054872</td> +<td align="right">0.0020946</td> +</tr> +<tr class="even"> +<td align="right">0.0047509</td> +<td align="right">0.0019799</td> +</tr> +<tr class="odd"> +<td align="right">0.0052718</td> +<td align="right">0.0022128</td> +</tr> +<tr class="even"> +<td align="right">0.0037612</td> +<td align="right">0.0017174</td> +</tr> +<tr class="odd"> +<td align="right">0.0041652</td> +<td align="right">0.0019225</td> +</tr> +<tr class="even"> +<td align="right">0.0013703</td> +<td align="right">0.0009719</td> +</tr> +<tr class="odd"> +<td align="right">0.0026859</td> +<td align="right">0.0016347</td> +</tr> +<tr class="even"> +<td align="right">0.0014301</td> +<td align="right">0.0010297</td> +</tr> +<tr class="odd"> +<td align="right">0.0020151</td> +<td align="right">0.0011843</td> +</tr> +<tr class="even"> +<td align="right">0.0038618</td> +<td align="right">0.0017891</td> +</tr> +<tr class="odd"> +<td align="right">0.0078350</td> +<td align="right">0.0026845</td> +</tr> +<tr class="even"> +<td align="right">0.0050210</td> +<td align="right">0.0021051</td> +</tr> +<tr class="odd"> +<td align="right">0.0036741</td> +<td align="right">0.0016612</td> +</tr> +<tr class="even"> +<td align="right">0.0029536</td> +<td align="right">0.0014976</td> +</tr> +<tr class="odd"> +<td align="right">0.0051094</td> +<td align="right">0.0021583</td> +</tr> +<tr class="even"> +<td align="right">0.0039046</td> +<td align="right">0.0019822</td> +</tr> +<tr class="odd"> +<td align="right">0.0031358</td> +<td align="right">0.0018287</td> +</tr> +<tr class="even"> +<td align="right">0.0057559</td> +<td align="right">0.0023808</td> +</tr> +<tr class="odd"> +<td align="right">0.0030005</td> +<td align="right">0.0017285</td> +</tr> +<tr class="even"> +<td align="right">0.0020764</td> +<td align="right">0.0014630</td> +</tr> +<tr class="odd"> +<td align="right">0.0046439</td> +<td align="right">0.0021056</td> +</tr> +<tr class="even"> +<td align="right">0.0050466</td> +<td align="right">0.0020875</td> +</tr> +<tr class="odd"> +<td align="right">0.0080359</td> +<td align="right">0.0025904</td> +</tr> +<tr class="even"> +<td align="right">0.0037349</td> +<td align="right">0.0016723</td> +</tr> +<tr class="odd"> +<td align="right">0.0040190</td> +<td align="right">0.0017954</td> +</tr> +<tr class="even"> +<td align="right">0.0044242</td> +<td align="right">0.0018167</td> +</tr> +<tr class="odd"> +<td align="right">0.0029265</td> +<td align="right">0.0014650</td> +</tr> +<tr class="even"> +<td align="right">0.0038035</td> +<td align="right">0.0017442</td> +</tr> +<tr class="odd"> +<td align="right">0.0026445</td> +<td align="right">0.0013313</td> +</tr> +<tr class="even"> +<td align="right">0.0007688</td> +<td align="right">0.0007691</td> +</tr> +<tr class="odd"> +<td align="right">0.0007688</td> +<td align="right">0.0007691</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0011546</td> +<td align="right">0.0011460</td> +</tr> +<tr class="even"> +<td align="right">0.0011546</td> +<td align="right">0.0011460</td> +</tr> +<tr class="odd"> +<td align="right">0.0011546</td> +<td align="right">0.0011460</td> +</tr> +<tr class="even"> +<td align="right">0.0043451</td> +<td align="right">0.0026090</td> +</tr> +<tr class="odd"> +<td align="right">0.0063200</td> +<td align="right">0.0028333</td> +</tr> +<tr class="even"> +<td align="right">0.0061068</td> +<td align="right">0.0027596</td> +</tr> +<tr class="odd"> +<td align="right">0.0065177</td> +<td align="right">0.0027431</td> +</tr> +<tr class="even"> +<td align="right">0.0098245</td> +<td align="right">0.0029206</td> +</tr> +<tr class="odd"> +<td align="right">0.0153134</td> +<td align="right">0.0037770</td> +</tr> +<tr class="even"> +<td align="right">0.0135992</td> +<td align="right">0.0031570</td> +</tr> +<tr class="odd"> +<td align="right">0.0113585</td> +<td align="right">0.0029260</td> +</tr> +<tr class="even"> +<td align="right">0.0087920</td> +<td align="right">0.0025506</td> +</tr> +<tr class="odd"> +<td align="right">0.0045751</td> +<td align="right">0.0018603</td> +</tr> +<tr class="even"> +<td align="right">0.0082253</td> +<td align="right">0.0034984</td> +</tr> +<tr class="odd"> +<td align="right">0.0016668</td> +<td align="right">0.0011709</td> +</tr> +<tr class="even"> +<td align="right">0.0007955</td> +<td align="right">0.0007945</td> +</tr> +<tr class="odd"> +<td align="right">0.0033740</td> +<td align="right">0.0017068</td> +</tr> +<tr class="even"> +<td align="right">0.0081208</td> +<td align="right">0.0026752</td> +</tr> +<tr class="odd"> +<td align="right">0.0024292</td> +<td align="right">0.0018018</td> +</tr> +<tr class="even"> +<td align="right">0.0047446</td> +<td align="right">0.0022724</td> +</tr> +<tr class="odd"> +<td align="right">0.0037831</td> +<td align="right">0.0020343</td> +</tr> +<tr class="even"> +<td align="right">0.0042721</td> +<td align="right">0.0022209</td> +</tr> +<tr class="odd"> +<td align="right">0.0007803</td> +<td align="right">0.0007793</td> +</tr> +<tr class="even"> +<td align="right">0.0013499</td> +<td align="right">0.0009648</td> +</tr> +<tr class="odd"> +<td align="right">0.0042181</td> +<td align="right">0.0017355</td> +</tr> +<tr class="even"> +<td align="right">0.0036038</td> +<td align="right">0.0016403</td> +</tr> +<tr class="odd"> +<td align="right">0.0022535</td> +<td align="right">0.0013218</td> +</tr> +<tr class="even"> +<td align="right">0.0050891</td> +<td align="right">0.0019686</td> +</tr> +<tr class="odd"> +<td align="right">0.0060470</td> +<td align="right">0.0021860</td> +</tr> +<tr class="even"> +<td align="right">0.0034925</td> +<td align="right">0.0017521</td> +</tr> +<tr class="odd"> +<td align="right">0.0031045</td> +<td align="right">0.0018468</td> +</tr> +<tr class="even"> +<td align="right">0.0022286</td> +<td align="right">0.0013102</td> +</tr> +<tr class="odd"> +<td align="right">0.0005696</td> +<td align="right">0.0005700</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0010171</td> +<td align="right">0.0010169</td> +</tr> +<tr class="even"> +<td align="right">0.0016925</td> +<td align="right">0.0012332</td> +</tr> +<tr class="odd"> +<td align="right">0.0024130</td> +<td align="right">0.0014273</td> +</tr> +<tr class="even"> +<td align="right">0.0010607</td> +<td align="right">0.0010593</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0008210</td> +<td align="right">0.0008218</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="odd"> +<td align="right">0.0015178</td> +<td align="right">0.0010755</td> +</tr> +<tr class="even"> +<td align="right">0.0018316</td> +<td align="right">0.0012972</td> +</tr> +<tr class="odd"> +<td align="right">0.0026090</td> +<td align="right">0.0015029</td> +</tr> +<tr class="even"> +<td align="right">0.0059758</td> +<td align="right">0.0022899</td> +</tr> +<tr class="odd"> +<td align="right">0.0057217</td> +<td align="right">0.0023698</td> +</tr> +<tr class="even"> +<td align="right">0.0027817</td> +<td align="right">0.0016581</td> +</tr> +<tr class="odd"> +<td align="right">0.0082422</td> +<td align="right">0.0028482</td> +</tr> +<tr class="even"> +<td align="right">0.0061293</td> +<td align="right">0.0023547</td> +</tr> +<tr class="odd"> +<td align="right">0.0034749</td> +<td align="right">0.0017630</td> +</tr> +<tr class="even"> +<td align="right">0.0030841</td> +<td align="right">0.0015753</td> +</tr> +<tr class="odd"> +<td align="right">0.0054632</td> +<td align="right">0.0024691</td> +</tr> +<tr class="even"> +<td align="right">0.0032007</td> +<td align="right">0.0016093</td> +</tr> +<tr class="odd"> +<td align="right">0.0046244</td> +<td align="right">0.0019029</td> +</tr> +<tr class="even"> +<td align="right">0.0048123</td> +<td align="right">0.0020015</td> +</tr> +<tr class="odd"> +<td align="right">0.0011544</td> +<td align="right">0.0008160</td> +</tr> +<tr class="even"> +<td align="right">0.0037433</td> +<td align="right">0.0016951</td> +</tr> +<tr class="odd"> +<td align="right">0.0040062</td> +<td align="right">0.0018113</td> +</tr> +<tr class="even"> +<td align="right">0.0040395</td> +<td align="right">0.0018130</td> +</tr> +<tr class="odd"> +<td align="right">0.0057441</td> +<td align="right">0.0021869</td> +</tr> +<tr class="even"> +<td align="right">0.0073537</td> +<td align="right">0.0024591</td> +</tr> +<tr class="odd"> +<td align="right">0.0035242</td> +<td align="right">0.0017526</td> +</tr> +<tr class="even"> +<td align="right">0.0033177</td> +<td align="right">0.0016586</td> +</tr> +<tr class="odd"> +<td align="right">0.0031236</td> +<td align="right">0.0017901</td> +</tr> +<tr class="even"> +<td align="right">0.0050171</td> +<td align="right">0.0022189</td> +</tr> +<tr class="odd"> +<td align="right">0.0026816</td> +<td align="right">0.0015406</td> +</tr> +<tr class="even"> +<td align="right">0.0049431</td> +<td align="right">0.0020133</td> +</tr> +<tr class="odd"> +<td align="right">0.0059654</td> +<td align="right">0.0022547</td> +</tr> +<tr class="even"> +<td align="right">0.0033824</td> +<td align="right">0.0016940</td> +</tr> +<tr class="odd"> +<td align="right">0.0029503</td> +<td align="right">0.0014623</td> +</tr> +<tr class="even"> +<td align="right">0.0015008</td> +<td align="right">0.0010499</td> +</tr> +<tr class="odd"> +<td align="right">0.0017036</td> +<td align="right">0.0011971</td> +</tr> +<tr class="even"> +<td align="right">0.0009233</td> +<td align="right">0.0009233</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">0.0000000</td> +</tr> +</tbody> +</table> +<pre><code>## r_dow S M T W T F S +## st_halfhour +## 00:00 mean 8.461652e-05 8.461652e-05 0.000000e+00 8.595842e-05 8.049951e-05 9.278030e-05 2.661310e-04 +## SE 4.094002e-03 4.510494e-03 3.992159e-03 3.436225e-03 3.368346e-03 3.028240e-03 3.630390e-03 +## 00:30 mean 6.118147e-04 1.251603e-03 1.095065e-03 2.965924e-03 4.110392e-03 4.259927e-03 5.733988e-03 +## SE 2.801245e-03 2.374706e-03 3.228891e-03 3.933391e-03 3.529126e-03 3.884200e-03 2.730718e-03 +## 01:00 mean 6.445552e-03 5.008504e-03 4.420248e-03 5.704297e-03 3.974824e-03 3.326164e-03 2.888210e-03 +## SE 2.895014e-03 2.478719e-03 2.347239e-03 2.095954e-03 1.240167e-03 6.023241e-04 4.243458e-04</code></pre> +<pre><code>## [1] "Feedback: Weekday early morning laundry (06:00 – 09:00) out of all laundry"</code></pre> +<table> +<caption>Weekday early morning laundry (06:00 – 09:00) out of all laundry</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="left">ba_survey</th> +<th align="right">weekday_earlyam</th> +<th align="right">se</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">1985</td> +<td align="left">1985</td> +<td align="right">0.0612199</td> +<td align="right">0.0027494</td> +</tr> +<tr class="even"> +<td align="left">2005</td> +<td align="left">2005</td> +<td align="right">0.1348555</td> +<td align="right">0.0145266</td> +</tr> +</tbody> +</table> +<pre><code>## [1] "Feedback: Weekday morning laundry out of all laundry"</code></pre> +<table> +<caption>Weekday morning laundry out of all laundry</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="left">ba_survey</th> +<th align="right">weekday_am</th> +<th align="right">se</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">1985</td> +<td align="left">1985</td> +<td align="right">0.2108538</td> +<td align="right">0.0057673</td> +</tr> +<tr class="even"> +<td align="left">2005</td> +<td align="left">2005</td> +<td align="right">0.1957309</td> +<td align="right">0.0191291</td> +</tr> +</tbody> +</table> +<pre><code>## [1] "Feedback: Weekday evening peak laundry out of all laundry"</code></pre> +<table> +<caption>Weekday evening peak laundry out of all laundry</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="left">ba_survey</th> +<th align="right">weekday_pm</th> +<th align="right">se</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">1985</td> +<td align="left">1985</td> +<td align="right">0.1208896</td> +<td align="right">0.0045649</td> +</tr> +<tr class="even"> +<td align="left">2005</td> +<td align="left">2005</td> +<td align="right">0.1228752</td> +<td align="right">0.0161665</td> +</tr> +</tbody> +</table> +<pre><code>## [1] "Feedback: Sunday morning laundry out of all laundry"</code></pre> +<table> +<caption>Sunday morning laundry out of all laundry</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="left">ba_survey</th> +<th align="right">sunday_am</th> +<th align="right">se</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">1985</td> +<td align="left">1985</td> +<td align="right">0.0441858</td> +<td align="right">0.0029138</td> +</tr> +<tr class="even"> +<td align="left">2005</td> +<td align="left">2005</td> +<td align="right">0.0698033</td> +<td align="right">0.0116076</td> +</tr> +</tbody> +</table> +<pre><code>## 2.5 % 97.5 % +## 1985 0.03847499 0.04989669 +## 2005 0.04705275 0.09255377</code></pre> +<pre><code>## [1] "Feedback: Other laundry out of all laundry"</code></pre> +<table> +<caption>Other laundry out of all laundry</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="left">ba_survey</th> +<th align="right">other</th> +<th align="right">se</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">1985</td> +<td align="left">1985</td> +<td align="right">0.5628508</td> +<td align="right">0.0069440</td> +</tr> +<tr class="even"> +<td align="left">2005</td> +<td align="left">2005</td> +<td align="right">0.4767352</td> +<td align="right">0.0238243</td> +</tr> +</tbody> +</table> +<pre><code>## [1] "% within empstat who do sunday_am"</code></pre> +<pre><code>## empstat sunday_am se +## full-time full-time 0.07804306 0.01920174 +## not in paid work not in paid work 0.06989777 0.01804090 +## part-time part-time 0.04599771 0.01855852</code></pre> +<pre><code>## [1] "% within empstat who do weekday early am"</code></pre> +<pre><code>## empstat weekday_earlyam se +## full-time full-time 0.1155997 0.01824415 +## not in paid work not in paid work 0.1584702 0.02712452 +## part-time part-time 0.1365675 0.03517791</code></pre> +<pre><code>## [1] "% within empstat who do weekday am"</code></pre> +<pre><code>## empstat weekday_am se +## full-time full-time 0.2230604 0.03161854 +## not in paid work not in paid work 0.1745649 0.02764323 +## part-time part-time 0.1653634 0.03930053</code></pre> +<pre><code>## [1] "% within empstat who do weekday pm"</code></pre> +<pre><code>## empstat weekday_pm se +## full-time full-time 0.1309584 0.02501823 +## not in paid work not in paid work 0.1224830 0.02370082 +## part-time part-time 0.1006188 0.04237536</code></pre> +<pre><code>## [1] "% within empstat who do other"</code></pre> +<pre><code>## empstat other se +## full-time full-time 0.4523385 0.03593228 +## not in paid work not in paid work 0.4745841 0.03621508 +## part-time part-time 0.5514526 0.06317038</code></pre> +<pre><code>## [1] "summarise the laundry types by diarypid for 1985 to see how many different kinds of laundry"</code></pre> +<pre><code>## [1] "Summarise the laundry types by diarypid for 2005 to see how many different kinds of laundry"</code></pre> +<pre><code>## [1] "Check laundry by sex & hh type - any change in proportions done by men in couples?"</code></pre> +<table> +<caption>Check laundry by sex & hh type - any change in proportions done by men in couples?</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="right">Man</th> +<th align="right">Woman</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">1 person household</td> +<td align="right">117</td> +<td align="right">229</td> +</tr> +<tr class="even"> +<td align="left">Married/cohabiting couple + others</td> +<td align="right">1178</td> +<td align="right">1306</td> +</tr> +<tr class="odd"> +<td align="left">Married/cohabiting couple alone</td> +<td align="right">462</td> +<td align="right">522</td> +</tr> +<tr class="even"> +<td align="left">Other household types</td> +<td align="right">177</td> +<td align="right">325</td> +</tr> +</tbody> +</table> +<table> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="right">Man</th> +<th align="right">Woman</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">1 person household</td> +<td align="right">64</td> +<td align="right">74</td> +</tr> +<tr class="even"> +<td align="left">Married/cohabiting couple + others</td> +<td align="right">65</td> +<td align="right">67</td> +</tr> +<tr class="odd"> +<td align="left">Married/cohabiting couple alone</td> +<td align="right">79</td> +<td align="right">73</td> +</tr> +<tr class="even"> +<td align="left">Other household types</td> +<td align="right">13</td> +<td align="right">39</td> +</tr> +</tbody> +</table> +<pre><code>## +## full-time not in paid work part-time unknown job hours +## 1032 1188 383 4 +## <NA> +## 0</code></pre> +<pre><code>## +## full-time not in paid work part-time unknown job hours +## full-time 1032 0 0 0 +## notInPaidWork 0 1188 0 0 +## part-time 0 0 383 0 +## unknownHours 0 0 0 4 +## <NA> 0 0 0 0 +## +## <NA> +## full-time 0 +## notInPaidWork 0 +## part-time 0 +## unknownHours 0 +## <NA> 0</code></pre> +<pre><code>## +## 0 1 2 3 4 5 8 10 11 +## Autumn 0 0 0 0 0 0 14 4157 0 +## Spring 0 0 3123 5932 1274 0 0 0 0 +## Summer 0 0 0 0 0 56 0 0 0 +## Winter 3372 683 0 0 0 0 0 0 214</code></pre> +<table> +<caption>Check season flag</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="right">2</th> +<th align="right">5</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">Spring</td> +<td align="right">1470</td> +<td align="right">0</td> +</tr> +<tr class="even"> +<td align="left">Summer</td> +<td align="right">0</td> +<td align="right">1137</td> +</tr> +</tbody> +</table> +<table> +<caption>combinations by employment type 1985</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="right">full-time</th> +<th align="right">not in paid work</th> +<th align="right">part-time</th> +<th align="right">unknown job hours</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">0</td> +<td align="right">6093</td> +<td align="right">6379</td> +<td align="right">3638</td> +<td align="right">460</td> +</tr> +<tr class="even"> +<td align="left">1</td> +<td align="right">750</td> +<td align="right">802</td> +<td align="right">495</td> +<td align="right">56</td> +</tr> +<tr class="odd"> +<td align="left">2</td> +<td align="right">154</td> +<td align="right">143</td> +<td align="right">104</td> +<td align="right">9</td> +</tr> +<tr class="even"> +<td align="left">3</td> +<td align="right">13</td> +<td align="right">13</td> +<td align="right">3</td> +<td align="right">0</td> +</tr> +</tbody> +</table> +<table> +<caption>combinations by employment type 2005</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="right">full-time</th> +<th align="right">not in paid work</th> +<th align="right">part-time</th> +<th align="right">unknown job hours</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">0</td> +<td align="right">902</td> +<td align="right">1060</td> +<td align="right">338</td> +<td align="right">4</td> +</tr> +<tr class="even"> +<td align="left">1</td> +<td align="right">112</td> +<td align="right">107</td> +<td align="right">40</td> +<td align="right">0</td> +</tr> +<tr class="odd"> +<td align="left">2</td> +<td align="right">18</td> +<td align="right">20</td> +<td align="right">5</td> +<td align="right">0</td> +</tr> +<tr class="even"> +<td align="left">3</td> +<td align="right">0</td> +<td align="right">1</td> +<td align="right">0</td> +<td align="right">0</td> +</tr> +</tbody> +</table> +<table> +<caption>Get number of people reporting any laundry by employment status (to give denominator 1985)</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="right">full-time</th> +<th align="right">not in paid work</th> +<th align="right">part-time</th> +<th align="right">unknown job hours</th> +<th align="right">NA</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">0</td> +<td align="right">5458</td> +<td align="right">5682</td> +<td align="right">3267</td> +<td align="right">389</td> +<td align="right">0</td> +</tr> +<tr class="even"> +<td align="left">1</td> +<td align="right">1552</td> +<td align="right">1655</td> +<td align="right">973</td> +<td align="right">136</td> +<td align="right">0</td> +</tr> +<tr class="odd"> +<td align="left">NA</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +</tr> +</tbody> +</table> +<table> +<caption>Get number of people reporting any laundry by employment status (to give denominator 2005)</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="right">full-time</th> +<th align="right">not in paid work</th> +<th align="right">part-time</th> +<th align="right">unknown job hours</th> +<th align="right">NA</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">0</td> +<td align="right">837</td> +<td align="right">987</td> +<td align="right">305</td> +<td align="right">4</td> +<td align="right">0</td> +</tr> +<tr class="even"> +<td align="left">1</td> +<td align="right">195</td> +<td align="right">201</td> +<td align="right">78</td> +<td align="right">0</td> +<td align="right">0</td> +</tr> +<tr class="odd"> +<td align="left">NA</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +</tr> +</tbody> +</table> +<table> +<caption>combinations by age - 1985</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="right">(16,25]</th> +<th align="right">(25,35]</th> +<th align="right">(35,45]</th> +<th align="right">(45,55]</th> +<th align="right">(55,65]</th> +<th align="right">(65,75]</th> +<th align="right">(75,85]</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">0</td> +<td align="right">2815</td> +<td align="right">4187</td> +<td align="right">3364</td> +<td align="right">2807</td> +<td align="right">2030</td> +<td align="right">1001</td> +<td align="right">366</td> +</tr> +<tr class="even"> +<td align="left">1</td> +<td align="right">337</td> +<td align="right">513</td> +<td align="right">435</td> +<td align="right">396</td> +<td align="right">254</td> +<td align="right">130</td> +<td align="right">38</td> +</tr> +<tr class="odd"> +<td align="left">2</td> +<td align="right">60</td> +<td align="right">86</td> +<td align="right">92</td> +<td align="right">86</td> +<td align="right">54</td> +<td align="right">25</td> +<td align="right">7</td> +</tr> +<tr class="even"> +<td align="left">3</td> +<td align="right">4</td> +<td align="right">7</td> +<td align="right">4</td> +<td align="right">8</td> +<td align="right">3</td> +<td align="right">2</td> +<td align="right">1</td> +</tr> +</tbody> +</table> +<table> +<caption>combinations by age - 2005</caption> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="right">(16,25]</th> +<th align="right">(25,35]</th> +<th align="right">(35,45]</th> +<th align="right">(45,55]</th> +<th align="right">(55,65]</th> +<th align="right">(65,75]</th> +<th align="right">(75,85]</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">0</td> +<td align="right">181</td> +<td align="right">377</td> +<td align="right">426</td> +<td align="right">367</td> +<td align="right">384</td> +<td align="right">304</td> +<td align="right">265</td> +</tr> +<tr class="even"> +<td align="left">1</td> +<td align="right">20</td> +<td align="right">42</td> +<td align="right">51</td> +<td align="right">45</td> +<td align="right">45</td> +<td align="right">37</td> +<td align="right">19</td> +</tr> +<tr class="odd"> +<td align="left">2</td> +<td align="right">3</td> +<td align="right">5</td> +<td align="right">6</td> +<td align="right">8</td> +<td align="right">11</td> +<td align="right">5</td> +<td align="right">5</td> +</tr> +<tr class="even"> +<td align="left">3</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">1</td> +<td align="right">0</td> +<td align="right">0</td> +</tr> +</tbody> +</table> +<table> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="right">(16,25]</th> +<th align="right">(25,35]</th> +<th align="right">(35,45]</th> +<th align="right">(45,55]</th> +<th align="right">(55,65]</th> +<th align="right">(65,75]</th> +<th align="right">(75,85]</th> +<th align="right">NA</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">0</td> +<td align="right">2541</td> +<td align="right">3753</td> +<td align="right">3004</td> +<td align="right">2480</td> +<td align="right">1795</td> +<td align="right">894</td> +<td align="right">329</td> +<td align="right">0</td> +</tr> +<tr class="even"> +<td align="left">1</td> +<td align="right">675</td> +<td align="right">1040</td> +<td align="right">891</td> +<td align="right">817</td> +<td align="right">546</td> +<td align="right">264</td> +<td align="right">83</td> +<td align="right">0</td> +</tr> +<tr class="odd"> +<td align="left">NA</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +</tr> +</tbody> +</table> +<table> +<thead> +<tr class="header"> +<th align="left"></th> +<th align="right">(16,25]</th> +<th align="right">(25,35]</th> +<th align="right">(35,45]</th> +<th align="right">(45,55]</th> +<th align="right">(55,65]</th> +<th align="right">(65,75]</th> +<th align="right">(75,85]</th> +<th align="right">NA</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">0</td> +<td align="right">170</td> +<td align="right">348</td> +<td align="right">397</td> +<td align="right">338</td> +<td align="right">353</td> +<td align="right">277</td> +<td align="right">250</td> +<td align="right">0</td> +</tr> +<tr class="even"> +<td align="left">1</td> +<td align="right">34</td> +<td align="right">76</td> +<td align="right">86</td> +<td align="right">82</td> +<td align="right">88</td> +<td align="right">69</td> +<td align="right">39</td> +<td align="right">0</td> +</tr> +<tr class="odd"> +<td align="left">NA</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +<td align="right">0</td> +</tr> +</tbody> +</table> +<pre><code>## [1] "# <-- New model --> #" +## [1] "Running logit model: ~" +## [2] "Running logit model: Sunday_amd" +## [3] "Running logit model: empstat + ba_age_r + ba_nchild" +## [1] "" +## [1] "# Model results" +## term estimate std.error +## (Intercept) (Intercept) -2.25106043 0.6626785 +## empstatnot in paid work empstatnot in paid work 0.07246519 0.4443794 +## empstatpart-time empstatpart-time 0.19530905 0.4716650 +## ba_age_r(25,35] ba_age_r(25,35] 0.27089076 0.7256474 +## ba_age_r(35,45] ba_age_r(35,45] 0.74329719 0.6912685 +## ba_age_r(45,55] ba_age_r(45,55] -0.49464112 0.7752806 +## ba_age_r(55,65] ba_age_r(55,65] -0.13008162 0.7380416 +## ba_age_r(65,75] ba_age_r(65,75] -0.18396754 0.8089391 +## ba_age_r(75,85] ba_age_r(75,85] -0.30962498 0.9199216 +## ba_nchild1 ba_nchild1 -0.04619857 0.5248261 +## ba_nchild2 ba_nchild2 -0.85050265 0.6145155 +## ba_nchild3+ ba_nchild3+ -0.39676938 0.8215772 +## statistic p.value 2.5 % 97.5 % +## (Intercept) -3.39691200 0.0006815088 -3.7639820 -1.0883440 +## empstatnot in paid work 0.16307054 0.8704628949 -0.8203800 0.9343213 +## empstatpart-time 0.41408425 0.6788124055 -0.7746941 1.0959084 +## ba_age_r(25,35] 0.37330908 0.7089184203 -1.0742774 1.8629130 +## ba_age_r(35,45] 1.07526549 0.2822558835 -0.5048537 2.2902368 +## ba_age_r(45,55] -0.63801556 0.5234635508 -1.9885472 1.1605981 +## ba_age_r(55,65] -0.17625242 0.8600956370 -1.5018070 1.4814926 +## ba_age_r(65,75] -0.22741828 0.8200985059 -1.7185889 1.5380336 +## ba_age_r(75,85] -0.33657757 0.7364353634 -2.1704187 1.5634109 +## ba_nchild1 -0.08802643 0.9298556702 -1.1519717 0.9337535 +## ba_nchild2 -1.38402147 0.1663518809 -2.1880908 0.2735906 +## ba_nchild3+ -0.48293620 0.6291410392 -2.3337972 1.0396889 +## [1] "# Model summary" +## null.deviance df.null logLik AIC BIC deviance df.residual +## 1 301.9801 473 -147.6618 319.3237 369.2582 295.3237 462 +## *Pseudo R^2 for logistic regression +## -> Hosmer and Lemeshow R^2 0.022 +## -> Cox and Snell R^2 0.014 +## -> Nagelkerke R^2 0.03 +## [1] "" +## [1] "# Diagnostics: independence of errors" +## lag Autocorrelation D-W Statistic p-value +## 1 0.01472566 1.969515 0.724 +## Alternative hypothesis: rho != 0 +## [1] "# Diagnostics: collinearity (vif)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 1.771673 2 1.153708 +## ba_age_r 2.360494 6 1.074196 +## ba_nchild 1.498813 3 1.069772 +## [1] "# Diagnostics: collinearity (tolerance)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 0.5644383 0.5000000 0.8667705 +## ba_age_r 0.4236401 0.1666667 0.9309287 +## ba_nchild 0.6671946 0.3333333 0.9347786</code></pre> +<pre><code>## [1] "# <-- New model --> #" +## [1] "Running logit model: ~" +## [2] "Running logit model: Sunday_amd" +## [3] "Running logit model: empstat + ba_age_r + ba_nchild + ba_season" +## [1] "" +## [1] "# Model results" +## term estimate std.error +## (Intercept) (Intercept) -2.38412124 0.6805659 +## empstatnot in paid work empstatnot in paid work 0.07569039 0.4448707 +## empstatpart-time empstatpart-time 0.18734471 0.4714993 +## ba_age_r(25,35] ba_age_r(25,35] 0.27902683 0.7251250 +## ba_age_r(35,45] ba_age_r(35,45] 0.74599140 0.6900865 +## ba_age_r(45,55] ba_age_r(45,55] -0.50654472 0.7747391 +## ba_age_r(55,65] ba_age_r(55,65] -0.12684848 0.7388972 +## ba_age_r(65,75] ba_age_r(65,75] -0.20852085 0.8124010 +## ba_age_r(75,85] ba_age_r(75,85] -0.32579145 0.9221720 +## ba_nchild1 ba_nchild1 -0.06494171 0.5259901 +## ba_nchild2 ba_nchild2 -0.87154445 0.6149872 +## ba_nchild3+ ba_nchild3+ -0.33668148 0.8235682 +## ba_seasonSummer ba_seasonSummer 0.26973420 0.3169871 +## statistic p.value 2.5 % 97.5 % +## (Intercept) -3.5031453 0.0004597985 -3.9224060 -1.1782015 +## empstatnot in paid work 0.1701402 0.8648998788 -0.8184432 0.9382740 +## empstatpart-time 0.3973382 0.6911180547 -0.7823939 1.0875456 +## ba_age_r(25,35] 0.3847983 0.7003868846 -1.0654174 1.8700050 +## ba_age_r(35,45] 1.0810114 0.2796920373 -0.4999787 2.2909249 +## ba_age_r(45,55] -0.6538262 0.5132237875 -1.9996363 1.1476382 +## ba_age_r(55,65] -0.1716727 0.8636948479 -1.5004011 1.4860238 +## ba_age_r(65,75] -0.2566723 0.7974317285 -1.7502570 1.5191441 +## ba_age_r(75,85] -0.3532871 0.7238732247 -2.1904471 1.5513886 +## ba_nchild1 -0.1234657 0.9017383664 -1.1732017 0.9169511 +## ba_nchild2 -1.4171749 0.1564317876 -2.2097758 0.2537567 +## ba_nchild3+ -0.4088083 0.6826803804 -2.2763818 1.1047165 +## ba_seasonSummer 0.8509310 0.3948076567 -0.3500234 0.8995334 +## [1] "# Model summary" +## null.deviance df.null logLik AIC BIC deviance df.residual +## 1 301.9801 473 -147.298 320.596 374.6917 294.596 461 +## *Pseudo R^2 for logistic regression +## -> Hosmer and Lemeshow R^2 0.024 +## -> Cox and Snell R^2 0.015 +## -> Nagelkerke R^2 0.033 +## [1] "" +## [1] "# Diagnostics: independence of errors" +## lag Autocorrelation D-W Statistic p-value +## 1 0.01323541 1.972475 0.674 +## Alternative hypothesis: rho != 0 +## [1] "# Diagnostics: collinearity (vif)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 1.774903 2 1.154233 +## ba_age_r 2.368047 6 1.074482 +## ba_nchild 1.512619 3 1.071408 +## ba_season 1.020097 1 1.009999 +## [1] "# Diagnostics: collinearity (tolerance)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 0.5634110 0.5000000 0.8663758 +## ba_age_r 0.4222889 0.1666667 0.9306809 +## ba_nchild 0.6611049 0.3333333 0.9333511 +## ba_season 0.9802986 1.0000000 0.9901003</code></pre> +<pre><code>## [1] "# <-- New model --> #" +## [1] "Running logit model: ~" +## [2] "Running logit model: WeekdayEarly_amd" +## [3] "Running logit model: empstat + ba_age_r + ba_nchild" +## [1] "" +## [1] "# Model results" +## term estimate std.error +## (Intercept) (Intercept) -1.59090022 0.4788073 +## empstatnot in paid work empstatnot in paid work 0.33705088 0.2968983 +## empstatpart-time empstatpart-time -0.06797079 0.3401498 +## ba_age_r(25,35] ba_age_r(25,35] 0.12183484 0.5167092 +## ba_age_r(35,45] ba_age_r(35,45] 0.09057922 0.5073915 +## ba_age_r(45,55] ba_age_r(45,55] 0.24343652 0.5201143 +## ba_age_r(55,65] ba_age_r(55,65] 0.62129148 0.5165602 +## ba_age_r(65,75] ba_age_r(65,75] -0.08302318 0.5750000 +## ba_age_r(75,85] ba_age_r(75,85] -0.25686325 0.6473666 +## ba_nchild1 ba_nchild1 -0.08999451 0.4282902 +## ba_nchild2 ba_nchild2 0.57880559 0.3882608 +## ba_nchild3+ ba_nchild3+ 0.42954649 0.5878169 +## statistic p.value 2.5 % 97.5 % +## (Intercept) -3.3226313 0.0008917269 -2.6016972 -0.7031387 +## empstatnot in paid work 1.1352402 0.2562746740 -0.2483619 0.9183591 +## empstatpart-time -0.1998260 0.8416166394 -0.7535738 0.5859509 +## ba_age_r(25,35] 0.2357899 0.8135956672 -0.8635682 1.1858968 +## ba_age_r(35,45] 0.1785194 0.8583150820 -0.8740293 1.1390156 +## ba_age_r(45,55] 0.4680443 0.6397529052 -0.7450359 1.3165790 +## ba_age_r(55,65] 1.2027474 0.2290740885 -0.3537119 1.6923568 +## ba_age_r(65,75] -0.1443881 0.8851939747 -1.1881757 1.0868580 +## ba_age_r(75,85] -0.3967818 0.6915284081 -1.5379263 1.0293719 +## ba_nchild1 -0.2101251 0.8335700611 -0.9766954 0.7189866 +## ba_nchild2 1.4907650 0.1360232157 -0.1917540 1.3372626 +## ba_nchild3+ 0.7307487 0.4649326394 -0.8072768 1.5384047 +## [1] "# Model summary" +## null.deviance df.null logLik AIC BIC deviance df.residual +## 1 513.5908 473 -252.3306 528.6612 578.5957 504.6612 462 +## *Pseudo R^2 for logistic regression +## -> Hosmer and Lemeshow R^2 0.017 +## -> Cox and Snell R^2 0.019 +## -> Nagelkerke R^2 0.028 +## [1] "" +## [1] "# Diagnostics: independence of errors" +## lag Autocorrelation D-W Statistic p-value +## 1 0.02731998 1.939465 0.488 +## Alternative hypothesis: rho != 0 +## [1] "# Diagnostics: collinearity (vif)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 1.609933 2 1.126424 +## ba_age_r 2.524795 6 1.080237 +## ba_nchild 1.729993 3 1.095656 +## [1] "# Diagnostics: collinearity (tolerance)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 0.6211439 0.5000000 0.8877651 +## ba_age_r 0.3960717 0.1666667 0.9257232 +## ba_nchild 0.5780369 0.3333333 0.9126955</code></pre> +<pre><code>## [1] "# <-- New model --> #" +## [1] "Running logit model: ~" +## [2] "Running logit model: Weekday_amd" +## [3] "Running logit model: empstat + ba_age_r + ba_nchild" +## [1] "" +## [1] "# Model results" +## term estimate std.error +## (Intercept) (Intercept) -0.47153375 0.4209208 +## empstatnot in paid work empstatnot in paid work -0.66351274 0.3284628 +## empstatpart-time empstatpart-time -0.41958118 0.3386955 +## ba_age_r(25,35] ba_age_r(25,35] -0.77133255 0.4750686 +## ba_age_r(35,45] ba_age_r(35,45] -0.61933109 0.4616950 +## ba_age_r(45,55] ba_age_r(45,55] -0.56788309 0.4694252 +## ba_age_r(55,65] ba_age_r(55,65] -0.64183217 0.4886030 +## ba_age_r(65,75] ba_age_r(65,75] 0.14522591 0.5243426 +## ba_age_r(75,85] ba_age_r(75,85] 0.31759362 0.5745195 +## ba_nchild1 ba_nchild1 -0.07815546 0.4112193 +## ba_nchild2 ba_nchild2 0.43645699 0.3843440 +## ba_nchild3+ ba_nchild3+ -0.30661730 0.6808297 +## statistic p.value 2.5 % 97.5 % +## (Intercept) -1.1202433 0.26261009 -1.3263236 0.33836969 +## empstatnot in paid work -2.0200544 0.04337775 -1.3246801 -0.03257784 +## empstatpart-time -1.2388153 0.21541391 -1.1046658 0.22892615 +## ba_age_r(25,35] -1.6236234 0.10445621 -1.7035084 0.17215124 +## ba_age_r(35,45] -1.3414291 0.17978118 -1.5209674 0.30187884 +## ba_age_r(45,55] -1.2097414 0.22637814 -1.4836746 0.36913057 +## ba_age_r(55,65] -1.3136068 0.18897856 -1.5960304 0.33201414 +## ba_age_r(65,75] 0.2769676 0.78180499 -0.8712554 1.19481144 +## ba_age_r(75,85] 0.5527987 0.58040125 -0.8061612 1.45809636 +## ba_nchild1 -0.1900578 0.84926380 -0.9249853 0.70101902 +## ba_nchild2 1.1355894 0.25612845 -0.3288492 1.18509012 +## ba_nchild3+ -0.4503583 0.65245213 -1.8369630 0.91969882 +## [1] "# Model summary" +## null.deviance df.null logLik AIC BIC deviance df.residual +## 1 520.665 473 -254.9798 533.9595 583.894 509.9595 462 +## *Pseudo R^2 for logistic regression +## -> Hosmer and Lemeshow R^2 0.021 +## -> Cox and Snell R^2 0.022 +## -> Nagelkerke R^2 0.034 +## [1] "" +## [1] "# Diagnostics: independence of errors" +## lag Autocorrelation D-W Statistic p-value +## 1 0.04875728 1.893013 0.202 +## Alternative hypothesis: rho != 0 +## [1] "# Diagnostics: collinearity (vif)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 2.030107 2 1.193658 +## ba_age_r 2.858071 6 1.091456 +## ba_nchild 1.581850 3 1.079429 +## [1] "# Diagnostics: collinearity (tolerance)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 0.4925848 0.5000000 0.8377612 +## ba_age_r 0.3498863 0.1666667 0.9162076 +## ba_nchild 0.6321711 0.3333333 0.9264154</code></pre> +<pre><code>## [1] "# <-- New model --> #" +## [1] "Running logit model: ~" +## [2] "Running logit model: Weekday_pmd" +## [3] "Running logit model: empstat + ba_age_r + ba_nchild" +## [1] "" +## [1] "# Model results" +## term estimate std.error +## (Intercept) (Intercept) -1.610307347 0.5421485 +## empstatnot in paid work empstatnot in paid work 0.096866852 0.3347478 +## empstatpart-time empstatpart-time -0.707022008 0.4355114 +## ba_age_r(25,35] ba_age_r(25,35] -0.127072651 0.6022041 +## ba_age_r(35,45] ba_age_r(35,45] -0.507283327 0.6099009 +## ba_age_r(45,55] ba_age_r(45,55] 0.546103516 0.5774865 +## ba_age_r(55,65] ba_age_r(55,65] 0.415731774 0.5902036 +## ba_age_r(65,75] ba_age_r(65,75] -0.465465943 0.6783961 +## ba_age_r(75,85] ba_age_r(75,85] 0.009440469 0.7045892 +## ba_nchild1 ba_nchild1 -0.980651054 0.6390646 +## ba_nchild2 ba_nchild2 0.323016053 0.4683272 +## ba_nchild3+ ba_nchild3+ 0.991064404 0.6119478 +## statistic p.value 2.5 % 97.5 % +## (Intercept) -2.97023323 0.002975737 -2.7839177 -0.6214222 +## empstatnot in paid work 0.28937260 0.772296258 -0.5676561 0.7492618 +## empstatpart-time -1.62342953 0.104497617 -1.6212012 0.1050555 +## ba_age_r(25,35] -0.21101260 0.832877440 -1.2736698 1.1297847 +## ba_age_r(35,45] -0.83174713 0.405551693 -1.6769086 0.7589981 +## ba_age_r(45,55] 0.94565591 0.344324118 -0.5298530 1.7716354 +## ba_age_r(55,65] 0.70438699 0.481191804 -0.6854154 1.6646477 +## ba_age_r(65,75] -0.68612711 0.492632956 -1.7751687 0.9242429 +## ba_age_r(75,85] 0.01339854 0.989309830 -1.3600261 1.4429049 +## ba_nchild1 -1.53451010 0.124904210 -2.4543147 0.1374739 +## ba_nchild2 0.68972299 0.490368402 -0.6285273 1.2256043 +## ba_nchild3+ 1.61952455 0.105334450 -0.2791610 2.1632835 +## [1] "# Model summary" +## null.deviance df.null logLik AIC BIC deviance df.residual +## 1 427.132 473 -204.5332 433.0663 483.0008 409.0663 462 +## *Pseudo R^2 for logistic regression +## -> Hosmer and Lemeshow R^2 0.042 +## -> Cox and Snell R^2 0.037 +## -> Nagelkerke R^2 0.063 +## [1] "" +## [1] "# Diagnostics: independence of errors" +## lag Autocorrelation D-W Statistic p-value +## 1 0.1097293 1.778341 0.018 +## Alternative hypothesis: rho != 0 +## [1] "# Diagnostics: collinearity (vif)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 1.641619 2 1.131926 +## ba_age_r 2.496787 6 1.079233 +## ba_nchild 1.640211 3 1.085967 +## [1] "# Diagnostics: collinearity (tolerance)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 0.6091549 0.5000000 0.8834499 +## ba_age_r 0.4005148 0.1666667 0.9265842 +## ba_nchild 0.6096775 0.3333333 0.9208383</code></pre> +<pre><code>## [1] "# <-- New model --> #" +## [1] "Running linear model: ~" +## [2] "Running linear model: laundry_sum" +## [3] "Running linear model: empstat + ba_age_r + ba_nchild" +## [1] "# Model results" +## term estimate std.error +## (Intercept) (Intercept) 0.80422583 0.11971777 +## empstatnot in paid work empstatnot in paid work -0.02405294 0.08119904 +## empstatpart-time empstatpart-time -0.14734215 0.08765235 +## ba_age_r(25,35] ba_age_r(25,35] -0.11301074 0.13088358 +## ba_age_r(35,45] ba_age_r(35,45] -0.08452151 0.12885828 +## ba_age_r(45,55] ba_age_r(45,55] -0.02692084 0.13107222 +## ba_age_r(55,65] ba_age_r(55,65] 0.03742763 0.13309842 +## ba_age_r(65,75] ba_age_r(65,75] -0.08829267 0.14545467 +## ba_age_r(75,85] ba_age_r(75,85] -0.03342188 0.16099247 +## ba_nchild1 ba_nchild1 -0.11586368 0.10521064 +## ba_nchild2 ba_nchild2 0.14831185 0.10531327 +## ba_nchild3+ ba_nchild3+ 0.14152604 0.16078729 +## statistic p.value 2.5 % 97.5 % +## (Intercept) 6.7176812 5.443781e-11 0.56896700 1.03948467 +## empstatnot in paid work -0.2962220 7.671936e-01 -0.18361815 0.13551226 +## empstatpart-time -1.6809835 9.344198e-02 -0.31958883 0.02490453 +## ba_age_r(25,35] -0.8634448 3.883410e-01 -0.37021164 0.14419015 +## ba_age_r(35,45] -0.6559261 5.121982e-01 -0.33774246 0.16869945 +## ba_age_r(45,55] -0.2053894 8.373584e-01 -0.28449243 0.23065075 +## ba_age_r(55,65] 0.2812027 7.786808e-01 -0.22412567 0.29898094 +## ba_age_r(65,75] -0.6070116 5.441414e-01 -0.37412738 0.19754205 +## ba_age_r(75,85] -0.2075990 8.356335e-01 -0.34979013 0.28294637 +## ba_nchild1 -1.1012543 2.713594e-01 -0.32261437 0.09088702 +## ba_nchild2 1.4082921 1.597172e-01 -0.05864053 0.35526424 +## ba_nchild3+ 0.8802067 3.792050e-01 -0.17443899 0.45749108 +## r.squared adj.r.squared sigma statistic p.value df logLik +## 1 0.02038023 -0.002944048 0.62548 0.8737775 0.5662077 12 -444.0818 +## AIC BIC deviance df.residual +## 1 914.1635 968.2592 180.746 462 +## [1] "# Diagnostics: independence of errors" +## lag Autocorrelation D-W Statistic p-value +## 1 -0.03270472 2.058046 0.462 +## Alternative hypothesis: rho != 0 +## [1] "# Diagnostics: collinearity (vif)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 1.761297 2 1.152015 +## ba_age_r 2.552027 6 1.081203 +## ba_nchild 1.606628 3 1.082229 +## [1] "# Diagnostics: collinearity (tolerance)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 0.5677635 0.5000000 0.8680443 +## ba_age_r 0.3918454 0.1666667 0.9248960 +## ba_nchild 0.6224217 0.3333333 0.9240187</code></pre> +<pre><code>## [1] "% in work in 1985"</code></pre> +<pre><code>## sex empstatfull-time empstatnot in paid work empstatpart-time +## Man Man 0.6728953 0.1735609 0.1162203 +## Woman Woman 0.2192669 0.4153912 0.3509855 +## empstatunknown job hours se.empstatfull-time +## Man 0.03732346 0.005954984 +## Woman 0.01435640 0.004497221 +## se.empstatnot in paid work se.empstatpart-time +## Man 0.004829776 0.004007465 +## Woman 0.005441926 0.005278946 +## se.empstatunknown job hours +## Man 0.002441382 +## Woman 0.001301152</code></pre> +<pre><code>## [1] "% in work in 2005"</code></pre> +<pre><code>## sex empstatfull-time empstatnot in paid work empstatpart-time +## Man Man 0.8059294 0.1255392 0.0634378 +## Woman Woman 0.4112487 0.2871118 0.3002517 +## empstatunknown job hours se.empstatfull-time +## Man 0.005093638 0.01514926 +## Woman 0.001387849 0.01690216 +## se.empstatnot in paid work se.empstatpart-time +## Man 0.01255103 0.009400211 +## Woman 0.01539688 0.015558580 +## se.empstatunknown job hours +## Man 0.003451856 +## Woman 0.001387000</code></pre> +<pre><code>## [1] "% people who report laundry in 1985"</code></pre> +<pre><code>## mean SE +## Any_laundry_homed 0.2237 0.0031</code></pre> +<pre><code>## [1] "% people who report laundry in 2005"</code></pre> +<pre><code>## mean SE +## Any_laundry_homed 0.18156 0.008</code></pre> +<pre><code>## [1] "Number of people reporting different number of laundry habits"</code></pre> +<pre><code>## laundry_sum +## 0 1 2 3 +## 2264.303512 256.275619 42.916280 1.112071</code></pre> +<pre><code>## [1] "1985: N of respondents who reported laundry of given type"</code></pre> +<pre><code>## total SE +## Sunday_amd 305.83 18.142 +## WeekdayEarly_amd 581.85 24.708 +## Weekday_amd 1278.56 36.003 +## Weekday_pmd 812.29 28.954 +## Otherd 2871.44 51.689 +## Any_laundry_homed 4290.52 60.576</code></pre> +<pre><code>## [1] "2005: N of respondents who reported laundry of given type"</code></pre> +<pre><code>## total SE +## Sunday_amd 44.171 6.7883 +## WeekdayEarly_amd 108.140 10.7480 +## Weekday_amd 113.794 11.1856 +## Weekday_pmd 79.339 9.2491 +## Otherd 256.672 15.9396 +## Any_laundry_homed 465.626 20.7243</code></pre> +<pre><code>## [1] "Feedback: Done analysing sampled file using survey methods"</code></pre> +<p>Finished</p> +</div> +</div> + + + + +</div> + +<script> + +// add bootstrap table styles to pandoc tables +$(document).ready(function () { + $('tr.header').parent('thead').parent('table').addClass('table table-condensed'); +}); + +</script> + +<!-- dynamically load mathjax for compatibility with self-contained --> +<script> + (function () { + var script = document.createElement("script"); + script.type = "text/javascript"; + script.src = "https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; + document.getElementsByTagName("head")[0].appendChild(script); + })(); +</script> + +</body> +</html> diff --git a/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis.md b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis.md new file mode 100644 index 0000000000000000000000000000000000000000..940040a03c2de9d30af911ed33e7d588acaf98d2 --- /dev/null +++ b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis.md @@ -0,0 +1,3410 @@ +# Laundry, Energy & Time (ER&SS submission) +Ben Anderson (b.anderson@soton.ac.uk/@dataknut) [Energy & Climate Change, Faculty of Engineering & Environment, University of Southampton] +Last run at: `r Sys.time()` + + + + +# Data analysis for 'Laundry' paper: + +Use MTUS World 6 time-use data (UK subset) to examine: + * distributions of laundry in 1985 & 2005 + * changing laundry practice + * data source: www.timeuse.org/mtus + * data already in long format (but episodes) processed using DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-data-processing.R + +Uses FES/EFS/LCFS to examine: + * historical ownership of washing machines/tumble dryers + * Data source: http://discover.ukdataservice.ac.uk/series/?sn=200016 + +Uses SPRG water practices survey: + * reported laundry practices + * data source: http://www.sprg.ac.uk/projects-fellowships/patterns-of-water + +This work was funded by RCUK through the End User Energy Demand Centres Programme via the +"DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) + +> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License (http://choosealicense.com/licenses/gpl-2.0/), or (at your option) any later version. + +> This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. + + +# MTUS codes of interest: + +1983/4/7: Main/Sec21 Laundry, ironing, clothing repair + * 0701 Wash clothes, hang out / bring in washing + * 0702 Iron clothes + * 0801 Repair, upkeep of clothes +so may over-estimate laundry + +2005: Main/Sec21 Laundry, ironing, clothing repair + * Pact=7 (washing clothes) + + + + +``` +## [1] "Feedback: Loading ~/Data/Family Expenditure Survey/1985/stata8//hchars.dta" +``` + +``` +## [1] "Feedback: Loading ~/Data/Expenditure and Food Survey/2004-2005/stata/dvhh.dta" +``` + + +``` +## [1] "Loading via gunzip -c ~/Data/MTUS/World_6/processed/MTUSW6UKsurveyCore_DT.csv.gz" +``` + +``` +## [1] "Feedback: Done loading TU survey data" +``` + + +``` +## [1] "Loading via gunzip -c ~/Data/MTUS/World_6/processed/MTUSW6UKdiaryEps_DT.csv.gz" +``` + +``` +## +Read 60.8% of 1364047 rows +Read 1364047 rows and 17 (of 17) columns from 0.299 GB file in 00:00:03 +``` + +``` +## [1] "Feedback: Done loading TU episodes data" +``` + + +``` +## [1] "Loading via gunzip -c ~/Data/MTUS/World_6/processed/MTUSW6UKdiarySampled_DT.csv.gz" +``` + +``` +## +Read 0.0% of 8164512 rows +Read 9.8% of 8164512 rows +Read 20.3% of 8164512 rows +Read 30.1% of 8164512 rows +Read 38.6% of 8164512 rows +Read 46.5% of 8164512 rows +Read 56.1% of 8164512 rows +Read 65.4% of 8164512 rows +Read 74.6% of 8164512 rows +Read 81.9% of 8164512 rows +Read 89.8% of 8164512 rows +Read 98.1% of 8164512 rows +Read 8164512 rows and 21 (of 21) columns from 1.412 GB file in 00:00:17 +``` + +``` +## [1] "Feedback: Done loading TU sampled data" +``` + +``` +## [1] "Loading via gunzip -c ~/Data/MTUS/World_6/processed/MTUSW6UK_halfhours_laundry_DT.csv.gz" +``` + +``` +## +Read 63.2% of 2721504 rows +Read 2721504 rows and 20 (of 20) columns from 0.190 GB file in 00:00:03 +``` + +``` +## [1] "Feedback: Done loading TU sampled laundry data aggregated to half hour level" +``` + +# Analysing loaded data + +## EFS/FES data + +``` +## +## not recorded washing machine +## 0.1699943 0.8300057 +``` + +``` +## [1] "Feedback: Loading ~/Data/Family Expenditure Survey/1985/stata8//hchars.dta" +``` + +``` +## +## not recorded washing machine +## 0.1699943 0.8300057 +``` + +``` +## +## washing machine no washing machine present +## 0.95013239 0.04986761 +``` + +``` +## +## tumble drier tumble drier not present +## 0.5854663 0.4145337 +``` + +## MTUS episodes + +``` +## [1] "Feedback: Writing results to ~/Dropbox/Work/DraftPapers/The Time and Timing of Demand - Laundry/results/" +``` + + + +Table: n episodes in total per year + +ba_survey N +---------- ------- +1974 301586 +1985 474096 +1995 28165 +2000 464164 +2005 96036 + +``` +## ba_survey +## laundry_p 1974 1985 1995 2000 2005 +## 0 300350 466018 27647 454161 94660 +## 1 1236 8078 518 10003 1376 +``` + +``` +## ba_survey +## laundry_s 1974 1985 1995 2000 2005 +## 0 300936 471850 28165 462685 95898 +## 1 650 2246 0 1479 138 +``` + +``` +## ba_survey +## laundry_all 1974 1985 1995 2000 2005 +## 0 299700 463889 27647 452745 94522 +## 1 1886 10207 518 11419 1514 +``` + +``` +## [1] "Feedback: # n episodes by duration - to show how recording period varies things" +``` + +``` +## ba_survey +## time 1974 1985 1995 2000 2005 +## 5 0 5833 0 0 0 +## 10 29987 6853 0 186507 20482 +## 15 0 197190 5129 0 0 +## 20 17382 2673 0 74010 14714 +## 25 0 612 0 0 0 +## 30 146905 81790 7060 52123 17602 +## 35 0 285 0 0 0 +## 40 223 1023 0 29261 4769 +## 45 0 43099 1721 0 0 +## 50 4557 599 0 19905 3442 +## 55 0 124 0 0 0 +## 60 30764 27370 3857 16775 7463 +## 65 0 65 0 0 0 +## 70 20 246 0 9689 2002 +## 75 0 16343 577 0 0 +## 80 1845 227 0 6852 1422 +## 85 0 27 0 0 0 +## 90 11858 11943 1178 6088 2915 +## 95 0 17 0 0 0 +## 100 18 114 0 4333 1013 +## 105 0 9370 416 0 0 +## 110 1024 74 0 4138 963 +## 115 0 1 0 0 0 +## 120 7881 8490 1406 4479 2684 +## 125 0 3 0 0 0 +## 130 10 55 0 2893 711 +## 135 0 6413 319 0 0 +## 140 748 34 0 2422 624 +## 150 6754 5342 693 2754 1556 +## 155 0 1 0 0 0 +## 160 15 30 0 2054 525 +## 165 0 5456 244 0 0 +## 170 819 22 0 2087 558 +## 175 0 3 0 0 0 +## 180 7354 4919 963 3877 1826 +## 190 27 8 0 1702 517 +## 195 0 4256 191 0 0 +## 200 924 7 0 1732 399 +## 210 7437 3824 606 2274 1332 +## 220 21 4 0 1649 345 +## 225 0 4103 211 0 0 +## 230 811 1 0 1878 356 +## 240 7255 4178 815 2910 1339 +## 250 6 3 0 1750 373 +## 255 0 3372 156 0 0 +## 260 578 2 0 1570 313 +## 270 5926 2852 511 1999 979 +## 280 5 1 0 1466 273 +## 285 0 3105 150 0 0 +## 290 357 0 0 1483 346 +## 300 3931 3005 636 2437 1150 +## 310 2 1 0 1357 249 +## 315 0 2138 119 0 0 +## 320 193 1 0 1025 225 +## 330 1887 1549 308 1276 646 +## 340 1 1 0 756 159 +## 345 0 1230 78 0 0 +## 350 152 0 0 633 177 +## 360 986 1065 340 1741 598 +## 370 2 0 0 850 78 +## 375 0 598 42 0 0 +## 380 90 0 0 320 62 +## 390 494 343 88 399 178 +## 400 1 0 0 229 38 +## 405 0 276 21 0 0 +## 410 60 0 0 206 50 +## 420 323 226 84 325 154 +## 430 5 0 0 176 31 +## 435 0 149 12 0 0 +## 440 49 0 0 99 19 +## 450 240 119 37 146 49 +## 460 0 0 0 111 18 +## 465 0 94 13 0 0 +## 470 43 0 0 91 14 +## 480 386 194 40 175 74 +## 490 1 0 0 127 15 +## 495 0 103 10 0 0 +## 500 46 0 0 71 17 +## 510 372 77 21 97 35 +## 520 0 0 0 78 13 +## 525 0 83 6 0 0 +## 530 56 0 0 65 6 +## 540 258 88 21 110 36 +## 550 0 0 0 81 6 +## 555 0 70 8 0 0 +## 560 49 0 0 55 11 +## 570 116 45 12 41 19 +## 580 0 0 0 39 5 +## 585 0 31 6 0 0 +## 590 16 0 0 34 7 +## 600 83 36 23 60 14 +## 610 0 0 0 38 7 +## 615 0 28 0 0 0 +## 620 14 0 0 21 4 +## 630 52 18 5 28 8 +## 640 0 0 0 19 1 +## 645 0 17 3 0 0 +## 650 24 0 0 17 0 +## 660 36 18 5 21 3 +## 670 0 0 0 18 1 +## 675 0 17 1 0 0 +## 680 8 0 0 9 2 +## 690 26 9 5 9 3 +## 700 0 0 0 7 1 +## 705 0 9 0 0 0 +## 710 8 0 0 10 0 +## 720 25 9 6 27 4 +## 730 0 0 0 9 1 +## 735 0 9 1 0 0 +## 740 3 0 0 7 3 +## 750 2 8 1 5 1 +## 760 0 0 0 3 0 +## 765 0 4 2 0 0 +## 770 1 0 0 3 0 +## 780 11 5 1 11 0 +## 790 0 0 0 4 0 +## 795 0 1 0 0 0 +## 800 0 0 0 5 0 +## 810 2 5 2 0 1 +## 820 0 0 0 3 0 +## 825 0 2 0 0 0 +## 830 0 0 0 2 0 +## 840 5 1 0 3 0 +## 850 0 0 0 1 0 +## 855 0 2 0 0 0 +## 860 2 0 0 2 0 +## 870 3 3 1 1 0 +## 880 0 0 0 1 0 +## 885 0 2 0 0 0 +## 890 1 0 0 2 0 +## 900 0 4 1 1 0 +## 915 0 2 0 0 0 +## 930 2 2 1 1 0 +## 945 0 3 0 0 0 +## 960 2 10 1 1 0 +## 975 0 7 0 0 0 +## 980 1 0 0 0 0 +## 990 0 3 0 0 0 +## 1000 0 0 0 1 0 +## 1005 0 2 0 0 0 +## 1010 0 0 0 1 0 +## 1020 2 4 0 0 0 +## 1050 1 2 0 1 0 +## 1065 0 1 0 0 0 +## 1070 0 0 0 1 0 +## 1080 2 1 1 1 0 +## 1095 0 1 0 0 0 +## 1125 0 1 0 0 0 +## 1140 0 1 0 0 0 +## 1170 0 1 0 0 0 +``` + +``` +## [1] "Feedback: # n episodes of laundry as a primary act by duration (to show how recording period varies things)" +``` + +``` +## ba_survey +## time 1974 1985 1995 2000 2005 +## 5 0 73 0 0 0 +## 10 0 81 0 5347 324 +## 15 0 3865 91 0 0 +## 20 51 27 0 1815 209 +## 25 0 4 0 0 0 +## 30 859 1512 152 961 283 +## 35 0 3 0 0 0 +## 40 0 11 0 550 79 +## 45 0 893 39 0 0 +## 50 14 4 0 415 67 +## 55 0 0 0 0 0 +## 60 173 659 124 332 175 +## 65 0 0 0 0 0 +## 70 0 4 0 180 41 +## 75 0 371 15 0 0 +## 80 4 1 0 127 24 +## 85 0 0 0 0 0 +## 90 68 213 22 84 64 +## 95 0 0 0 0 0 +## 100 0 0 0 58 13 +## 105 0 144 3 0 0 +## 110 0 0 0 40 16 +## 115 0 0 0 0 0 +## 120 33 85 37 31 30 +## 125 0 0 0 0 0 +## 130 0 0 0 19 3 +## 135 0 52 3 0 0 +## 140 1 1 0 12 6 +## 150 12 24 8 9 14 +## 155 0 0 0 0 0 +## 160 0 0 0 8 3 +## 165 0 16 1 0 0 +## 170 1 0 0 3 5 +## 175 0 0 0 0 0 +## 180 6 14 8 5 8 +## 190 0 0 0 2 1 +## 195 0 7 2 0 0 +## 200 0 0 0 0 0 +## 210 5 4 8 1 7 +## 220 0 0 0 2 0 +## 225 0 4 0 0 0 +## 230 0 0 0 0 1 +## 240 3 3 4 0 1 +## 250 0 0 0 1 0 +## 255 0 2 0 0 0 +## 260 0 0 0 0 0 +## 270 2 0 1 1 1 +## 280 0 0 0 0 0 +## 285 0 0 0 0 0 +## 290 0 0 0 0 0 +## 300 4 1 0 0 0 +## 310 0 0 0 0 0 +## 315 0 0 0 0 0 +## 320 0 0 0 0 0 +## 330 0 0 0 0 0 +## 340 0 0 0 0 0 +## 345 0 0 0 0 0 +## 350 0 0 0 0 0 +## 360 0 0 0 0 0 +## 370 0 0 0 0 0 +## 375 0 0 0 0 0 +## 380 0 0 0 0 0 +## 390 0 0 0 0 0 +## 400 0 0 0 0 0 +## 405 0 0 0 0 0 +## 410 0 0 0 0 0 +## 420 0 0 0 0 0 +## 430 0 0 0 0 0 +## 435 0 0 0 0 0 +## 440 0 0 0 0 0 +## 450 0 0 0 0 1 +## 460 0 0 0 0 0 +## 465 0 0 0 0 0 +## 470 0 0 0 0 0 +## 480 0 0 0 0 0 +## 490 0 0 0 0 0 +## 495 0 0 0 0 0 +## 500 0 0 0 0 0 +## 510 0 0 0 0 0 +## 520 0 0 0 0 0 +## 525 0 0 0 0 0 +## 530 0 0 0 0 0 +## 540 0 0 0 0 0 +## 550 0 0 0 0 0 +## 555 0 0 0 0 0 +## 560 0 0 0 0 0 +## 570 0 0 0 0 0 +## 580 0 0 0 0 0 +## 585 0 0 0 0 0 +## 590 0 0 0 0 0 +## 600 0 0 0 0 0 +## 610 0 0 0 0 0 +## 615 0 0 0 0 0 +## 620 0 0 0 0 0 +## 630 0 0 0 0 0 +## 640 0 0 0 0 0 +## 645 0 0 0 0 0 +## 650 0 0 0 0 0 +## 660 0 0 0 0 0 +## 670 0 0 0 0 0 +## 675 0 0 0 0 0 +## 680 0 0 0 0 0 +## 690 0 0 0 0 0 +## 700 0 0 0 0 0 +## 705 0 0 0 0 0 +## 710 0 0 0 0 0 +## 720 0 0 0 0 0 +## 730 0 0 0 0 0 +## 735 0 0 0 0 0 +## 740 0 0 0 0 0 +## 750 0 0 0 0 0 +## 760 0 0 0 0 0 +## 765 0 0 0 0 0 +## 770 0 0 0 0 0 +## 780 0 0 0 0 0 +## 790 0 0 0 0 0 +## 795 0 0 0 0 0 +## 800 0 0 0 0 0 +## 810 0 0 0 0 0 +## 820 0 0 0 0 0 +## 825 0 0 0 0 0 +## 830 0 0 0 0 0 +## 840 0 0 0 0 0 +## 850 0 0 0 0 0 +## 855 0 0 0 0 0 +## 860 0 0 0 0 0 +## 870 0 0 0 0 0 +## 880 0 0 0 0 0 +## 885 0 0 0 0 0 +## 890 0 0 0 0 0 +## 900 0 0 0 0 0 +## 915 0 0 0 0 0 +## 930 0 0 0 0 0 +## 945 0 0 0 0 0 +## 960 0 0 0 0 0 +## 975 0 0 0 0 0 +## 980 0 0 0 0 0 +## 990 0 0 0 0 0 +## 1000 0 0 0 0 0 +## 1005 0 0 0 0 0 +## 1010 0 0 0 0 0 +## 1020 0 0 0 0 0 +## 1050 0 0 0 0 0 +## 1065 0 0 0 0 0 +## 1070 0 0 0 0 0 +## 1080 0 0 0 0 0 +## 1095 0 0 0 0 0 +## 1125 0 0 0 0 0 +## 1140 0 0 0 0 0 +## 1170 0 0 0 0 0 +``` + +``` +## [1] "% episodes that are laundry_all in 1985 = 2.15293948904863" +``` + +``` +## [1] "% episodes that are laundry_all in 2005 = 1.57649214877754" +``` + +``` +## [1] "Feedback: Plotting 1985 all episodes start" +``` + +<!-- --> + +``` +## [1] "Feedback: Plotting 1985 laundry episodes start" +``` + +<!-- --> + +``` +## [1] "Feedback: Plotting 2005 all episodes start" +``` + +<!-- --> + +``` +## [1] "Feedback: Plotting 2005 laundry episodes start" +``` + +<!-- --><!-- --> + +``` +## [1] "Feedback: Saving episodes results into: ~/Dropbox/Work/DraftPapers/The Time and Timing of Demand - Laundry/results/" +``` + + + +Table: Main acts before laundry in 1985 + +V1 N +---------------------------------- ------ +laundry, ironing, clothing repair 16.07 +cleaning 10.72 +meals or snacks in other places 10.66 +set table, wash/put away dishes 10.32 +food preparation, cooking 8.60 +wash, dress, care for self 7.02 + + + +Table: Main acts after laundry in 1985 + +V1 N +---------------------------------- ------ +laundry, ironing, clothing repair 16.07 +cleaning 10.72 +meals or snacks in other places 10.66 +set table, wash/put away dishes 10.32 +food preparation, cooking 8.60 +wash, dress, care for self 7.02 + + + +Table: Main acts after laundry in 2005 + +V1 N +------------------------------------ ------ +meals or snacks in other places 20.64 +cleaning 13.23 +food preparation, cooking 12.14 +wash, dress, care for self 8.07 +laundry, ironing, clothing repair 6.69 +watch TV, video, DVD, streamed film 5.89 + + + +Table: Main acts after laundry in 2005 + +V1 N +------------------------------------ ------ +food preparation, cooking 16.42 +cleaning 12.35 +watch TV, video, DVD, streamed film 10.17 +meals or snacks in other places 7.49 +laundry, ironing, clothing repair 6.69 +wash, dress, care for self 6.69 + + + +Table: Main acts after early weekday morning laundry in 2005 + +V1 N +---------------------------------- ------ +cleaning 21.78 +food preparation, cooking 12.38 +wash, dress, care for self 7.92 +laundry, ironing, clothing repair 7.43 +travel to/from work 7.43 +meals or snacks in other places 6.93 + + + +Table: Main acts 2 after early weekday morning laundry in 2005 + +V1 N +---------------------------------- ------ +food preparation, cooking 10.89 +meals or snacks in other places 9.90 +laundry, ironing, clothing repair 9.41 +paid work-main job (not at home) 8.42 +cleaning 7.43 +other travel 5.94 + + + +Table: Main acts 3 after early weekday morning laundry in 2005 + +V1 N +--------------------------------- ------ +shop, person/hhld care travel 10.40 +food preparation, cooking 9.41 +meals or snacks in other places 8.91 +other travel 8.91 +purchase goods 8.42 +paid work-main job (not at home) 7.43 + + + +Table: Main acts before evening peak weekday laundry in 2005 + +V1 N +------------------------------------ ------ +meals or snacks in other places 32.16 +food preparation, cooking 11.70 +cleaning 8.77 +physical, medical child care 7.02 +watch TV, video, DVD, streamed film 7.02 +other travel 5.85 + + + +Table: Main acts before evening peak weekday laundry in 2005 + +V1 N +------------------------------------ ------ +watch TV, video, DVD, streamed film 25.15 +food preparation, cooking 15.79 +meals or snacks in other places 9.36 +cleaning 7.02 +wash, dress, care for self 6.43 +laundry, ironing, clothing repair 5.85 + +``` +## [1] "Feedback: Done analysing episode file" +``` + + +## Switch to survey analysis of half hour sampled data + +``` +## [1] "Feedback: Join survey to derived half hour data" +``` + +``` +## ba_survey ba_diarypid diarypid pid ba_pid r_month r_dow r_hour +## 1: 1985 14899 316349 193929 2609 10 Friday 0 +## 2: 1985 14899 316349 193929 2609 10 Friday 0 +## 3: 1985 14899 316349 193929 2609 10 Friday 1 +## 4: 1985 14899 316349 193929 2609 10 Friday 1 +## 5: 1985 14899 316349 193929 2609 10 Friday 2 +## 6: 1985 14899 316349 193929 2609 10 Friday 2 +## st_halfhour N_obs N_laundry_p N_laundry_ph N_laundry_photh +## 1: 00:00 3 0 0 0 +## 2: 00:30 3 0 0 0 +## 3: 01:00 3 0 0 0 +## 4: 01:30 3 0 0 0 +## 5: 02:00 3 0 0 0 +## 6: 02:30 3 0 0 0 +## N_laundry_psh N_laundry_poth Any_laundry_p Any_laundry_ph +## 1: 0 0 0 0 +## 2: 0 0 0 0 +## 3: 0 0 0 0 +## 4: 0 0 0 0 +## 5: 0 0 0 0 +## 6: 0 0 0 0 +## Any_laundry_photh Any_laundry_psh Any_laundry_poth countrya +## 1: 0 0 0 United Kingdom +## 2: 0 0 0 United Kingdom +## 3: 0 0 0 United Kingdom +## 4: 0 0 0 United Kingdom +## 5: 0 0 0 United Kingdom +## 6: 0 0 0 United Kingdom +## survey swave msamp hldid persid id +## 1: 1983 not longitudinal study/case 1 sample 1 4.940656e-324 1 +## 2: 1983 not longitudinal study/case 1 sample 1 4.940656e-324 1 +## 3: 1983 not longitudinal study/case 1 sample 1 4.940656e-324 1 +## 4: 1983 not longitudinal study/case 1 sample 1 4.940656e-324 1 +## 5: 1983 not longitudinal study/case 1 sample 1 4.940656e-324 1 +## 6: 1983 not longitudinal study/case 1 sample 1 4.940656e-324 1 +## diary mtus_day mtus_month mtus_year empstat occup +## 1: 1st diary day Wednesday November 1983 part-time missing +## 2: 1st diary day Wednesday November 1983 part-time missing +## 3: 1st diary day Wednesday November 1983 part-time missing +## 4: 1st diary day Wednesday November 1983 part-time missing +## 5: 1st diary day Wednesday November 1983 part-time missing +## 6: 1st diary day Wednesday November 1983 part-time missing +## urban badcase sex hhtype income +## 1: urban/suburban good case Woman Married/cohabiting couple alone missing +## 2: urban/suburban good case Woman Married/cohabiting couple alone missing +## 3: urban/suburban good case Woman Married/cohabiting couple alone missing +## 4: urban/suburban good case Woman Married/cohabiting couple alone missing +## 5: urban/suburban good case Woman Married/cohabiting couple alone missing +## 6: urban/suburban good case Woman Married/cohabiting couple alone missing +## propwt i.ba_survey i.ba_pid age ba_age_cohort ba_age_r ba_nchild +## 1: 1.07194 1985 2599 26 (1.95e+03,1.96e+03] (25,35] 0 +## 2: 1.07194 1985 2599 26 (1.95e+03,1.96e+03] (25,35] 0 +## 3: 1.07194 1985 2599 26 (1.95e+03,1.96e+03] (25,35] 0 +## 4: 1.07194 1985 2599 26 (1.95e+03,1.96e+03] (25,35] 0 +## 5: 1.07194 1985 2599 26 (1.95e+03,1.96e+03] (25,35] 0 +## 6: 1.07194 1985 2599 26 (1.95e+03,1.96e+03] (25,35] 0 +## ba_npeople +## 1: 2 +## 2: 2 +## 3: 2 +## 4: 2 +## 5: 2 +## 6: 2 +``` + +``` +## ba_survey ba_diarypid diarypid pid ba_pid r_month r_dow r_hour +## 1: NA 58940 NA NA NA NA NA NA +## 2: NA 58941 NA NA NA NA NA NA +## 3: NA 58942 NA NA NA NA NA NA +## 4: NA 58943 NA NA NA NA NA NA +## 5: NA 58944 NA NA NA NA NA NA +## 6: NA 58945 NA NA NA NA NA NA +## st_halfhour N_obs N_laundry_p N_laundry_ph N_laundry_photh +## 1: NA NA NA NA NA +## 2: NA NA NA NA NA +## 3: NA NA NA NA NA +## 4: NA NA NA NA NA +## 5: NA NA NA NA NA +## 6: NA NA NA NA NA +## N_laundry_psh N_laundry_poth Any_laundry_p Any_laundry_ph +## 1: NA NA NA NA +## 2: NA NA NA NA +## 3: NA NA NA NA +## 4: NA NA NA NA +## 5: NA NA NA NA +## 6: NA NA NA NA +## Any_laundry_photh Any_laundry_psh Any_laundry_poth countrya +## 1: NA NA NA United Kingdom +## 2: NA NA NA United Kingdom +## 3: NA NA NA United Kingdom +## 4: NA NA NA United Kingdom +## 5: NA NA NA United Kingdom +## 6: NA NA NA United Kingdom +## survey swave msamp hldid persid id +## 1: 2005 not longitudinal study/case 1 sample 0 9.906327e-312 1 +## 2: 2005 not longitudinal study/case 1 sample 0 9.906327e-312 1 +## 3: 2005 not longitudinal study/case 1 sample 0 9.906327e-312 1 +## 4: 2005 not longitudinal study/case 1 sample 0 9.906327e-312 1 +## 5: 2005 not longitudinal study/case 1 sample 0 9.906327e-312 1 +## 6: 2005 not longitudinal study/case 1 sample 0 9.906327e-312 1 +## diary mtus_day mtus_month mtus_year empstat +## 1: 1st diary day Saturday June 2005 not in paid work +## 2: 1st diary day Saturday June 2005 not in paid work +## 3: 1st diary day Tuesday June 2005 not in paid work +## 4: 1st diary day Tuesday June 2005 part-time +## 5: 1st diary day Tuesday June 2005 full-time +## 6: 1st diary day Monday June 2005 not in paid work +## occup urban badcase sex +## 1: clerical/office support could not be created good case Man +## 2: sales/services/art support/clean could not be created good case Woman +## 3: construct, asmble/repair, transpt could not be created good case Man +## 4: sales/services/art support/clean could not be created good case Woman +## 5: construct, asmble/repair, transpt could not be created good case Man +## 6: construct, asmble/repair, transpt could not be created good case Man +## hhtype income propwt +## 1: 1 person household lowest 25% 1.3073545 +## 2: 1 person household lowest 25% 0.9952479 +## 3: 1 person household middle 50% 0.6583855 +## 4: Married/cohabiting couple + others lowest 25% 0.9510369 +## 5: Married/cohabiting couple + others middle 50% 1.0930131 +## 6: Other household types could not be created 1.9905120 +## i.ba_survey i.ba_pid age ba_age_cohort ba_age_r ba_nchild +## 1: 2005 21033 37 (1.96e+03,1.97e+03] (35,45] 0 +## 2: 2005 21034 79 (1.92e+03,1.93e+03] (75,85] 0 +## 3: 2005 21035 80 (1.92e+03,1.93e+03] (75,85] 0 +## 4: 2005 21036 46 (1.95e+03,1.96e+03] (45,55] 1 +## 5: 2005 21037 47 (1.95e+03,1.96e+03] (45,55] 0 +## 6: 2005 21038 19 (1.98e+03,1.99e+03] (16,25] 1 +## ba_npeople +## 1: 1 +## 2: 1 +## 3: 1 +## 4: 4 +## 5: 3 +## 6: 5+ +``` + +``` +## +## 1985 2005 <NA> +## 903600 125136 3405 +``` + +``` +## +## 1985 2005 <NA> +## 903600 125136 0 +``` + +``` +## [1] "Recode to 'at a home' vs 'not at a home'" +``` + +``` +## Any_laundry_nothome +## Any_laundry_home 0 1 +## 0 1014861 109 +## 1 13760 6 +``` + +``` +## [1] "create types of laundry here so become part of survey design object" +``` + +``` +## [1] "Weekday early morning 06:00-09:00" +``` + +``` +## r_dow +## r_hour Friday Monday Thursday Tuesday Wednesday +## 6 12 13 13 12 5 +## 7 43 68 70 55 50 +## 8 106 154 123 123 94 +``` + +``` +## [1] "Weekday morning 09:00-12:00" +``` + +``` +## r_dow +## r_hour Friday Monday Thursday Tuesday Wednesday +## 9 146 268 156 211 174 +## 10 171 280 213 217 217 +## 11 136 234 147 174 168 +``` + +``` +## [1] "Weekday evening peak 18:00-21:00" +``` + +``` +## r_dow +## r_hour Friday Monday Thursday Tuesday Wednesday +## 18 98 123 101 97 94 +## 19 100 134 117 111 90 +## 20 83 162 124 107 115 +``` + +``` +## [1] "Sunday morning 09:00-12:00" +``` + +``` +## r_dow +## r_hour Sunday +## 9 159 +## 10 243 +## 11 238 +``` + +``` +## [1] "Other" +``` + +``` +## r_dow +## r_hour Friday Monday Saturday Sunday Thursday Tuesday Wednesday +## 0 4 4 7 4 3 3 5 +## 1 0 1 2 0 0 0 0 +## 2 1 0 0 0 0 0 0 +## 5 2 0 0 0 4 2 4 +## 6 0 0 7 6 0 0 0 +## 7 0 0 20 13 0 0 0 +## 8 0 0 93 68 0 0 0 +## 9 0 0 177 0 0 0 0 +## 10 0 0 256 0 0 0 0 +## 11 0 0 208 0 0 0 0 +## 12 101 145 136 197 117 121 99 +## 13 99 159 113 155 120 128 131 +## 14 122 215 114 154 147 158 157 +## 15 96 157 118 166 126 147 119 +## 16 88 127 103 165 123 133 112 +## 17 67 78 83 109 61 70 72 +## 18 0 0 67 143 0 0 0 +## 19 0 0 76 131 0 0 0 +## 20 0 0 67 108 0 0 0 +## 21 72 111 48 62 79 74 91 +## 22 46 43 24 51 30 51 50 +## 23 14 9 15 13 10 14 16 +``` + +``` +## [1] "Set survey data" +``` + +``` +## N_laundry_p 0 1 2 3 +## ba_survey sex +## 1985 Man 401562.51212 1540.82666 1511.61154 2716.63159 +## Woman 492799.58642 1842.90609 1897.28811 3057.06516 +## 2005 Man 57753.36741 146.73099 121.74276 334.35365 +## Woman 64015.33611 179.27798 98.40996 451.94026 +``` + +``` +## Any_laundry_p 0 1 +## ba_survey +## 1985 894362.099 12566.329 +## 2005 121768.704 1332.456 +``` + +``` +## Any_laundry_ph 0 1 +## ba_survey +## 1985 894547.098 12381.330 +## 2005 121905.662 1195.497 +``` + +``` +## Any_laundry_photh 0 1 +## ba_survey +## 1985 906836.0839 92.3438 +## 2005 123101.1591 0.0000 +``` + +``` +## Any_laundry_psh 0 1 +## ba_survey +## 1985 906883.14313 45.28458 +## 2005 123101.15912 0.00000 +``` + +``` +## Any_laundry_poth 0 1 +## ba_survey +## 1985 906891.39666 37.03104 +## 2005 123066.25706 34.90206 +``` + +``` +## Any_laundry_home 0 1 +## ba_survey +## 1985 894457.981 12470.447 +## 2005 121905.662 1195.497 +``` + +``` +## Any_laundry_nothome 0 1 +## ba_survey +## 1985 906846.11209 82.31562 +## 2005 123066.25706 34.90206 +``` + +``` +## Any_laundry_p 0 1 +## ba_survey sex +## 1985 Man 401562.5121 5769.0698 +## Woman 492799.5864 6797.2594 +## 2005 Man 57753.3674 602.8274 +## Woman 64015.3361 729.6282 +``` + +``` +## ba_survey sex Any_laundry_p se +## 1985.Man 1985 Man 0.01416308 0.0003752841 +## 2005.Man 2005 Man 0.01033014 0.0007438422 +## 1985.Woman 1985 Woman 0.01360549 0.0003142107 +## 2005.Woman 2005 Woman 0.01126927 0.0008500319 +``` + +``` +## A B +## sexMan 0.460605995 0.009544019 +## sexWoman 0.539394005 0.009544019 +``` + +``` +## A B +## sexMan 0.45021585 0.02965884 +## sexWoman 0.54978415 0.02965884 +``` + +``` +## Any_laundry_home 0 1 +## ba_survey sex +## 1985 Man 401587.6193 5743.9626 +## Woman 492870.3615 6726.4843 +## 2005 Man 57817.9630 538.2318 +## Woman 64087.6989 657.2654 +``` + +``` +## Any_laundry_nothome 0 1 +## ba_survey sex +## 1985 Man 407311.11628 20.46565 +## Woman 499534.99581 61.84997 +## 2005 Man 58339.72499 16.46982 +## Woman 64726.53207 18.43225 +``` + +``` +## r_dow ba_survey Any_laundry_home se +## Friday.1985 Friday 1985 0.010865766 0.0005378271 +## Monday.1985 Monday 1985 0.017711811 0.0007584997 +## Saturday.1985 Saturday 1985 0.012607221 0.0005939453 +## Sunday.1985 Sunday 1985 0.015019823 0.0006972744 +## Thursday.1985 Thursday 1985 0.012867461 0.0006046819 +## Tuesday.1985 Tuesday 1985 0.013982255 0.0006303033 +## Wednesday.1985 Wednesday 1985 0.013261458 0.0006007659 +## Friday.2005 Friday 2005 0.012043510 0.0021621787 +## Monday.2005 Monday 2005 0.010206423 0.0014793119 +## Saturday.2005 Saturday 2005 0.006371568 0.0012558053 +## Sunday.2005 Sunday 2005 0.013427341 0.0016461126 +## Thursday.2005 Thursday 2005 0.007598394 0.0009421517 +## Tuesday.2005 Tuesday 2005 0.010437059 0.0014434330 +## Wednesday.2005 Wednesday 2005 0.007927659 0.0012847600 +``` + +``` +## ba_survey +## r_dow 1985 2005 +## Friday 1410.61966 163.11676 +## Monday 2297.16559 186.56677 +## Saturday 1624.93405 87.58688 +## Sunday 1937.75346 250.47835 +## Thursday 1672.77956 158.76879 +## Tuesday 1810.65085 199.10762 +## Wednesday 1716.54372 149.87204 +``` + +``` +## [1] "Feedback: Any laundry by day of the week: 1985" +``` + +``` +## mean SE +## r_dowFriday 0.11312 0.0057 +## r_dowMonday 0.18421 0.0078 +## r_dowSaturday 0.13030 0.0063 +## r_dowSunday 0.15539 0.0072 +## r_dowThursday 0.13414 0.0064 +## r_dowTuesday 0.14520 0.0066 +## r_dowWednesday 0.13765 0.0064 +``` + +``` +## 2.5 % 97.5 % +## r_dowFriday 0.1018914 0.1243426 +## r_dowMonday 0.1689999 0.1994177 +## r_dowSaturday 0.1180454 0.1425602 +## r_dowSunday 0.1413386 0.1694367 +## r_dowThursday 0.1216119 0.1466671 +## r_dowTuesday 0.1321790 0.1582117 +## r_dowWednesday 0.1251639 0.1501340 +``` + +``` +## [1] "Feedback: Any laundry by day of the week: 2005" +``` + +``` +## mean SE +## r_dowFriday 0.136443 0.0239 +## r_dowMonday 0.156058 0.0222 +## r_dowSaturday 0.073264 0.0146 +## r_dowSunday 0.209518 0.0248 +## r_dowThursday 0.132806 0.0171 +## r_dowTuesday 0.166548 0.0226 +## r_dowWednesday 0.125364 0.0199 +``` + +``` +## 2.5 % 97.5 % +## r_dowFriday 0.08963304 0.1832522 +## r_dowMonday 0.11259840 0.1995174 +## r_dowSaturday 0.04467508 0.1018529 +## r_dowSunday 0.16086621 0.2581701 +## r_dowThursday 0.09930392 0.1663074 +## r_dowTuesday 0.12219560 0.2109003 +## r_dowWednesday 0.08627837 0.1644492 +``` + +``` +## [1] "Feedback: Any laundry by day of the week/gender: 1985" +``` + +``` +## sex r_dowFriday r_dowMonday r_dowSaturday r_dowSunday +## Man Man 0.1055920 0.1821372 0.1357020 0.1695936 +## Woman Woman 0.1195429 0.1859777 0.1256922 0.1432567 +## r_dowThursday r_dowTuesday r_dowWednesday se.r_dowFriday +## Man 0.1272811 0.1418606 0.1378335 0.008412166 +## Woman 0.1399961 0.1480430 0.1374913 0.007814887 +## se.r_dowMonday se.r_dowSaturday se.r_dowSunday se.r_dowThursday +## Man 0.01198236 0.009668095 0.011367669 0.009525777 +## Woman 0.01011515 0.008138816 0.009051124 0.008614564 +## se.r_dowTuesday se.r_dowWednesday +## Man 0.009719074 0.009392583 +## Woman 0.009090003 0.008668376 +``` + +``` +## 2.5 % 97.5 % +## Man:r_dowFriday 0.08910442 0.1220795 +## Woman:r_dowFriday 0.10422600 0.1348598 +## Man:r_dowMonday 0.15865219 0.2056222 +## Woman:r_dowMonday 0.16615242 0.2058031 +## Man:r_dowSaturday 0.11675290 0.1546511 +## Woman:r_dowSaturday 0.10974043 0.1416440 +## Man:r_dowSunday 0.14731339 0.1918738 +## Woman:r_dowSunday 0.12551685 0.1609966 +## Man:r_dowThursday 0.10861091 0.1459513 +## Woman:r_dowThursday 0.12311189 0.1568804 +## Man:r_dowTuesday 0.12281159 0.1609097 +## Woman:r_dowTuesday 0.13022689 0.1658590 +## Man:r_dowWednesday 0.11942438 0.1562426 +## Woman:r_dowWednesday 0.12050162 0.1544810 +``` + +``` +## [1] "Feedback: Any laundry by day of the week/gender: 2005" +``` + +``` +## sex r_dowFriday r_dowMonday r_dowSaturday r_dowSunday +## Man Man 0.1453014 0.1804492 0.03721916 0.2015636 +## Woman Woman 0.1291882 0.1360840 0.10278092 0.2160321 +## r_dowThursday r_dowTuesday r_dowWednesday se.r_dowFriday +## Man 0.17908932 0.1452861 0.1110913 0.03343892 +## Woman 0.09490417 0.1839592 0.1370515 0.03372592 +## se.r_dowMonday se.r_dowSaturday se.r_dowSunday se.r_dowThursday +## Man 0.03381096 0.01509652 0.03255327 0.02936094 +## Woman 0.02906129 0.02342899 0.03641104 0.01878978 +## se.r_dowTuesday se.r_dowWednesday +## Man 0.02719683 0.02290164 +## Woman 0.03445224 0.03092716 +``` + +``` +## 2.5 % 97.5 % +## Man:r_dowFriday 0.079762279 0.21084044 +## Woman:r_dowFriday 0.063086625 0.19528982 +## Man:r_dowMonday 0.114180901 0.24671745 +## Woman:r_dowMonday 0.079124887 0.19304305 +## Man:r_dowSaturday 0.007630535 0.06680779 +## Woman:r_dowSaturday 0.056860938 0.14870090 +## Man:r_dowSunday 0.137760360 0.26536684 +## Woman:r_dowSunday 0.144667736 0.28739641 +## Man:r_dowThursday 0.121542927 0.23663570 +## Woman:r_dowThursday 0.058076882 0.13173146 +## Man:r_dowTuesday 0.091981316 0.19859092 +## Woman:r_dowTuesday 0.116434027 0.25148434 +## Man:r_dowWednesday 0.066204872 0.15597767 +## Woman:r_dowWednesday 0.076435336 0.19766759 +``` + + empstat ba_survey se +------------------ ------------------ ---------- -------- +full-time full-time 789134291 7373041 +not in paid work not in paid work 772129046 7093351 +part-time part-time 434979443 5963395 +unknown job hours unknown job hours 50827974 2306812 + + empstat r_dow Any_laundry_home se +---------------------------- ------------------ ---------- ----------------- ---------- +full-time.Friday full-time Friday 0.0097277 0.0014502 +not in paid work.Friday not in paid work Friday 0.0115259 0.0010299 +part-time.Friday part-time Friday 0.0117574 0.0013751 +unknown job hours.Friday unknown job hours Friday 0.0143683 0.0078934 +full-time.Monday full-time Monday 0.0163043 0.0021178 +not in paid work.Monday not in paid work Monday 0.0194740 0.0014878 +part-time.Monday part-time Monday 0.0146389 0.0014712 +unknown job hours.Monday unknown job hours Monday 0.0208089 0.0071219 +full-time.Saturday full-time Saturday 0.0101133 0.0015787 +not in paid work.Saturday not in paid work Saturday 0.0120256 0.0010891 +part-time.Saturday part-time Saturday 0.0129356 0.0014742 +unknown job hours.Saturday unknown job hours Saturday 0.0182949 0.0059958 +full-time.Sunday full-time Sunday 0.0108672 0.0014745 +not in paid work.Sunday not in paid work Sunday 0.0139046 0.0012393 +part-time.Sunday part-time Sunday 0.0154109 0.0017824 +unknown job hours.Sunday unknown job hours Sunday 0.0069965 0.0038260 +full-time.Thursday full-time Thursday 0.0111536 0.0015468 +not in paid work.Thursday not in paid work Thursday 0.0126719 0.0011539 +part-time.Thursday part-time Thursday 0.0147599 0.0015171 +unknown job hours.Thursday unknown job hours Thursday 0.0191084 0.0076637 +full-time.Tuesday full-time Tuesday 0.0129177 0.0017908 +not in paid work.Tuesday not in paid work Tuesday 0.0146600 0.0013045 +part-time.Tuesday part-time Tuesday 0.0126611 0.0014005 +unknown job hours.Tuesday unknown job hours Tuesday 0.0235239 0.0085679 +full-time.Wednesday full-time Wednesday 0.0121377 0.0017207 +not in paid work.Wednesday not in paid work Wednesday 0.0139568 0.0012700 +part-time.Wednesday part-time Wednesday 0.0119973 0.0013507 +unknown job hours.Wednesday unknown job hours Wednesday 0.0153026 0.0053168 + +``` +## [1] "Feedback: Any laundry by day of the week/women/labour market status: 1985" +``` + + empstat r_dowFriday r_dowMonday r_dowSaturday r_dowSunday r_dowThursday r_dowTuesday r_dowWednesday se.r_dowFriday se.r_dowMonday se.r_dowSaturday se.r_dowSunday se.r_dowThursday se.r_dowTuesday se.r_dowWednesday +------------------ ------------------ ------------ ------------ -------------- ------------ -------------- ------------- --------------- --------------- --------------- ----------------- --------------- ----------------- ---------------- ------------------ +full-time full-time 0.1179904 0.1985796 0.1176123 0.1216512 0.1363593 0.1593790 0.1484283 0.0178056 0.0246750 0.0184813 0.0171994 0.0191377 0.0217594 0.0208917 +not in paid work not in paid work 0.1186923 0.2017162 0.1240708 0.1458790 0.1286404 0.1464133 0.1345879 0.0109782 0.0152157 0.0115232 0.0130310 0.0119272 0.0131036 0.0124293 +part-time part-time 0.1224041 0.1546634 0.1297886 0.1568272 0.1602732 0.1407495 0.1352940 0.0145667 0.0159786 0.0150606 0.0178133 0.0166367 0.0156954 0.0153613 +unknown job hours unknown job hours 0.1105719 0.1671910 0.1726642 0.0625853 0.1414491 0.1990554 0.1464830 0.0604227 0.0619587 0.0603682 0.0354488 0.0603233 0.0737225 0.0552000 + +``` +## [1] "Feedback: Any laundry by day of the week/women/labour market status: 1985" +``` + + empstat r_dowFriday r_dowMonday r_dowSaturday r_dowSunday r_dowThursday r_dowTuesday r_dowWednesday se.r_dowFriday se.r_dowMonday se.r_dowSaturday se.r_dowSunday se.r_dowThursday se.r_dowTuesday se.r_dowWednesday +----------------- ----------------- ------------ ------------ -------------- ------------ -------------- ------------- --------------- --------------- --------------- ----------------- --------------- ----------------- ---------------- ------------------ +full-time full-time 0.2240102 0.0630661 0.0859171 0.2447814 0.1197949 0.1765103 0.0859201 0.0799600 0.0275682 0.0343156 0.0671075 0.0411371 0.0638993 0.0626110 +not in paid work not in paid work 0.0533881 0.1715071 0.1001408 0.2633564 0.0708324 0.1814197 0.1593556 0.0258744 0.0463328 0.0320004 0.0602603 0.0220217 0.0510785 0.0458664 +part-time part-time 0.1240366 0.1801231 0.1318491 0.0916947 0.1008414 0.1991970 0.1722580 0.0502480 0.0760273 0.0622046 0.0444446 0.0347197 0.0659764 0.0506492 + + st_halfhour ba_survey Any_laundry_home se +----------- ------------ ---------- ----------------- ---------- +00:00.1985 00:00 1985 0.0010556 0.0002491 +00:30.1985 00:30 1985 0.0005721 0.0001813 +01:00.1985 01:00 1985 0.0001816 0.0001048 +01:30.1985 01:30 1985 0.0000000 0.0000000 +02:00.1985 02:00 1985 0.0000567 0.0000567 +02:30.1985 02:30 1985 0.0000000 0.0000000 +03:00.1985 03:00 1985 0.0000000 0.0000000 +03:30.1985 03:30 1985 0.0000000 0.0000000 +04:00.1985 04:00 1985 0.0000000 0.0000000 +04:30.1985 04:30 1985 0.0000000 0.0000000 +05:00.1985 05:00 1985 0.0001084 0.0000767 +05:30.1985 05:30 1985 0.0003492 0.0001432 +06:00.1985 06:00 1985 0.0009972 0.0002422 +06:30.1985 06:30 1985 0.0021780 0.0003543 +07:00.1985 07:00 1985 0.0052767 0.0005480 +07:30.1985 07:30 1985 0.0074772 0.0006465 +08:00.1985 08:00 1985 0.0137881 0.0008801 +08:30.1985 08:30 1985 0.0202534 0.0010663 +09:00.1985 09:00 1985 0.0261384 0.0012092 +09:30.1985 09:30 1985 0.0346053 0.0013847 +10:00.1985 10:00 1985 0.0371609 0.0014307 +10:30.1985 10:30 1985 0.0383388 0.0014500 +11:00.1985 11:00 1985 0.0322811 0.0013371 +11:30.1985 11:30 1985 0.0310342 0.0013132 +12:00.1985 12:00 1985 0.0222697 0.0011172 +12:30.1985 12:30 1985 0.0220213 0.0011134 +13:00.1985 13:00 1985 0.0191961 0.0010389 +13:30.1985 13:30 1985 0.0244418 0.0011707 +14:00.1985 14:00 1985 0.0271532 0.0012306 +14:30.1985 14:30 1985 0.0253324 0.0011907 +15:00.1985 15:00 1985 0.0226200 0.0011250 +15:30.1985 15:30 1985 0.0231902 0.0011389 +16:00.1985 16:00 1985 0.0217943 0.0011069 +16:30.1985 16:30 1985 0.0198137 0.0010567 +17:00.1985 17:00 1985 0.0120270 0.0008239 +17:30.1985 17:30 1985 0.0133019 0.0008650 +18:00.1985 18:00 1985 0.0152872 0.0009250 +18:30.1985 18:30 1985 0.0191294 0.0010358 +19:00.1985 19:00 1985 0.0190732 0.0010400 +19:30.1985 19:30 1985 0.0180119 0.0010104 +20:00.1985 20:00 1985 0.0189935 0.0010328 +20:30.1985 20:30 1985 0.0185356 0.0010190 +21:00.1985 21:00 1985 0.0144381 0.0009011 +21:30.1985 21:30 1985 0.0123343 0.0008312 +22:00.1985 22:00 1985 0.0091150 0.0007132 +22:30.1985 22:30 1985 0.0055409 0.0005603 +23:00.1985 23:00 1985 0.0030516 0.0004164 +23:30.1985 23:30 1985 0.0014843 0.0002922 +00:00.2005 00:00 2005 0.0004289 0.0004288 +00:30.2005 00:30 2005 0.0004289 0.0004288 +01:00.2005 01:00 2005 0.0000000 0.0000000 +01:30.2005 01:30 2005 0.0000000 0.0000000 +02:00.2005 02:00 2005 0.0000000 0.0000000 +02:30.2005 02:30 2005 0.0000000 0.0000000 +03:00.2005 03:00 2005 0.0000000 0.0000000 +03:30.2005 03:30 2005 0.0000000 0.0000000 +04:00.2005 04:00 2005 0.0000000 0.0000000 +04:30.2005 04:30 2005 0.0000000 0.0000000 +05:00.2005 05:00 2005 0.0005382 0.0005380 +05:30.2005 05:30 2005 0.0012199 0.0007245 +06:00.2005 06:00 2005 0.0015144 0.0007819 +06:30.2005 06:30 2005 0.0043039 0.0015482 +07:00.2005 07:00 2005 0.0103922 0.0021535 +07:30.2005 07:30 2005 0.0161986 0.0026600 +08:00.2005 08:00 2005 0.0187639 0.0028371 +08:30.2005 08:30 2005 0.0239451 0.0031630 +09:00.2005 09:00 2005 0.0282875 0.0033952 +09:30.2005 09:30 2005 0.0250066 0.0031481 +10:00.2005 10:00 2005 0.0303511 0.0034738 +10:30.2005 10:30 2005 0.0220304 0.0029144 +11:00.2005 11:00 2005 0.0167036 0.0025672 +11:30.2005 11:30 2005 0.0146088 0.0025741 +12:00.2005 12:00 2005 0.0120755 0.0022353 +12:30.2005 12:30 2005 0.0113019 0.0022600 +13:00.2005 13:00 2005 0.0142415 0.0024589 +13:30.2005 13:30 2005 0.0170105 0.0026592 +14:00.2005 14:00 2005 0.0143518 0.0023896 +14:30.2005 14:30 2005 0.0121984 0.0021457 +15:00.2005 15:00 2005 0.0125262 0.0022281 +15:30.2005 15:30 2005 0.0145229 0.0024785 +16:00.2005 16:00 2005 0.0147880 0.0027606 +16:30.2005 16:30 2005 0.0130933 0.0024381 +17:00.2005 17:00 2005 0.0104090 0.0021998 +17:30.2005 17:30 2005 0.0083849 0.0019649 +18:00.2005 18:00 2005 0.0104222 0.0022736 +18:30.2005 18:30 2005 0.0117916 0.0023978 +19:00.2005 19:00 2005 0.0149155 0.0026367 +19:30.2005 19:30 2005 0.0116972 0.0023677 +20:00.2005 20:00 2005 0.0132548 0.0023569 +20:30.2005 20:30 2005 0.0115057 0.0021052 +21:00.2005 21:00 2005 0.0076453 0.0017000 +21:30.2005 21:30 2005 0.0056360 0.0014326 +22:00.2005 22:00 2005 0.0045470 0.0012778 +22:30.2005 22:30 2005 0.0023425 0.0009693 +23:00.2005 23:00 2005 0.0022741 0.0009411 +23:30.2005 23:30 2005 0.0004944 0.0004943 + + st_halfhour r_dow Any_laundry_home se +---------------- ------------ ---------- ----------------- ---------- +00:00.Friday 00:00 Friday 0.0003901 0.0003901 +00:30.Friday 00:30 Friday 0.0003901 0.0003901 +01:00.Friday 01:00 Friday 0.0000000 0.0000000 +01:30.Friday 01:30 Friday 0.0000000 0.0000000 +02:00.Friday 02:00 Friday 0.0003963 0.0003963 +02:30.Friday 02:30 Friday 0.0000000 0.0000000 +03:00.Friday 03:00 Friday 0.0000000 0.0000000 +03:30.Friday 03:30 Friday 0.0000000 0.0000000 +04:00.Friday 04:00 Friday 0.0000000 0.0000000 +04:30.Friday 04:30 Friday 0.0000000 0.0000000 +05:00.Friday 05:00 Friday 0.0003712 0.0003711 +05:30.Friday 05:30 Friday 0.0004278 0.0004277 +06:00.Friday 06:00 Friday 0.0012271 0.0007102 +06:30.Friday 06:30 Friday 0.0028209 0.0010662 +07:00.Friday 07:00 Friday 0.0057709 0.0014910 +07:30.Friday 07:30 Friday 0.0050491 0.0014024 +08:00.Friday 08:00 Friday 0.0136752 0.0023368 +08:30.Friday 08:30 Friday 0.0189521 0.0027182 +09:00.Friday 09:00 Friday 0.0196416 0.0027592 +09:30.Friday 09:30 Friday 0.0264381 0.0031963 +10:00.Friday 10:00 Friday 0.0297190 0.0033927 +10:30.Friday 10:30 Friday 0.0230931 0.0029824 +11:00.Friday 11:00 Friday 0.0203808 0.0028327 +11:30.Friday 11:30 Friday 0.0263012 0.0031824 +12:00.Friday 12:00 Friday 0.0183270 0.0026590 +12:30.Friday 12:30 Friday 0.0153362 0.0024453 +13:00.Friday 13:00 Friday 0.0133169 0.0022760 +13:30.Friday 13:30 Friday 0.0188765 0.0027088 +14:00.Friday 14:00 Friday 0.0207969 0.0028606 +14:30.Friday 14:30 Friday 0.0184069 0.0026940 +15:00.Friday 15:00 Friday 0.0158436 0.0024908 +15:30.Friday 15:30 Friday 0.0155307 0.0024744 +16:00.Friday 16:00 Friday 0.0139625 0.0023499 +16:30.Friday 16:30 Friday 0.0167389 0.0025674 +17:00.Friday 17:00 Friday 0.0129159 0.0022758 +17:30.Friday 17:30 Friday 0.0109492 0.0020681 +18:00.Friday 18:00 Friday 0.0148877 0.0023762 +18:30.Friday 18:30 Friday 0.0181360 0.0026323 +19:00.Friday 19:00 Friday 0.0162720 0.0025288 +19:30.Friday 19:30 Friday 0.0179092 0.0026536 +20:00.Friday 20:00 Friday 0.0125907 0.0022203 +20:30.Friday 20:30 Friday 0.0133482 0.0022826 +21:00.Friday 21:00 Friday 0.0114288 0.0021175 +21:30.Friday 21:30 Friday 0.0108226 0.0020406 +22:00.Friday 22:00 Friday 0.0096640 0.0019324 +22:30.Friday 22:30 Friday 0.0057181 0.0014781 +23:00.Friday 23:00 Friday 0.0027772 0.0010539 +23:30.Friday 23:30 Friday 0.0019566 0.0008776 +00:00.Monday 00:00 Monday 0.0008133 0.0005749 +00:30.Monday 00:30 Monday 0.0007668 0.0005427 +01:00.Monday 01:00 Monday 0.0004258 0.0004257 +01:30.Monday 01:30 Monday 0.0000000 0.0000000 +02:00.Monday 02:00 Monday 0.0000000 0.0000000 +02:30.Monday 02:30 Monday 0.0000000 0.0000000 +03:00.Monday 03:00 Monday 0.0000000 0.0000000 +03:30.Monday 03:30 Monday 0.0000000 0.0000000 +04:00.Monday 04:00 Monday 0.0000000 0.0000000 +04:30.Monday 04:30 Monday 0.0000000 0.0000000 +05:00.Monday 05:00 Monday 0.0000000 0.0000000 +05:30.Monday 05:30 Monday 0.0000000 0.0000000 +06:00.Monday 06:00 Monday 0.0004608 0.0004606 +06:30.Monday 06:30 Monday 0.0032522 0.0011505 +07:00.Monday 07:00 Monday 0.0084495 0.0018425 +07:30.Monday 07:30 Monday 0.0098686 0.0019712 +08:00.Monday 08:00 Monday 0.0154802 0.0024384 +08:30.Monday 08:30 Monday 0.0275616 0.0032629 +09:00.Monday 09:00 Monday 0.0418493 0.0040108 +09:30.Monday 09:30 Monday 0.0484774 0.0042968 +10:00.Monday 10:00 Monday 0.0483581 0.0042848 +10:30.Monday 10:30 Monday 0.0450101 0.0041339 +11:00.Monday 11:00 Monday 0.0434075 0.0040796 +11:30.Monday 11:30 Monday 0.0373854 0.0037960 +12:00.Monday 12:00 Monday 0.0238394 0.0030518 +12:30.Monday 12:30 Monday 0.0244933 0.0031069 +13:00.Monday 13:00 Monday 0.0261203 0.0031830 +13:30.Monday 13:30 Monday 0.0321368 0.0035435 +14:00.Monday 14:00 Monday 0.0377973 0.0038167 +14:30.Monday 14:30 Monday 0.0386287 0.0038590 +15:00.Monday 15:00 Monday 0.0299300 0.0034149 +15:30.Monday 15:30 Monday 0.0282619 0.0033177 +16:00.Monday 16:00 Monday 0.0263313 0.0032080 +16:30.Monday 16:30 Monday 0.0213524 0.0029105 +17:00.Monday 17:00 Monday 0.0115651 0.0021404 +17:30.Monday 17:30 Monday 0.0145834 0.0023892 +18:00.Monday 18:00 Monday 0.0187620 0.0026937 +18:30.Monday 18:30 Monday 0.0221181 0.0029324 +19:00.Monday 19:00 Monday 0.0248732 0.0031048 +19:30.Monday 19:30 Monday 0.0214987 0.0029060 +20:00.Monday 20:00 Monday 0.0290735 0.0033862 +20:30.Monday 20:30 Monday 0.0290144 0.0033583 +21:00.Monday 21:00 Monday 0.0211871 0.0028646 +21:30.Monday 21:30 Monday 0.0191816 0.0027237 +22:00.Monday 22:00 Monday 0.0083826 0.0017859 +22:30.Monday 22:30 Monday 0.0062310 0.0015590 +23:00.Monday 23:00 Monday 0.0024715 0.0010104 +23:30.Monday 23:30 Monday 0.0007671 0.0005454 +00:00.Saturday 00:00 Saturday 0.0016283 0.0008153 +00:30.Saturday 00:30 Saturday 0.0012065 0.0006978 +01:00.Saturday 01:00 Saturday 0.0008492 0.0006003 +01:30.Saturday 01:30 Saturday 0.0000000 0.0000000 +02:00.Saturday 02:00 Saturday 0.0000000 0.0000000 +02:30.Saturday 02:30 Saturday 0.0000000 0.0000000 +03:00.Saturday 03:00 Saturday 0.0000000 0.0000000 +03:30.Saturday 03:30 Saturday 0.0000000 0.0000000 +04:00.Saturday 04:00 Saturday 0.0000000 0.0000000 +04:30.Saturday 04:30 Saturday 0.0000000 0.0000000 +05:00.Saturday 05:00 Saturday 0.0000000 0.0000000 +05:30.Saturday 05:30 Saturday 0.0000000 0.0000000 +06:00.Saturday 06:00 Saturday 0.0008344 0.0005900 +06:30.Saturday 06:30 Saturday 0.0020597 0.0009216 +07:00.Saturday 07:00 Saturday 0.0021065 0.0009417 +07:30.Saturday 07:30 Saturday 0.0037099 0.0012375 +08:00.Saturday 08:00 Saturday 0.0124805 0.0022358 +08:30.Saturday 08:30 Saturday 0.0197570 0.0028038 +09:00.Saturday 09:00 Saturday 0.0244138 0.0031214 +09:30.Saturday 09:30 Saturday 0.0359478 0.0037532 +10:00.Saturday 10:00 Saturday 0.0387591 0.0038714 +10:30.Saturday 10:30 Saturday 0.0501596 0.0043687 +11:00.Saturday 11:00 Saturday 0.0375079 0.0038086 +11:30.Saturday 11:30 Saturday 0.0329629 0.0035907 +12:00.Saturday 12:00 Saturday 0.0229262 0.0030109 +12:30.Saturday 12:30 Saturday 0.0219463 0.0029612 +13:00.Saturday 13:00 Saturday 0.0170481 0.0026152 +13:30.Saturday 13:30 Saturday 0.0229396 0.0030144 +14:00.Saturday 14:00 Saturday 0.0242461 0.0030785 +14:30.Saturday 14:30 Saturday 0.0188707 0.0027322 +15:00.Saturday 15:00 Saturday 0.0225764 0.0029679 +15:30.Saturday 15:30 Saturday 0.0218942 0.0029326 +16:00.Saturday 16:00 Saturday 0.0190385 0.0027323 +16:30.Saturday 16:30 Saturday 0.0166619 0.0025574 +17:00.Saturday 17:00 Saturday 0.0140586 0.0023346 +17:30.Saturday 17:30 Saturday 0.0139002 0.0023409 +18:00.Saturday 18:00 Saturday 0.0109572 0.0021024 +18:30.Saturday 18:30 Saturday 0.0112983 0.0021292 +19:00.Saturday 19:00 Saturday 0.0147115 0.0024420 +19:30.Saturday 19:30 Saturday 0.0118358 0.0021922 +20:00.Saturday 20:00 Saturday 0.0124971 0.0022366 +20:30.Saturday 20:30 Saturday 0.0107063 0.0020566 +21:00.Saturday 21:00 Saturday 0.0082614 0.0018005 +21:30.Saturday 21:30 Saturday 0.0089101 0.0018960 +22:00.Saturday 22:00 Saturday 0.0064642 0.0016153 +22:30.Saturday 22:30 Saturday 0.0029249 0.0011079 +23:00.Saturday 23:00 Saturday 0.0036366 0.0012136 +23:30.Saturday 23:30 Saturday 0.0024535 0.0010025 +00:00.Sunday 00:00 Sunday 0.0008473 0.0005991 +00:30.Sunday 00:30 Sunday 0.0007739 0.0005481 +01:00.Sunday 01:00 Sunday 0.0000000 0.0000000 +01:30.Sunday 01:30 Sunday 0.0000000 0.0000000 +02:00.Sunday 02:00 Sunday 0.0000000 0.0000000 +02:30.Sunday 02:30 Sunday 0.0000000 0.0000000 +03:00.Sunday 03:00 Sunday 0.0000000 0.0000000 +03:30.Sunday 03:30 Sunday 0.0000000 0.0000000 +04:00.Sunday 04:00 Sunday 0.0000000 0.0000000 +04:30.Sunday 04:30 Sunday 0.0000000 0.0000000 +05:00.Sunday 05:00 Sunday 0.0000000 0.0000000 +05:30.Sunday 05:30 Sunday 0.0000000 0.0000000 +06:00.Sunday 06:00 Sunday 0.0012605 0.0007274 +06:30.Sunday 06:30 Sunday 0.0011475 0.0006651 +07:00.Sunday 07:00 Sunday 0.0007562 0.0005355 +07:30.Sunday 07:30 Sunday 0.0032101 0.0011384 +08:00.Sunday 08:00 Sunday 0.0068598 0.0016168 +08:30.Sunday 08:30 Sunday 0.0129800 0.0022535 +09:00.Sunday 09:00 Sunday 0.0208784 0.0028751 +09:30.Sunday 09:30 Sunday 0.0278524 0.0032943 +10:00.Sunday 10:00 Sunday 0.0346985 0.0036679 +10:30.Sunday 10:30 Sunday 0.0406372 0.0039368 +11:00.Sunday 11:00 Sunday 0.0350324 0.0037023 +11:30.Sunday 11:30 Sunday 0.0450061 0.0041703 +12:00.Sunday 12:00 Sunday 0.0363888 0.0037750 +12:30.Sunday 12:30 Sunday 0.0329210 0.0035872 +13:00.Sunday 13:00 Sunday 0.0255788 0.0031663 +13:30.Sunday 13:30 Sunday 0.0244238 0.0030981 +14:00.Sunday 14:00 Sunday 0.0240375 0.0030528 +14:30.Sunday 14:30 Sunday 0.0248046 0.0031210 +15:00.Sunday 15:00 Sunday 0.0243976 0.0030975 +15:30.Sunday 15:30 Sunday 0.0284220 0.0033382 +16:00.Sunday 16:00 Sunday 0.0264053 0.0032409 +16:30.Sunday 16:30 Sunday 0.0264804 0.0032496 +17:00.Sunday 17:00 Sunday 0.0176915 0.0026503 +17:30.Sunday 17:30 Sunday 0.0186955 0.0027355 +18:00.Sunday 18:00 Sunday 0.0226005 0.0029949 +18:30.Sunday 18:30 Sunday 0.0276144 0.0033114 +19:00.Sunday 19:00 Sunday 0.0260492 0.0032230 +19:30.Sunday 19:30 Sunday 0.0213771 0.0029118 +20:00.Sunday 20:00 Sunday 0.0186157 0.0026966 +20:30.Sunday 20:30 Sunday 0.0167842 0.0025743 +21:00.Sunday 21:00 Sunday 0.0102985 0.0020166 +21:30.Sunday 21:30 Sunday 0.0102994 0.0020165 +22:00.Sunday 22:00 Sunday 0.0107437 0.0020650 +22:30.Sunday 22:30 Sunday 0.0068068 0.0016511 +23:00.Sunday 23:00 Sunday 0.0028992 0.0010279 +23:30.Sunday 23:30 Sunday 0.0014970 0.0007509 +00:00.Thursday 00:00 Thursday 0.0008468 0.0005988 +00:30.Thursday 00:30 Thursday 0.0004347 0.0004346 +01:00.Thursday 01:00 Thursday 0.0000000 0.0000000 +01:30.Thursday 01:30 Thursday 0.0000000 0.0000000 +02:00.Thursday 02:00 Thursday 0.0000000 0.0000000 +02:30.Thursday 02:30 Thursday 0.0000000 0.0000000 +03:00.Thursday 03:00 Thursday 0.0000000 0.0000000 +03:30.Thursday 03:30 Thursday 0.0000000 0.0000000 +04:00.Thursday 04:00 Thursday 0.0000000 0.0000000 +04:30.Thursday 04:30 Thursday 0.0000000 0.0000000 +05:00.Thursday 05:00 Thursday 0.0000000 0.0000000 +05:30.Thursday 05:30 Thursday 0.0011943 0.0006940 +06:00.Thursday 06:00 Thursday 0.0019919 0.0008913 +06:30.Thursday 06:30 Thursday 0.0018997 0.0008508 +07:00.Thursday 07:00 Thursday 0.0076987 0.0017212 +07:30.Thursday 07:30 Thursday 0.0104279 0.0020049 +08:00.Thursday 08:00 Thursday 0.0180155 0.0026735 +08:30.Thursday 08:30 Thursday 0.0213863 0.0029140 +09:00.Thursday 09:00 Thursday 0.0197452 0.0027734 +09:30.Thursday 09:30 Thursday 0.0319658 0.0035258 +10:00.Thursday 10:00 Thursday 0.0364103 0.0037379 +10:30.Thursday 10:30 Thursday 0.0354102 0.0036979 +11:00.Thursday 11:00 Thursday 0.0278652 0.0032742 +11:30.Thursday 11:30 Thursday 0.0221087 0.0029593 +12:00.Thursday 12:00 Thursday 0.0177031 0.0026508 +12:30.Thursday 12:30 Thursday 0.0209848 0.0028600 +13:00.Thursday 13:00 Thursday 0.0174340 0.0026122 +13:30.Thursday 13:30 Thursday 0.0201856 0.0028053 +14:00.Thursday 14:00 Thursday 0.0245708 0.0030938 +14:30.Thursday 14:30 Thursday 0.0217070 0.0029083 +15:00.Thursday 15:00 Thursday 0.0204246 0.0028164 +15:30.Thursday 15:30 Thursday 0.0224539 0.0029533 +16:00.Thursday 16:00 Thursday 0.0236558 0.0030328 +16:30.Thursday 16:30 Thursday 0.0179555 0.0026381 +17:00.Thursday 17:00 Thursday 0.0072596 0.0016693 +17:30.Thursday 17:30 Thursday 0.0118715 0.0021297 +18:00.Thursday 18:00 Thursday 0.0136105 0.0022944 +18:30.Thursday 18:30 Thursday 0.0194210 0.0027572 +19:00.Thursday 19:00 Thursday 0.0199375 0.0028008 +19:30.Thursday 19:30 Thursday 0.0189277 0.0027434 +20:00.Thursday 20:00 Thursday 0.0239789 0.0030447 +20:30.Thursday 20:30 Thursday 0.0186605 0.0027058 +21:00.Thursday 21:00 Thursday 0.0157042 0.0025033 +21:30.Thursday 21:30 Thursday 0.0106970 0.0020555 +22:00.Thursday 22:00 Thursday 0.0072075 0.0016530 +22:30.Thursday 22:30 Thursday 0.0024017 0.0009819 +23:00.Thursday 23:00 Thursday 0.0023223 0.0009498 +23:30.Thursday 23:30 Thursday 0.0011620 0.0006722 +00:00.Tuesday 00:00 Tuesday 0.0011632 0.0006717 +00:30.Tuesday 00:30 Tuesday 0.0000000 0.0000000 +01:00.Tuesday 01:00 Tuesday 0.0000000 0.0000000 +01:30.Tuesday 01:30 Tuesday 0.0000000 0.0000000 +02:00.Tuesday 02:00 Tuesday 0.0000000 0.0000000 +02:30.Tuesday 02:30 Tuesday 0.0000000 0.0000000 +03:00.Tuesday 03:00 Tuesday 0.0000000 0.0000000 +03:30.Tuesday 03:30 Tuesday 0.0000000 0.0000000 +04:00.Tuesday 04:00 Tuesday 0.0000000 0.0000000 +04:30.Tuesday 04:30 Tuesday 0.0000000 0.0000000 +05:00.Tuesday 05:00 Tuesday 0.0000000 0.0000000 +05:30.Tuesday 05:30 Tuesday 0.0000000 0.0000000 +06:00.Tuesday 06:00 Tuesday 0.0004047 0.0004046 +06:30.Tuesday 06:30 Tuesday 0.0027227 0.0010345 +07:00.Tuesday 07:00 Tuesday 0.0065418 0.0016378 +07:30.Tuesday 07:30 Tuesday 0.0094940 0.0019382 +08:00.Tuesday 08:00 Tuesday 0.0173656 0.0026056 +08:30.Tuesday 08:30 Tuesday 0.0234043 0.0030457 +09:00.Tuesday 09:00 Tuesday 0.0305405 0.0034604 +09:30.Tuesday 09:30 Tuesday 0.0367231 0.0037719 +10:00.Tuesday 10:00 Tuesday 0.0336252 0.0035998 +10:30.Tuesday 10:30 Tuesday 0.0349350 0.0036537 +11:00.Tuesday 11:00 Tuesday 0.0293146 0.0033470 +11:30.Tuesday 11:30 Tuesday 0.0273602 0.0032391 +12:00.Tuesday 12:00 Tuesday 0.0202424 0.0027889 +12:30.Tuesday 12:30 Tuesday 0.0206631 0.0028471 +13:00.Tuesday 13:00 Tuesday 0.0164942 0.0025642 +13:30.Tuesday 13:30 Tuesday 0.0265493 0.0032353 +14:00.Tuesday 14:00 Tuesday 0.0296586 0.0034068 +14:30.Tuesday 14:30 Tuesday 0.0263515 0.0032095 +15:00.Tuesday 15:00 Tuesday 0.0252749 0.0031539 +15:30.Tuesday 15:30 Tuesday 0.0258691 0.0031780 +16:00.Tuesday 16:00 Tuesday 0.0250524 0.0031522 +16:30.Tuesday 16:30 Tuesday 0.0228410 0.0030011 +17:00.Tuesday 17:00 Tuesday 0.0092998 0.0019361 +17:30.Tuesday 17:30 Tuesday 0.0128449 0.0022634 +18:00.Tuesday 18:00 Tuesday 0.0138945 0.0023405 +18:30.Tuesday 18:30 Tuesday 0.0174506 0.0026182 +19:00.Tuesday 19:00 Tuesday 0.0179921 0.0026957 +19:30.Tuesday 19:30 Tuesday 0.0185667 0.0027472 +20:00.Tuesday 20:00 Tuesday 0.0166979 0.0025940 +20:30.Tuesday 20:30 Tuesday 0.0209572 0.0028860 +21:00.Tuesday 21:00 Tuesday 0.0164042 0.0025520 +21:30.Tuesday 21:30 Tuesday 0.0121794 0.0021816 +22:00.Tuesday 22:00 Tuesday 0.0106101 0.0020364 +22:30.Tuesday 22:30 Tuesday 0.0074836 0.0017163 +23:00.Tuesday 23:00 Tuesday 0.0032517 0.0011515 +23:30.Tuesday 23:30 Tuesday 0.0009242 0.0006532 +00:00.Wednesday 00:00 Wednesday 0.0017059 0.0008536 +00:30.Wednesday 00:30 Wednesday 0.0004360 0.0004359 +01:00.Wednesday 01:00 Wednesday 0.0000000 0.0000000 +01:30.Wednesday 01:30 Wednesday 0.0000000 0.0000000 +02:00.Wednesday 02:00 Wednesday 0.0000000 0.0000000 +02:30.Wednesday 02:30 Wednesday 0.0000000 0.0000000 +03:00.Wednesday 03:00 Wednesday 0.0000000 0.0000000 +03:30.Wednesday 03:30 Wednesday 0.0000000 0.0000000 +04:00.Wednesday 04:00 Wednesday 0.0000000 0.0000000 +04:30.Wednesday 04:30 Wednesday 0.0000000 0.0000000 +05:00.Wednesday 05:00 Wednesday 0.0003874 0.0003873 +05:30.Wednesday 05:30 Wednesday 0.0008184 0.0005793 +06:00.Wednesday 06:00 Wednesday 0.0007962 0.0005647 +06:30.Wednesday 06:30 Wednesday 0.0013411 0.0007747 +07:00.Wednesday 07:00 Wednesday 0.0055860 0.0014962 +07:30.Wednesday 07:30 Wednesday 0.0105585 0.0019952 +08:00.Wednesday 08:00 Wednesday 0.0126192 0.0022250 +08:30.Wednesday 08:30 Wednesday 0.0177218 0.0026293 +09:00.Wednesday 09:00 Wednesday 0.0259123 0.0031819 +09:30.Wednesday 09:30 Wednesday 0.0348525 0.0036829 +10:00.Wednesday 10:00 Wednesday 0.0385703 0.0038711 +10:30.Wednesday 10:30 Wednesday 0.0392206 0.0039139 +11:00.Wednesday 11:00 Wednesday 0.0325124 0.0035652 +11:30.Wednesday 11:30 Wednesday 0.0261493 0.0032100 +12:00.Wednesday 12:00 Wednesday 0.0164774 0.0025593 +12:30.Wednesday 12:30 Wednesday 0.0178117 0.0026680 +13:00.Wednesday 13:00 Wednesday 0.0183765 0.0026933 +13:30.Wednesday 13:30 Wednesday 0.0259931 0.0031936 +14:00.Wednesday 14:00 Wednesday 0.0289639 0.0033770 +14:30.Wednesday 14:30 Wednesday 0.0285402 0.0033502 +15:00.Wednesday 15:00 Wednesday 0.0199043 0.0027966 +15:30.Wednesday 15:30 Wednesday 0.0199029 0.0027952 +16:00.Wednesday 16:00 Wednesday 0.0181022 0.0026550 +16:30.Wednesday 16:30 Wednesday 0.0166576 0.0025569 +17:00.Wednesday 17:00 Wednesday 0.0114209 0.0021159 +17:30.Wednesday 17:30 Wednesday 0.0102762 0.0020104 +18:00.Wednesday 18:00 Wednesday 0.0122735 0.0021986 +18:30.Wednesday 18:30 Wednesday 0.0178214 0.0026430 +19:00.Wednesday 19:00 Wednesday 0.0136438 0.0023284 +19:30.Wednesday 19:30 Wednesday 0.0159270 0.0024734 +20:00.Wednesday 20:00 Wednesday 0.0194519 0.0027338 +20:30.Wednesday 20:30 Wednesday 0.0202401 0.0027873 +21:00.Wednesday 21:00 Wednesday 0.0177501 0.0026328 +21:30.Wednesday 21:30 Wednesday 0.0142354 0.0023635 +22:00.Wednesday 22:00 Wednesday 0.0107275 0.0020592 +22:30.Wednesday 22:30 Wednesday 0.0072182 0.0017016 +23:00.Wednesday 23:00 Wednesday 0.0040105 0.0012692 +23:30.Wednesday 23:30 Wednesday 0.0016356 0.0008201 + + st_halfhour r_dow Any_laundry_home se +---------------- ------------ ---------- ----------------- ---------- +00:00.Friday 00:00 Friday 0.0038984 0.0038905 +00:30.Friday 00:30 Friday 0.0038984 0.0038905 +01:00.Friday 01:00 Friday 0.0000000 0.0000000 +01:30.Friday 01:30 Friday 0.0000000 0.0000000 +02:00.Friday 02:00 Friday 0.0000000 0.0000000 +02:30.Friday 02:30 Friday 0.0000000 0.0000000 +03:00.Friday 03:00 Friday 0.0000000 0.0000000 +03:30.Friday 03:30 Friday 0.0000000 0.0000000 +04:00.Friday 04:00 Friday 0.0000000 0.0000000 +04:30.Friday 04:30 Friday 0.0000000 0.0000000 +05:00.Friday 05:00 Friday 0.0000000 0.0000000 +05:30.Friday 05:30 Friday 0.0000000 0.0000000 +06:00.Friday 06:00 Friday 0.0026770 0.0026749 +06:30.Friday 06:30 Friday 0.0026770 0.0026749 +07:00.Friday 07:00 Friday 0.0170177 0.0077478 +07:30.Friday 07:30 Friday 0.0242379 0.0092930 +08:00.Friday 08:00 Friday 0.0268128 0.0095394 +08:30.Friday 08:30 Friday 0.0267058 0.0101583 +09:00.Friday 09:00 Friday 0.0253632 0.0097334 +09:30.Friday 09:30 Friday 0.0315013 0.0106625 +10:00.Friday 10:00 Friday 0.0359375 0.0114386 +10:30.Friday 10:30 Friday 0.0342891 0.0114405 +11:00.Friday 11:00 Friday 0.0218640 0.0091293 +11:30.Friday 11:30 Friday 0.0157292 0.0072380 +12:00.Friday 12:00 Friday 0.0129413 0.0065281 +12:30.Friday 12:30 Friday 0.0073232 0.0053240 +13:00.Friday 13:00 Friday 0.0094221 0.0057152 +13:30.Friday 13:30 Friday 0.0178800 0.0082194 +14:00.Friday 14:00 Friday 0.0244474 0.0094421 +14:30.Friday 14:30 Friday 0.0167299 0.0069318 +15:00.Friday 15:00 Friday 0.0140319 0.0063902 +15:30.Friday 15:30 Friday 0.0159001 0.0071352 +16:00.Friday 16:00 Friday 0.0213837 0.0110187 +16:30.Friday 16:30 Friday 0.0065331 0.0046715 +17:00.Friday 17:00 Friday 0.0181322 0.0105596 +17:30.Friday 17:30 Friday 0.0126491 0.0098732 +18:00.Friday 18:00 Friday 0.0136120 0.0102127 +18:30.Friday 18:30 Friday 0.0166877 0.0106364 +19:00.Friday 19:00 Friday 0.0163883 0.0105279 +19:30.Friday 19:30 Friday 0.0094389 0.0093673 +20:00.Friday 20:00 Friday 0.0119430 0.0069458 +20:30.Friday 20:30 Friday 0.0163535 0.0073656 +21:00.Friday 21:00 Friday 0.0167281 0.0075331 +21:30.Friday 21:30 Friday 0.0152585 0.0075713 +22:00.Friday 22:00 Friday 0.0038984 0.0038905 +22:30.Friday 22:30 Friday 0.0038984 0.0038905 +23:00.Friday 23:00 Friday 0.0038984 0.0038905 +23:30.Friday 23:30 Friday 0.0000000 0.0000000 +00:00.Monday 00:00 Monday 0.0000000 0.0000000 +00:30.Monday 00:30 Monday 0.0000000 0.0000000 +01:00.Monday 01:00 Monday 0.0000000 0.0000000 +01:30.Monday 01:30 Monday 0.0000000 0.0000000 +02:00.Monday 02:00 Monday 0.0000000 0.0000000 +02:30.Monday 02:30 Monday 0.0000000 0.0000000 +03:00.Monday 03:00 Monday 0.0000000 0.0000000 +03:30.Monday 03:30 Monday 0.0000000 0.0000000 +04:00.Monday 04:00 Monday 0.0000000 0.0000000 +04:30.Monday 04:30 Monday 0.0000000 0.0000000 +05:00.Monday 05:00 Monday 0.0000000 0.0000000 +05:30.Monday 05:30 Monday 0.0000000 0.0000000 +06:00.Monday 06:00 Monday 0.0025772 0.0025744 +06:30.Monday 06:30 Monday 0.0084764 0.0049191 +07:00.Monday 07:00 Monday 0.0128566 0.0058477 +07:30.Monday 07:30 Monday 0.0304536 0.0092724 +08:00.Monday 08:00 Monday 0.0372646 0.0105226 +08:30.Monday 08:30 Monday 0.0361415 0.0105416 +09:00.Monday 09:00 Monday 0.0333648 0.0092779 +09:30.Monday 09:30 Monday 0.0250119 0.0084171 +10:00.Monday 10:00 Monday 0.0286481 0.0087626 +10:30.Monday 10:30 Monday 0.0214633 0.0077000 +11:00.Monday 11:00 Monday 0.0216576 0.0076848 +11:30.Monday 11:30 Monday 0.0170215 0.0065341 +12:00.Monday 12:00 Monday 0.0159740 0.0065412 +12:30.Monday 12:30 Monday 0.0112036 0.0056444 +13:00.Monday 13:00 Monday 0.0060717 0.0043284 +13:30.Monday 13:30 Monday 0.0083280 0.0049194 +14:00.Monday 14:00 Monday 0.0137849 0.0058541 +14:30.Monday 14:30 Monday 0.0137849 0.0058541 +15:00.Monday 15:00 Monday 0.0067633 0.0039973 +15:30.Monday 15:30 Monday 0.0067633 0.0039973 +16:00.Monday 16:00 Monday 0.0117024 0.0079286 +16:30.Monday 16:30 Monday 0.0097672 0.0076597 +17:00.Monday 17:00 Monday 0.0050275 0.0035488 +17:30.Monday 17:30 Monday 0.0073960 0.0043126 +18:00.Monday 18:00 Monday 0.0115815 0.0063117 +18:30.Monday 18:30 Monday 0.0107879 0.0064776 +19:00.Monday 19:00 Monday 0.0160005 0.0075062 +19:30.Monday 19:30 Monday 0.0154671 0.0073514 +20:00.Monday 20:00 Monday 0.0146169 0.0060750 +20:30.Monday 20:30 Monday 0.0122765 0.0056461 +21:00.Monday 21:00 Monday 0.0034208 0.0024221 +21:30.Monday 21:30 Monday 0.0055495 0.0032217 +22:00.Monday 22:00 Monday 0.0064419 0.0037149 +22:30.Monday 22:30 Monday 0.0022617 0.0022600 +23:00.Monday 23:00 Monday 0.0000000 0.0000000 +23:30.Monday 23:30 Monday 0.0000000 0.0000000 +00:00.Saturday 00:00 Saturday 0.0000000 0.0000000 +00:30.Saturday 00:30 Saturday 0.0000000 0.0000000 +01:00.Saturday 01:00 Saturday 0.0000000 0.0000000 +01:30.Saturday 01:30 Saturday 0.0000000 0.0000000 +02:00.Saturday 02:00 Saturday 0.0000000 0.0000000 +02:30.Saturday 02:30 Saturday 0.0000000 0.0000000 +03:00.Saturday 03:00 Saturday 0.0000000 0.0000000 +03:30.Saturday 03:30 Saturday 0.0000000 0.0000000 +04:00.Saturday 04:00 Saturday 0.0000000 0.0000000 +04:30.Saturday 04:30 Saturday 0.0000000 0.0000000 +05:00.Saturday 05:00 Saturday 0.0000000 0.0000000 +05:30.Saturday 05:30 Saturday 0.0000000 0.0000000 +06:00.Saturday 06:00 Saturday 0.0000000 0.0000000 +06:30.Saturday 06:30 Saturday 0.0000000 0.0000000 +07:00.Saturday 07:00 Saturday 0.0020800 0.0020796 +07:30.Saturday 07:30 Saturday 0.0119694 0.0061040 +08:00.Saturday 08:00 Saturday 0.0116605 0.0059290 +08:30.Saturday 08:30 Saturday 0.0190270 0.0081409 +09:00.Saturday 09:00 Saturday 0.0259417 0.0095114 +09:30.Saturday 09:30 Saturday 0.0333173 0.0109988 +10:00.Saturday 10:00 Saturday 0.0259460 0.0093380 +10:30.Saturday 10:30 Saturday 0.0154620 0.0063145 +11:00.Saturday 11:00 Saturday 0.0124675 0.0055724 +11:30.Saturday 11:30 Saturday 0.0051512 0.0036448 +12:00.Saturday 12:00 Saturday 0.0105112 0.0067676 +12:30.Saturday 12:30 Saturday 0.0188715 0.0096156 +13:00.Saturday 13:00 Saturday 0.0105063 0.0066532 +13:30.Saturday 13:30 Saturday 0.0020800 0.0020796 +14:00.Saturday 14:00 Saturday 0.0036136 0.0036073 +14:30.Saturday 14:30 Saturday 0.0059125 0.0042729 +15:00.Saturday 15:00 Saturday 0.0036136 0.0036073 +15:30.Saturday 15:30 Saturday 0.0114240 0.0065741 +16:00.Saturday 16:00 Saturday 0.0079475 0.0056048 +16:30.Saturday 16:30 Saturday 0.0097744 0.0057138 +17:00.Saturday 17:00 Saturday 0.0057436 0.0041049 +17:30.Saturday 17:30 Saturday 0.0081214 0.0047387 +18:00.Saturday 18:00 Saturday 0.0083488 0.0048567 +18:30.Saturday 18:30 Saturday 0.0034279 0.0034227 +19:00.Saturday 19:00 Saturday 0.0072689 0.0051300 +19:30.Saturday 19:30 Saturday 0.0072689 0.0051300 +20:00.Saturday 20:00 Saturday 0.0072689 0.0051300 +20:30.Saturday 20:30 Saturday 0.0072689 0.0051300 +21:00.Saturday 21:00 Saturday 0.0038410 0.0038334 +21:30.Saturday 21:30 Saturday 0.0000000 0.0000000 +22:00.Saturday 22:00 Saturday 0.0000000 0.0000000 +22:30.Saturday 22:30 Saturday 0.0000000 0.0000000 +23:00.Saturday 23:00 Saturday 0.0000000 0.0000000 +23:30.Saturday 23:30 Saturday 0.0000000 0.0000000 +00:00.Sunday 00:00 Sunday 0.0000000 0.0000000 +00:30.Sunday 00:30 Sunday 0.0000000 0.0000000 +01:00.Sunday 01:00 Sunday 0.0000000 0.0000000 +01:30.Sunday 01:30 Sunday 0.0000000 0.0000000 +02:00.Sunday 02:00 Sunday 0.0000000 0.0000000 +02:30.Sunday 02:30 Sunday 0.0000000 0.0000000 +03:00.Sunday 03:00 Sunday 0.0000000 0.0000000 +03:30.Sunday 03:30 Sunday 0.0000000 0.0000000 +04:00.Sunday 04:00 Sunday 0.0000000 0.0000000 +04:30.Sunday 04:30 Sunday 0.0000000 0.0000000 +05:00.Sunday 05:00 Sunday 0.0000000 0.0000000 +05:30.Sunday 05:30 Sunday 0.0000000 0.0000000 +06:00.Sunday 06:00 Sunday 0.0000000 0.0000000 +06:30.Sunday 06:30 Sunday 0.0000000 0.0000000 +07:00.Sunday 07:00 Sunday 0.0017522 0.0017516 +07:30.Sunday 07:30 Sunday 0.0058872 0.0041663 +08:00.Sunday 08:00 Sunday 0.0142934 0.0063965 +08:30.Sunday 08:30 Sunday 0.0259706 0.0082367 +09:00.Sunday 09:00 Sunday 0.0355208 0.0091828 +09:30.Sunday 09:30 Sunday 0.0311270 0.0092836 +10:00.Sunday 10:00 Sunday 0.0538965 0.0118618 +10:30.Sunday 10:30 Sunday 0.0379432 0.0098284 +11:00.Sunday 11:00 Sunday 0.0309188 0.0089866 +11:30.Sunday 11:30 Sunday 0.0253200 0.0079866 +12:00.Sunday 12:00 Sunday 0.0187598 0.0066967 +12:30.Sunday 12:30 Sunday 0.0202072 0.0080422 +13:00.Sunday 13:00 Sunday 0.0247415 0.0085821 +13:30.Sunday 13:30 Sunday 0.0343488 0.0098328 +14:00.Sunday 14:00 Sunday 0.0384619 0.0098068 +14:30.Sunday 14:30 Sunday 0.0152902 0.0058437 +15:00.Sunday 15:00 Sunday 0.0235043 0.0075190 +15:30.Sunday 15:30 Sunday 0.0316686 0.0092213 +16:00.Sunday 16:00 Sunday 0.0350214 0.0102298 +16:30.Sunday 16:30 Sunday 0.0204069 0.0072664 +17:00.Sunday 17:00 Sunday 0.0133188 0.0066222 +17:30.Sunday 17:30 Sunday 0.0052372 0.0038641 +18:00.Sunday 18:00 Sunday 0.0105661 0.0054807 +18:30.Sunday 18:30 Sunday 0.0059875 0.0042638 +19:00.Sunday 19:00 Sunday 0.0139238 0.0067357 +19:30.Sunday 19:30 Sunday 0.0123865 0.0061241 +20:00.Sunday 20:00 Sunday 0.0188551 0.0074522 +20:30.Sunday 20:30 Sunday 0.0157974 0.0066759 +21:00.Sunday 21:00 Sunday 0.0122935 0.0061597 +21:30.Sunday 21:30 Sunday 0.0043588 0.0031019 +22:00.Sunday 22:00 Sunday 0.0043588 0.0031019 +22:30.Sunday 22:30 Sunday 0.0000000 0.0000000 +23:00.Sunday 23:00 Sunday 0.0023884 0.0023860 +23:30.Sunday 23:30 Sunday 0.0000000 0.0000000 +00:00.Thursday 00:00 Thursday 0.0000000 0.0000000 +00:30.Thursday 00:30 Thursday 0.0000000 0.0000000 +01:00.Thursday 01:00 Thursday 0.0000000 0.0000000 +01:30.Thursday 01:30 Thursday 0.0000000 0.0000000 +02:00.Thursday 02:00 Thursday 0.0000000 0.0000000 +02:30.Thursday 02:30 Thursday 0.0000000 0.0000000 +03:00.Thursday 03:00 Thursday 0.0000000 0.0000000 +03:30.Thursday 03:30 Thursday 0.0000000 0.0000000 +04:00.Thursday 04:00 Thursday 0.0000000 0.0000000 +04:30.Thursday 04:30 Thursday 0.0000000 0.0000000 +05:00.Thursday 05:00 Thursday 0.0000000 0.0000000 +05:30.Thursday 05:30 Thursday 0.0017615 0.0017606 +06:00.Thursday 06:00 Thursday 0.0017615 0.0017606 +06:30.Thursday 06:30 Thursday 0.0042723 0.0030616 +07:00.Thursday 07:00 Thursday 0.0144892 0.0059183 +07:30.Thursday 07:30 Thursday 0.0181486 0.0064627 +08:00.Thursday 08:00 Thursday 0.0150695 0.0057093 +08:30.Thursday 08:30 Thursday 0.0130474 0.0054379 +09:00.Thursday 09:00 Thursday 0.0144778 0.0060546 +09:30.Thursday 09:30 Thursday 0.0103292 0.0047090 +10:00.Thursday 10:00 Thursday 0.0114390 0.0052532 +10:30.Thursday 10:30 Thursday 0.0037632 0.0026634 +11:00.Thursday 11:00 Thursday 0.0073763 0.0044661 +11:30.Thursday 11:30 Thursday 0.0039276 0.0028243 +12:00.Thursday 12:00 Thursday 0.0055342 0.0032469 +12:30.Thursday 12:30 Thursday 0.0106057 0.0049100 +13:00.Thursday 13:00 Thursday 0.0215173 0.0073213 +13:30.Thursday 13:30 Thursday 0.0137892 0.0057665 +14:00.Thursday 14:00 Thursday 0.0100902 0.0045491 +14:30.Thursday 14:30 Thursday 0.0081116 0.0041029 +15:00.Thursday 15:00 Thursday 0.0140320 0.0059088 +15:30.Thursday 15:30 Thursday 0.0107233 0.0054381 +16:00.Thursday 16:00 Thursday 0.0086119 0.0050214 +16:30.Thursday 16:30 Thursday 0.0158073 0.0065324 +17:00.Thursday 17:00 Thursday 0.0082402 0.0047446 +17:30.Thursday 17:30 Thursday 0.0057025 0.0040204 +18:00.Thursday 18:00 Thursday 0.0127536 0.0057537 +18:30.Thursday 18:30 Thursday 0.0138595 0.0057318 +19:00.Thursday 19:00 Thursday 0.0220689 0.0070922 +19:30.Thursday 19:30 Thursday 0.0102572 0.0045872 +20:00.Thursday 20:00 Thursday 0.0110372 0.0049213 +20:30.Thursday 20:30 Thursday 0.0121501 0.0049883 +21:00.Thursday 21:00 Thursday 0.0080370 0.0040263 +21:30.Thursday 21:30 Thursday 0.0104456 0.0047686 +22:00.Thursday 22:00 Thursday 0.0072626 0.0036492 +22:30.Thursday 22:30 Thursday 0.0021114 0.0021097 +23:00.Thursday 23:00 Thursday 0.0021114 0.0021097 +23:30.Thursday 23:30 Thursday 0.0000000 0.0000000 +00:00.Tuesday 00:00 Tuesday 0.0000000 0.0000000 +00:30.Tuesday 00:30 Tuesday 0.0000000 0.0000000 +01:00.Tuesday 01:00 Tuesday 0.0000000 0.0000000 +01:30.Tuesday 01:30 Tuesday 0.0000000 0.0000000 +02:00.Tuesday 02:00 Tuesday 0.0000000 0.0000000 +02:30.Tuesday 02:30 Tuesday 0.0000000 0.0000000 +03:00.Tuesday 03:00 Tuesday 0.0000000 0.0000000 +03:30.Tuesday 03:30 Tuesday 0.0000000 0.0000000 +04:00.Tuesday 04:00 Tuesday 0.0000000 0.0000000 +04:30.Tuesday 04:30 Tuesday 0.0000000 0.0000000 +05:00.Tuesday 05:00 Tuesday 0.0034730 0.0034659 +05:30.Tuesday 05:30 Tuesday 0.0034730 0.0034659 +06:00.Tuesday 06:00 Tuesday 0.0034730 0.0034659 +06:30.Tuesday 06:30 Tuesday 0.0130702 0.0078660 +07:00.Tuesday 07:00 Tuesday 0.0190107 0.0085239 +07:30.Tuesday 07:30 Tuesday 0.0183694 0.0083424 +08:00.Tuesday 08:00 Tuesday 0.0196054 0.0082976 +08:30.Tuesday 08:30 Tuesday 0.0295522 0.0089120 +09:00.Tuesday 09:00 Tuesday 0.0460630 0.0113542 +09:30.Tuesday 09:30 Tuesday 0.0409067 0.0095814 +10:00.Tuesday 10:00 Tuesday 0.0341666 0.0088631 +10:30.Tuesday 10:30 Tuesday 0.0264463 0.0077323 +11:00.Tuesday 11:00 Tuesday 0.0137620 0.0056337 +11:30.Tuesday 11:30 Tuesday 0.0247419 0.0104107 +12:00.Tuesday 12:00 Tuesday 0.0050139 0.0035413 +12:30.Tuesday 12:30 Tuesday 0.0023929 0.0023906 +13:00.Tuesday 13:00 Tuesday 0.0101491 0.0051405 +13:30.Tuesday 13:30 Tuesday 0.0244274 0.0081159 +14:00.Tuesday 14:00 Tuesday 0.0073072 0.0054399 +14:30.Tuesday 14:30 Tuesday 0.0142718 0.0068462 +15:00.Tuesday 15:00 Tuesday 0.0113797 0.0061541 +15:30.Tuesday 15:30 Tuesday 0.0128505 0.0067048 +16:00.Tuesday 16:00 Tuesday 0.0023471 0.0023450 +16:30.Tuesday 16:30 Tuesday 0.0040605 0.0029023 +17:00.Tuesday 17:00 Tuesday 0.0126881 0.0052100 +17:30.Tuesday 17:30 Tuesday 0.0108402 0.0049204 +18:00.Tuesday 18:00 Tuesday 0.0067786 0.0039761 +18:30.Tuesday 18:30 Tuesday 0.0153082 0.0059055 +19:00.Tuesday 19:00 Tuesday 0.0181895 0.0065229 +19:30.Tuesday 19:30 Tuesday 0.0105055 0.0052428 +20:00.Tuesday 20:00 Tuesday 0.0093384 0.0055313 +20:30.Tuesday 20:30 Tuesday 0.0067036 0.0039235 +21:00.Tuesday 21:00 Tuesday 0.0017134 0.0017129 +21:30.Tuesday 21:30 Tuesday 0.0000000 0.0000000 +22:00.Tuesday 22:00 Tuesday 0.0030595 0.0030546 +22:30.Tuesday 22:30 Tuesday 0.0050912 0.0037048 +23:00.Tuesday 23:00 Tuesday 0.0072583 0.0042861 +23:30.Tuesday 23:30 Tuesday 0.0031906 0.0031850 +00:00.Wednesday 00:00 Wednesday 0.0000000 0.0000000 +00:30.Wednesday 00:30 Wednesday 0.0000000 0.0000000 +01:00.Wednesday 01:00 Wednesday 0.0000000 0.0000000 +01:30.Wednesday 01:30 Wednesday 0.0000000 0.0000000 +02:00.Wednesday 02:00 Wednesday 0.0000000 0.0000000 +02:30.Wednesday 02:30 Wednesday 0.0000000 0.0000000 +03:00.Wednesday 03:00 Wednesday 0.0000000 0.0000000 +03:30.Wednesday 03:30 Wednesday 0.0000000 0.0000000 +04:00.Wednesday 04:00 Wednesday 0.0000000 0.0000000 +04:30.Wednesday 04:30 Wednesday 0.0000000 0.0000000 +05:00.Wednesday 05:00 Wednesday 0.0000000 0.0000000 +05:30.Wednesday 05:30 Wednesday 0.0024919 0.0024892 +06:00.Wednesday 06:00 Wednesday 0.0000000 0.0000000 +06:30.Wednesday 06:30 Wednesday 0.0000000 0.0000000 +07:00.Wednesday 07:00 Wednesday 0.0046071 0.0032560 +07:30.Wednesday 07:30 Wednesday 0.0055597 0.0039316 +08:00.Wednesday 08:00 Wednesday 0.0079192 0.0045676 +08:30.Wednesday 08:30 Wednesday 0.0181388 0.0069202 +09:00.Wednesday 09:00 Wednesday 0.0173675 0.0071956 +09:30.Wednesday 09:30 Wednesday 0.0084436 0.0050234 +10:00.Wednesday 10:00 Wednesday 0.0250183 0.0085511 +10:30.Wednesday 10:30 Wednesday 0.0186048 0.0071112 +11:00.Wednesday 11:00 Wednesday 0.0105477 0.0053480 +11:30.Wednesday 11:30 Wednesday 0.0093616 0.0047747 +12:00.Wednesday 12:00 Wednesday 0.0165830 0.0074769 +12:30.Wednesday 12:30 Wednesday 0.0097153 0.0049087 +13:00.Wednesday 13:00 Wednesday 0.0140369 0.0058019 +13:30.Wednesday 13:30 Wednesday 0.0146071 0.0060394 +14:00.Wednesday 14:00 Wednesday 0.0035040 0.0024760 +14:30.Wednesday 14:30 Wednesday 0.0113623 0.0052079 +15:00.Wednesday 15:00 Wednesday 0.0121603 0.0055670 +15:30.Wednesday 15:30 Wednesday 0.0122613 0.0055470 +16:00.Wednesday 16:00 Wednesday 0.0174355 0.0066828 +16:30.Wednesday 16:30 Wednesday 0.0223214 0.0074871 +17:00.Wednesday 17:00 Wednesday 0.0106974 0.0053599 +17:30.Wednesday 17:30 Wednesday 0.0100705 0.0050175 +18:00.Wednesday 18:00 Wednesday 0.0094814 0.0054613 +18:30.Wednesday 18:30 Wednesday 0.0152287 0.0068106 +19:00.Wednesday 19:00 Wednesday 0.0081398 0.0046839 +19:30.Wednesday 19:30 Wednesday 0.0150043 0.0061582 +20:00.Wednesday 20:00 Wednesday 0.0181072 0.0068740 +20:30.Wednesday 20:30 Wednesday 0.0102669 0.0051630 +21:00.Wednesday 21:00 Wednesday 0.0089552 0.0044695 +21:30.Wednesday 21:30 Wednesday 0.0045554 0.0032181 +22:00.Wednesday 22:00 Wednesday 0.0051710 0.0036606 +22:30.Wednesday 22:30 Wednesday 0.0028025 0.0027986 +23:00.Wednesday 23:00 Wednesday 0.0000000 0.0000000 +23:30.Wednesday 23:30 Wednesday 0.0000000 0.0000000 + + mean SE +---------- ---------- + 0.0015993 0.0003765 + 0.0008668 0.0002739 + 0.0002751 0.0001588 + 0.0000860 0.0000860 + 0.0001643 0.0001162 + 0.0005291 0.0002168 + 0.0015108 0.0003668 + 0.0033000 0.0005367 + 0.0079948 0.0008263 + 0.0113290 0.0009657 + 0.0208908 0.0013023 + 0.0306866 0.0015489 + 0.0396030 0.0017206 + 0.0524314 0.0018897 + 0.0563036 0.0019350 + 0.0580883 0.0019709 + 0.0489101 0.0018278 + 0.0470209 0.0017919 + 0.0337415 0.0015829 + 0.0333651 0.0015621 + 0.0290846 0.0014742 + 0.0370324 0.0016381 + 0.0411405 0.0017131 + 0.0383819 0.0016440 + 0.0342722 0.0015682 + 0.0351362 0.0015841 + 0.0330212 0.0015609 + 0.0300203 0.0015198 + 0.0182224 0.0012086 + 0.0201542 0.0012545 + 0.0231621 0.0013451 + 0.0289836 0.0014898 + 0.0288983 0.0015035 + 0.0272903 0.0014590 + 0.0287776 0.0014878 + 0.0280839 0.0014707 + 0.0218756 0.0013106 + 0.0186880 0.0012136 + 0.0138104 0.0010518 + 0.0083951 0.0008367 + 0.0046236 0.0006255 + 0.0022489 0.0004412 + + mean SE +---------- ---------- + 0.0009201 0.0009193 + 0.0009201 0.0009193 + 0.0011546 0.0011460 + 0.0026169 0.0015420 + 0.0032488 0.0016590 + 0.0092327 0.0032788 + 0.0222936 0.0045358 + 0.0347495 0.0054670 + 0.0402526 0.0056700 + 0.0513676 0.0061640 + 0.0606829 0.0066371 + 0.0536446 0.0059849 + 0.0651099 0.0066689 + 0.0472602 0.0058133 + 0.0358330 0.0051317 + 0.0313392 0.0053081 + 0.0259045 0.0045836 + 0.0242450 0.0045934 + 0.0305512 0.0049648 + 0.0364914 0.0052980 + 0.0307879 0.0049019 + 0.0261682 0.0043371 + 0.0268714 0.0044923 + 0.0311549 0.0050126 + 0.0317236 0.0054097 + 0.0280881 0.0050430 + 0.0223295 0.0044558 + 0.0179874 0.0040419 + 0.0223579 0.0046056 + 0.0252955 0.0047897 + 0.0319971 0.0052083 + 0.0250932 0.0046728 + 0.0284345 0.0049481 + 0.0246823 0.0043784 + 0.0164008 0.0035563 + 0.0120904 0.0030307 + 0.0097543 0.0027016 + 0.0050252 0.0020696 + 0.0048784 0.0020121 + 0.0010607 0.0010593 + + mean SE +---------- ---------- + 0.0000846 0.0000846 + 0.0000846 0.0000846 + 0.0000000 0.0000000 + 0.0000860 0.0000860 + 0.0000805 0.0000805 + 0.0000928 0.0000928 + 0.0002661 0.0001541 + 0.0006118 0.0002316 + 0.0012516 0.0003242 + 0.0010951 0.0003045 + 0.0029659 0.0005091 + 0.0041104 0.0005926 + 0.0042599 0.0006010 + 0.0057340 0.0006946 + 0.0064456 0.0007404 + 0.0050085 0.0006479 + 0.0044202 0.0006143 + 0.0057043 0.0006912 + 0.0039748 0.0005785 + 0.0033262 0.0005308 + 0.0028882 0.0004934 + 0.0040940 0.0005885 + 0.0045105 0.0006224 + 0.0039922 0.0005851 + 0.0034362 0.0005409 + 0.0033683 0.0005377 + 0.0030282 0.0005106 + 0.0036304 0.0005582 + 0.0028012 0.0004954 + 0.0023747 0.0004491 + 0.0032289 0.0005170 + 0.0039334 0.0005729 + 0.0035291 0.0005506 + 0.0038842 0.0005775 + 0.0027307 0.0004826 + 0.0028950 0.0004959 + 0.0024787 0.0004599 + 0.0023472 0.0004431 + 0.0020960 0.0004196 + 0.0012402 0.0003207 + 0.0006023 0.0002285 + 0.0004243 0.0001904 + 0.0001762 0.0001244 + 0.0001661 0.0001174 + 0.0000923 0.0000923 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000998 0.0000998 + 0.0007047 0.0002496 + 0.0018308 0.0003996 + 0.0021383 0.0004275 + 0.0033542 0.0005291 + 0.0059719 0.0007080 + 0.0090676 0.0008674 + 0.0105038 0.0009258 + 0.0104779 0.0009216 + 0.0097525 0.0008937 + 0.0094053 0.0008822 + 0.0081004 0.0008191 + 0.0051654 0.0006586 + 0.0053070 0.0006697 + 0.0056596 0.0006867 + 0.0069632 0.0007647 + 0.0081897 0.0008243 + 0.0083698 0.0008322 + 0.0064850 0.0007360 + 0.0061236 0.0007140 + 0.0057053 0.0006918 + 0.0046265 0.0006298 + 0.0025059 0.0004630 + 0.0031598 0.0005160 + 0.0040652 0.0005839 + 0.0047924 0.0006352 + 0.0053894 0.0006730 + 0.0046582 0.0006303 + 0.0062995 0.0007347 + 0.0062867 0.0007298 + 0.0045907 0.0006206 + 0.0041562 0.0005903 + 0.0018163 0.0003860 + 0.0013501 0.0003375 + 0.0005355 0.0002188 + 0.0001662 0.0001182 + 0.0003506 0.0001756 + 0.0002598 0.0001502 + 0.0001828 0.0001293 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0001797 0.0001270 + 0.0004435 0.0001985 + 0.0004536 0.0002029 + 0.0007988 0.0002667 + 0.0026873 0.0004830 + 0.0042542 0.0006060 + 0.0052569 0.0006748 + 0.0077404 0.0008130 + 0.0083458 0.0008390 + 0.0108006 0.0009492 + 0.0080764 0.0008239 + 0.0070977 0.0007756 + 0.0049366 0.0006504 + 0.0047256 0.0006392 + 0.0036709 0.0005638 + 0.0049395 0.0006506 + 0.0052208 0.0006646 + 0.0040633 0.0005873 + 0.0048613 0.0006385 + 0.0047144 0.0006307 + 0.0040994 0.0005888 + 0.0035877 0.0005521 + 0.0030272 0.0005029 + 0.0029930 0.0005048 + 0.0023594 0.0004537 + 0.0024328 0.0004587 + 0.0031677 0.0005274 + 0.0025485 0.0004733 + 0.0026909 0.0004826 + 0.0023053 0.0004432 + 0.0017789 0.0003877 + 0.0019186 0.0004081 + 0.0013919 0.0003474 + 0.0006298 0.0002384 + 0.0007830 0.0002613 + 0.0005283 0.0002157 + 0.0001834 0.0001297 + 0.0001675 0.0001186 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0002729 0.0001575 + 0.0002484 0.0001441 + 0.0001637 0.0001159 + 0.0006949 0.0002463 + 0.0014851 0.0003502 + 0.0028100 0.0004882 + 0.0045199 0.0006247 + 0.0060296 0.0007138 + 0.0075117 0.0007952 + 0.0087974 0.0008545 + 0.0075840 0.0008005 + 0.0097432 0.0009031 + 0.0078777 0.0008184 + 0.0071269 0.0007756 + 0.0055375 0.0006852 + 0.0052874 0.0006709 + 0.0052038 0.0006609 + 0.0053698 0.0006738 + 0.0052817 0.0006678 + 0.0061530 0.0007206 + 0.0057164 0.0007004 + 0.0057326 0.0007018 + 0.0038299 0.0005729 + 0.0040473 0.0005903 + 0.0048927 0.0006471 + 0.0059781 0.0007156 + 0.0056393 0.0006981 + 0.0046278 0.0006288 + 0.0040300 0.0005821 + 0.0036335 0.0005563 + 0.0022295 0.0004349 + 0.0022297 0.0004351 + 0.0023259 0.0004475 + 0.0014736 0.0003579 + 0.0006276 0.0002227 + 0.0003241 0.0001626 + 0.0001839 0.0001301 + 0.0000944 0.0000944 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0002594 0.0001508 + 0.0004326 0.0001938 + 0.0004126 0.0001849 + 0.0016720 0.0003748 + 0.0022647 0.0004360 + 0.0039126 0.0005820 + 0.0046447 0.0006353 + 0.0042883 0.0006038 + 0.0069424 0.0007670 + 0.0079076 0.0008137 + 0.0076904 0.0008065 + 0.0060518 0.0007129 + 0.0048016 0.0006430 + 0.0038448 0.0005767 + 0.0045575 0.0006220 + 0.0037863 0.0005675 + 0.0043839 0.0006091 + 0.0053363 0.0006717 + 0.0047144 0.0006311 + 0.0044358 0.0006116 + 0.0048766 0.0006416 + 0.0051376 0.0006606 + 0.0038996 0.0005747 + 0.0015766 0.0003630 + 0.0025783 0.0004623 + 0.0029559 0.0004981 + 0.0042179 0.0005997 + 0.0043300 0.0006094 + 0.0041107 0.0005956 + 0.0052078 0.0006634 + 0.0040527 0.0005889 + 0.0034107 0.0005450 + 0.0023232 0.0004471 + 0.0015653 0.0003596 + 0.0005216 0.0002133 + 0.0005044 0.0002063 + 0.0002524 0.0001460 + 0.0002517 0.0001453 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000875 0.0000876 + 0.0005890 0.0002241 + 0.0014152 0.0003551 + 0.0020539 0.0004198 + 0.0037569 0.0005649 + 0.0050633 0.0006618 + 0.0066071 0.0007525 + 0.0079446 0.0008187 + 0.0072744 0.0007796 + 0.0075578 0.0007920 + 0.0063419 0.0007241 + 0.0059191 0.0007003 + 0.0043792 0.0006036 + 0.0044702 0.0006153 + 0.0035683 0.0005549 + 0.0057436 0.0007001 + 0.0064163 0.0007368 + 0.0057008 0.0006936 + 0.0054679 0.0006829 + 0.0055965 0.0006886 + 0.0054198 0.0006829 + 0.0049414 0.0006514 + 0.0020119 0.0004196 + 0.0027789 0.0004906 + 0.0030059 0.0005071 + 0.0037752 0.0005675 + 0.0038924 0.0005843 + 0.0040167 0.0005961 + 0.0036124 0.0005621 + 0.0045339 0.0006258 + 0.0035489 0.0005534 + 0.0026349 0.0004723 + 0.0022954 0.0004410 + 0.0016190 0.0003717 + 0.0007035 0.0002493 + 0.0001999 0.0001414 + 0.0003689 0.0001848 + 0.0000943 0.0000943 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000838 0.0000838 + 0.0001770 0.0001253 + 0.0001722 0.0001221 + 0.0002900 0.0001676 + 0.0012079 0.0003243 + 0.0022832 0.0004330 + 0.0027288 0.0004832 + 0.0038322 0.0005698 + 0.0056033 0.0006909 + 0.0075366 0.0008006 + 0.0083405 0.0008403 + 0.0084811 0.0008500 + 0.0070306 0.0007734 + 0.0056546 0.0006949 + 0.0035631 0.0005534 + 0.0038516 0.0005767 + 0.0039738 0.0005827 + 0.0056208 0.0006917 + 0.0062632 0.0007332 + 0.0061716 0.0007268 + 0.0043042 0.0006053 + 0.0043039 0.0006043 + 0.0039145 0.0005740 + 0.0036021 0.0005551 + 0.0024697 0.0004582 + 0.0022222 0.0004350 + 0.0026540 0.0004764 + 0.0038537 0.0005737 + 0.0029504 0.0005048 + 0.0034441 0.0005361 + 0.0042063 0.0005925 + 0.0043768 0.0006040 + 0.0038383 0.0005706 + 0.0030783 0.0005118 + 0.0023197 0.0004452 + 0.0015609 0.0003683 + 0.0008672 0.0002745 + 0.0003537 0.0001774 + + mean SE +---------- ---------- + 0.0009201 0.0009193 + 0.0009201 0.0009193 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0006318 0.0006302 + 0.0006318 0.0006302 + 0.0040166 0.0018369 + 0.0057207 0.0021865 + 0.0063285 0.0022487 + 0.0063032 0.0023851 + 0.0059863 0.0022839 + 0.0074350 0.0025037 + 0.0084821 0.0026871 + 0.0080931 0.0026868 + 0.0051604 0.0021352 + 0.0037125 0.0016992 + 0.0030545 0.0015436 + 0.0017284 0.0012571 + 0.0022238 0.0013471 + 0.0042201 0.0019472 + 0.0057702 0.0022389 + 0.0039486 0.0016309 + 0.0033119 0.0015081 + 0.0037528 0.0016867 + 0.0050471 0.0025724 + 0.0015420 0.0011052 + 0.0042796 0.0024693 + 0.0029855 0.0023113 + 0.0032127 0.0023949 + 0.0039387 0.0024932 + 0.0038680 0.0024659 + 0.0022278 0.0021970 + 0.0028188 0.0016505 + 0.0038598 0.0017428 + 0.0039482 0.0017818 + 0.0036014 0.0017930 + 0.0009201 0.0009167 + 0.0009201 0.0009167 + 0.0009201 0.0009167 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0008210 0.0008211 + 0.0027001 0.0015765 + 0.0040954 0.0018603 + 0.0097008 0.0029644 + 0.0118705 0.0033179 + 0.0115127 0.0033110 + 0.0106282 0.0029367 + 0.0079674 0.0026549 + 0.0091257 0.0027884 + 0.0068370 0.0024476 + 0.0068989 0.0024213 + 0.0054221 0.0020656 + 0.0050884 0.0020677 + 0.0035689 0.0017910 + 0.0019341 0.0013758 + 0.0026528 0.0015629 + 0.0043911 0.0018602 + 0.0043911 0.0018602 + 0.0021544 0.0012718 + 0.0021544 0.0012718 + 0.0037277 0.0025350 + 0.0031113 0.0024501 + 0.0016015 0.0011324 + 0.0023560 0.0013792 + 0.0036892 0.0020007 + 0.0034364 0.0020564 + 0.0050969 0.0023778 + 0.0049270 0.0023284 + 0.0046561 0.0019400 + 0.0039106 0.0018014 + 0.0010897 0.0007713 + 0.0017678 0.0010280 + 0.0020520 0.0011871 + 0.0007205 0.0007197 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0004983 0.0004970 + 0.0028673 0.0014678 + 0.0027933 0.0014226 + 0.0045580 0.0019612 + 0.0062144 0.0022908 + 0.0079813 0.0026514 + 0.0062155 0.0022467 + 0.0037040 0.0015206 + 0.0029866 0.0013387 + 0.0012340 0.0008731 + 0.0025180 0.0016246 + 0.0045207 0.0023145 + 0.0025168 0.0016004 + 0.0004983 0.0004970 + 0.0008656 0.0008643 + 0.0014164 0.0010250 + 0.0008656 0.0008643 + 0.0027367 0.0015816 + 0.0019038 0.0013482 + 0.0023415 0.0013728 + 0.0013759 0.0009830 + 0.0019455 0.0011343 + 0.0020000 0.0011663 + 0.0008212 0.0008166 + 0.0017413 0.0012232 + 0.0017413 0.0012232 + 0.0017413 0.0012232 + 0.0017413 0.0012232 + 0.0009201 0.0009176 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0005696 0.0005697 + 0.0019138 0.0013552 + 0.0046465 0.0020873 + 0.0084425 0.0027115 + 0.0115471 0.0029948 + 0.0101188 0.0029675 + 0.0175207 0.0037861 + 0.0123346 0.0031953 + 0.0100511 0.0029221 + 0.0082310 0.0025960 + 0.0060985 0.0021711 + 0.0065689 0.0025872 + 0.0080430 0.0027430 + 0.0111661 0.0031392 + 0.0125032 0.0031885 + 0.0049705 0.0018805 + 0.0076408 0.0024249 + 0.0102948 0.0029804 + 0.0113848 0.0032579 + 0.0066339 0.0023475 + 0.0043297 0.0021528 + 0.0017025 0.0012540 + 0.0034348 0.0017804 + 0.0019464 0.0013895 + 0.0045264 0.0021701 + 0.0040266 0.0019690 + 0.0061294 0.0024468 + 0.0051354 0.0021755 + 0.0039964 0.0020062 + 0.0014170 0.0010096 + 0.0014170 0.0010085 + 0.0000000 0.0000000 + 0.0007764 0.0007773 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0006414 0.0006413 + 0.0006414 0.0006413 + 0.0015557 0.0011168 + 0.0052759 0.0021785 + 0.0066084 0.0023807 + 0.0054872 0.0020946 + 0.0047509 0.0019799 + 0.0052718 0.0022128 + 0.0037612 0.0017174 + 0.0041652 0.0019225 + 0.0013703 0.0009719 + 0.0026859 0.0016347 + 0.0014301 0.0010297 + 0.0020151 0.0011843 + 0.0038618 0.0017891 + 0.0078350 0.0026845 + 0.0050210 0.0021051 + 0.0036741 0.0016612 + 0.0029536 0.0014976 + 0.0051094 0.0021583 + 0.0039046 0.0019822 + 0.0031358 0.0018287 + 0.0057559 0.0023808 + 0.0030005 0.0017285 + 0.0020764 0.0014630 + 0.0046439 0.0021056 + 0.0050466 0.0020875 + 0.0080359 0.0025904 + 0.0037349 0.0016723 + 0.0040190 0.0017954 + 0.0044242 0.0018167 + 0.0029265 0.0014650 + 0.0038035 0.0017442 + 0.0026445 0.0013313 + 0.0007688 0.0007691 + 0.0007688 0.0007691 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0011546 0.0011460 + 0.0011546 0.0011460 + 0.0011546 0.0011460 + 0.0043451 0.0026090 + 0.0063200 0.0028333 + 0.0061068 0.0027596 + 0.0065177 0.0027431 + 0.0098245 0.0029206 + 0.0153134 0.0037770 + 0.0135992 0.0031570 + 0.0113585 0.0029260 + 0.0087920 0.0025506 + 0.0045751 0.0018603 + 0.0082253 0.0034984 + 0.0016668 0.0011709 + 0.0007955 0.0007945 + 0.0033740 0.0017068 + 0.0081208 0.0026752 + 0.0024292 0.0018018 + 0.0047446 0.0022724 + 0.0037831 0.0020343 + 0.0042721 0.0022209 + 0.0007803 0.0007793 + 0.0013499 0.0009648 + 0.0042181 0.0017355 + 0.0036038 0.0016403 + 0.0022535 0.0013218 + 0.0050891 0.0019686 + 0.0060470 0.0021860 + 0.0034925 0.0017521 + 0.0031045 0.0018468 + 0.0022286 0.0013102 + 0.0005696 0.0005700 + 0.0000000 0.0000000 + 0.0010171 0.0010169 + 0.0016925 0.0012332 + 0.0024130 0.0014273 + 0.0010607 0.0010593 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0008210 0.0008218 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + 0.0015178 0.0010755 + 0.0018316 0.0012972 + 0.0026090 0.0015029 + 0.0059758 0.0022899 + 0.0057217 0.0023698 + 0.0027817 0.0016581 + 0.0082422 0.0028482 + 0.0061293 0.0023547 + 0.0034749 0.0017630 + 0.0030841 0.0015753 + 0.0054632 0.0024691 + 0.0032007 0.0016093 + 0.0046244 0.0019029 + 0.0048123 0.0020015 + 0.0011544 0.0008160 + 0.0037433 0.0016951 + 0.0040062 0.0018113 + 0.0040395 0.0018130 + 0.0057441 0.0021869 + 0.0073537 0.0024591 + 0.0035242 0.0017526 + 0.0033177 0.0016586 + 0.0031236 0.0017901 + 0.0050171 0.0022189 + 0.0026816 0.0015406 + 0.0049431 0.0020133 + 0.0059654 0.0022547 + 0.0033824 0.0016940 + 0.0029503 0.0014623 + 0.0015008 0.0010499 + 0.0017036 0.0011971 + 0.0009233 0.0009233 + 0.0000000 0.0000000 + 0.0000000 0.0000000 + +``` +## r_dow S M T W T F S +## st_halfhour +## 00:00 mean 8.461652e-05 8.461652e-05 0.000000e+00 8.595842e-05 8.049951e-05 9.278030e-05 2.661310e-04 +## SE 4.094002e-03 4.510494e-03 3.992159e-03 3.436225e-03 3.368346e-03 3.028240e-03 3.630390e-03 +## 00:30 mean 6.118147e-04 1.251603e-03 1.095065e-03 2.965924e-03 4.110392e-03 4.259927e-03 5.733988e-03 +## SE 2.801245e-03 2.374706e-03 3.228891e-03 3.933391e-03 3.529126e-03 3.884200e-03 2.730718e-03 +## 01:00 mean 6.445552e-03 5.008504e-03 4.420248e-03 5.704297e-03 3.974824e-03 3.326164e-03 2.888210e-03 +## SE 2.895014e-03 2.478719e-03 2.347239e-03 2.095954e-03 1.240167e-03 6.023241e-04 4.243458e-04 +``` + +``` +## [1] "Feedback: Weekday early morning laundry (06:00 – 09:00) out of all laundry" +``` + + + +Table: Weekday early morning laundry (06:00 – 09:00) out of all laundry + + ba_survey weekday_earlyam se +----- ---------- ---------------- ---------- +1985 1985 0.0612199 0.0027494 +2005 2005 0.1348555 0.0145266 + +``` +## [1] "Feedback: Weekday morning laundry out of all laundry" +``` + + + +Table: Weekday morning laundry out of all laundry + + ba_survey weekday_am se +----- ---------- ----------- ---------- +1985 1985 0.2108538 0.0057673 +2005 2005 0.1957309 0.0191291 + +``` +## [1] "Feedback: Weekday evening peak laundry out of all laundry" +``` + + + +Table: Weekday evening peak laundry out of all laundry + + ba_survey weekday_pm se +----- ---------- ----------- ---------- +1985 1985 0.1208896 0.0045649 +2005 2005 0.1228752 0.0161665 + +``` +## [1] "Feedback: Sunday morning laundry out of all laundry" +``` + + + +Table: Sunday morning laundry out of all laundry + + ba_survey sunday_am se +----- ---------- ---------- ---------- +1985 1985 0.0441858 0.0029138 +2005 2005 0.0698033 0.0116076 + +``` +## 2.5 % 97.5 % +## 1985 0.03847499 0.04989669 +## 2005 0.04705275 0.09255377 +``` + +``` +## [1] "Feedback: Other laundry out of all laundry" +``` + + + +Table: Other laundry out of all laundry + + ba_survey other se +----- ---------- ---------- ---------- +1985 1985 0.5628508 0.0069440 +2005 2005 0.4767352 0.0238243 + +``` +## [1] "% within empstat who do sunday_am" +``` + +``` +## empstat sunday_am se +## full-time full-time 0.07804306 0.01920174 +## not in paid work not in paid work 0.06989777 0.01804090 +## part-time part-time 0.04599771 0.01855852 +``` + +``` +## [1] "% within empstat who do weekday early am" +``` + +``` +## empstat weekday_earlyam se +## full-time full-time 0.1155997 0.01824415 +## not in paid work not in paid work 0.1584702 0.02712452 +## part-time part-time 0.1365675 0.03517791 +``` + +``` +## [1] "% within empstat who do weekday am" +``` + +``` +## empstat weekday_am se +## full-time full-time 0.2230604 0.03161854 +## not in paid work not in paid work 0.1745649 0.02764323 +## part-time part-time 0.1653634 0.03930053 +``` + +``` +## [1] "% within empstat who do weekday pm" +``` + +``` +## empstat weekday_pm se +## full-time full-time 0.1309584 0.02501823 +## not in paid work not in paid work 0.1224830 0.02370082 +## part-time part-time 0.1006188 0.04237536 +``` + +``` +## [1] "% within empstat who do other" +``` + +``` +## empstat other se +## full-time full-time 0.4523385 0.03593228 +## not in paid work not in paid work 0.4745841 0.03621508 +## part-time part-time 0.5514526 0.06317038 +``` + +``` +## [1] "summarise the laundry types by diarypid for 1985 to see how many different kinds of laundry" +``` + +``` +## [1] "Summarise the laundry types by diarypid for 2005 to see how many different kinds of laundry" +``` + +``` +## [1] "Check laundry by sex & hh type - any change in proportions done by men in couples?" +``` + + + +Table: Check laundry by sex & hh type - any change in proportions done by men in couples? + + Man Woman +----------------------------------- ----- ------ +1 person household 117 229 +Married/cohabiting couple + others 1178 1306 +Married/cohabiting couple alone 462 522 +Other household types 177 325 + + Man Woman +----------------------------------- ---- ------ +1 person household 64 74 +Married/cohabiting couple + others 65 67 +Married/cohabiting couple alone 79 73 +Other household types 13 39 + +``` +## +## full-time not in paid work part-time unknown job hours +## 1032 1188 383 4 +## <NA> +## 0 +``` + +``` +## +## full-time not in paid work part-time unknown job hours +## full-time 1032 0 0 0 +## notInPaidWork 0 1188 0 0 +## part-time 0 0 383 0 +## unknownHours 0 0 0 4 +## <NA> 0 0 0 0 +## +## <NA> +## full-time 0 +## notInPaidWork 0 +## part-time 0 +## unknownHours 0 +## <NA> 0 +``` + +``` +## +## 0 1 2 3 4 5 8 10 11 +## Autumn 0 0 0 0 0 0 14 4157 0 +## Spring 0 0 3123 5932 1274 0 0 0 0 +## Summer 0 0 0 0 0 56 0 0 0 +## Winter 3372 683 0 0 0 0 0 0 214 +``` + + + +Table: Check season flag + + 2 5 +------- ----- ----- +Spring 1470 0 +Summer 0 1137 + + + +Table: combinations by employment type 1985 + + full-time not in paid work part-time unknown job hours +--- ---------- ----------------- ---------- ------------------ +0 6093 6379 3638 460 +1 750 802 495 56 +2 154 143 104 9 +3 13 13 3 0 + + + +Table: combinations by employment type 2005 + + full-time not in paid work part-time unknown job hours +--- ---------- ----------------- ---------- ------------------ +0 902 1060 338 4 +1 112 107 40 0 +2 18 20 5 0 +3 0 1 0 0 + + + +Table: Get number of people reporting any laundry by employment status (to give denominator 1985) + + full-time not in paid work part-time unknown job hours NA +--- ---------- ----------------- ---------- ------------------ --- +0 5458 5682 3267 389 0 +1 1552 1655 973 136 0 +NA 0 0 0 0 0 + + + +Table: Get number of people reporting any laundry by employment status (to give denominator 2005) + + full-time not in paid work part-time unknown job hours NA +--- ---------- ----------------- ---------- ------------------ --- +0 837 987 305 4 0 +1 195 201 78 0 0 +NA 0 0 0 0 0 + + + +Table: combinations by age - 1985 + + (16,25] (25,35] (35,45] (45,55] (55,65] (65,75] (75,85] +--- -------- -------- -------- -------- -------- -------- -------- +0 2815 4187 3364 2807 2030 1001 366 +1 337 513 435 396 254 130 38 +2 60 86 92 86 54 25 7 +3 4 7 4 8 3 2 1 + + + +Table: combinations by age - 2005 + + (16,25] (25,35] (35,45] (45,55] (55,65] (65,75] (75,85] +--- -------- -------- -------- -------- -------- -------- -------- +0 181 377 426 367 384 304 265 +1 20 42 51 45 45 37 19 +2 3 5 6 8 11 5 5 +3 0 0 0 0 1 0 0 + + (16,25] (25,35] (35,45] (45,55] (55,65] (65,75] (75,85] NA +--- -------- -------- -------- -------- -------- -------- -------- --- +0 2541 3753 3004 2480 1795 894 329 0 +1 675 1040 891 817 546 264 83 0 +NA 0 0 0 0 0 0 0 0 + + (16,25] (25,35] (35,45] (45,55] (55,65] (65,75] (75,85] NA +--- -------- -------- -------- -------- -------- -------- -------- --- +0 170 348 397 338 353 277 250 0 +1 34 76 86 82 88 69 39 0 +NA 0 0 0 0 0 0 0 0 + +``` +## [1] "# <-- New model --> #" +## [1] "Running logit model: ~" +## [2] "Running logit model: Sunday_amd" +## [3] "Running logit model: empstat + ba_age_r + ba_nchild" +## [1] "" +## [1] "# Model results" +## term estimate std.error +## (Intercept) (Intercept) -2.25106043 0.6626785 +## empstatnot in paid work empstatnot in paid work 0.07246519 0.4443794 +## empstatpart-time empstatpart-time 0.19530905 0.4716650 +## ba_age_r(25,35] ba_age_r(25,35] 0.27089076 0.7256474 +## ba_age_r(35,45] ba_age_r(35,45] 0.74329719 0.6912685 +## ba_age_r(45,55] ba_age_r(45,55] -0.49464112 0.7752806 +## ba_age_r(55,65] ba_age_r(55,65] -0.13008162 0.7380416 +## ba_age_r(65,75] ba_age_r(65,75] -0.18396754 0.8089391 +## ba_age_r(75,85] ba_age_r(75,85] -0.30962498 0.9199216 +## ba_nchild1 ba_nchild1 -0.04619857 0.5248261 +## ba_nchild2 ba_nchild2 -0.85050265 0.6145155 +## ba_nchild3+ ba_nchild3+ -0.39676938 0.8215772 +## statistic p.value 2.5 % 97.5 % +## (Intercept) -3.39691200 0.0006815088 -3.7639820 -1.0883440 +## empstatnot in paid work 0.16307054 0.8704628949 -0.8203800 0.9343213 +## empstatpart-time 0.41408425 0.6788124055 -0.7746941 1.0959084 +## ba_age_r(25,35] 0.37330908 0.7089184203 -1.0742774 1.8629130 +## ba_age_r(35,45] 1.07526549 0.2822558835 -0.5048537 2.2902368 +## ba_age_r(45,55] -0.63801556 0.5234635508 -1.9885472 1.1605981 +## ba_age_r(55,65] -0.17625242 0.8600956370 -1.5018070 1.4814926 +## ba_age_r(65,75] -0.22741828 0.8200985059 -1.7185889 1.5380336 +## ba_age_r(75,85] -0.33657757 0.7364353634 -2.1704187 1.5634109 +## ba_nchild1 -0.08802643 0.9298556702 -1.1519717 0.9337535 +## ba_nchild2 -1.38402147 0.1663518809 -2.1880908 0.2735906 +## ba_nchild3+ -0.48293620 0.6291410392 -2.3337972 1.0396889 +## [1] "# Model summary" +## null.deviance df.null logLik AIC BIC deviance df.residual +## 1 301.9801 473 -147.6618 319.3237 369.2582 295.3237 462 +## *Pseudo R^2 for logistic regression +## -> Hosmer and Lemeshow R^2 0.022 +## -> Cox and Snell R^2 0.014 +## -> Nagelkerke R^2 0.03 +## [1] "" +## [1] "# Diagnostics: independence of errors" +## lag Autocorrelation D-W Statistic p-value +## 1 0.01472566 1.969515 0.724 +## Alternative hypothesis: rho != 0 +## [1] "# Diagnostics: collinearity (vif)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 1.771673 2 1.153708 +## ba_age_r 2.360494 6 1.074196 +## ba_nchild 1.498813 3 1.069772 +## [1] "# Diagnostics: collinearity (tolerance)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 0.5644383 0.5000000 0.8667705 +## ba_age_r 0.4236401 0.1666667 0.9309287 +## ba_nchild 0.6671946 0.3333333 0.9347786 +``` + +``` +## [1] "# <-- New model --> #" +## [1] "Running logit model: ~" +## [2] "Running logit model: Sunday_amd" +## [3] "Running logit model: empstat + ba_age_r + ba_nchild + ba_season" +## [1] "" +## [1] "# Model results" +## term estimate std.error +## (Intercept) (Intercept) -2.38412124 0.6805659 +## empstatnot in paid work empstatnot in paid work 0.07569039 0.4448707 +## empstatpart-time empstatpart-time 0.18734471 0.4714993 +## ba_age_r(25,35] ba_age_r(25,35] 0.27902683 0.7251250 +## ba_age_r(35,45] ba_age_r(35,45] 0.74599140 0.6900865 +## ba_age_r(45,55] ba_age_r(45,55] -0.50654472 0.7747391 +## ba_age_r(55,65] ba_age_r(55,65] -0.12684848 0.7388972 +## ba_age_r(65,75] ba_age_r(65,75] -0.20852085 0.8124010 +## ba_age_r(75,85] ba_age_r(75,85] -0.32579145 0.9221720 +## ba_nchild1 ba_nchild1 -0.06494171 0.5259901 +## ba_nchild2 ba_nchild2 -0.87154445 0.6149872 +## ba_nchild3+ ba_nchild3+ -0.33668148 0.8235682 +## ba_seasonSummer ba_seasonSummer 0.26973420 0.3169871 +## statistic p.value 2.5 % 97.5 % +## (Intercept) -3.5031453 0.0004597985 -3.9224060 -1.1782015 +## empstatnot in paid work 0.1701402 0.8648998788 -0.8184432 0.9382740 +## empstatpart-time 0.3973382 0.6911180547 -0.7823939 1.0875456 +## ba_age_r(25,35] 0.3847983 0.7003868846 -1.0654174 1.8700050 +## ba_age_r(35,45] 1.0810114 0.2796920373 -0.4999787 2.2909249 +## ba_age_r(45,55] -0.6538262 0.5132237875 -1.9996363 1.1476382 +## ba_age_r(55,65] -0.1716727 0.8636948479 -1.5004011 1.4860238 +## ba_age_r(65,75] -0.2566723 0.7974317285 -1.7502570 1.5191441 +## ba_age_r(75,85] -0.3532871 0.7238732247 -2.1904471 1.5513886 +## ba_nchild1 -0.1234657 0.9017383664 -1.1732017 0.9169511 +## ba_nchild2 -1.4171749 0.1564317876 -2.2097758 0.2537567 +## ba_nchild3+ -0.4088083 0.6826803804 -2.2763818 1.1047165 +## ba_seasonSummer 0.8509310 0.3948076567 -0.3500234 0.8995334 +## [1] "# Model summary" +## null.deviance df.null logLik AIC BIC deviance df.residual +## 1 301.9801 473 -147.298 320.596 374.6917 294.596 461 +## *Pseudo R^2 for logistic regression +## -> Hosmer and Lemeshow R^2 0.024 +## -> Cox and Snell R^2 0.015 +## -> Nagelkerke R^2 0.033 +## [1] "" +## [1] "# Diagnostics: independence of errors" +## lag Autocorrelation D-W Statistic p-value +## 1 0.01323541 1.972475 0.674 +## Alternative hypothesis: rho != 0 +## [1] "# Diagnostics: collinearity (vif)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 1.774903 2 1.154233 +## ba_age_r 2.368047 6 1.074482 +## ba_nchild 1.512619 3 1.071408 +## ba_season 1.020097 1 1.009999 +## [1] "# Diagnostics: collinearity (tolerance)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 0.5634110 0.5000000 0.8663758 +## ba_age_r 0.4222889 0.1666667 0.9306809 +## ba_nchild 0.6611049 0.3333333 0.9333511 +## ba_season 0.9802986 1.0000000 0.9901003 +``` + +``` +## [1] "# <-- New model --> #" +## [1] "Running logit model: ~" +## [2] "Running logit model: WeekdayEarly_amd" +## [3] "Running logit model: empstat + ba_age_r + ba_nchild" +## [1] "" +## [1] "# Model results" +## term estimate std.error +## (Intercept) (Intercept) -1.59090022 0.4788073 +## empstatnot in paid work empstatnot in paid work 0.33705088 0.2968983 +## empstatpart-time empstatpart-time -0.06797079 0.3401498 +## ba_age_r(25,35] ba_age_r(25,35] 0.12183484 0.5167092 +## ba_age_r(35,45] ba_age_r(35,45] 0.09057922 0.5073915 +## ba_age_r(45,55] ba_age_r(45,55] 0.24343652 0.5201143 +## ba_age_r(55,65] ba_age_r(55,65] 0.62129148 0.5165602 +## ba_age_r(65,75] ba_age_r(65,75] -0.08302318 0.5750000 +## ba_age_r(75,85] ba_age_r(75,85] -0.25686325 0.6473666 +## ba_nchild1 ba_nchild1 -0.08999451 0.4282902 +## ba_nchild2 ba_nchild2 0.57880559 0.3882608 +## ba_nchild3+ ba_nchild3+ 0.42954649 0.5878169 +## statistic p.value 2.5 % 97.5 % +## (Intercept) -3.3226313 0.0008917269 -2.6016972 -0.7031387 +## empstatnot in paid work 1.1352402 0.2562746740 -0.2483619 0.9183591 +## empstatpart-time -0.1998260 0.8416166394 -0.7535738 0.5859509 +## ba_age_r(25,35] 0.2357899 0.8135956672 -0.8635682 1.1858968 +## ba_age_r(35,45] 0.1785194 0.8583150820 -0.8740293 1.1390156 +## ba_age_r(45,55] 0.4680443 0.6397529052 -0.7450359 1.3165790 +## ba_age_r(55,65] 1.2027474 0.2290740885 -0.3537119 1.6923568 +## ba_age_r(65,75] -0.1443881 0.8851939747 -1.1881757 1.0868580 +## ba_age_r(75,85] -0.3967818 0.6915284081 -1.5379263 1.0293719 +## ba_nchild1 -0.2101251 0.8335700611 -0.9766954 0.7189866 +## ba_nchild2 1.4907650 0.1360232157 -0.1917540 1.3372626 +## ba_nchild3+ 0.7307487 0.4649326394 -0.8072768 1.5384047 +## [1] "# Model summary" +## null.deviance df.null logLik AIC BIC deviance df.residual +## 1 513.5908 473 -252.3306 528.6612 578.5957 504.6612 462 +## *Pseudo R^2 for logistic regression +## -> Hosmer and Lemeshow R^2 0.017 +## -> Cox and Snell R^2 0.019 +## -> Nagelkerke R^2 0.028 +## [1] "" +## [1] "# Diagnostics: independence of errors" +## lag Autocorrelation D-W Statistic p-value +## 1 0.02731998 1.939465 0.488 +## Alternative hypothesis: rho != 0 +## [1] "# Diagnostics: collinearity (vif)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 1.609933 2 1.126424 +## ba_age_r 2.524795 6 1.080237 +## ba_nchild 1.729993 3 1.095656 +## [1] "# Diagnostics: collinearity (tolerance)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 0.6211439 0.5000000 0.8877651 +## ba_age_r 0.3960717 0.1666667 0.9257232 +## ba_nchild 0.5780369 0.3333333 0.9126955 +``` + +``` +## [1] "# <-- New model --> #" +## [1] "Running logit model: ~" +## [2] "Running logit model: Weekday_amd" +## [3] "Running logit model: empstat + ba_age_r + ba_nchild" +## [1] "" +## [1] "# Model results" +## term estimate std.error +## (Intercept) (Intercept) -0.47153375 0.4209208 +## empstatnot in paid work empstatnot in paid work -0.66351274 0.3284628 +## empstatpart-time empstatpart-time -0.41958118 0.3386955 +## ba_age_r(25,35] ba_age_r(25,35] -0.77133255 0.4750686 +## ba_age_r(35,45] ba_age_r(35,45] -0.61933109 0.4616950 +## ba_age_r(45,55] ba_age_r(45,55] -0.56788309 0.4694252 +## ba_age_r(55,65] ba_age_r(55,65] -0.64183217 0.4886030 +## ba_age_r(65,75] ba_age_r(65,75] 0.14522591 0.5243426 +## ba_age_r(75,85] ba_age_r(75,85] 0.31759362 0.5745195 +## ba_nchild1 ba_nchild1 -0.07815546 0.4112193 +## ba_nchild2 ba_nchild2 0.43645699 0.3843440 +## ba_nchild3+ ba_nchild3+ -0.30661730 0.6808297 +## statistic p.value 2.5 % 97.5 % +## (Intercept) -1.1202433 0.26261009 -1.3263236 0.33836969 +## empstatnot in paid work -2.0200544 0.04337775 -1.3246801 -0.03257784 +## empstatpart-time -1.2388153 0.21541391 -1.1046658 0.22892615 +## ba_age_r(25,35] -1.6236234 0.10445621 -1.7035084 0.17215124 +## ba_age_r(35,45] -1.3414291 0.17978118 -1.5209674 0.30187884 +## ba_age_r(45,55] -1.2097414 0.22637814 -1.4836746 0.36913057 +## ba_age_r(55,65] -1.3136068 0.18897856 -1.5960304 0.33201414 +## ba_age_r(65,75] 0.2769676 0.78180499 -0.8712554 1.19481144 +## ba_age_r(75,85] 0.5527987 0.58040125 -0.8061612 1.45809636 +## ba_nchild1 -0.1900578 0.84926380 -0.9249853 0.70101902 +## ba_nchild2 1.1355894 0.25612845 -0.3288492 1.18509012 +## ba_nchild3+ -0.4503583 0.65245213 -1.8369630 0.91969882 +## [1] "# Model summary" +## null.deviance df.null logLik AIC BIC deviance df.residual +## 1 520.665 473 -254.9798 533.9595 583.894 509.9595 462 +## *Pseudo R^2 for logistic regression +## -> Hosmer and Lemeshow R^2 0.021 +## -> Cox and Snell R^2 0.022 +## -> Nagelkerke R^2 0.034 +## [1] "" +## [1] "# Diagnostics: independence of errors" +## lag Autocorrelation D-W Statistic p-value +## 1 0.04875728 1.893013 0.202 +## Alternative hypothesis: rho != 0 +## [1] "# Diagnostics: collinearity (vif)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 2.030107 2 1.193658 +## ba_age_r 2.858071 6 1.091456 +## ba_nchild 1.581850 3 1.079429 +## [1] "# Diagnostics: collinearity (tolerance)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 0.4925848 0.5000000 0.8377612 +## ba_age_r 0.3498863 0.1666667 0.9162076 +## ba_nchild 0.6321711 0.3333333 0.9264154 +``` + +``` +## [1] "# <-- New model --> #" +## [1] "Running logit model: ~" +## [2] "Running logit model: Weekday_pmd" +## [3] "Running logit model: empstat + ba_age_r + ba_nchild" +## [1] "" +## [1] "# Model results" +## term estimate std.error +## (Intercept) (Intercept) -1.610307347 0.5421485 +## empstatnot in paid work empstatnot in paid work 0.096866852 0.3347478 +## empstatpart-time empstatpart-time -0.707022008 0.4355114 +## ba_age_r(25,35] ba_age_r(25,35] -0.127072651 0.6022041 +## ba_age_r(35,45] ba_age_r(35,45] -0.507283327 0.6099009 +## ba_age_r(45,55] ba_age_r(45,55] 0.546103516 0.5774865 +## ba_age_r(55,65] ba_age_r(55,65] 0.415731774 0.5902036 +## ba_age_r(65,75] ba_age_r(65,75] -0.465465943 0.6783961 +## ba_age_r(75,85] ba_age_r(75,85] 0.009440469 0.7045892 +## ba_nchild1 ba_nchild1 -0.980651054 0.6390646 +## ba_nchild2 ba_nchild2 0.323016053 0.4683272 +## ba_nchild3+ ba_nchild3+ 0.991064404 0.6119478 +## statistic p.value 2.5 % 97.5 % +## (Intercept) -2.97023323 0.002975737 -2.7839177 -0.6214222 +## empstatnot in paid work 0.28937260 0.772296258 -0.5676561 0.7492618 +## empstatpart-time -1.62342953 0.104497617 -1.6212012 0.1050555 +## ba_age_r(25,35] -0.21101260 0.832877440 -1.2736698 1.1297847 +## ba_age_r(35,45] -0.83174713 0.405551693 -1.6769086 0.7589981 +## ba_age_r(45,55] 0.94565591 0.344324118 -0.5298530 1.7716354 +## ba_age_r(55,65] 0.70438699 0.481191804 -0.6854154 1.6646477 +## ba_age_r(65,75] -0.68612711 0.492632956 -1.7751687 0.9242429 +## ba_age_r(75,85] 0.01339854 0.989309830 -1.3600261 1.4429049 +## ba_nchild1 -1.53451010 0.124904210 -2.4543147 0.1374739 +## ba_nchild2 0.68972299 0.490368402 -0.6285273 1.2256043 +## ba_nchild3+ 1.61952455 0.105334450 -0.2791610 2.1632835 +## [1] "# Model summary" +## null.deviance df.null logLik AIC BIC deviance df.residual +## 1 427.132 473 -204.5332 433.0663 483.0008 409.0663 462 +## *Pseudo R^2 for logistic regression +## -> Hosmer and Lemeshow R^2 0.042 +## -> Cox and Snell R^2 0.037 +## -> Nagelkerke R^2 0.063 +## [1] "" +## [1] "# Diagnostics: independence of errors" +## lag Autocorrelation D-W Statistic p-value +## 1 0.1097293 1.778341 0.018 +## Alternative hypothesis: rho != 0 +## [1] "# Diagnostics: collinearity (vif)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 1.641619 2 1.131926 +## ba_age_r 2.496787 6 1.079233 +## ba_nchild 1.640211 3 1.085967 +## [1] "# Diagnostics: collinearity (tolerance)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 0.6091549 0.5000000 0.8834499 +## ba_age_r 0.4005148 0.1666667 0.9265842 +## ba_nchild 0.6096775 0.3333333 0.9208383 +``` + +``` +## [1] "# <-- New model --> #" +## [1] "Running linear model: ~" +## [2] "Running linear model: laundry_sum" +## [3] "Running linear model: empstat + ba_age_r + ba_nchild" +## [1] "# Model results" +## term estimate std.error +## (Intercept) (Intercept) 0.80422583 0.11971777 +## empstatnot in paid work empstatnot in paid work -0.02405294 0.08119904 +## empstatpart-time empstatpart-time -0.14734215 0.08765235 +## ba_age_r(25,35] ba_age_r(25,35] -0.11301074 0.13088358 +## ba_age_r(35,45] ba_age_r(35,45] -0.08452151 0.12885828 +## ba_age_r(45,55] ba_age_r(45,55] -0.02692084 0.13107222 +## ba_age_r(55,65] ba_age_r(55,65] 0.03742763 0.13309842 +## ba_age_r(65,75] ba_age_r(65,75] -0.08829267 0.14545467 +## ba_age_r(75,85] ba_age_r(75,85] -0.03342188 0.16099247 +## ba_nchild1 ba_nchild1 -0.11586368 0.10521064 +## ba_nchild2 ba_nchild2 0.14831185 0.10531327 +## ba_nchild3+ ba_nchild3+ 0.14152604 0.16078729 +## statistic p.value 2.5 % 97.5 % +## (Intercept) 6.7176812 5.443781e-11 0.56896700 1.03948467 +## empstatnot in paid work -0.2962220 7.671936e-01 -0.18361815 0.13551226 +## empstatpart-time -1.6809835 9.344198e-02 -0.31958883 0.02490453 +## ba_age_r(25,35] -0.8634448 3.883410e-01 -0.37021164 0.14419015 +## ba_age_r(35,45] -0.6559261 5.121982e-01 -0.33774246 0.16869945 +## ba_age_r(45,55] -0.2053894 8.373584e-01 -0.28449243 0.23065075 +## ba_age_r(55,65] 0.2812027 7.786808e-01 -0.22412567 0.29898094 +## ba_age_r(65,75] -0.6070116 5.441414e-01 -0.37412738 0.19754205 +## ba_age_r(75,85] -0.2075990 8.356335e-01 -0.34979013 0.28294637 +## ba_nchild1 -1.1012543 2.713594e-01 -0.32261437 0.09088702 +## ba_nchild2 1.4082921 1.597172e-01 -0.05864053 0.35526424 +## ba_nchild3+ 0.8802067 3.792050e-01 -0.17443899 0.45749108 +## r.squared adj.r.squared sigma statistic p.value df logLik +## 1 0.02038023 -0.002944048 0.62548 0.8737775 0.5662077 12 -444.0818 +## AIC BIC deviance df.residual +## 1 914.1635 968.2592 180.746 462 +## [1] "# Diagnostics: independence of errors" +## lag Autocorrelation D-W Statistic p-value +## 1 -0.03270472 2.058046 0.462 +## Alternative hypothesis: rho != 0 +## [1] "# Diagnostics: collinearity (vif)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 1.761297 2 1.152015 +## ba_age_r 2.552027 6 1.081203 +## ba_nchild 1.606628 3 1.082229 +## [1] "# Diagnostics: collinearity (tolerance)" +## GVIF Df GVIF^(1/(2*Df)) +## empstat 0.5677635 0.5000000 0.8680443 +## ba_age_r 0.3918454 0.1666667 0.9248960 +## ba_nchild 0.6224217 0.3333333 0.9240187 +``` + +``` +## [1] "% in work in 1985" +``` + +``` +## sex empstatfull-time empstatnot in paid work empstatpart-time +## Man Man 0.6728953 0.1735609 0.1162203 +## Woman Woman 0.2192669 0.4153912 0.3509855 +## empstatunknown job hours se.empstatfull-time +## Man 0.03732346 0.005954984 +## Woman 0.01435640 0.004497221 +## se.empstatnot in paid work se.empstatpart-time +## Man 0.004829776 0.004007465 +## Woman 0.005441926 0.005278946 +## se.empstatunknown job hours +## Man 0.002441382 +## Woman 0.001301152 +``` + +``` +## [1] "% in work in 2005" +``` + +``` +## sex empstatfull-time empstatnot in paid work empstatpart-time +## Man Man 0.8059294 0.1255392 0.0634378 +## Woman Woman 0.4112487 0.2871118 0.3002517 +## empstatunknown job hours se.empstatfull-time +## Man 0.005093638 0.01514926 +## Woman 0.001387849 0.01690216 +## se.empstatnot in paid work se.empstatpart-time +## Man 0.01255103 0.009400211 +## Woman 0.01539688 0.015558580 +## se.empstatunknown job hours +## Man 0.003451856 +## Woman 0.001387000 +``` + +``` +## [1] "% people who report laundry in 1985" +``` + +``` +## mean SE +## Any_laundry_homed 0.2237 0.0031 +``` + +``` +## [1] "% people who report laundry in 2005" +``` + +``` +## mean SE +## Any_laundry_homed 0.18156 0.008 +``` + +``` +## [1] "Number of people reporting different number of laundry habits" +``` + +``` +## laundry_sum +## 0 1 2 3 +## 2264.303512 256.275619 42.916280 1.112071 +``` + +``` +## [1] "1985: N of respondents who reported laundry of given type" +``` + +``` +## total SE +## Sunday_amd 305.83 18.142 +## WeekdayEarly_amd 581.85 24.708 +## Weekday_amd 1278.56 36.003 +## Weekday_pmd 812.29 28.954 +## Otherd 2871.44 51.689 +## Any_laundry_homed 4290.52 60.576 +``` + +``` +## [1] "2005: N of respondents who reported laundry of given type" +``` + +``` +## total SE +## Sunday_amd 44.171 6.7883 +## WeekdayEarly_amd 108.140 10.7480 +## Weekday_amd 113.794 11.1856 +## Weekday_pmd 79.339 9.2491 +## Otherd 256.672 15.9396 +## Any_laundry_homed 465.626 20.7243 +``` + +``` +## [1] "Feedback: Done analysing sampled file using survey methods" +``` + +Finished diff --git a/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-1.png b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-1.png new file mode 100644 index 0000000000000000000000000000000000000000..5236d033ecbaa1c42d974a9142acca62323bc5b5 Binary files /dev/null and b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-1.png differ diff --git a/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-2.png b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-2.png new file mode 100644 index 0000000000000000000000000000000000000000..9fd400682a831663ca71e08cea2c9f3b877c22db Binary files /dev/null and b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-2.png differ diff --git a/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-3.png b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-3.png new file mode 100644 index 0000000000000000000000000000000000000000..51f23fb948cbaf677a12788cc3083315f3764623 Binary files /dev/null and b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-3.png differ diff --git a/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-4.png b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-4.png new file mode 100644 index 0000000000000000000000000000000000000000..a93069cebd357876d880cffeb56b2b66cb0c2d3b Binary files /dev/null and b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-4.png differ diff --git a/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-5.png b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-5.png new file mode 100644 index 0000000000000000000000000000000000000000..5b68edd8b5c3ac1b4fe1b5ef1c4765c0babef972 Binary files /dev/null and b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-analysis_files/figure-html/analyseMtusEpisodes-5.png differ diff --git a/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-data-processing.R b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-data-processing.R new file mode 100644 index 0000000000000000000000000000000000000000..fc25747e45de4e9c76f4cf98e973332e93b59ef5 --- /dev/null +++ b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-data-processing.R @@ -0,0 +1,791 @@ +# Begin header ########################################### +# Data processing for 'Laundry' paper: + +# Use MTUS World 6 time-use data (UK subset) to examine: +# - distributions of laundry in 1985 & 2005 +# - changing laundry practice +# Data source: www.timeuse.org/mtus +# data already in long format (but episodes) + +# This work was funded by RCUK through the End User Energy Demand Centres Programme via the +# "DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) + +# Copyright (C) 2014 University of Southampton +# Author: Ben Anderson (b.anderson@soton.ac.uk, @dataknut, https://github.com/dataknut) + +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 2 of the License +# (http://choosealicense.com/licenses/gpl-2.0/), or +# (at your option) any later version. + +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# End header ########################################### + +# MTUS codes of interest: Main/Sec21 Laundry, ironing, clothing repair + +# Housekeeping ---- +# clear out all old objects etc to avoid confusion +rm(list = ls()) + + +# set up some useful data paths +tudpath <- "~/Documents/Work/Data/MTUS/World_6/processed/" + +# define laundry for time use data +laundry <- "laundry, ironing, clothing repair" + +# Generic functions ---- + +# load packages +loadPackages <- function() { + # add packages + library(foreign) # as loading stata files + library(lattice) # fancy graphs + library(ggplot2) # fancy graphs II + library(data.table) # why use anything else? + library(survey) # weighted survey analysis + library(car) # regression diagnostics + library(gmodels) # nice crosstabs + library(fasttime) # VERY fast time string conversion to POSIXct + # but only IF the input string is in a fixed format - see http://rforge.net/doc/packages/fasttime/fastPOSIXct.html +} + +# Feedback function - cos I can't be bothered to keep writing it out +feedBack <- function(string) { + print(paste0("Feedback: ", string)) +} + +# Functions for loading & processing data +# Each one exposes 1 or more processed/aggregated data tables and then saves them out for future use +processMtusSurvey <- function() { + sfile <- paste0(tudpath, "MTUS-adult-aggregate-UK-only-wf.dta") + feedBack(paste0("Loading: ", sfile)) + MTUSW6UKsurvey_DT <- as.data.table(read.dta(sfile)) + setkey(MTUSW6UKsurvey_DT, diarypid) + + # create a reduced survey frame with the few variables we need so the join + # does not break memory + # use global assignment so we can see the DT for later use + gMTUSW6UKsurveyCore_DT <<- MTUSW6UKsurvey_DT[, .(survey, countrya, swave, diarypid, pid, empstat, urban, + badcase, nchild, sex, age, hhtype, hhldsize, income, propwt) + ] + feedBack("Summary of gMTUSW6UKsurveyCore_DT") + print(summary(gMTUSW6UKsurveyCore_DT)) # force print from within function + + feedBack("Making filter for years of interest") + gMTUSW6UKsurveyCore_DT$ba_survey <- ifelse( + gMTUSW6UKsurveyCore_DT$survey == 1974, + 1974, # if true + NA # if not + ) + + gMTUSW6UKsurveyCore_DT$ba_survey <- ifelse( + gMTUSW6UKsurveyCore_DT$survey == 1983 | + gMTUSW6UKsurveyCore_DT$survey == 1987 , + 1985, # if true + gMTUSW6UKsurveyCore_DT$ba_survey # if not + ) + + gMTUSW6UKsurveyCore_DT$ba_survey <- ifelse( + gMTUSW6UKsurveyCore_DT$survey == 1995 , + 1995, # if true + gMTUSW6UKsurveyCore_DT$ba_survey # if not + ) + + gMTUSW6UKsurveyCore_DT$ba_survey <- ifelse( + gMTUSW6UKsurveyCore_DT$survey == 2000 , + 2000, # if true + gMTUSW6UKsurveyCore_DT$ba_survey # if not + ) + + gMTUSW6UKsurveyCore_DT$ba_survey <- ifelse( + gMTUSW6UKsurveyCore_DT$survey == 2005 , + 2005, # if true + gMTUSW6UKsurveyCore_DT$ba_survey # if not + ) + # save out the two working files for later use (saves re-running) + coreSurvey_DT <- paste0(tudpath, "gMTUSW6UKsurveyCore_DT.csv") + print(paste0("Saving processed file in: ", coreSurvey_DT)) + write.csv(gMTUSW6UKsurveyCore_DT, + file = coreSurvey_DT, row.names = FALSE + ) + + dir <- getwd() + setwd(tudpath) + print("Now gzip the file") + system("gzip -f gMTUSW6UKsurveyCore_DT.csv &") # gzip & force over-write, shame can't do this directly as part of write + setwd(dir) # set back to working directory otherwise R will save .RData in an odd place + + feedBack("Done loading, processing & saving TU survey data") +} # works + +processMtusEpisodes <- function() { + # Load as STATA file + mtusfile <- paste0(tudpath, "MTUS-adult-episode-UK-only-wf.dta") + feedBack(paste0("Loading: ", mtusfile)) + mtusEpsDT <- as.data.table(read.dta(mtusfile)) + setkey(mtusEpsDT, diarypid) + + feedBack("Fixing episode dates") + # The stata times are all loaded as POSIXct which is not all that helpful + # Need to create a proper start/end time but 2005 does not have a valid date so we are forced to impute them + # 2005 months: + # March: synthetic week = Sunday 6th -> Saturday 12th + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "March" + & mtusEpsDT$s_dow == "Sunday", "06/03/2005", "na" + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "March" + & mtusEpsDT$s_dow == "Monday", "07/03/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "March" + & mtusEpsDT$s_dow == "Tuesday", "08/03/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "March" + & mtusEpsDT$s_dow == "Wednesday", "09/03/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "March" + & mtusEpsDT$s_dow == "Thursday", "10/03/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "March" + & mtusEpsDT$s_dow == "Friday", "11/03/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "March" + & mtusEpsDT$s_dow == "Saturday", "12/03/2005", mtusEpsDT$date_2005 + ) + + # June: 5th -> 11th + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "June" + & mtusEpsDT$s_dow == "Sunday", "05/06/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "June" + & mtusEpsDT$s_dow == "Monday", "06/06/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "June" + & mtusEpsDT$s_dow == "Tuesday", "07/06/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "June" + & mtusEpsDT$s_dow == "Wednesday", "08/06/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "June" + & mtusEpsDT$s_dow == "Thursday", "09/06/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "June" + & mtusEpsDT$s_dow == "Friday", "10/06/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "June" + & mtusEpsDT$s_dow == "Saturday", "11/06/2005", mtusEpsDT$date_2005 + ) + + # September: 4th -> 10th + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "September" + & mtusEpsDT$s_dow == "Sunday", "04/09/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "September" + & mtusEpsDT$s_dow == "Monday", "05/09/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "September" + & mtusEpsDT$s_dow == "Tuesday", "06/09/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "September" + & mtusEpsDT$s_dow == "Wednesday", "07/09/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "September" + & mtusEpsDT$s_dow == "Thursday", "08/09/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "September" + & mtusEpsDT$s_dow == "Friday", "09/09/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "September" + & mtusEpsDT$s_dow == "Saturday", "10/09/2005", mtusEpsDT$date_2005 + ) + + # November: 6th - 12th + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "November" + & mtusEpsDT$s_dow == "Sunday", "06/11/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "November" + & mtusEpsDT$s_dow == "Monday", "07/11/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "November" + & mtusEpsDT$s_dow == "Tuesday", "08/11/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "November" + & mtusEpsDT$s_dow == "Wednesday", "09/11/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "November" + & mtusEpsDT$s_dow == "Thursday", "10/11/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "November" + & mtusEpsDT$s_dow == "Friday", "11/11/2005", mtusEpsDT$date_2005 + ) + mtusEpsDT$date_2005 <- ifelse( + mtusEpsDT$survey == 2005 & mtusEpsDT$mtus_month == "November" + & mtusEpsDT$s_dow == "Saturday", "12/11/2005", mtusEpsDT$date_2005 + ) + + # 2005 dates as POSIX - can't use fasttime + mtusEpsDT$r_date_2005 <- as.POSIXct(mtusEpsDT$date_2005, tz = "", + "%d/%m/%Y" + ) + # check + table(as.POSIXlt(mtusEpsDT$r_date_2005)$wday, mtusEpsDT$s_dow) + + # others dates as POSIX + mtusEpsDT$r_date <- as.POSIXct(mtusEpsDT$s_date, tz = "", + "%Y-%m-%d" + ) + # check + table(as.POSIXlt(mtusEpsDT$r_date)$wday, mtusEpsDT$s_dow) + + # combine the dates - why does this generate a number and not a POSIX? + mtusEpsDT$r_date_n <- ifelse( + mtusEpsDT$survey == 2005, + mtusEpsDT$r_date_2005, # if 2005 + mtusEpsDT$r_date # if not, date already set + ) + + # convert to POSIX + mtusEpsDT$r_datef <- as.POSIXct(mtusEpsDT$r_date_n, origin = "1970-01-01") + # check matches + table(as.POSIXlt(mtusEpsDT$r_datef)$wday, + mtusEpsDT$s_dow, + useNA = "ifany" + ) + feedBack("Setting up corrected start and end timestamps") + # all diaries start at 04:00 on the date given + # POSIXct works in seconds + mtusEpsDT$r_epstart <- mtusEpsDT$r_datef + (3*60*60) + # now add the corrected minutes up to the start of the episode + mtusEpsDT$r_epstart <- mtusEpsDT$r_epstart + (mtusEpsDT$ba_startm*60) + + # same for episode end + mtusEpsDT$r_epend <- mtusEpsDT$r_epstart + (mtusEpsDT$end*60) + + # define year (started) + mtusEpsDT$r_year <- as.POSIXlt(mtusEpsDT$r_date)$year + + # keep the variables we need + mtusEpsDT <- mtusEpsDT[, .(survey, swave, hldid, persid, id, diarypid, pid, + diary, survey, r_year, badcase, sex, age, + r_epstart, r_epend, time, epnum, + main, sec, inout, eloc, mtrav, child, sppart) + ] + + # check the distribution of episodes by time of day and year of survey + table("Hour" = as.POSIXlt(mtusEpsDT$r_epstart)$hour, + "Year"= as.POSIXlt(mtusEpsDT$r_epstart)$year + ) + + # set a new year variable to be: + # 74 + 75 = drop + # 83 + 84 + 85 = 1985 + # 95 = drop + # 100 + 101 = 2001 = drop + # 105 = 2005 + feedBack("Making filter for years of interest") + mtusEpsDT$ba_survey <- ifelse( + mtusEpsDT$survey == 1974, + 1974, # if true + NA # if not + ) + + mtusEpsDT$ba_survey <- ifelse( + mtusEpsDT$survey == 1983 | + mtusEpsDT$survey == 1987 , + 1985, # if true + mtusEpsDT$ba_survey # if not + ) + + mtusEpsDT$ba_survey <- ifelse( + mtusEpsDT$survey == 1995 , + 1995, # if true + mtusEpsDT$ba_survey # if not + ) + + mtusEpsDT$ba_survey <- ifelse( + mtusEpsDT$survey == 2000 , + 2000, # if true + mtusEpsDT$ba_survey # if not + ) + + mtusEpsDT$ba_survey <- ifelse( + mtusEpsDT$survey == 2005 , + 2005, # if true + mtusEpsDT$ba_survey # if not + ) + + # check data for analysis in this paper (1985 -> 2005) + print( + table(mtusEpsDT$ba_survey, + mtusEpsDT$survey, + useNA = "ifany" + ) + ) + + # add hour & half hour of the start of the episode + mtusEpsDT$st_hour <- as.POSIXlt(mtusEpsDT$r_epstart)$hour + mtusEpsDT$st_hour <- ifelse(mtusEpsDT$st_hour < 10 , + paste0("0",mtusEpsDT$st_hour), # if true - add leading 0 + mtusEpsDT$st_hour # if not + ) + mtusEpsDT$st_mins <- as.POSIXlt(mtusEpsDT$r_epstart)$min + mtusEpsDT$st_hh <- ifelse(mtusEpsDT$st_mins < 30 , + "00", # if true + "30" # if not + ) + mtusEpsDT$st_halfhour <- paste0(mtusEpsDT$st_hour, + ":", + mtusEpsDT$st_hh) + # check + with(mtusEpsDT, + table(st_halfhour) + ) + + with(mtusEpsDT, + table(badcase,ba_survey) + ) + feedBack("Keeping good cases") + # Keep only good cases + mtusEpsDT <- mtusEpsDT[badcase == "good case"] + #mtusEpsDT <- mtusEpsDT[ba_survey %in% c("1985","2005")] keep inly 1985 & 2005 + + # check + print( + with(mtusEpsDT, + table(badcase,ba_survey) + ) + ) + # only keep the vars we need - saves memory etc and use global assignment for re-use elsewhere + gMTUSW6UKdiaryEps_DT <<- mtusEpsDT[, .(ba_survey, diarypid, main, sec, time, st_halfhour)] + feedBack("Summary of gMTUSW6UKdiaryEps_DT:") + print(summary(gMTUSW6UKdiaryEps_DT)) + + # save out the working file for later use (saves re-running) + episodes_DT <- paste0(tudpath, "gMTUSW6UKdiaryEps_DT.csv") + print(paste0("Saving processed file in: ", episodes_DT)) + write.csv(gMTUSW6UKdiaryEps_DT, + file = episodes_DT, row.names = FALSE + ) + + dir <- getwd() + setwd(tudpath) + print("Now gzip the file") + system("gzip -f gMTUSW6UKdiaryEps_DT.csv &") # gzip & force over-write, shame can't do this directly as part of write + setwd(dir) # set back to working directory otherwise R will save .RData in an odd place + feedBack("Finished loading & fixing episodes data") +} # works + +processMtusSampled <- function() { + + # This was created in STATA - will port to R at some point + sampledmtus <- paste0(tudpath, "MTUS-adult-episode-UK-only-wf-10min-samples-long-v1.0.dta") + feedBack(paste0("Loading: ", sampledmtus)) + mtusSampDT <- as.data.table(read.dta(sampledmtus)) + setkey(mtusSampDT, diarypid) + + feedBack("Fixing sampled dates") + # re-run date & time re-formatting as before + feedBack("Fixing sampled dates: March 2005") + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "March" + & mtusSampDT$s_dow == "Sunday", "2005-March-06", "na" + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "March" + & mtusSampDT$s_dow == "Monday", "2005-March-07", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "March" + & mtusSampDT$s_dow == "Tuesday", "2005-March-08", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "March" + & mtusSampDT$s_dow == "Wednesday", "2005-March-09", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "March" + & mtusSampDT$s_dow == "Thursday", "2005-March-10", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "March" + & mtusSampDT$s_dow == "Friday", "2005-March-11", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "March" + & mtusSampDT$s_dow == "Saturday", "2005-March-12", mtusSampDT$date_2005 + ) + feedBack("Fixing sampled dates: June 2005") + # June: 5th -> 11th + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "June" + & mtusSampDT$s_dow == "Sunday", "2005-June-05", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "June" + & mtusSampDT$s_dow == "Monday", "2005-June-06", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "June" + & mtusSampDT$s_dow == "Tuesday", "2005-June-07", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "June" + & mtusSampDT$s_dow == "Wednesday", "2005-June-08", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "June" + & mtusSampDT$s_dow == "Thursday", "2005-June-09", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "June" + & mtusSampDT$s_dow == "Friday", "2005-June-10", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "June" + & mtusSampDT$s_dow == "Saturday", "2005-June-11", mtusSampDT$date_2005 + ) + feedBack("Fixing sampled dates: September 2005") + # September: 4th -> 10th + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "September" + & mtusSampDT$s_dow == "Sunday", "2005-September-04", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "September" + & mtusSampDT$s_dow == "Monday", "2005-September-05", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "September" + & mtusSampDT$s_dow == "Tuesday", "2005-September-06", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "September" + & mtusSampDT$s_dow == "Wednesday", "2005-September-07", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "September" + & mtusSampDT$s_dow == "Thursday", "2005-September-08", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "September" + & mtusSampDT$s_dow == "Friday", "2005-September-09", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "September" + & mtusSampDT$s_dow == "Saturday", "2005-September-10", mtusSampDT$date_2005 + ) + feedBack("Fixing sampled dates: November 2005") + # November: 6th - 12th + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "November" + & mtusSampDT$s_dow == "Sunday", "2005-November-06", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "November" + & mtusSampDT$s_dow == "Monday", "2005-November-07", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "November" + & mtusSampDT$s_dow == "Tuesday", "2005-November-08", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "November" + & mtusSampDT$s_dow == "Wednesday", "2005-November-09", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "November" + & mtusSampDT$s_dow == "Thursday", "2005-November-10", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "November" + & mtusSampDT$s_dow == "Friday", "2005-November-11", mtusSampDT$date_2005 + ) + mtusSampDT$date_2005 <- ifelse( + mtusSampDT$survey == 2005 & mtusSampDT$mtus_month == "November" + & mtusSampDT$s_dow == "Saturday", "2005-November-12", mtusSampDT$date_2005 + ) + + feedBack("Set up character hours/mins/secs so POSIXct recognises them") + mtusSampDT$start_hour <- as.POSIXlt(mtusSampDT$s_starttime)$hour + mtusSampDT$start_hour <- ifelse(mtusSampDT$start_hour < 10, + paste0("0",mtusSampDT$start_hour), # < 10 + mtusSampDT$start_hour # not < 10 + ) + mtusSampDT$start_min <- as.POSIXlt(mtusSampDT$s_starttime)$min + mtusSampDT$start_min <- ifelse(mtusSampDT$start_min < 10, + paste0("0",mtusSampDT$start_min), # < 10 + mtusSampDT$start_min # not < 10 + ) + table(mtusSampDT$start_hour,mtusSampDT$start_min) + mtusSampDT$start_sec <- "00" + + feedBack("Construct start times") + # if 2005 -> use 2005 dates & character times + mtusSampDT$start_2005 <- ifelse(mtusSampDT$survey == 2005, + paste0(mtusSampDT$date_2005," ", + mtusSampDT$start_hour, ":", + mtusSampDT$start_min, ":", + mtusSampDT$start_sec), + NA + ) + + head(mtusSampDT$start_2005) + tail(mtusSampDT$start_2005) + + # construct other start times in almost the same way but using MTUS date + mtusSampDT$start_other <- ifelse(mtusSampDT$survey != 2005, + paste0(mtusSampDT$mtus_year,"-", + mtusSampDT$mtus_month,"-", + mtusSampDT$mtus_cday, " ", + mtusSampDT$start_hour, ":", + mtusSampDT$start_min, ":", + mtusSampDT$start_sec), + NA + ) + + head(mtusSampDT$start_other) + tail(mtusSampDT$start_other) + + # combine the dates - why does this generate a number and not a POSIX? + mtusSampDT$r_start_temp <- ifelse( + mtusSampDT$survey == 2005, + mtusSampDT$start_2005, # if 2005 + mtusSampDT$start_other # if not + ) + + head(mtusSampDT$r_start_temp) + tail(mtusSampDT$r_start_temp) + + feedBack("Convert start time to POSIXct") + # mtus_month is full name and we set the 2005 date to the same form + mtusSampDT$r_start <- as.POSIXct(mtusSampDT$r_start_temp, tz = "", + "%Y-%B-%d %H:%M:%S" + ) + # check + head(mtusSampDT$r_start) + tail(mtusSampDT$r_start) + + # define month and day of the week (started) + mtusSampDT$r_month <- as.POSIXlt(mtusSampDT$r_start)$mon # 0 = Jan + mtusSampDT$r_dow <- as.POSIXlt(mtusSampDT$r_start)$wday # 0 = Sunday + # add labels to dow + mtusSampDT$r_dow <- factor(mtusSampDT$r_dow, + levels = c(0,1,2,3,4,5,6), + labels = c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday") + ) + + feedBack("Check days of the week") + print( + xtabs(~ mtusSampDT$r_dow + mtusSampDT$s_dow + ) + ) + + # define hour & mins (started) + mtusSampDT$r_hour <- as.POSIXlt(mtusSampDT$r_start)$hour + mtusSampDT$r_min <- as.POSIXlt(mtusSampDT$r_start)$min + + # set a new year variable to be: + # 74 + 75 = drop + # 83 + 84 + 85 = 1985 + # 95 = drop + # 100 + 101 = 2001 = drop + # 105 = 2005 + feedBack("Create survey year filter") + mtusSampDT$ba_survey <- ifelse( + mtusSampDT$survey == 1974, + 1974, # if true + NA # if not + ) + + mtusSampDT$ba_survey <- ifelse( + mtusSampDT$survey == 1983 | + mtusSampDT$survey == 1987 , + 1985, # if true + mtusSampDT$ba_survey # if not + ) + + mtusSampDT$ba_survey <- ifelse( + mtusSampDT$survey == 1995 , + 1995, # if true + mtusSampDT$ba_survey # if not + ) + + mtusSampDT$ba_survey <- ifelse( + mtusSampDT$survey == 2000 , + 2000, # if true + mtusSampDT$ba_survey # if not + ) + + mtusSampDT$ba_survey <- ifelse( + mtusSampDT$survey == 2005 , + 2005, # if true + mtusSampDT$ba_survey # if not + ) + + feedBack("Check data for this paper (1985 -> 2005)") + print( + table(mtusSampDT$ba_survey, + mtusSampDT$survey, + useNA = "ifany" + ) + ) + + # add hour & half hour to each sampled record + + mtusSampDT$r_hour <- as.POSIXlt(mtusSampDT$s_starttime)$hour + mtusSampDT$st_hour <- ifelse(mtusSampDT$r_hour < 10 , + paste0("0",mtusSampDT$r_hour), # if true - add leading 0 + mtusSampDT$r_hour # if not + ) + mtusSampDT$r_mins <- as.POSIXlt(mtusSampDT$s_starttime)$min + mtusSampDT$st_hh <- ifelse(mtusSampDT$r_mins < 30 , + "00", # if true + "30" # if not + ) + mtusSampDT$st_halfhour <- paste0(mtusSampDT$st_hour, + ":", + mtusSampDT$st_hh) + # check + with(mtusSampDT, + table(st_halfhour) + ) + # set laundry vars + feedBack("Set a laundry flag") + mtusSampDT$laundry_p <- ifelse(mtusSampDT$pact == laundry, + 1, # laundry as main act + 0) + mtusSampDT$laundry_ph <- ifelse(mtusSampDT$pact == laundry & + mtusSampDT$eloc == "at own home", + 1, # laundry as main act at own home + 0) + mtusSampDT$laundry_photh <- ifelse(mtusSampDT$pact == laundry & + mtusSampDT$eloc == "at another's home", + 1, # laundry as main act at another's home + 0) + mtusSampDT$laundry_psh <- ifelse(mtusSampDT$pact == laundry & + mtusSampDT$eloc == "at services or shops", + 1, # laundry as main act at service/shops + 0) + mtusSampDT$laundry_poth <- ifelse(mtusSampDT$pact == laundry & + mtusSampDT$eloc == "other locations", + 1, # laundry as main act at other locations + 0) + feedBack("Make global table keeping the variables we need") + gMTUSW6UKdiarySampled_DT <<- mtusSampDT[, .(hldid, diarypid, pid, + diary, ba_survey, + r_start, r_month, r_dow, r_hour, st_halfhour, + pact, sact, eloc, mtrav, + laundry_p, laundry_ph, laundry_photh, laundry_psh, laundry_poth) + ] + feedBack("Summary of gMTUSW6UKdiarySampled_DT:") + print( + summary(gMTUSW6UKdiarySampled_DT) + ) + + feedBack("Creating a derived data table to enable us to count laundry obs within half hours") + # First count the number of obs for all half hours - should be 3! + byList <- c("ba_survey", "diarypid", "r_month", "r_dow", "r_hour", "st_halfhour") # -> easy to repeat + MTUSW6UK_halfhours_DT <- gMTUSW6UKdiarySampled_DT[, + .( + N_obs = length(pact) # number of 10 min samples (should be 3!) + ), + by = byList + ] + # Now count the various forms of laundry we are interested in + MTUSW6UK_halfhours_DTl <- gMTUSW6UKdiarySampled_DT[, + .( + N_laundry_p = sum(laundry_p), # number of 10 min laundry obs (should be 1-3!) + N_laundry_ph = sum(laundry_ph), # number of 10 min laundry obs (should be 1-3!) + N_laundry_photh = sum(laundry_photh), # number of 10 min laundry obs (should be 1-3!) + N_laundry_psh = sum(laundry_psh), # number of 10 min laundry obs (should be 1-3!) + N_laundry_poth = sum(laundry_poth) + ), + by = byList + ] + + + # set an indicator if any laundry was recorded + MTUSW6UK_halfhours_DTl$Any_laundry_p <- ifelse( + MTUSW6UK_halfhours_DTl$N_laundry_p > 0, 1, 0 # set no to 0 for later ease of summary + ) + MTUSW6UK_halfhours_DTl$Any_laundry_ph <- ifelse( + MTUSW6UK_halfhours_DTl$N_laundry_ph > 0, 1, 0 # set no to 0 for later ease of summary + ) + MTUSW6UK_halfhours_DTl$Any_laundry_photh <- ifelse( + MTUSW6UK_halfhours_DTl$N_laundry_photh > 0, 1, 0 # set no to 0 for later ease of summary + ) + MTUSW6UK_halfhours_DTl$Any_laundry_psh <- ifelse( + MTUSW6UK_halfhours_DTl$N_laundry_psh > 0, 1, 0 # set no to 0 for later ease of summary + ) + MTUSW6UK_halfhours_DTl$Any_laundry_poth <- ifelse( + MTUSW6UK_halfhours_DTl$N_laundry_poth > 0, 1, 0 # set no to 0 for later ease of summary + ) + + feedBack("Creating global derived half hours table") + setkeyv(MTUSW6UK_halfhours_DT, byList) + setkeyv(MTUSW6UK_halfhours_DTl, byList) + gMTUSW6UK_halfhours_laundry_DT <<- MTUSW6UK_halfhours_DT[MTUSW6UK_halfhours_DTl] + + # check + head(gMTUSW6UK_halfhours_laundry_DT[gMTUSW6UK_halfhours_laundry_DT$N_laundry_p == 1]) + head(gMTUSW6UK_halfhours_laundry_DT[gMTUSW6UK_halfhours_laundry_DT$N_laundry_p == 3]) + + # save out the two working files for later use (saves re-running) + sampled_DT <- paste0(tudpath, "gMTUSW6UKdiarySampled_DT.csv") + print(paste0("Saving processed file in: ", sampled_DT)) + write.csv(gMTUSW6UKdiarySampled_DT, + file = sampled_DT, row.names = FALSE + ) + laundry_hh_DT <- paste0(tudpath, "gMTUSW6UK_halfhours_laundry_DT.csv") + print(paste0("Saving processed file in: ", laundry_hh_DT)) + write.csv(gMTUSW6UK_halfhours_laundry_DT, + file = laundry_hh_DT, row.names = FALSE + ) + dir <- getwd() + setwd(tudpath) + print("Now gzip those files via system") + system("gzip -f gMTUSW6UKdiarySampled_DT.csv &") # gzip & force over-write, shame can't do this directly as part of write + system("gzip -f gMTUSW6UK_halfhours_laundry_DT.csv &") # gzip & force over-write, shame can't do this directly as part of write + setwd(dir) # set back to working directory otherwise R will save .RData in an odd place + print("Done") +} # works + +# Run to here to load functions + +# Controller ---- +loadPackages() +processMtusSurvey() +processMtusEpisodes() +processMtusSampled() \ No newline at end of file diff --git a/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-gender-over-time.R b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-gender-over-time.R new file mode 100644 index 0000000000000000000000000000000000000000..46c8154be475081f535d5d7fdcb72dc6b80cec52 --- /dev/null +++ b/Theme-1/laundryPaper/DEMAND-BA-MTUS-W6-Laundry-gender-over-time.R @@ -0,0 +1,232 @@ +# Begin header ########################################### +# Use MTUS World 6 time-use data (UK subset) to examine: +# - distributions of laundry in 1985 -> 2005 +# - for discussions with @tulliajack re comparisons with Sweden + +# Data source: www.timeuse.org/mtus +# data already in long format (but episodes) processed using +# DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v2.0-adult-data-processing.R + +# This work was funded by RCUK through the End User Energy Demand Centres Programme via the +# "DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) + +# Copyright (C) 2014 University of Southampton +# Author: Ben Anderson (b.anderson@soton.ac.uk, @dataknut, https://github.com/dataknut) + +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 2 of the License +# (http://choosealicense.com/licenses/gpl-2.0/), or +# (at your option) any later version. + +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# End header ########################################### + +# MTUS codes of interest: Main/Sec21 Laundry, ironing, clothing repair +# Defined as: + +# 1983/4/7: +# <- 0701 Wash clothes, hang out / bring in washing +# 0702 Iron clothes +# 0801 Repair, upkeep of clothes +# => may over-estimate laundry + +# 1995 14 Clothes +# => may over-estimate laundry + +# 2000 3300 Unspecified making and care for textiles +# 3310 Laundry +# 3320 Ironing +# 3390 Other specified making and care for textiles +# => may over-estimate laundry + +# 2005 Pact=7 (washing clothes) + + +# Housekeeping ---- +# clear out all old objects etc to avoid confusion +rm(list = ls()) + +# set up some useful data paths +tudpath <- "~/Documents/Work/Data/MTUS/World_6/processed/" # presume processed data is already in here +epsfile <- "gMTUSW6UKdiaryEps_DT.csv" # need to change to processed csv +survfile <- "gMTUSW6UKsurveyCore_DT.csv.gz" + +rpath <- "~/Documents/Work/Projects/RCUK_DEMAND/Theme 1/results/MTUS/" + +# define laundry for time use data +laundry <- "laundry, ironing, clothing repair" + +# Generic functions ---- + +# load packages +loadPackages <- function() { + # add packages + library(foreign) # as loading stata files + library(lattice) # fancy graphs + library(ggplot2) # fancy graphs II + library(data.table) # why use anything else? + library(survey) # weighted survey analysis + library(car) # regression diagnostics + library(gmodels) # nice crosstabs + library(broom) # turns stats objects into dataframes - useful for table output + library(fasttime) # VERY fast time string conversion to POSIXct + # but only IF the input string is in a fixed format - see http://rforge.net/doc/packages/fasttime/fastPOSIXct.html +} + +# Feedback function - cos I can't be bothered to keep writing it out +feedBack <- function(string) { + print(paste0("Feedback: ", string)) +} + +# Functions for loading pre-processed data + +loadCoreMtusSurvey <- function() { + cmd <- paste0("gunzip -c ", tudpath, survfile) + print(paste0("Loading via ", cmd)) + + # read in the gzipped file using gunzip to 'pipe' the file to fread + # this is a lot faster than non-piped gunzip then fread and you get feedback from fread + # Don't forget to globalise! + gMTUSW6UKsurveyCore_DT <<- fread(cmd, + stringsAsFactors = FALSE) + feedBack("Done loading TU survey data") +} # works + +loadMtusEpisodes <- function() { + cmd <- paste0("gunzip -c ", tudpath, epsfile) + print(paste0("Loading via ", cmd)) + + # read in the gzipped file using gunzip to 'pipe' the file to fread + # this is a lot faster than non-piped gunzip then fread and you get feedback from fread + # Don't forget to globalise! + gMTUSW6UKdiaryEps_DT <<- fread(cmd, + stringsAsFactors = FALSE) + feedBack("Done loading TU survey data") +} + +# Controller +loadPackages() +loadCoreMtusSurvey() +loadMtusEpisodes() + +setkey(gMTUSW6UKdiaryEps_DT, diarypid) +setkey(gMTUSW6UKsurveyCore_DT, diarypid) + +gMTUSW6UKdiaryEps_DT$laundry_p <- ifelse(gMTUSW6UKdiaryEps_DT$main == laundry, + 1, # laundry as main act + 0) +gMTUSW6UKdiaryEps_DT$laundry_s <- ifelse(gMTUSW6UKdiaryEps_DT$sec == laundry, + 1, # laundry as main act + 0) +gMTUSW6UKdiaryEps_DT$laundry_all <- ifelse(gMTUSW6UKdiaryEps_DT$main == laundry | gMTUSW6UKdiaryEps_DT$sec == laundry, + 1, # laundry as either act + 0) + +# merge keeping only good cases +gMTUSW6UKdiaryEpsMerged_DT <- gMTUSW6UKdiaryEps_DT[gMTUSW6UKsurveyCore_DT[gMTUSW6UKsurveyCore_DT$badcase == "good case"]] + +# checks +with(gMTUSW6UKdiaryEpsMerged_DT, + table(sex, useNA = c("always")) +) +with(gMTUSW6UKdiaryEpsMerged_DT, + table(badcase, useNA = c("always")) +) +with(gMTUSW6UKdiaryEpsMerged_DT, + summary(propwt) +) + +svygMTUSW6UKdiaryEpsMerged_DT <- svydesign(ids = ~diarypid, + weight = ~propwt, + data = gMTUSW6UKdiaryEpsMerged_DT # all data +) # does not produce a data table + +# mean duration of laundry episodes +svyby(~time, # the data to summarise + ~ba_survey + sex, # the row * columns we want + svygMTUSW6UKdiaryEpsMerged_DT[ + svygMTUSW6UKdiaryEpsMerged_DT$variables$laundry_all == 1], # the data in survey form + svymean # the function to use to summarise +) + +# total duration of laundry episodes +svyby(~time, # the data to summarise + ~ba_survey + sex, # the row * columns we want + svygMTUSW6UKdiaryEpsMerged_DT[ + svygMTUSW6UKdiaryEpsMerged_DT$variables$laundry_all == 1], # the data in survey form + svytotal # the function to use to summarise +) + +laundrySummaryByPersonDTp <- gMTUSW6UKdiaryEpsMerged_DT[laundry_p == 1, + .( + laundry_p_minutes = sum(time) + ), + by = .( + diarypid + ) + ] +setkey(laundrySummaryByPersonDTp, diarypid) +laundrySummaryByPersonDTs <- gMTUSW6UKdiaryEpsMerged_DT[laundry_s == 1, + .( + laundry_s_minutes = sum(time) + ), + by = .( + diarypid + ) + ] +setkey(laundrySummaryByPersonDTs, diarypid) +laundrySummaryByPersonDT <- merge(laundrySummaryByPersonDTp, + laundrySummaryByPersonDTs, all = TRUE) # keep all + +laundrySummaryByPersonDT$laundry_p_minutes <- ifelse( + is.na(laundrySummaryByPersonDT$laundry_p_minutes), + 0, + laundrySummaryByPersonDT$laundry_p_minutes + ) +laundrySummaryByPersonDT$laundry_s_minutes <- ifelse( + is.na(laundrySummaryByPersonDT$laundry_s_minutes), + 0, + laundrySummaryByPersonDT$laundry_s_minutes + ) + +laundrySummaryByPersonDT$total_laundry <- laundrySummaryByPersonDT$laundry_p_minutes + + laundrySummaryByPersonDT$laundry_s_minutes + +# merge back to survey data +laundrySummaryByPersonDT <- merge(laundrySummaryByPersonDT, + gMTUSW6UKsurveyCore_DT) # keep matches + +print("Set survey data") +# tell survey that the diarypids are the ids (they repeat) +svyLaundrySummaryByPersonDT <- svydesign(ids = ~diarypid, + weight = ~propwt, + data = laundrySummaryByPersonDT # laundry only + ) # does not produce a data table + +# reporting laundry by gender? +# any laundry +svytable(~ba_survey + sex , # the row * columns we want + svyLaundrySummaryByPersonDT # the data in survey form +) + +# mean total time spent on laundry (primary) +# XX not correct? XX +svyby(~laundry_p_minutes, # the data to summarise + ~ba_survey + sex, # the row * columns we want + svyLaundrySummaryByPersonDT, # the data in survey form + svymean, # the function to use to summarise + na.rm = TRUE +) + +# mean total time spent on laundry (primary) +svyby(~laundry_s_minutes, # the data to summarise + ~ba_survey + sex, # the row * columns we want + svyLaundrySummaryByPersonDT, # the data in survey form + svymean, # the function to use to summarise + na.rm = TRUE +) diff --git a/Theme-1/laundryPaper/DEMAND-BA-ons-2005-laundry-data-exploration.R b/Theme-1/laundryPaper/DEMAND-BA-ons-2005-laundry-data-exploration.R new file mode 100644 index 0000000000000000000000000000000000000000..3d4918ff47373d9107eb9886085b3b68bf561a41 --- /dev/null +++ b/Theme-1/laundryPaper/DEMAND-BA-ons-2005-laundry-data-exploration.R @@ -0,0 +1,262 @@ +# Header ########################################### +# Time Use data analysis for 'Laundry' paper +# +# Use ONS UK Time Use Survey 2005 to examine: +# - distributions of laundry in 2005 +# +# Data source: http://discover.ukdataservice.ac.uk/catalogue/?sn=5592 +# Data already in long format (but 10 minute slots) +# +# This work was funded by RCUK through the End User Energy Demand Centres Programme via the +# "DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) +# +# Copyright (C) 2014 University of Southampton +# +# Author: Ben Anderson (b.anderson@soton.ac.uk, @dataknut, https://github.com/dataknut) +# [Energy & Climate Change, Faculty of Engineering & Environment, University of Southampton] +# +# The MIT License (MIT) applies - see https://github.com/dataknut/ +# +# end header + +# To do: ----------------------------------------------------------------- + +# Prelims ----------------------------------------------------------------- + +# clear out all old objects etc to avoid confusion +rm(list = ls()) + +# set time +starttime <- proc.time() + +# load required packages +# foreign - not needed if we are loading csv files +# NB: this will fail if you do not have internet access +# on OS X at least it asks if you want to re-start R first, click no +packagel <- c("ggplot2","plyr") +install.packages(packagel) +lapply(packagel, require, character.only = T) + +# path to data & results + +# where's the data? +dpath <- "~/Documents/Work/Data/Social Science Datatsets/Time Use 2005/processed/" +# where do you want the results to go? +rpath <- "~/Documents/Work/Projects/RCUK-DEMAND/Theme 1/results/ONS TU 2005" + +# time axis defnition +# can't get this to work! +# halfhourlab <- "\"04:00\",\"06:00\", \"08:00\", \"10:00\", \"12:00\", \"14:00\", \"16:00\",\"18:00\",\"20:00\",\"22:00\"" + +# Load long form data ----------------------------------------------------------------- +# Time use data in long form - this has data in 10 minute time 'slots' +# It also has a few survey variables attached to each time use slot + +tu2005data <- read.csv(paste0(dpath,"UK-2005-TU-merged-long-reduced.csv")) + +# Now stop to check what's in it and make sure we understand the format! +head(tu2005data) + +# check values of main acts (the things people reported doing) by location +all_acts_by_location <- table("Main acts"= tu2005data$pact) +# ouptput to a csv file so we can keep for reference (useful later) +write.csv(all_acts_by_location, paste0(rpath,"all_acts_by_location-table.csv"), row.names=FALSE, na="") + +# check values of months variable (so we see that seasons are represented) +table("Month"= tu2005data$t_month) + +# recode month so it is easier to interpret +tu2005data$t_month[tu2005data$t_month == 2] <- "February" +tu2005data$t_month[tu2005data$t_month == 6] <- "June" +tu2005data$t_month[tu2005data$t_month == 9] <- "September" +tu2005data$t_month[tu2005data$t_month == 11] <- "November" + +# set the order of the month factor +tu2005data$t_month <- factor(tu2005data$t_month, + levels = c("February","June","September","November")) + +# re-check +table("Month"= tu2005data$t_month) + +# check the days +table("Days"= tu2005data$s_dow) + +# Out of order! +# set the order of the dow factor +tu2005data$s_dow <- factor(tu2005data$s_dow, + levels = c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday")) + +# recheck +table("Days"= tu2005data$s_dow) + +# Test: all acts ----------------------------------------------------------------- +# add a dummy variable we can count +tu2005data$count <- 1 +# create a table which counts the occurences of 'pact' in each 10 minute slot +all_acts <- ddply(tu2005data, c("s_starttime","pact"), summarise, count=sum(count)) + +# draw an unintelligible line graph using the table +all_acts_lplot <- ggplot(all_acts, aes(x=s_starttime, y=count, colour=pact, group=pact)) + geom_line() +all_acts_lplot + xlab("Time of Day") + ylab("N reporting") + + labs(colour="Activity") + + scale_x_discrete(breaks=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30"), + labels=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30")) + + theme(axis.text.x = element_text(angle=90, hjust=1, vjust=1)) + + theme(legend.position="right") +# save the plot +ggsave(paste0(rpath,"all_acts_tod_lineplot.pdf"), width=12, height=8, unit="cm", dpi=300) + +# and an unintelligible stacked chart +all_acts_stplot <- ggplot(all_acts, aes(x=s_starttime, y=count, fill=pact, group=pact)) + geom_area() +all_acts_stplot + xlab("Time of Day") + ylab("N reporting") + + labs(fill="Activity") + + scale_x_discrete(breaks=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30"), + labels=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30")) + + theme(axis.text.x = element_text(angle=90, hjust=1, vjust=1)) + + theme(legend.position="right") +# save the plot +ggsave(paste0(rpath,"all_acts_tod_stackedplot.pdf"), width=12, height=8, unit="cm", dpi=300) + +# What we really want to do is to create a new column with primary acts where: +# - all travel is collapsed to 1 code +# - the '/' are removed to make graph saving easier later +# Something like: +tu2005data$pact_c <- as.character(tu2005data$pact) +tu2005data$pact_nc <- gsub("/", " or ", tu2005data$pact_c) +# find the travel +tu2005data$pact_t <- grepl("travel", tu2005data$pact_c) + +tu2005data$sact_c <- as.character(tu2005data$sact) +tu2005data$sact_nc <- gsub("/", " or ", tu2005data$sact_c) +# find the travel +tu2005data$sact_t <- grepl("travel", tu2005data$sact_c) + +# set travel +tu2005data$pact_nc[tu2005data$pact_t == TRUE] <- "travel" +tu2005data$sact_nc[tu2005data$sact_t == TRUE] <- "travel" + +# convert back to factors +tu2005data$pact_nf <- as.factor(tu2005data$pact_nc) +tu2005data$sact_nf <- as.factor(tu2005data$sact_nc) + +table(tu2005data$pact_nf) + +# now re-try the stacked chart - there are fewer categories (but still a lot!) +all_acts_nf <- ddply(tu2005data, c("s_starttime","pact_nf"), summarise, count=sum(count)) +all_acts_stplotn <- ggplot(all_acts_nf, aes(x=s_starttime, y=count, fill=pact_nf, group=pact_nf)) + geom_area() +all_acts_stplotn + xlab("Time of Day") + ylab("N reporting") + + labs(fill="Activity") + + scale_x_discrete(breaks=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30"), + labels=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30")) + + theme(axis.text.x = element_text(angle=90, hjust=1, vjust=1)) + + theme(legend.position="right") +# well that worked slightly better but it's still fairly illegible, further grouping required!! +# save the plot +ggsave(paste0(rpath,"all_acts_nf_tod_stackedplot.pdf"), width=12, height=8, unit="cm", dpi=300) + +# Practices: Laundry ----------------------------------------------------------------- +# Interesting of itself but we also want to try to compare the results with the HES data +# set our y axis label +ylabt <- "laundry" +tu2005data$laundry_all <- 0 +# we're interested in laundry at home (for now!) +tu2005data$laundry_all[tu2005data$pact == "washing clothes" & + tu2005data$lact != "elsewhere" | + tu2005data$sact == "washing clothes" & + tu2005data$lact != "elsewhere"] <- 1 + +# make the table +laundry <- ddply(tu2005data, c("s_dow", "s_halfhour"), summarise, + n=sum(count), + pc=mean(laundry_all), + sd=sd(laundry_all)) +# CI for propn +# +/- (1.96 ∗ sqrt(p∗(1−p)/n)) +laundry$se <- sqrt(laundry$pc*(1-laundry$pc)/laundry$n) +laundry$ci <- 1.96 * laundry$se + +# plot it +laundry_plot <- ggplot(laundry, aes(x=s_halfhour, y=pc, colour=s_dow, group=s_dow)) + geom_line() +laundry_plot + xlab("Time of Day") + + ylab(paste("% reporting", ylabt)) + + labs(colour="Day of the week") + + scale_x_discrete(breaks=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30"), + labels=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30")) + + theme(axis.text.x = element_text(angle=90, hjust=1, vjust=1)) + + facet_wrap( ~ s_dow) + + geom_errorbar(aes(ymin=pc-ci, ymax=pc+ci), width=.2) +# save the plot +ggsave(paste0(rpath,"laundry_ci_tod_dow_plot.pdf"), width=12, height=8, unit="cm", dpi=300) + +# try a contour plot/heat map to make day of the week easier to see +laundry_hmplot <- ggplot(laundry, aes(x=s_halfhour, y=s_dow, fill=pc)) +laundry_hmplot + geom_raster() + xlab("Time of Day") + + ylab("Day of week") + + labs(fill=paste("% reporting", ylabt)) + + theme(legend.position="bottom") + + scale_x_discrete(breaks=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30"), + labels=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30")) + + theme(axis.text.x = element_text(angle=90, hjust=1, vjust=1)) +# save the plot +ggsave(paste0(rpath,"laundry_tod_dow_hmplot.pdf"), width=12, height=8, unit="cm", dpi=300) + +# now try by age group to analyse differences +laundry_age <- ddply(tu2005data, c("agegrp", "s_halfhour"), summarise, pc=100*mean(laundry_all)) +laundry_plot <- ggplot(laundry_age, aes(x=s_halfhour, y=pc, colour=agegrp, group=agegrp)) + geom_line() +laundry_plot + xlab("Time of Day") + + ylab(paste("% reporting", ylabt)) + + labs(colour="Age group") + + scale_x_discrete(breaks=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30"), + labels=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30")) + + theme(axis.text.x = element_text(angle=90, hjust=1, vjust=1)) +# save the plot +ggsave(paste0(rpath,"laundry_tod_by_age_plot.pdf"), width=12, height=8, unit="cm", dpi=300) + +# working status +laundry_wrk <- ddply(tu2005data, c("wrking", "s_halfhour", "s_dow"), summarise, + n=sum(count), + pc=mean(laundry_all), + sd=sd(laundry_all)) +# CI for propn +# +/- (1.96 ∗ sqrt(p∗(1−p)/n)) +laundry_wrk$se <- sqrt(laundry$pc*(1-laundry$pc)/laundry$n) +laundry_wrk$ci <- 1.96 * laundry$se + +laundry_plot <- ggplot(laundry_wrk, aes(x=s_halfhour, y=pc, colour=wrking, group=wrking)) + geom_line() +laundry_plot + xlab("Time of Day") + + ylab(paste("% reporting", ylabt)) + + labs(colour="Working status") + + scale_x_discrete(breaks=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30"), + labels=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30")) + + theme(axis.text.x = element_text(angle=90, hjust=1, vjust=1)) + + geom_errorbar(aes(ymin=pc-ci, ymax=pc+ci), width=.2) + + facet_wrap( ~ s_dow) + + theme(legend.position=c(0.5,0.2)) +# save the plot +ggsave(paste0(rpath,"laundry_tod_by_working_plot.pdf"), width=12, height=8, unit="cm", dpi=300) + +# To compare with the HES data on 'washing/drying' we need to create a table by weekend ('holiday') vs weekday +# And it needs to have 10 minute time slots as the HES data is in 10 minute chunks +tu2005data$weekend <- "Weekday" +tu2005data$weekend[tu2005data$s_dow == "Saturday" | tu2005data$s_dow == "Sunday"] <- "Weekend" +# check +table(tu2005data$s_dow,tu2005data$weekend) + +laundry_hes <- ddply(tu2005data, c("weekend", "s_starttime"), summarise, pc=100*mean(laundry_all)) +laundry_hes_plot <- ggplot(laundry_hes, aes(x=s_starttime, y=pc, colour=weekend, group=weekend)) + geom_line() +laundry_hes_plot + xlab("Time of Day") + + ylab(paste("% reporting", ylabt)) + + labs(colour="Weekday/Weekend") + + scale_x_discrete(breaks=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30"), + labels=c("00:00","04:00","08:00","12:00","16:00","20:00","23:30")) + + theme(axis.text.x = element_text(angle=90, hjust=1, vjust=1)) +ggsave(paste0(rpath,"laundry_tod_hes_plot.pdf"), width=12, height=8, unit="cm", dpi=300) + +# to get the data on the same graph as the HES results we need to export the table we made +# -> csv with blank cells where na +# NB this is long form - we could switch it to wide form to make it easier +write.csv(laundry_hes, paste0(rpath,"laundry_tod_hes_compare_data.csv"), row.names=FALSE, na="") + +print("Done!") +# stop clock - how long did that take? +proc.time() - starttime \ No newline at end of file diff --git a/Theme-1/laundryPaper/LICENSE b/Theme-1/laundryPaper/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..d6a93266f748d606b884f9434ff662fe80b9dc21 --- /dev/null +++ b/Theme-1/laundryPaper/LICENSE @@ -0,0 +1,340 @@ +GNU GENERAL PUBLIC LICENSE + Version 2, June 1991 + + Copyright (C) 1989, 1991 Free Software Foundation, Inc., <http://fsf.org/> + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The licenses for most software are designed to take away your +freedom to share and change it. By contrast, the GNU General Public +License is intended to guarantee your freedom to share and change free +software--to make sure the software is free for all its users. This +General Public License applies to most of the Free Software +Foundation's software and to any other program whose authors commit to +using it. (Some other Free Software Foundation software is covered by +the GNU Lesser General Public License instead.) You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +this service if you wish), that you receive source code or can get it +if you want it, that you can change the software or use pieces of it +in new free programs; and that you know you can do these things. + + To protect your rights, we need to make restrictions that forbid +anyone to deny you these rights or to ask you to surrender the rights. +These restrictions translate to certain responsibilities for you if you +distribute copies of the software, or if you modify it. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must give the recipients all the rights that +you have. You must make sure that they, too, receive or can get the +source code. And you must show them these terms so they know their +rights. + + We protect your rights with two steps: (1) copyright the software, and +(2) offer you this license which gives you legal permission to copy, +distribute and/or modify the software. + + Also, for each author's protection and ours, we want to make certain +that everyone understands that there is no warranty for this free +software. If the software is modified by someone else and passed on, we +want its recipients to know that what they have is not the original, so +that any problems introduced by others will not reflect on the original +authors' reputations. + + Finally, any free program is threatened constantly by software +patents. We wish to avoid the danger that redistributors of a free +program will individually obtain patent licenses, in effect making the +program proprietary. To prevent this, we have made it clear that any +patent must be licensed for everyone's free use or not licensed at all. + + The precise terms and conditions for copying, distribution and +modification follow. + + GNU GENERAL PUBLIC LICENSE + TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION + + 0. This License applies to any program or other work which contains +a notice placed by the copyright holder saying it may be distributed +under the terms of this General Public License. The "Program", below, +refers to any such program or work, and a "work based on the Program" +means either the Program or any derivative work under copyright law: +that is to say, a work containing the Program or a portion of it, +either verbatim or with modifications and/or translated into another +language. (Hereinafter, translation is included without limitation in +the term "modification".) Each licensee is addressed as "you". + +Activities other than copying, distribution and modification are not +covered by this License; they are outside its scope. The act of +running the Program is not restricted, and the output from the Program +is covered only if its contents constitute a work based on the +Program (independent of having been made by running the Program). +Whether that is true depends on what the Program does. + + 1. You may copy and distribute verbatim copies of the Program's +source code as you receive it, in any medium, provided that you +conspicuously and appropriately publish on each copy an appropriate +copyright notice and disclaimer of warranty; keep intact all the +notices that refer to this License and to the absence of any warranty; +and give any other recipients of the Program a copy of this License +along with the Program. + +You may charge a fee for the physical act of transferring a copy, and +you may at your option offer warranty protection in exchange for a fee. + + 2. You may modify your copy or copies of the Program or any portion +of it, thus forming a work based on the Program, and copy and +distribute such modifications or work under the terms of Section 1 +above, provided that you also meet all of these conditions: + + a) You must cause the modified files to carry prominent notices + stating that you changed the files and the date of any change. + + b) You must cause any work that you distribute or publish, that in + whole or in part contains or is derived from the Program or any + part thereof, to be licensed as a whole at no charge to all third + parties under the terms of this License. + + c) If the modified program normally reads commands interactively + when run, you must cause it, when started running for such + interactive use in the most ordinary way, to print or display an + announcement including an appropriate copyright notice and a + notice that there is no warranty (or else, saying that you provide + a warranty) and that users may redistribute the program under + these conditions, and telling the user how to view a copy of this + License. (Exception: if the Program itself is interactive but + does not normally print such an announcement, your work based on + the Program is not required to print an announcement.) + +These requirements apply to the modified work as a whole. If +identifiable sections of that work are not derived from the Program, +and can be reasonably considered independent and separate works in +themselves, then this License, and its terms, do not apply to those +sections when you distribute them as separate works. But when you +distribute the same sections as part of a whole which is a work based +on the Program, the distribution of the whole must be on the terms of +this License, whose permissions for other licensees extend to the +entire whole, and thus to each and every part regardless of who wrote it. + +Thus, it is not the intent of this section to claim rights or contest +your rights to work written entirely by you; rather, the intent is to +exercise the right to control the distribution of derivative or +collective works based on the Program. + +In addition, mere aggregation of another work not based on the Program +with the Program (or with a work based on the Program) on a volume of +a storage or distribution medium does not bring the other work under +the scope of this License. + + 3. You may copy and distribute the Program (or a work based on it, +under Section 2) in object code or executable form under the terms of +Sections 1 and 2 above provided that you also do one of the following: + + a) Accompany it with the complete corresponding machine-readable + source code, which must be distributed under the terms of Sections + 1 and 2 above on a medium customarily used for software interchange; or, + + b) Accompany it with a written offer, valid for at least three + years, to give any third party, for a charge no more than your + cost of physically performing source distribution, a complete + machine-readable copy of the corresponding source code, to be + distributed under the terms of Sections 1 and 2 above on a medium + customarily used for software interchange; or, + + c) Accompany it with the information you received as to the offer + to distribute corresponding source code. (This alternative is + allowed only for noncommercial distribution and only if you + received the program in object code or executable form with such + an offer, in accord with Subsection b above.) + +The source code for a work means the preferred form of the work for +making modifications to it. For an executable work, complete source +code means all the source code for all modules it contains, plus any +associated interface definition files, plus the scripts used to +control compilation and installation of the executable. However, as a +special exception, the source code distributed need not include +anything that is normally distributed (in either source or binary +form) with the major components (compiler, kernel, and so on) of the +operating system on which the executable runs, unless that component +itself accompanies the executable. + +If distribution of executable or object code is made by offering +access to copy from a designated place, then offering equivalent +access to copy the source code from the same place counts as +distribution of the source code, even though third parties are not +compelled to copy the source along with the object code. + + 4. You may not copy, modify, sublicense, or distribute the Program +except as expressly provided under this License. Any attempt +otherwise to copy, modify, sublicense or distribute the Program is +void, and will automatically terminate your rights under this License. +However, parties who have received copies, or rights, from you under +this License will not have their licenses terminated so long as such +parties remain in full compliance. + + 5. You are not required to accept this License, since you have not +signed it. However, nothing else grants you permission to modify or +distribute the Program or its derivative works. These actions are +prohibited by law if you do not accept this License. Therefore, by +modifying or distributing the Program (or any work based on the +Program), you indicate your acceptance of this License to do so, and +all its terms and conditions for copying, distributing or modifying +the Program or works based on it. + + 6. Each time you redistribute the Program (or any work based on the +Program), the recipient automatically receives a license from the +original licensor to copy, distribute or modify the Program subject to +these terms and conditions. You may not impose any further +restrictions on the recipients' exercise of the rights granted herein. +You are not responsible for enforcing compliance by third parties to +this License. + + 7. If, as a consequence of a court judgment or allegation of patent +infringement or for any other reason (not limited to patent issues), +conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot +distribute so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you +may not distribute the Program at all. For example, if a patent +license would not permit royalty-free redistribution of the Program by +all those who receive copies directly or indirectly through you, then +the only way you could satisfy both it and this License would be to +refrain entirely from distribution of the Program. + +If any portion of this section is held invalid or unenforceable under +any particular circumstance, the balance of the section is intended to +apply and the section as a whole is intended to apply in other +circumstances. + +It is not the purpose of this section to induce you to infringe any +patents or other property right claims or to contest validity of any +such claims; this section has the sole purpose of protecting the +integrity of the free software distribution system, which is +implemented by public license practices. Many people have made +generous contributions to the wide range of software distributed +through that system in reliance on consistent application of that +system; it is up to the author/donor to decide if he or she is willing +to distribute software through any other system and a licensee cannot +impose that choice. + +This section is intended to make thoroughly clear what is believed to +be a consequence of the rest of this License. + + 8. If the distribution and/or use of the Program is restricted in +certain countries either by patents or by copyrighted interfaces, the +original copyright holder who places the Program under this License +may add an explicit geographical distribution limitation excluding +those countries, so that distribution is permitted only in or among +countries not thus excluded. In such case, this License incorporates +the limitation as if written in the body of this License. + + 9. The Free Software Foundation may publish revised and/or new versions +of the General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + +Each version is given a distinguishing version number. If the Program +specifies a version number of this License which applies to it and "any +later version", you have the option of following the terms and conditions +either of that version or of any later version published by the Free +Software Foundation. If the Program does not specify a version number of +this License, you may choose any version ever published by the Free Software +Foundation. + + 10. If you wish to incorporate parts of the Program into other free +programs whose distribution conditions are different, write to the author +to ask for permission. For software which is copyrighted by the Free +Software Foundation, write to the Free Software Foundation; we sometimes +make exceptions for this. Our decision will be guided by the two goals +of preserving the free status of all derivatives of our free software and +of promoting the sharing and reuse of software generally. + + NO WARRANTY + + 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY +FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN +OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES +PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED +OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS +TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE +PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, +REPAIR OR CORRECTION. + + 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR +REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, +INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING +OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED +TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY +YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER +PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE +POSSIBILITY OF SUCH DAMAGES. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +convey the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + {description} + Copyright (C) {year} {fullname} + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License along + with this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + +Also add information on how to contact you by electronic and paper mail. + +If the program is interactive, make it output a short notice like this +when it starts in an interactive mode: + + Gnomovision version 69, Copyright (C) year name of author + Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, the commands you use may +be called something other than `show w' and `show c'; they could even be +mouse-clicks or menu items--whatever suits your program. + +You should also get your employer (if you work as a programmer) or your +school, if any, to sign a "copyright disclaimer" for the program, if +necessary. Here is a sample; alter the names: + + Yoyodyne, Inc., hereby disclaims all copyright interest in the program + `Gnomovision' (which makes passes at compilers) written by James Hacker. + + {signature of Ty Coon}, 1 April 1989 + Ty Coon, President of Vice + +This General Public License does not permit incorporating your program into +proprietary programs. If your program is a subroutine library, you may +consider it more useful to permit linking proprietary applications with the +library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. + diff --git a/Theme-1/laundryPaper/README.md b/Theme-1/laundryPaper/README.md new file mode 100644 index 0000000000000000000000000000000000000000..d8e5fe5f58176e635e8810093b8a8485a8c18980 --- /dev/null +++ b/Theme-1/laundryPaper/README.md @@ -0,0 +1,17 @@ +# DEMAND: Dynamics of Energy, Mobility and Demand + +Unless otherwise indicated this work was funded by RCUK through the End User Energy Demand Centres Programme via the "DEMAND: Dynamics of Energy, Mobility and Demand" Centre: + * http://www.demand.ac.uk + * http://gtr.rcuk.ac.uk/project/0B657D54-247D-4AD6-9858-64E411D3D06C + +# DEMAND_Laundry +Analysis for a paper on the changing practices of laundry using UK Time-Use data 1985-2005. + +Paper: https://eprints.soton.ac.uk/400478/ + +### Terms of Use +GPL: V2 - http://choosealicense.com/licenses/gpl-2.0/ + +See license file for details. + +[YMMV](http://en.wiktionary.org/wiki/YMMV) diff --git a/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Change-Over-Time-v2.0-adult.do b/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Change-Over-Time-v2.0-adult.do new file mode 100644 index 0000000000000000000000000000000000000000..bf347d2d872e01b0d503d63bbb545b2fb53ab9a6 --- /dev/null +++ b/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Change-Over-Time-v2.0-adult.do @@ -0,0 +1,592 @@ +capture log close _all + +******************************************* +* Script to use a number of datasets to examine: +* - distributions of laundry in 1975 & 2005 +* - changing laundry practices + +* uses: +* - MTUS World 6 time-use data (www.timeuse.org/mtus UK subset) - data already in long format (but episodes) +* - FES 1985 & EFS 2005-6 to analyse uptake of washers/dryers +* - SPRG water practices survey + +* This work was funded by RCUK through the End User Energy Demand Centres Programme via the +* "DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) + +/* + +Copyright (C) 2014 University of Southampton + +Author: Ben Anderson (b.anderson@soton.ac.uk, @dataknut, https://github.com/dataknut) + [Energy & Climate Change, Faculty of Engineering & Environment, University of Southampton] + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License +(http://choosealicense.com/licenses/gpl-2.0/), or (at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +#YMMV - http://en.wiktionary.org/wiki/YMMV + +*/ + +clear all + +* do package checks +local dependencies "tabout labellist estout" +foreach d of local dependencies { + # this will throw an error if not found + di "*******" + di "* Testing for presence of required user package: `d' " + di "* (use -> ssc install `d' <- if needed)" + which `d' +} + +* change these to run this script on different PC +* use globals so can re-run parts of the script + +global where "~/Documents/Work" +global droot "$where/Data/Social Science Datasets" + +* LCFS/EFS +global efspath "$droot/Expenditure and Food Survey/processed" + +* MTUS +global mtuspath "$droot/MTUS/World 6/processed" + +* SPRG +global sprgpath "$where/Projects/ESRC-SPRG/WP4-Micro_water/data/sprg_survey/data/safe/v6" + +* where to put results +global rpath "$where/Papers and Conferences/The Time and Timing of Demand - Laundry/results" + +* version +local version = "v2.0" +* switches to using '1985' as base year +* weights the final counts +* which subgroup of mtus are we interested in? +global mtusfilter "_all" + +*local version "v1.1-singles" +*local filter "if hhtype == 1" +* single person hhs only + +*local version "v1.1-all-hhs-sanity-check" +*local filter "_all" +* counts if 1 or more acts (sanity check) + +*local version = "v1.1-all-hhs" +* local filter "_all" +* adds in secondary acts + +* local version = "v1.0-main" +* counts main acts only + +capture log close + +local mainlog "DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-`version'-adult" +log using "$rpath/`mainlog'.smcl", replace name(main) + +* control what gets done +local do_efs 1 // check FES/EFS/LCFS for appliance uptake rates +local do_sprg 1 // check SPRG survey for washing practices in 2011 +local do_halfhour_episodes 1 // do duration analysis using episodes +local do_halfhour_samples 1 // do half hour analysis using '10 minute' sampled file +local do_sequences 0 + +* make script run without waiting for user input +set more off + +if `do_efs' { + log off main + log using "$rpath/`mainlog'_do_efs.smcl", replace name(do_efs) + + ********** + * FES data for washing machine & tumble dryer uptake levels in 1985 + * to do + + * EFS data for washing machine & tumble dryer uptake levels to 2005 + use "$efspath/EFS-2005-2006-extract-BA.dta", clear + lookfor tumble weight + tab survey_year a167 [iw=weighta], row + + * 2005 only + tab a167 c_nchild [iw=weighta] if survey_year == "2005", col + tab a167 c_nearners [iw=weighta] if survey_year == "2005", col + tab a167 c_empl [iw=weighta] if survey_year == "2005", col + + log close do_efs + log on main +} + +if `do_sprg' { + log off main + log using "$rpath/`mainlog'_do_sprg.smcl", replace name(do_sprg) + + ********** + * SPRG data on laundry practices + use "$sprgpath/8369-clt-050312-v6-wf-safe.dta", clear + + desc q27* + + rename q27_sum sum_q27 + + * 1 = yes, 2 = no + recode q27* (2=0) + + * use mean to get % who said yes to each + su q27* [iw=weight_respondent2], sep(0) + + * mean number of 'yes' responses + su sum_q27 [iw=weight_respondent2] + + * distribution + tab sum_q27 [iw=weight_respondent2] + + log close do_sprg + log on main +} + +********************************** +* codes of interest +* 1985: Main/Sec21 Laundry, ironing, clothing repair <- 0701 Wash clothes, hang out / bring in washing; +* 0702 Iron clothes; +* 0801 Repair, upkeep of clothes + + +* 2005: Main/Sec21 Laundry, ironing, clothing repair <- Pact=7 (washing clothes) + +* start with processing the aggregate (survey) data +use "$mtuspath/MTUS-adult-aggregate-UK-only-wf.dta", clear + +* drop all bad cases +keep if badcase == 0 + +* set as survey data for descriptives +svyset [iw=propwt] + +* create a bespoke survey which merges 1983 & 1987 +* has the advantage of providing all seasons for '1985' +recode survey (1974=1974 "1974") (1983/1987=1985 "1985") (1995 = 1995 "1995") (2000=2000 "2000") (2005=2005 "2005"), gen(ba_survey) + + +* this is minutes per day not episodes +* check 18 (Cooking) & 20 (Cleaning) & 22 (maintain home/vehicle) against laundry +* seems to under-report laundry in 1974, esp for women? +svy: mean main18 main20 main21 main22, over(ba_survey sex) + +* keep whatever sample we define above +keep $mtusfilter + +* keep only the vars we want to keep memory required low +keep sex age main7 main21 hhtype empstat emp unemp student retired propwt survey /// + hhldsize famstat nchild *pid ba* + +* number of diary-days +svy: tab survey ba_survey, obs + +if `do_halfhour_episodes' { + preserve + log using "$rpath/`mainlog'_do_halfhour_episodes.smcl", replace name(do_halfhour_episodes) + ************************* + * merge in the episode data + * do analysis at episode level + + merge 1:m diarypid using "$mtuspath/MTUS-adult-episode-UK-only-wf.dta", /// + gen(m_aggvars) + + * won't match the dropped years & badcases + tab m_aggvars ba_survey + + * keep the matched cases + keep if m_aggvars == 3 + + * number of episodes per day + svy: tab s_dow survey, obs col + + * overall durations + gen duration = s_endtime - s_starttime + format duration %tcHH:MM + tab duration ba_survey [iw=propwt] + + *************** + * Laundry + + * define laundry + gen laundry_p = 0 + lab var laundry_p "Main act = laundry (21)" + replace laundry_p = 1 if main == 21 + + gen laundry_s = 0 + lab var laundry_s "Secondary act = laundry (21)" + replace laundry_s = 1 if sec == 21 + + gen laundry_all = 0 + replace laundry_all = 1 if laundry_p == 1 | laundry_s == 1 + + * check % episodes which are laundry + * NB reporting frame shorter in 2005 (10 mins) so may be higher frequency (e.g. interruption in 10-20 mins coded) + * row % + tab ba_survey laundry_p [iw=propwt] + tab ba_survey laundry_s [iw=propwt] + * all + tab ba_survey laundry_all [iw=propwt] + + * check duration of laundry + * before we do this merge together episodes that are contiguous (e.g. laundry (s) then laundry(p) -> 1 episode) + * same approach as for dinner + * calculate duration + gen laundry_duration = duration if laundry_all == 1 + format laundry_duration %tcHH:MM + * count back & forward maxcount episodes within the same diary day to check if they are also laundry + * indicates something changed - primary/secondary act or location or who with etc + * add on duration if previous and subsequent episodes are also laundry and location is unchanged + * NB: if you make maxcount > 1 then you could have episodes of eating separated by a long episode of something else + local maxcount = 1 + + * This is vital - we have to have the episodes in diary & time order! + sort diarypid start + + foreach n of numlist 1/`maxcount' { + local prev = `n' - 1 + di "* Now = `n', previous = `prev'" + di "* Before" + su laundry_duration + bysort survey diarypid: replace laundry_duration = laundry_duration + duration[_n-`n'] if laundry_all == 1 & /// + laundry_all[_n-`n'] == 1 & eloc == eloc[_n-`n'] + bysort survey diarypid: replace laundry_duration = laundry_duration + duration[_n+`n'] if laundry_all == 1 & /// + laundry_all[_n+`n'] == 1 & eloc == eloc[_n+`n'] + di "* After" + su laundry_duration + } + + + * Means are probably not going to tell us much given the differences in recording frames + * Use table instead as durations are so 'rounded' + * even so have to allow for differences in recording frames + di "* Duration of merged laundry episodes (weighted)" + *table laundry_duration sex ba_survey [iw=propwt] + * not interested in gender differences here + tabout laundry_duration ba_survey [iw=propwt] /// + using "$rpath/MTUS_W6_laundry_duration_by_year_`version'.txt" , /// + replace /// + format(3) + + log close do_halfhour_episodes + log on main + restore + +} + +if `do_halfhour_samples' { + *preserve + log off main + log using "$rpath/`mainlog'_do_halfhour_samples.smcl", replace name(do_halfhour_samples) + + ************************* + * sampled data + * this requires the 10 minute sampling process implemented in XXX to have been run over the MTUS first + * merge in the sampled data + * do analysis by collapsing 10 minute sampled data to half hours + merge 1:m diarypid using "$mtuspath/MTUS-adult-episode-UK-only-wf-10min-samples-long-v1.0.dta", /// + gen(m_aggvars) + + * set up half-hour variable + gen ba_hourt = hh(s_starttime) + gen ba_minst = mm(s_starttime) + + gen ba_hh = 0 if ba_minst < 30 + replace ba_hh = 30 if ba_minst > 29 + gen ba_sec = 0 + * sets date to 1969! + gen s_halfhour = hms(ba_hourt, ba_hh, ba_sec) + lab var s_halfhour "Episode starts during the half hour following" + format s_halfhour %tcHH:MM + + * define laundry + gen laundry_p = 0 + lab var laundry_p "Main act = laundry (21)" + replace laundry_p = 1 if pact == 21 + + gen laundry_s = 0 + lab var laundry_s "Secondary act = laundry (21)" + replace laundry_s = 1 if sact == 21 + + gen laundry_all = 0 + replace laundry_all = 1 if laundry_p == 1 | laundry_s == 1 + + * this is the number of 10 minute samples by survey & day of the week + tab ba_survey s_dow [iw=propwt] + + * check % samples which are laundry + * NB reporting frame longer in 1974 (30 mins) so may be higher frequency (e.g. interruption in 10-20 mins coded) + di "* main" + tab ba_survey laundry_p [iw=propwt] + di "* secondary" + tab ba_survey laundry_s [iw=propwt] + di "* all" + tab ba_survey laundry_all [iw=propwt] + + * keep 1985 & 2005 only + keep if ba_survey == 1985 | ba_survey == 2005 + + * collapse to add up the sampled laundry by half hour + * use the byvars we're interested in (or could re-merge with aggregated file) + * use mean to keep the weight + collapse (sum) laundry_* (mean) propwt, by(diarypid pid ba_survey s_dow mtus_month mtus_year s_halfhour /// + ba_birth_cohort ba_age_r ba_nchild sex emp empstat nchild) + * because the different surveys have different reporting periods we need to just count at least 1 laundry in the half hour + lab val emp EMP + lab val empstat EMPSTAT + local acts "p s all" + foreach a of local acts { + gen any_laundry_`a' = 0 + replace any_laundry_`a' = 1 if laundry_`a' > 0 + } + * the number of half hour data points by survey & day + tab s_dow ba_survey [iw=propwt] + + svyset [pw=propwt] + * now compare the 'any_laundry' indicator with 'all laundry' to see + * which is affected by variation in diary time slot + di "* test of 'any laundry' in half hour" + svy: mean any_laundry_*, over(ba_survey) + table ba_survey [pw=propwt], c(mean any_laundry_all) + table s_halfhour ba_survey [pw=propwt], c(mean any_laundry_all) + + di "* test of how much laundry in half hour" + svy: mean laundry_*, over(ba_survey) + table ba_survey [pw=propwt], c(mean laundry_all) + table s_halfhour ba_survey [pw=propwt], c(mean laundry_all) + + di "* tests suggest we should stick to any_laundry_all if we want to compare absolute rates over time" + di "* as it does not inflate values where diary slot duration > 10 minutes" + + svyset [iw=propwt] + * the distribution of laundry by survey + * should give same results as above? + di "* primary" + svy: tab ba_survey any_laundry_p, row ci + + di "* secondary" + svy: tab ba_survey any_laundry_p, row ci + + di "* all" + svy: tab ba_survey any_laundry_all, row ci + + * by gender for all laundry reported + svy: tab ba_survey sex if any_laundry_all == 1, ci row + + * gender & age + svy: tab ba_age_r sex if any_laundry_all == 1 & ba_survey == "1985", ci row + svy: tab ba_age_r sex if any_laundry_all == 1 & ba_survey == "2005", ci row + + * Separate days + table ba_survey day [iw=propwt], by(any_laundry_all) + + * days by gender + table survey day sex [iw=propwt], by(any_laundry_all) + + * laundry by employment status if female + table survey day empstat if sex == 2 & any_laundry_all == 1 [iw=propwt] + + di "* Tables for all days" + * All years, all days + table s_halfhour survey any_laundry_all [iw=propwt] + + * days by half hour + table s_halfhour survey day [iw=propwt], by(any_laundry_all) + + * seasons + recode month (3 4 5 = 1 "Spring") (6 7 8 = 2 "Summer") (9 10 11 = 3 "Autumn") (12 1 2 = 4 "Winter"), gen(season) + * check + * tab month season + table s_halfhour survey season [iw=propwt], by(any_laundry_all) + + * by half hour & employment status for women + table s_halfhour empstat survey if sex == 2 [iw=propwt], by(any_laundry_all) + + *repeat by day for 2005 + table s_halfhour empstat day if survey == 2005 & sex == 2 [iw=propwt], by(any_laundry_all) + + * analysis by laundry type + * sunday morning + + * set time variable so can select by time + xtset diarypid s_halfhour, delta(30 mins) + * only code for laundry within year + gen laundry_timing = 5 if any_laundry_all == 1 // other + replace laundry_timing = 1 if any_laundry_all == 1 & day == 1 & tin(08:00, 12:00) // sunday morning + replace laundry_timing = 2 if any_laundry_all == 1 & day > 1 & day < 6 & tin(09:00, 12:00) // weekday morning + replace laundry_timing = 3 if any_laundry_all == 1 & day > 1 & day < 6 & tin(17:00, 20:00) // weekday evening peak + replace laundry_timing = 4 if any_laundry_all == 1 & tin(00:00, 01:30) // night-time + replace laundry_timing = 4 if any_laundry_all == 1 & tin(22:30, 23:30) // night-time + + tab laundry_timing, gen(laundry_timing_) + + * check for missing + table s_halfhour laundry_timing any_laundry_all, mi + + lab def laundry_timing 1 "Sunday morning 09:00-12:00" 2 "Weekday morning 09:00-12:00" 3 "Weekday evening peak 17:00-20:00" 4 "Night-time 22:30-01:30" 5 "Other" + lab val laundry_timing laundry_timing + tab laundry_timing survey [iw=propwt], col + svy:tab laundry_timing survey, col ci + table laundry_timing ba_age_r survey [iw=propwt], col + table laundry_timing empstat survey [iw=propwt], col + table laundry_timing ba_nchild survey [iw=propwt], col + + * collapse to single person record + * remember 1974/5 = 1 week diary + collapse (sum) laundry_timing_* any_laundry_all (mean) propwt, by(pid survey /// + ba_birth_cohort ba_age_r ba_nchild sex emp empstat nchild) + recode any_laundry_all (1/max=1) + recode laundry_timing_1 (1/max=1) + recode laundry_timing_2 (1/max=1) + recode laundry_timing_3 (1/max=1) + recode laundry_timing_4 (1/max=1) + recode laundry_timing_5 (1/max=1) + + *how many people are in multiple types? + egen nlaundry_types = rowtotal( laundry_timing_*) + svy: tab nlaundry_types survey, col + + * what % of respondents in each? + svy: mean laundry_timing_*, over(survey) + * % of launderers + svy: mean laundry_timing_* if any_laundry_all == 1, over(survey) + + foreach v of numlist 1/4 { + logit laundry_timing_`v' sex ib4.empstat i.ba_age_r i.ba_nchild if survey == 1974 + est store laundry_timing_`v'_1974 + logit laundry_timing_`v' sex ib4.empstat i.ba_age_r i.ba_nchild if survey == 2005 + est store laundry_timing_`v'_2005 + } + estout laundry_*_2005 using "$rpath/laundry_type_1974_regressions.txt", cells("b ci_l ci_u se _star") stats(N r2_p chi2 p ll) replace + estout laundry_*_2005 using "$rpath/laundry_type_2005_regressions.txt", cells("b ci_l ci_u se _star") stats(N r2_p chi2 p ll) replace + +} +*restore + +************************* +* sequences +if `do_sequences' { + * back to the episodes + merge 1:m diarypid using "$mtuspath/MTUS-adult-episode-UK-only-wf.dta", /// + gen(m_aggvars) + * this won't have matched the dropped years & badcases + * tab m_aggvars survey + + * keep the matched cases + keep if m_aggvars == 3 + + * define laundry + gen laundry_p = 0 + lab var laundry_p "Main act = laundry (21)" + replace laundry_p = 1 if main == 21 + + gen laundry_s = 0 + lab var laundry_s "Secondary act = laundry (21)" + replace laundry_s = 1 if sec == 21 + + gen laundry_all = 0 + replace laundry_all = 1 if laundry_p == 1 | laundry_s == 1 + + * we can't use the lag notation and xtset as there are various time periods represented in the data + * and we would need to set up some fake (or real!) dates to attach the start times to. + * we could do this but we don't really need to. + + * we want to use episodes not time slots (as we are ignoring duration here) + + * This is vital - we have to have the episodes in diary & time order! + sort diarypid start + + * we are NOT going to worry about sequential episodes which are both laundry_all as this will indicate + * that something changed - most likely a switch of laundry from primary to secondary activity (or vice versa) + * this may be of interest in itself + + local acts "all" + foreach a of local acts { + * make sure we do this within diaries otherwise we might get a 'before' or 'after' belonging to a previous day (for multi day diaries) + * or to someone else (for 1 day diaries or the first day)! + + qui: by diarypid: gen before_laundry_`a' = main[_n-1] if laundry_`a' == 1 + qui: by diarypid: gen after_laundry_`a' = main[_n+1] if laundry_`a' == 1 + + lab val before_laundry_`a' after_laundry_`a' MAIN + + qui: tabout before_laundry_`a' survey [iw=propwt] using "$rpath/before-laundry-by-survey.txt", replace + qui: tabout after_laundry_`a' survey [iw=propwt] using "$rpath/after-laundry-by-survey.txt", replace + } + tab laundry_all + * create a sequence variable (horrible kludge but hey, it works :-) + egen laundry_seq = concat(before_laundry_all laundry_all after_laundry_all) if laundry_all == 1 , punct("_") + + * get frequencies of sequencies (this will be a very big table) + * the few which have missing (.) before laundry indicate nothing recorded before hand which seems a bit odd? + + tab laundry_seq + + preserve + * contract doesn't like iw - only allows fw (which need to be integers) + * so these will be unweighted + contract laundry_seq survey, nomiss + qui: tab laundry_seq + + qui: return li + di "For laundry_seq after contract : N = " r(N) ", r = " r(r) + + * reshape it to get the frequencies per survey into columns + qui: reshape wide _freq, i(laundry_seq) j(survey) + qui: return li + + li in 1/5 + outsheet using "$rpath/laundry-sequences-by-survey-wide.txt", replace + * totals + * the number of different sequences will probably vary by sample size - more potential variation + su _freq*, sep(0) + tabstat _freq*, s(n sum) + * top in 1974? + gsort - _freq1974 + li in 1/10, sep(0) + * top in 2005? + gsort - _freq2005 + li in 1/10, sep(0) + + + restore + + /* + * try using the sqset commands + + * tell it to look at sequences + sqset main diarypid s_starttime + + * top 20 sequences + sqtab survey if before_laundry ! = 1 | after_laundry ! = 1, ranks(1/20) + */ +} + +* we're back to the main survey aggregate file here. +* drop diary duplicates & do some basic stats + +duplicates drop pid, force + +* create working age variable +gen ba_working_age = 0 +replace ba_working_age = 1 if age > 18 // OK, it should be 16 but... +* women +replace ba_working_age = 0 if age > 60 & sex == 2 +* men +replace ba_working_age = 0 if age > 65 & sex == 1 +* check +table ba_age_r ba_working_age sex + +* Propoprtion of women in work +tab survey empstat [iw=propwt] if ba_working_age == 1 & sex == 2, row + + +log close diff --git a/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Energy-Time-As-Submitted-v1.0.do b/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Energy-Time-As-Submitted-v1.0.do new file mode 100644 index 0000000000000000000000000000000000000000..d6da13468631f1e243c333fe4eeda524ee7eb048 --- /dev/null +++ b/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Energy-Time-As-Submitted-v1.0.do @@ -0,0 +1,365 @@ +******************************************* +* Script to use a number of datasets to examine: +* - distributions of laundry in 1975 & 2005 +* - changing laundry practices + +* uses: +* - MTUS World 6 time-use data (www.timeuse.org/mtus UK subset) - data already in long format (but episodes) +* - EFS 2005-6 to analyse uptake of washers/dryers +* - SPRG water practices survey + +* This work was funded by RCUK through the End User Energy Demand Centres Programme via the +* "DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) + +/* + +Copyright (C) 2014 University of Southampton + +Author: Ben Anderson (b.anderson@soton.ac.uk, @dataknut, https://github.com/dataknut) + [Energy & Climate Change, Faculty of Engineering & Environment, University of Southampton] + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License +(http://choosealicense.com/licenses/gpl-2.0/), or (at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +#YMMV - http://en.wiktionary.org/wiki/YMMV + +*/ + +clear all + +* change these to run this script on different PC +* use globals so can re-run parts of the script + +global where "~/Documents/Work" +global droot "$where/Data/Social Science Datatsets" + +* LCFS/EFS +global efspath "$droot/Expenditure and Food Survey/processed" + +* MTUS +global mtuspath "$droot/MTUS/World 6/processed" + +* SPRG +global sprgpath "$where/Projects/ESRC-SPRG/WP4-Micro_water/data/sprg_survey/data/safe/v6" + +* where to put results +global proot "$where/Projects/RCUK-DEMAND/Theme 1" +global rpath "$proot/results/MTUS" + +* version +global version = "v1.0-all-locs" +* weights the final counts + +* which subgroup of mtus are we interested in? +global mtusfilter "_all" + +capture log close + +log using "$rpath/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-$version-adult.smcl", replace + +* control what gets done +local do_halfhour_samples = 1 + +* make script run without waiting for user input +set more off + +********** +* LCFS data for tumble dryer uptake levels to 2005 +use "$efspath/EFS-2005-2006-extract-BA.dta", clear +lookfor tumble weight +tab year a167 [iw=weighta], row + +* 2005 only +tab a167 c_nchild [iw=weighta] if year == 2005, col +tab a167 c_nearners [iw=weighta] if year == 2005, col +tab a167 c_empl [iw=weighta] if year == 2005, col + +********** +* SPRG data on laundry practices +use "$sprgpath/8369-clt-050312-v6-wf-safe.dta", clear + +desc q27* + +rename q27_sum sum_q27 + +* 1 = yes, 2 = no +recode q27* (2=0) + +* use mean to get % who said yes to each +su q27* [iw=weight_respondent2], sep(0) + +* mean number of 'yes' responses +su sum_q27 [iw=weight_respondent2] + +* distribution +tab sum_q27 [iw=weight_respondent2] + +********************************** +* codes of interest +* 1974: Main/Sec21 Laundry, ironing, clothing repair <- 50 Other essential domestic work (i.e. NOT preparing meals or routine housework) +* so laundry in 1974 may be over-estimated +* BUT 1975 is partly a 7 day diary - so more likely to detect laundry? + +* 2005: Main/Sec21 Laundry, ironing, clothing repair <- Pact=7 (washing clothes) + +* start with processing the aggregate (survey) data +use "$mtuspath/MTUS-adult-aggregate-UK-only-wf.dta", clear + +* drop all bad cases +keep if badcase == 0 + +* set as survey data for descriptives +svyset [iw=propwt] + +* keep only 1974 & 2005 for simplicity +* keep if survey == 1974 | survey == 2005 +* no, let's keep them all for birth cohort analysis! + +* this is minutes per day not episodes +* check 18 (Cooking) & 20 (Cleaning) & 22 (maintain home/vehicle) against laundry +* seems to under-report laundry in 1974, esp for women? +svy: mean main18 main20 main21 main22, over(survey sex) + +* keep whatever sample we define above +keep $mtusfilter + +* number of diary days by hh type +* svy: tab hhtype survey, col count + +* number of diary days by number of days covered +* 1974 = 7 day dairy +svy: tab id survey, col count + + +* keep only the vars we want to keep memory required low +keep sex age main7 main21 hhtype empstat emp unemp student retired propwt survey day month year /// + hhldsize famstat nchild *pid ba* + +* number of diary-days +svy: tab survey, obs + + +preserve +************************* +* sampled data +* this requires the 10 minute sampling process implemented in +* https://github.com/dataknut/MTUS/blob/master/process-MTUS-W6-convert-to-X-min-samples-v1.0-adult.do +* to have been run over the MTUS first with X set to 10 + +if `do_halfhour_samples' { + * merge in the sampled data + * do analysis by collapsing 10 minute sampled data to half hours + merge 1:m diarypid using "$mtuspath/MTUS-adult-episode-UK-only-wf-10min-samples-long-v1.0.dta", /// + gen(m_aggvars) + + * set up half-hour variable + gen ba_hourt = hh(s_starttime) + gen ba_minst = mm(s_starttime) + + gen ba_hh = 0 if ba_minst < 30 + replace ba_hh = 30 if ba_minst > 29 + gen ba_sec = 0 + * sets date to 1969! + gen s_halfhour = hms(ba_hourt, ba_hh, ba_sec) + lab var s_halfhour "Episode starts during the half hour following" + format s_halfhour %tcHH:MM + + * define laundry + gen laundry_p = 0 + lab var laundry_p "Main act = laundry (21)" + replace laundry_p = 1 if pact == 21 + + gen laundry_s = 0 + lab var laundry_s "Secondary act = laundry (21)" + replace laundry_s = 1 if sact == 21 + + gen laundry_all = 0 + replace laundry_all = 1 if laundry_p == 1 | laundry_s == 1 + + lab var laundry_all "Any act = laundry (21)" + + * done at home or elsewhere? + tab survey eloc if laundry_all == 1 [iw=propwt], mi + + * a lot of 1974 done 'elsewhere'? + + * this is the number of 10 minute samples by survey & day of the week + tab survey day [iw=propwt] + + * check % of sampled X minute points which are laundry + * NB reporting frame longer in 1974 (30 mins) so may be higher frequency (e.g. interruption in 10-20 mins coded) + di "* main" + tab survey laundry_p [iw=propwt] + di "* secondary" + tab survey laundry_s [iw=propwt] + di "* all" + tab survey laundry_all [iw=propwt] + + * which years could we use? + tab month survey [iw=propwt] + + * 1974 = Feb, Mar & Aug,Sept -> has winter & summer + * 1984 = winter only + * 1987 = early summer only + * 1995 = May + * 2000 = all year + * 2005 = each season (March, June, Sept, Nov) + + * keep 1974 & 2005 only + keep if survey == 1974 | survey == 2005 + + * check for duplicates + duplicates report diarypid ba_starttime + * none + + duplicates report diarypid s_halfhour + * three -> because each s_halfhour value can stand for x:10 x:20 x:30 + * collapse to add up the sampled laundry by half hour + + * use the byvars we're interested in (or could re-merge with aggregated file) + collapse (sum) laundry_* (mean) propwt, by(diarypid pid survey day month year s_halfhour /// + ba_birth_cohort ba_age_r ba_nchild sex emp empstat nchild) + * because the different surveys have different reporting periods we need to just count at least 1 laundry in the half hour + lab val emp EMP + lab val empstat EMPSTAT + local acts "p s all" + foreach a of local acts { + gen any_laundry_`a' = 0 + replace any_laundry_`a' = 1 if laundry_`a' > 0 + } + * the number of half hour data points by survey & day + tab survey day [iw=propwt] + + svyset [iw=propwt] + * the distribution of laundry by survey and location + di "* primary" + svy: tab survey if any_laundry_p == 1, col ci + + di "* secondary" + svy: tab survey if any_laundry_s == 1, col ci + + di "* all" + svy: tab survey if any_laundry_all == 1, col ci + + * by gender for all laundry reported + svy: tab survey sex if any_laundry_all == 1, ci row + + * gender & age + svy: tab ba_age_r sex if any_laundry_all == 1 & survey == 1974, ci row + svy: tab ba_age_r sex if any_laundry_all == 1 & survey == 2005, ci row + + * Separate days + table survey day [iw=propwt], by(any_laundry_all) + + * days by gender + table survey day sex [iw=propwt], by(any_laundry_all) + + * laundry by employment status if female + table survey day empstat if sex == 2 & any_laundry_all == 1 [iw=propwt] + + * set time variable so can select by time & also tables should look nicer + xtset diarypid s_halfhour, delta(30 mins) format(%tcHH:MM) + + di "* Tables for all days" + * All years, all days + table s_halfhour survey any_laundry_all [iw=propwt] + + * days by half hour + table s_halfhour survey day [iw=propwt], by(any_laundry_all) + + * seasons + recode month (3 4 5 = 1 "Spring") (6 7 8 = 2 "Summer") (9 10 11 = 3 "Autumn") (12 1 2 = 4 "Winter"), gen(season) + * check + * tab month season + table s_halfhour survey season [iw=propwt], by(any_laundry_all) + + * by half hour & employment status for women + table s_halfhour empstat survey if sex == 2 [iw=propwt], by(any_laundry_all) + + *repeat by day for 2005 + table s_halfhour empstat day if survey == 2005 & sex == 2 [iw=propwt], by(any_laundry_all) + + * analysis by laundry type + * sunday morning + + * only code for laundry within year + gen laundry_timing = 5 if any_laundry_all == 1 // other + replace laundry_timing = 1 if any_laundry_all == 1 & day == 1 & tin(08:00, 12:00) // sunday morning + replace laundry_timing = 2 if any_laundry_all == 1 & day > 1 & day < 6 & tin(09:00, 12:00) // weekday morning + replace laundry_timing = 3 if any_laundry_all == 1 & day > 1 & day < 6 & tin(17:00, 20:00) // weekday evening peak + replace laundry_timing = 4 if any_laundry_all == 1 & tin(00:00, 01:30) // night-time + replace laundry_timing = 4 if any_laundry_all == 1 & tin(22:30, 23:30) // night-time + + tab laundry_timing, gen(laundry_timing_) + + * check for missing + table s_halfhour laundry_timing any_laundry_all, mi + + lab def laundry_timing 1 "Sunday morning 09:00-12:00" 2 "Weekday morning 09:00-12:00" 3 "Weekday evening peak 17:00-20:00" 4 "Night-time 22:30-01:30" 5 "Other" + lab val laundry_timing laundry_timing + tab laundry_timing survey [iw=propwt], col + svy:tab laundry_timing survey, col ci + table laundry_timing ba_age_r survey [iw=propwt], col + table laundry_timing empstat survey [iw=propwt], col + table laundry_timing ba_nchild survey [iw=propwt], col + + * collapse to single person record + * remember 1974/5 = 1 week diary + collapse (sum) laundry_timing_* any_laundry_all (mean) propwt, by(pid survey /// + ba_birth_cohort ba_age_r ba_nchild sex emp empstat nchild) + recode any_laundry_all (1/max=1) + recode laundry_timing_1 (1/max=1) + recode laundry_timing_2 (1/max=1) + recode laundry_timing_3 (1/max=1) + recode laundry_timing_4 (1/max=1) + recode laundry_timing_5 (1/max=1) + + *how many people are in multiple types? + egen nlaundry_types = rowtotal( laundry_timing_*) + svy: tab nlaundry_types survey, col + + * what % of respondents in each? + svy: mean laundry_timing_*, over(survey) + * % of launderers + svy: mean laundry_timing_* if any_laundry_all == 1, over(survey) + + foreach v of numlist 1/4 { + logit laundry_timing_`v' sex ib4.empstat i.ba_age_r i.ba_nchild if survey == 1974 + est store laundry_timing_`v'_1974 + logit laundry_timing_`v' sex ib4.empstat i.ba_age_r i.ba_nchild if survey == 2005 + est store laundry_timing_`v'_2005 + } + estout laundry_*_2005 using "$rpath/laundry_type_1974_regressions.txt", cells("b ci_l ci_u se _star") stats(N r2_p chi2 p ll) replace + estout laundry_*_2005 using "$rpath/laundry_type_2005_regressions.txt", cells("b ci_l ci_u se _star") stats(N r2_p chi2 p ll) replace + +} +restore + +* we're back to the main survey aggregate file here. +* drop diary duplicates & do some basic stats + +duplicates drop pid, force + +* create working age variable +gen ba_working_age = 0 +replace ba_working_age = 1 if age > 18 // OK, it should be 16 but... +* women +replace ba_working_age = 0 if age > 60 & sex == 2 +* men +replace ba_working_age = 0 if age > 65 & sex == 1 +* check +table ba_age_r ba_working_age sex + +* Proportion of women in work +tab survey empstat [iw=propwt] if ba_working_age == 1 & sex == 2, row + +di "Done!" + +log close diff --git a/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Energy-Time-As-Submitted-v1.1.do b/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Energy-Time-As-Submitted-v1.1.do new file mode 100644 index 0000000000000000000000000000000000000000..4c630f274d028b5890a76e0eea57f3367eed38e7 --- /dev/null +++ b/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Energy-Time-As-Submitted-v1.1.do @@ -0,0 +1,433 @@ +******************************************* +* Script to use a number of datasets to examine: +* - distributions of laundry in 1975 & 2005 +* - changing laundry practices + +* uses: +* - MTUS World 6 time-use data (www.timeuse.org/mtus UK subset) - data already in long format (but episodes) +* - EFS 2005-6 to analyse uptake of washers/dryers +* - SPRG water practices survey + +* This work was funded by RCUK through the End User Energy Demand Centres Programme via the +* "DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) + +/* + +Copyright (C) 2014 University of Southampton + +Author: Ben Anderson (b.anderson@soton.ac.uk, @dataknut, https://github.com/dataknut) + [Energy & Climate Change, Faculty of Engineering & Environment, University of Southampton] + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License +(http://choosealicense.com/licenses/gpl-2.0/), or (at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +#YMMV - http://en.wiktionary.org/wiki/YMMV + +*/ + +clear all + +* change these to run this script on different PC +* use globals so can re-run parts of the script + +global where "~/Documents/Work" +global droot "$where/Data/Social Science Datatsets" + +* LCFS/EFS +global efspath "$droot/Expenditure and Food Survey/processed" + +* MTUS +global mtuspath "$droot/MTUS/World 6/processed" + +* SPRG +global sprgpath "$where/Projects/ESRC-SPRG/WP4-Micro_water/data/sprg_survey/data/safe/v6" + +* where to put results +global proot "$where/Projects/RCUK-DEMAND/Theme 1" +global rpath "$proot/results/MTUS" + +* version +global version = "v1.1-at-home" +* excludes any laundry "not at home or someone else's home" (eloc = 1 or 2) + +* global version = "v1.0-all-locs" +* weights the final counts + +* which subgroup of mtus are we interested in? +global mtusfilter "_all" + +capture log close + +log using "$rpath/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-$version-adult.smcl", replace + +* control what gets done +local do_halfhour_samples = 1 + +* make script run without waiting for user input +set more off + +********************************** +********************************** +* LCFS data for tumble dryer uptake levels to 2005 +use "$efspath/EFS-2005-2006-extract-BA.dta", clear +lookfor tumble weight +tab year a167 [iw=weighta], row + +* 2005 only +tab a167 c_nchild [iw=weighta] if year == 2005, col +tab a167 c_nearners [iw=weighta] if year == 2005, col +tab a167 c_empl [iw=weighta] if year == 2005, col + +********************************** +********************************** +* SPRG data on laundry practices +use "$sprgpath/8369-clt-050312-v6-wf-safe.dta", clear + +desc q27* + +rename q27_sum sum_q27 + +* 1 = yes, 2 = no +recode q27* (2=0) + +* use mean to get % who said yes to each +su q27* [iw=weight_respondent2], sep(0) + +* mean number of 'yes' responses +su sum_q27 [iw=weight_respondent2] + +* distribution +tab sum_q27 [iw=weight_respondent2] + +********************************** +********************************** +* MTUS +* codes of interest +* 1974: Main/Sec21 Laundry, ironing, clothing repair <- 50 Other essential domestic work (i.e. NOT preparing meals or routine housework) +* so laundry in 1974 may be over-estimated +* BUT 1975 is partly a 7 day diary - so more likely to detect laundry? + +* 2005: Main/Sec21 Laundry, ironing, clothing repair <- Pact=7 (washing clothes) + +********** +* start with processing the aggregate (survey) data +use "$mtuspath/MTUS-adult-aggregate-UK-only-wf.dta", clear + +* drop all bad cases +keep if badcase == 0 + +* set as survey data for descriptives +svyset [iw=propwt] + +* keep only 1974 & 2005 for simplicity +* keep if survey == 1974 | survey == 2005 +* no, let's keep them all for birth cohort analysis! + +* this is minutes per day not episodes +* check 18 (Cooking) & 20 (Cleaning) & 22 (maintain home/vehicle) against laundry +* seems to under-report laundry in 1974, esp for women? +svy: mean main18 main20 main21 main22, over(survey sex) + +* keep whatever sample we define above +keep $mtusfilter + +* number of diary days by hh type +* svy: tab hhtype survey, col count + +* number of diary days by number of days covered +* 1974 = 7 day dairy +svy: tab id survey, col count + +* change order of income variable +recode income (-9=4) +lab def INCOME 4 "Not known", add + + +* keep only the vars we want to keep memory required low +keep sex age main7 main21 hhtype empstat income emp unemp student retired propwt survey day month year /// + hhldsize famstat nchild *pid ba* + +* number of diary-days +svy: tab survey, obs + +********** +* use raw data to assess raw episodes +preserve + + use "$mtuspath/MTUS-adult-episode-UK-only-wf.dta", clear + +restore +********** +* switch to sampled data +* this requires the 10 minute sampling process implemented in +* https://github.com/dataknut/MTUS/blob/master/process-MTUS-W6-convert-to-X-min-samples-v1.0-adult.do +* to have been run over the MTUS first with X set to 10 + +if `do_halfhour_samples' { + * merge in the sampled data + * do analysis by collapsing 10 minute sampled data to half hours + merge 1:m diarypid using "$mtuspath/MTUS-adult-episode-UK-only-wf-10min-samples-long-v1.0.dta", /// + gen(m_aggvars) + + * set up half-hour variable + gen ba_hourt = hh(s_starttime) + gen ba_minst = mm(s_starttime) + + gen ba_hh = 0 if ba_minst < 30 + replace ba_hh = 30 if ba_minst > 29 + gen ba_sec = 0 + * sets date to 1969! + gen s_halfhour = hms(ba_hourt, ba_hh, ba_sec) + lab var s_halfhour "Episode starts during the half hour following" + format s_halfhour %tcHH:MM + + * define laundry + gen laundry_p = 0 + lab var laundry_p "Main act = laundry (21)" + replace laundry_p = 1 if pact == 21 + + gen laundry_s = 0 + lab var laundry_s "Secondary act = laundry (21)" + replace laundry_s = 1 if sact == 21 + + gen laundry_all = 0 + replace laundry_all = 1 if laundry_p == 1 | laundry_s == 1 + lab var laundry_all "Any act = laundry (21)" + + + * distribution of locations + svy: tab eloc survey, col + + * laundry done at home or elsewhere? + svy: tab eloc survey if laundry_all == 1, col + + * a lot of 1974 done at 'other locations'? + * test who does laundry at 'other locations' + gen laundry_all_other = 0 + replace laundry_all_other = 1 if laundry_all == 1 & eloc == 9 + logit laundry_all_other i.sex i.ba_age_r i.empstat i.income if survey == 1974, cluster(pid) + + * can we work out where? + bysort survey: tab sact pact if eloc == 9 & laundry_all == 1 + * a bit - for the most part there is no recorded secondary actitivy if main = laundry + bysort survey: tab mtrav if eloc == 9 & laundry_all == 1 + * that doesn't help - all not travelling + * NB "someone else's home is not set for 1974/2005" - maybe these are the 'other' locations? + + gen laundry_allh = 0 + replace laundry_allh = 1 if laundry_all == 1 & (eloc == 1 | eloc == 2 ) // specifically at home or someone else's home (the latter not set in 1974/2005) + * we'll also assume that visiting/receiving friends whilst laundry is at someone's home - doesn't really matter whose for this paper + replace laundry_allh = 1 if laundry_all == 1 & (pact == 48 | sact == 48) + lab var laundry_allh "Any act = laundry (21) at someone's home" + + gen laundry_allnh = 0 + replace laundry_allnh = 1 if laundry_all == 1 & (eloc != 1 & eloc != 2) & (pact != 48 & sact != 48) + lab var laundry_allnh "Any act = laundry (21) not at home" + + * this is the number of 10 minute samples by survey & day of the week + tab survey day [iw=propwt] + + * check % of sampled X minute points which are laundry + * NB reporting frame longer in 1974 (30 mins) so may be higher frequency (e.g. interruption in 10-20 mins coded) + di "* all" + tab survey laundry_all [iw=propwt], row + tab survey laundry_allh [iw=propwt], row + tab survey laundry_allnh [iw=propwt], row + + * which years could we use? + tab month survey [iw=propwt] + + * 1974 = Feb, Mar & Aug,Sept -> has winter & summer + * 1984 = winter only + * 1987 = early summer only + * 1995 = May + * 2000 = all year + * 2005 = each season (March, June, Sept, Nov) + + * keep 1974 & 2005 only + keep if survey == 1974 | survey == 2005 + + * collapse to add up the sampled laundry by half hour + * use the byvars we're interested in (or could re-merge with aggregated file) + collapse (sum) laundry_* (mean) propwt, by(diarypid pid survey day month year s_halfhour /// + ba_birth_cohort ba_age_r ba_nchild sex emp empstat nchild income) + * because the different surveys have different reporting periods we need to just count at least 1 laundry in the half hour + lab val emp EMP + lab val empstat EMPSTAT + local acts "all allh allnh" + foreach a of local acts { + gen any_laundry_`a' = 0 + replace any_laundry_`a' = 1 if laundry_`a' > 0 + lab var any_laundry_`a' "`a' $version" + } + + * set the weight + svyset [iw=propwt] + + * the number of half hour data points by survey & day + svy: tab survey day + + * loop through locations + local acts "all allh allnh" + foreach a of local acts { + di "*****************************" + di "*****************************" + + di "*****************************" + di "* 'at least 1 reported reported laundry instance' for: any_laundry_`a'" + svy: tab any_laundry_`a' survey , col ci + + di "*******" + di "* Tables for: any_laundry_`a' = 1" + di "* Income" + svy: tab income survey if any_laundry_`a' == 1, col ci + + di "*******" + di "* Sex" + svy: tab sex survey if any_laundry_`a' == 1, col ci + di "* Sex & age" + di "* 1974 (if any_laundry_`a' = 1)" + svy: tab ba_age_r sex if any_laundry_`a' == 1 & survey == 1974, ci row + di "* 2005 (if any_laundry_`a' = 1)" + svy: tab ba_age_r sex if any_laundry_`a' == 1 & survey == 2005, ci row + + di "*******" + di "* Days by survey for any_laundry_`a' = 1 - Fig 2" + svy: tab day survey if any_laundry_`a' == 1, ci col + + di "*******" + di "* Days by gender & survey for any_laundry_`a' =1 - used for Fig 3 " + table day sex survey if any_laundry_`a' == 1 [iw=propwt] + + di "*******" + di "* Employment status by survey for any_laundry_`a' = 1" + table empstat survey if any_laundry_`a' == 1 [iw=propwt] + + di "*******" + di "* Days by survey & employment status if female for any_laundry_`a' = 1 - used for Figs 4 & 5" + table day empstat survey if sex == 2 & any_laundry_`a' == 1 [iw=propwt] + + } + + * set time variable so can select by time + xtset diarypid s_halfhour, delta(30 mins) format(%tcHH:MM) + + * time of day comparisons + local acts "all allh allnh" + foreach a of local acts { + di "*****************************" + di "* Tables for: any_laundry_`a'" + table s_halfhour survey any_laundry_`a' [iw=propwt] + + di "* days by half hour for: any_laundry_`a'" + table s_halfhour survey day [iw=propwt], by(any_laundry_`a') + + /* seasons - leave out for now (small N) + recode month (3 4 5 = 1 "Spring") (6 7 8 = 2 "Summer") (9 10 11 = 3 "Autumn") (12 1 2 = 4 "Winter"), gen(season) + * check + * tab month season + table s_halfhour survey season [iw=propwt], by(any_laundry_`a') + */ + + di "* by half hour & employment status for women for: any_laundry_`a'" + table s_halfhour empstat survey if sex == 2 [iw=propwt], by(any_laundry_`a') + + di "*repeat by day for 2005 for: any_laundry_`a'" + table s_halfhour empstat day if survey == 2005 & sex == 2 [iw=propwt], by(any_laundry_`a') + } + local acts "all allh" + foreach a of local acts { + * analysis by laundry type + preserve + gen laundry_timing_`a' = 5 if any_laundry_`a' == 1 // other + replace laundry_timing_`a' = 1 if any_laundry_`a' == 1 & day == 1 & tin(08:00, 12:00) // sunday morning + replace laundry_timing_`a' = 2 if any_laundry_`a' == 1 & day > 1 & day < 6 & tin(09:00, 12:00) // weekday morning + replace laundry_timing_`a' = 3 if any_laundry_`a' == 1 & day > 1 & day < 6 & tin(17:00, 20:00) // weekday evening peak + replace laundry_timing_`a' = 4 if any_laundry_`a' == 1 & tin(00:00, 01:30) // night-time + replace laundry_timing_`a' = 4 if any_laundry_`a' == 1 & tin(22:30, 23:30) // night-time + + tab laundry_timing_`a', gen(laundry_timing_`a') + + * check for missing + table s_halfhour laundry_timing_`a' any_laundry_`a', mi + + lab def laundry_timing 1 "Sunday morning 09:00-12:00" 2 "Weekday morning 09:00-12:00" 3 "Weekday evening peak 17:00-20:00" 4 "Night-time 22:30-01:30" 5 "Other" + lab val laundry_timing_`a' laundry_timing + tab laundry_timing_`a' survey [iw=propwt], col + svy:tab laundry_timing_`a' survey, col ci + table laundry_timing_`a' ba_age_r survey [iw=propwt], col + table laundry_timing_`a' empstat survey [iw=propwt], col + table laundry_timing_`a' ba_nchild survey [iw=propwt], col + + * collapse to single person record + * note that this does not mean classifying 1 person to 1 'type' - a person can display multiple laundry types + * remember 1974/5 = 1 week diary + + collapse (sum) laundry_timing_* any_laundry_all* (mean) propwt, by(pid survey /// + ba_birth_cohort ba_age_r ba_nchild sex emp empstat nchild) + + recode any_laundry_all any_laundry_allh any_laundry_allnh (1/max=1) + recode laundry_timing_`a'1 (1/max=1) + recode laundry_timing_`a'2 (1/max=1) + recode laundry_timing_`a'3 (1/max=1) + recode laundry_timing_`a'4 (1/max=1) + recode laundry_timing_`a'5 (1/max=1) + + *how many people are in multiple types? + egen nlaundry_types_`a' = rowtotal(laundry_timing_`a'*) + svy: tab nlaundry_types_`a' survey, col + + * what % of respondents in each? + svy: mean laundry_timing_`a'*, over(survey) + * % of launderers + svy: mean laundry_timing_`a'* if any_laundry_all == 1, over(survey) + + foreach v of numlist 1/4 { + logit laundry_timing_`a'`v' sex ib4.empstat i.ba_age_r i.ba_nchild if survey == 1974 + est store laundry_timing_`a'`v'_1974 + logit laundry_timing_`a'`v' sex ib4.empstat i.ba_age_r i.ba_nchild if survey == 2005 + est store laundry_timing_`a'`v'_2005 + } + estout laundry_timing_`a'*_2005 using "$rpath/laundry_type_`a'_1974_$version-regressions.txt", cells("b ci_l ci_u se _star") stats(N r2_p chi2 p ll) replace + estout laundry_timing_`a'*_2005 using "$rpath/laundry_type_`a'_2005_$version-regressions.txt", cells("b ci_l ci_u se _star") stats(N r2_p chi2 p ll) replace + restore + } +} + + +* go back to the main survey aggregate file +use "$mtuspath/MTUS-adult-aggregate-UK-only-wf.dta", clear + +* drop all bad cases +keep if badcase == 0 + +* set as survey data for descriptives +svyset [iw=propwt] + +* drop diary duplicates & do some basic stats + +duplicates drop pid, force + +* create working age variable +gen ba_working_age = 0 +replace ba_working_age = 1 if age > 18 // OK, it should be 16 but... +* women +replace ba_working_age = 0 if age > 60 & sex == 2 +* men +replace ba_working_age = 0 if age > 65 & sex == 1 +* check +table ba_age_r ba_working_age sex + +* Proportion of women in work +svy: tab survey empstat if ba_working_age == 1 & sex == 2, row + +di "Done!" + +log close diff --git a/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Energy-Time-As-Submitted-v1.2.do b/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Energy-Time-As-Submitted-v1.2.do new file mode 100644 index 0000000000000000000000000000000000000000..f5b06f4e43fdd2364cffa507c450e1676090a8ee --- /dev/null +++ b/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Energy-Time-As-Submitted-v1.2.do @@ -0,0 +1,482 @@ +******************************************* +* Script to use a number of datasets to examine: +* - distributions of laundry in 1975 & 2005 +* - changing laundry practices + +* uses: +* - MTUS World 6 time-use data (www.timeuse.org/mtus UK subset) - data already in long format (but episodes) +* - EFS 2005-6 to analyse uptake of washers/dryers +* - SPRG water practices survey + +* This work was funded by RCUK through the End User Energy Demand Centres Programme via the +* "DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) + +/* + +Copyright (C) 2014 University of Southampton + +Author: Ben Anderson (b.anderson@soton.ac.uk, @dataknut, https://github.com/dataknut) + [Energy & Climate Change, Faculty of Engineering & Environment, University of Southampton] + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License +(http://choosealicense.com/licenses/gpl-2.0/), or (at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +#YMMV - http://en.wiktionary.org/wiki/YMMV + +*/ + +clear all + +* change these to run this script on different PC +* use globals so can re-run parts of the script + +global where "~/Documents/Work" +global droot "$where/Data/Social Science Datatsets" + +* LCFS/EFS +global efspath "$droot/Expenditure and Food Survey/processed" + +* MTUS +global mtuspath "$droot/MTUS/World 6/processed" + +* SPRG +global sprgpath "$where/Projects/ESRC-SPRG/WP4-Micro_water/data/sprg_survey/data/safe/v6" + +* where to put results +global proot "$where/Projects/RCUK-DEMAND/Theme 1" +global rpath "$proot/results/MTUS" + +* version +global version = "v1.2-at-home" +* assumes "other location" = someone else's house (as it is not laundrette and "other person's house" is not defined for 1974 & 2005 + +* global version = "v1.1-at-home" +* excludes any laundry "not at home or someone else's home" (eloc = 1 or 2) + +* global version = "v1.0-all-locs" +* weights the final counts + +* which subgroup of mtus are we interested in? +global mtusfilter "_all" + +capture log close + +log using "$rpath/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-$version-adult.smcl", replace + +* control what gets done +local do_halfhour_samples = 1 + +* make script run without waiting for user input +set more off + +********************************** +********************************** +* LCFS data for tumble dryer uptake levels to 2005 +use "$efspath/EFS-2005-2006-extract-BA.dta", clear +lookfor tumble weight +tab year a167 [iw=weighta], row + +* 2005 only +tab a167 c_nchild [iw=weighta] if year == 2005, col +tab a167 c_nearners [iw=weighta] if year == 2005, col +tab a167 c_empl [iw=weighta] if year == 2005, col + +********************************** +********************************** +* SPRG data on laundry practices +use "$sprgpath/8369-clt-050312-v6-wf-safe.dta", clear + +desc q27* + +rename q27_sum sum_q27 + +* 1 = yes, 2 = no +recode q27* (2=0) + +* use mean to get % who said yes to each +su q27* [iw=weight_respondent2], sep(0) + +* mean number of 'yes' responses +su sum_q27 [iw=weight_respondent2] + +* distribution +tab sum_q27 [iw=weight_respondent2] + +********************************** +********************************** +* MTUS +* codes of interest +* 1974: Main/Sec21 Laundry, ironing, clothing repair <- 50 Other essential domestic work (i.e. NOT preparing meals or routine housework) +* so laundry in 1974 may be over-estimated +* BUT 1975 is partly a 7 day diary - so more likely to detect laundry? + +* 2005: Main/Sec21 Laundry, ironing, clothing repair <- Pact=7 (washing clothes) + +********** +* start with processing the aggregate (survey) data +use "$mtuspath/MTUS-adult-aggregate-UK-only-wf.dta", clear + +* drop all bad cases +keep if badcase == 0 + +* set as survey data for descriptives +svyset [iw=propwt] + +* keep only 1974 & 2005 for simplicity +* keep if survey == 1974 | survey == 2005 +* no, let's keep them all for birth cohort analysis! + +* this is minutes per day not episodes +* check 18 (Cooking) & 20 (Cleaning) & 22 (maintain home/vehicle) against laundry +* seems to under-report laundry in 1974, esp for women? +svy: mean main18 main20 main21 main22, over(survey sex) + +* keep whatever sample we define above +keep $mtusfilter + +* number of diary days by hh type +* svy: tab hhtype survey, col count + +* number of diary days by number of days covered +* 1974 = 7 day dairy +svy: tab id survey, col count + +* change order of income variable +recode income (-9=4) +lab def INCOME 4 "Not known", add + + +* keep only the vars we want to keep memory required low +keep sex age main7 main21 hhtype empstat income emp unemp student retired propwt survey day month year /// + hhldsize famstat nchild hhldsize *pid ba* + +* number of diary-days +svy: tab survey, obs + +********** +* use raw data to assess raw episodes +preserve + + use "$mtuspath/MTUS-adult-episode-UK-only-wf.dta", clear + +restore +********** +* switch to sampled data +* this requires the 10 minute sampling process implemented in +* https://github.com/dataknut/MTUS/blob/master/process-MTUS-W6-convert-to-X-min-samples-v1.0-adult.do +* to have been run over the MTUS first with X set to 10 + +if `do_halfhour_samples' { + * merge in the sampled data + * do analysis by collapsing 10 minute sampled data to half hours + merge 1:m diarypid using "$mtuspath/MTUS-adult-episode-UK-only-wf-10min-samples-long-v1.0.dta", /// + gen(m_aggvars) + + * which years could we use? + * NB - we need full years or at least quarters/all seasons for laundry as it may well be seasonally variant. + tab month survey [iw=propwt] + + * 1974 = Feb, Mar & Aug,Sept -> has winter & summer + * 1984 = winter only + * 1987 = early summer only + * 1995 = May + * 2000 = all year + * 2005 = each season (March, June, Sept, Nov) + + * keep 1974 & 2005 only as problems with coverage in all others + * could pool 1984 & 1987 but 1995 useless (May!) + keep if survey == 1974 | survey == 2005 + + * set up half-hour variable + gen ba_hourt = hh(s_starttime) + gen ba_minst = mm(s_starttime) + + gen ba_hh = 0 if ba_minst < 30 + replace ba_hh = 30 if ba_minst > 29 + gen ba_sec = 0 + * sets date to 1969! + gen s_halfhour = hms(ba_hourt, ba_hh, ba_sec) + lab var s_halfhour "Episode starts during the half hour following" + format s_halfhour %tcHH:MM + + * define laundry + gen laundry_p = 0 + lab var laundry_p "Main act = laundry (21)" + replace laundry_p = 1 if pact == 21 + + gen laundry_s = 0 + lab var laundry_s "Secondary act = laundry (21)" + replace laundry_s = 1 if sact == 21 + + gen laundry_all = 0 + replace laundry_all = 1 if laundry_p == 1 | laundry_s == 1 + lab var laundry_all "Any act = laundry (21)" + + * distribution of locations + svy: tab eloc survey, count col + + * laundry done at home or elsewhere? + svy: tab eloc survey, count col + + * a lot of 1974 done at 'other locations'? + + * can we work out where? + bysort survey: tab sact pact if eloc == 9 & laundry_all == 1 + * a bit - for the most part there is no recorded secondary actitivy if main = laundry + bysort survey: tab mtrav if eloc == 9 & laundry_all == 1 + * that doesn't help - all not travelling + * NB "someone else's home is not set for 1974/2005" - maybe these are the 'other' locations? + + gen laundry_rh = 0 + replace laundry_rh = 1 if laundry_all == 1 & (eloc == 1 | eloc == 2) // definitely at home + + gen laundry_sh = 0 + replace laundry_sh = 1 if laundry_all == 1 & (eloc == 5) // definitely at shops/services + + gen laundry_oth = 0 + replace laundry_oth = 1 if laundry_all == 1 & (eloc == 9) // definitely at other location + + * set defined locations + gen laundry_h = 0 + replace laundry_h = 1 if laundry_all == 1 & (eloc == 1 | eloc == 2 | eloc == 9) // specifically at home or someone else's home (the latter not set in 1974/2005) + * we'll also assume that visiting/receiving friends whilst laundry is at someone's home - doesn't really matter whose for this paper + replace laundry_h = 1 if laundry_all == 1 & (pact == 48 | sact == 48) + lab var laundry_h "Any act = laundry (21) at someone's home" + + gen laundry_nh = 0 + replace laundry_nh = 1 if laundry_all == 1 & (eloc != 1 & eloc != 2 & eloc != 9) & (pact != 48 & sact != 48) + lab var laundry_nh "Any act = laundry (21) not at home" + + * this is the number of 10 minute samples by survey & day of the week + tab survey day [iw=propwt] + + di "* check % of sampled X minute points which are laundry" + di "* NB reporting frame longer in 1974 (30 mins) so may be higher frequency (e.g. interruption in 10-20 mins coded)" + di "* all" + tab survey laundry_all [iw=propwt], row + di "* home ($version)" + tab survey laundry_h [iw=propwt], row + di "* not at home ($version)" + tab survey laundry_nh [iw=propwt], row + + ********************* + * collapse to add up the sampled laundry by half hour + * use the byvars we're interested in (or could re-merge with aggregated file) + * because the different surveys have different reporting periods we need to just count at least 1 laundry in the half hour + + collapse (sum) laundry_* (mean) propwt, by(diarypid pid survey day month year s_halfhour /// + ba_birth_cohort ba_age_r ba_nchild sex emp empstat nchild income hhldsize) + + lab val emp EMP + lab val empstat EMPSTAT + + * set the weight + svyset [iw=propwt] + + * the number of half hour data points by survey & day + svy: tab survey day + + * do original locations + local acts "all rh sh oth" + + foreach a of local acts { + di "* Adding up 'at least 1' & basic stats for laundry_`a' ($version)" + gen any_laundry_`a' = 0 + replace any_laundry_`a' = 1 if laundry_`a' > 0 + lab var any_laundry_`a' "`a' $version" + di "* overall prevalence of 'any laundry in a half hour' - any_laundry_`a' ($version)" + di "* counts (any_laundry_`a' $version)" + svy: tab any_laundry_`a' survey, count format(%9.2f) + di "* proportions (any_laundry_`a' $version)" + svy: tab any_laundry_`a' survey, col ci + di "* proportions by sex (any_laundry_`a' == 1 $version)" + svy: tab sex survey if any_laundry_`a' == 1, col ci + } + di "* test who does laundry at 'other locations' at half hour level" + logit any_laundry_oth i.sex i.ba_age_r i.ba_nchild hhldsize i.empstat i.income if survey == 1974, cluster(pid) + + * now do the defined/derived locations + local acts "h nh" + foreach a of local acts { + di "* Adding up 'at least 1' & basic stats for laundry_`a' ($version)" + gen any_laundry_`a' = 0 + replace any_laundry_`a' = 1 if laundry_`a' > 0 + lab var any_laundry_`a' "`a' $version" + di "* overall prevalence of 'any laundry in a half hour' - any_laundry_`a' ($version)" + di "* counts (any_laundry_`a' $version)" + svy: tab any_laundry_`a' survey, count format(%9.2f) + di "* proportions (any_laundry_`a' $version)" + svy: tab any_laundry_`a' survey, col ci + di "* proportions by sex (any_laundry_`a' == 1 $version)" + svy: tab sex survey if any_laundry_`a' == 1, col ci + } + + + + + * loop through locations + local acts "all h nh" + foreach a of local acts { + di "*****************************" + di "*****************************" + + di "*****************************" + di "* 'at least 1 reported reported laundry instance' for: any_laundry_`a'" + svy: tab any_laundry_`a' survey , col ci + + di "*******" + di "* Tables for: any_laundry_`a' = 1" + di "* Income" + svy: tab income survey if any_laundry_`a' == 1, col ci + + di "*******" + di "* Sex" + svy: tab sex survey if any_laundry_`a' == 1, col ci + di "* Sex & age" + di "* 1974 (if any_laundry_`a' = 1)" + svy: tab ba_age_r sex if any_laundry_`a' == 1 & survey == 1974, ci row + di "* 2005 (if any_laundry_`a' = 1)" + svy: tab ba_age_r sex if any_laundry_`a' == 1 & survey == 2005, ci row + + di "*******" + di "* Days by survey for any_laundry_`a' = 1 - Fig 2" + svy: tab day survey if any_laundry_`a' == 1, ci col + + di "*******" + di "* Days by gender & survey for any_laundry_`a' =1 - used for Fig 3 " + table day sex survey if any_laundry_`a' == 1 [iw=propwt] + + di "*******" + di "* Employment status by survey for any_laundry_`a' = 1" + table empstat survey if any_laundry_`a' == 1 [iw=propwt] + + di "*******" + di "* Days by survey & employment status if female for any_laundry_`a' = 1 - used for Figs 4 & 5" + bysort survey: table day empstat if sex == 2 & any_laundry_`a' == 1 [iw=propwt] + + } + + * set time variable so can select by time + xtset diarypid s_halfhour, delta(30 mins) format(%tcHH:MM) + + * time of day comparisons + local acts "all h nh" + foreach a of local acts { + di "*****************************" + di "* Tables for: any_laundry_`a'" + table s_halfhour survey any_laundry_`a' [iw=propwt] + + di "* days by half hour for: any_laundry_`a'" + table s_halfhour survey day [iw=propwt], by(any_laundry_`a') + + /* seasons - leave out for now (small N) + recode month (3 4 5 = 1 "Spring") (6 7 8 = 2 "Summer") (9 10 11 = 3 "Autumn") (12 1 2 = 4 "Winter"), gen(season) + * check + * tab month season + table s_halfhour survey season [iw=propwt], by(any_laundry_`a') + + * by employment status - not used (small n esp if just for women) + di "* by half hour & employment status for women for: any_laundry_`a'" + table s_halfhour empstat survey if sex == 2 [iw=propwt], by(any_laundry_`a') + + di "*repeat by day for 2005 for: any_laundry_`a'" + table s_halfhour empstat day if survey == 2005 & sex == 2 [iw=propwt], by(any_laundry_`a') + */ + } + local acts "h" + foreach a of local acts { + * analysis by laundry type + preserve + gen laundry_timing_`a' = 5 if any_laundry_`a' == 1 // other + replace laundry_timing_`a' = 1 if any_laundry_`a' == 1 & day == 1 & tin(08:00, 12:00) // sunday morning + replace laundry_timing_`a' = 2 if any_laundry_`a' == 1 & day > 1 & day < 6 & tin(09:00, 12:00) // weekday morning + replace laundry_timing_`a' = 3 if any_laundry_`a' == 1 & day > 1 & day < 6 & tin(17:00, 20:00) // weekday evening peak + replace laundry_timing_`a' = 4 if any_laundry_`a' == 1 & tin(00:00, 01:30) // night-time + replace laundry_timing_`a' = 4 if any_laundry_`a' == 1 & tin(22:30, 23:30) // night-time + + tab laundry_timing_`a', gen(laundry_timing_`a') + + * check for missing + table s_halfhour laundry_timing_`a' any_laundry_`a' + tab laundry_timing_`a' survey, mi + + lab def laundry_timing 1 "Sunday morning 09:00-12:00" 2 "Weekday morning 09:00-12:00" 3 "Weekday evening peak 17:00-20:00" 4 "Night-time 22:30-01:30" 5 "Other" + lab val laundry_timing_`a' laundry_timing + tab laundry_timing_`a' survey [iw=propwt], col + svy:tab laundry_timing_`a' survey, col ci + *table laundry_timing_`a' ba_age_r survey [iw=propwt], col + table laundry_timing_`a' empstat survey [iw=propwt], col + *table laundry_timing_`a' ba_nchild survey [iw=propwt], col + + di "* collapse to single person record" + * note that this does not mean classifying 1 person to 1 'type' - a person can display multiple laundry types + * remember 1974/5 = 1 week diary + + collapse (sum) laundry_timing_* any_laundry_* (mean) propwt, by(pid survey /// + ba_birth_cohort ba_age_r ba_nchild sex emp empstat nchild hhldsize) + + recode any_laundry_all any_laundry_h any_laundry_nh (1/max=1) + recode laundry_timing_`a'1 (1/max=1) + recode laundry_timing_`a'2 (1/max=1) + recode laundry_timing_`a'3 (1/max=1) + recode laundry_timing_`a'4 (1/max=1) + recode laundry_timing_`a'5 (1/max=1) + + di "* how many people are in multiple types? (nlaundry_types_`a' $version)" + egen nlaundry_types_`a' = rowtotal(laundry_timing_`a'*) + svy: tab nlaundry_types_`a' survey, col + + * what % of respondents in each? + svy: mean laundry_timing_`a'*, over(survey) + * % of launderers + svy: mean laundry_timing_`a'* if any_laundry_all == 1, over(survey) + + foreach v of numlist 1/4 { + logit laundry_timing_`a'`v' sex ib4.empstat i.ba_age_r i.ba_nchild hhldsize if survey == 1974 + est store laundry_timing_`a'`v'_1974 + logit laundry_timing_`a'`v' sex ib4.empstat i.ba_age_r i.ba_nchild hhldsize if survey == 2005 + est store laundry_timing_`a'`v'_2005 + } + estout laundry_timing_`a'*_2005 using "$rpath/laundry_type_`a'_1974_$version-regressions.txt", cells("b ci_l ci_u se p _star") stats(N r2_p chi2 p ll) replace + estout laundry_timing_`a'*_2005 using "$rpath/laundry_type_`a'_2005_$version-regressions.txt", cells("b ci_l ci_u se p _star") stats(N r2_p chi2 p ll) replace + restore + } +} + + +* go back to the main survey aggregate file +use "$mtuspath/MTUS-adult-aggregate-UK-only-wf.dta", clear + +* drop all bad cases +keep if badcase == 0 + +* set as survey data for descriptives +svyset [iw=propwt] + +* drop diary duplicates & do some basic stats + +duplicates drop pid, force + +* create working age variable +gen ba_working_age = 0 +replace ba_working_age = 1 if age > 18 // OK, it should be 16 but... +* women +replace ba_working_age = 0 if age > 60 & sex == 2 +* men +replace ba_working_age = 0 if age > 65 & sex == 1 +* check +table ba_age_r ba_working_age sex + +* Proportion of women in work +svy: tab survey empstat if ba_working_age == 1 & sex == 2, row + +di "Done!" + +log close diff --git a/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Energy-Time-As-Submitted-v1.3.do b/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Energy-Time-As-Submitted-v1.3.do new file mode 100644 index 0000000000000000000000000000000000000000..d4d77f38e138ce041fc30c545dcd177c6736b981 --- /dev/null +++ b/Theme-1/laundryPaper/old_stata/DEMAND-BA-Laundry-Energy-Time-As-Submitted-v1.3.do @@ -0,0 +1,504 @@ +******************************************* +* Script to use a number of datasets to examine: +* - distributions of laundry in 1975 & 2005 +* - changing laundry practices + +* uses: +* - MTUS World 6 time-use data (www.timeuse.org/mtus UK subset) - data already in long format (but episodes) +* - EFS 2005-6 to analyse uptake of washers/dryers +* - SPRG water practices survey + +* This work was funded by RCUK through the End User Energy Demand Centres Programme via the +* "DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) + +/* + +Copyright (C) 2014 University of Southampton + +Author: Ben Anderson (b.anderson@soton.ac.uk, @dataknut, https://github.com/dataknut) + [Energy & Climate Change, Faculty of Engineering & Environment, University of Southampton] + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License +(http://choosealicense.com/licenses/gpl-2.0/), or (at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +#YMMV - http://en.wiktionary.org/wiki/YMMV + +*/ + +clear all + +* change these to run this script on different PC +* use globals so can re-run parts of the script + +global where "~/Documents/Work" +global droot "$where/Data/Social Science Datatsets" + +* LCFS/EFS +global efspath "$droot/Expenditure and Food Survey/processed" + +* MTUS +global mtuspath "$droot/MTUS/World 6/processed" + +* SPRG +global sprgpath "$where/Projects/ESRC-SPRG/WP4-Micro_water/data/sprg_survey/data/safe/v6" + +* where to put results +global proot "$where/Projects/RCUK-DEMAND/Theme 1" +global rpath "$proot/results/MTUS" + +* version +global version = "v1.3" +* tests use of 1985 due to definitional issues with 1974/5 + +*global version = "v1.2-at-home" +* assumes "other location" = someone else's house (as it is not laundrette and "other person's house" is not defined for 1974 & 2005 + +* global version = "v1.1-at-home" +* excludes any laundry "not at home or someone else's home" (eloc = 1 or 2) + +* global version = "v1.0-all-locs" +* weights the final counts + +* which subgroup of mtus are we interested in? +global mtusfilter "_all" + +capture log close + +log using "$rpath/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-$version-adult.smcl", replace + +* control what gets done +local do_halfhour_samples = 1 + +* make script run without waiting for user input +set more off + +********************************** +********************************** +* LCFS data for tumble dryer uptake levels to 2005 +use "$efspath/EFS-2005-2006-extract-BA.dta", clear +lookfor tumble weight +tab ba_year a167 [iw=weighta], row + +* 2005 only +tab a167 c_nchild [iw=weighta] if ba_year == 2005, col +tab a167 c_nearners [iw=weighta] if ba_year == 2005, col +tab a167 c_empl [iw=weighta] if ba_year == 2005, col + +********************************** +********************************** +* SPRG data on laundry practices +use "$sprgpath/8369-clt-050312-v6-wf-safe.dta", clear + +desc q27* + +rename q27_sum sum_q27 + +* 1 = yes, 2 = no +recode q27* (2=0) + +* use mean to get % who said yes to each +su q27* [iw=weight_respondent2], sep(0) + +* mean number of 'yes' responses +su sum_q27 [iw=weight_respondent2] + +* distribution +tab sum_q27 [iw=weight_respondent2] + +********************************** +********************************** +* MTUS +* codes of interest +* 1974: Main/Sec21 Laundry, ironing, clothing repair <- 50 Other essential domestic work (i.e. NOT preparing meals or routine housework) +* so laundry in 1974 may be under-estimated as laundry may have been considered 'routine housework' by respondents +* BUT 1975 is partly a 7 day diary - so more likely to detect laundry? + +* 1983/4/7: Main/Sec21 Laundry, ironing, clothing repair +* <- 0701 Wash clothes, hang out / bring in washing +* 0702 Iron clothes +* 0801 Repair, upkeep of clothes +* so may over-estimate laundry + +* 2005: Main/Sec21 Laundry, ironing, clothing repair <- Pact=7 (washing clothes) + +********** +* start with processing the aggregate (survey) data +use "$mtuspath/MTUS-adult-aggregate-UK-only-wf.dta", clear + +* drop all bad cases +keep if badcase == 0 + +* set as survey data for descriptives +svyset [iw=propwt] + +* keep only 1974 & 2005 for simplicity +* keep if survey == 1974 | survey == 2005 +* no, let's keep them all for birth cohort analysis! + +* this is minutes per day not episodes +* check 18 (Cooking) & 20 (Cleaning) & 22 (maintain home/vehicle) against laundry +* seems to under-report laundry in 1974, esp for women? +* not surprising given definitional issues - 'routine housework' is classified as 'cleaning' by MTUS for 1974, laundry probably was considered +* 'routine' housework by female respondents but perhaps less so for men? :-) +svy: mean main18 main20 main21 main22, over(survey sex) + +* keep whatever sample we define above +keep $mtusfilter + +* number of diary days by hh type +* svy: tab hhtype survey, col count + +* number of diary days by number of days covered +* 1974 = 7 day dairy +svy: tab id survey, col count + +* change order of income variable +recode income (-9=4) +lab def INCOME 4 "Not known", add + + +* keep only the vars we want to keep memory required low +keep sex age main7 main21 hhtype empstat income emp unemp student retired propwt survey mtus_* /// + hhldsize famstat nchild hhldsize *pid ba* + +* number of diary-days +svy: tab survey, obs + +********** +* use raw data to assess raw episodes +preserve + + use "$mtuspath/MTUS-adult-episode-UK-only-wf.dta", clear + +restore +********** +* switch to sampled data +* this requires the 10 minute sampling process implemented in +* https://github.com/dataknut/MTUS/blob/master/process-MTUS-W6-convert-to-X-min-samples-v1.0-adult.do +* to have been run over the MTUS first with X set to 10 + +if `do_halfhour_samples' { + * merge in the sampled data + * do analysis by collapsing 10 minute sampled data to half hours + merge 1:m diarypid using "$mtuspath/MTUS-adult-episode-UK-only-wf-10min-samples-long-v1.0.dta", /// + gen(m_aggvars) + + * which years could we use? + * NB - we need full years or at least quarters/all seasons for laundry as it may well be seasonally variant. + tab mtus_month survey [iw=propwt] + + * 1974 = Feb, Mar & Aug,Sept -> has winter & summer + * 1984 = winter only + * 1987 = early summer only + * 1995 = May + * 2000 = all year + * 2005 = each season (March, June, Sept, Nov) + + * keep 1974 & 2005 only as problems with coverage in all others + * keep if survey == 1974 | survey == 2005 + + * create a bespoke survey which merges 1983 & 1987 + * has the advantage of providing all seasons for '1985' + recode survey (1974=1974 "1974") (1983/1987=1985 "1985") (1995 = 1995 "1995") (2000=2000 "2000") (2005=2005 "2005"), gen(ba_survey) + + * set up half-hour variable + gen ba_hourt = hh(s_starttime) + gen ba_minst = mm(s_starttime) + + gen ba_hh = 0 if ba_minst < 30 + replace ba_hh = 30 if ba_minst > 29 + gen ba_sec = 0 + * sets date to 1969! + gen s_halfhour = hms(ba_hourt, ba_hh, ba_sec) + lab var s_halfhour "Episode starts during the half hour following" + format s_halfhour %tcHH:MM + + * define laundry + gen laundry_p = 0 + lab var laundry_p "Main act = laundry (21)" + replace laundry_p = 1 if pact == 21 + + gen laundry_s = 0 + lab var laundry_s "Secondary act = laundry (21)" + replace laundry_s = 1 if sact == 21 + + gen laundry_all = 0 + replace laundry_all = 1 if laundry_p == 1 | laundry_s == 1 + lab var laundry_all "Any act = laundry (21)" + + * distribution of locations + tab eloc ba_survey, col + + * laundry done at home or elsewhere? + tab eloc ba_survey if laundry_all == 1, col + + * a lot of 1974 done at 'other locations'? + * can we work out where? + bysort ba_survey: tab sact pact if eloc == 9 & laundry_all == 1 + * a bit - for the most part there is no recorded secondary actitivy if main = laundry + bysort ba_survey: tab mtrav if eloc == 9 & laundry_all == 1 + * that doesn't help - all not travelling + * NB "someone else's home is not set for 1974/2005" - maybe these are the 'other' locations? + + gen laundry_rh = 0 + replace laundry_rh = 1 if laundry_all == 1 & (eloc == 1 | eloc == 2) // definitely at home + + gen laundry_sh = 0 + replace laundry_sh = 1 if laundry_all == 1 & (eloc == 5) // definitely at shops/services + + gen laundry_oth = 0 + replace laundry_oth = 1 if laundry_all == 1 & (eloc == 9) // definitely at other location + + * set defined locations + gen laundry_h = 0 + replace laundry_h = 1 if laundry_all == 1 & (eloc == 1 | eloc == 2 | eloc == 9) // specifically at home or someone else's home (the latter not set in 1974/2005) + * we'll also assume that visiting/receiving friends whilst laundry is at someone's home - doesn't really matter whose for this paper + replace laundry_h = 1 if laundry_all == 1 & (pact == 48 | sact == 48) + lab var laundry_h "Any act = laundry (21) at someone's home" + + gen laundry_nh = 0 + replace laundry_nh = 1 if laundry_all == 1 & (eloc != 1 & eloc != 2 & eloc != 9) & (pact != 48 & sact != 48) + lab var laundry_nh "Any act = laundry (21) not at home" + + * this is the number of 10 minute samples by survey & day of the week + tab ba_survey s_dow [iw=propwt] + + di "* check % of sampled X minute points which are laundry" + di "* all" + tab ba_survey laundry_all [iw=propwt], row + di "* home ($version)" + tab ba_survey laundry_h [iw=propwt], row + di "* not at home ($version)" + tab ba_survey laundry_nh [iw=propwt], row + + ********************* + di "* collapse to add up the sampled laundry by half hour" + * use the byvars we're interested in (or could re-merge with aggregated file) + * because the different surveys have different reporting periods we need to just count at least 1 laundry in the half hour + di "*****************************" + di "* from here on we have half-hour aggregations" + +* keep the years we are interested in to save memory & time + keep if ba_survey == 1985 | ba_survey == 2005 + + * be sure to use s_dow as it is the corrected day for 1984/7 + + collapse (sum) laundry_* (mean) propwt, by(diarypid pid ba_survey s_dow mtus_month mtus_month mtus_year s_halfhour /// + ba_birth_cohort ba_age_r ba_nchild sex emp empstat nchild income hhldsize) + + lab val emp EMP + lab val empstat EMPSTAT + + * set the weight + svyset [iw=propwt] + + * the number of half hour data points by survey & day + svy: tab ba_survey s_dow + + * add up 'at least 1 mention' per half-hour + * for original locations + local loc "all rh sh oth" + + foreach l of local loc { + di "* Adding up 'at least 1' & basic stats for laundry_`a' ($version)" + gen any_laundry_`l' = 0 + replace any_laundry_`l' = 1 if laundry_`l' > 0 + lab var any_laundry_`l' "`l' $version" + } + di "* test who does laundry at 'other locations' at half hour level" + bysort ba_survey: logit any_laundry_oth i.sex i.ba_age_r i.ba_nchild hhldsize i.empstat i.income, cluster(pid) + + * for derived locations + local dloc "h nh" + foreach l of local dloc { + di "* Adding up 'at least 1' for laundry_`l' ($version)" + gen any_laundry_`l' = 0 + replace any_laundry_`l' = 1 if laundry_`l' > 0 + lab var any_laundry_`l' "`l' $version" + } + + + * loop through all & derived locations + local acts "all h nh" + foreach a of local acts { + di "*****************************" + di "* any_laundry_`a' = at least 1 reported instance of laundry in the half hour" + di "*******" + di "* 'at least 1 reported reported laundry instance' for: any_laundry_`a'" + svy: tab any_laundry_`a' ba_survey , col ci + + di "*******" + di "* Days by survey for any_laundry_`a' = 1 - Fig 2" + svy: tab s_dow ba_survey if any_laundry_`a' == 1, ci col + + di "*******" + di "* Days by gender & survey for any_laundry_`a' =1 - used for Fig 3 " + bysort ba_survey: table s_dow sex any_laundry_`a' [iw=propwt] + + di "*******" + di "* Days by survey & employment status if female for any_laundry_`a' = 1 - used for Figs 4 & 5" + bysort ba_survey: table s_dow empstat any_laundry_`a' if sex == 2 [iw=propwt] + } + + * time of day comparisons + local acts "all h nh" + foreach a of local acts { + di "*****************************" + di "* Tables for: any_laundry_`a'" + table s_halfhour ba_survey any_laundry_`a' [iw=propwt] + + di "* days by half hour for: any_laundry_`a'" + * use tabout here + + local count = 0 + * by day of week + local filemethod = "replace" + levelsof ba_survey, local(levels) + *di "* levels: `levels'" + local labels: value label ba_survey + *di "* labels: `labels'" + local heading "h1(any_laundry_`a')" + foreach l of local levels { + if `count' > 0 { + * we already made one pass so now append + local filemethod = "append" + *ocal heading = "h1(nil) h2(nil)" + } + local vlabel : label `labels' `l' + di "*-> Level: `l'" + * use mean to give per half-hour rates + qui: tabout s_halfhour s_dow if ba_survey == `l' /// + using "$rpath/MTUS_any_laundry_`a'_by_halfhour_per_year_day_mean_$version.txt", `filemethod' /// + h3("Year: `vlabel'") /// + cells(mean any_laundry_`a' se) /// + format(5) /// + svy sum + * use freq as can then summarise across all days to give relative freq + qui: tabout s_halfhour s_dow if any_laundry_`a' == 1 & ba_survey == `l' /// + using "$rpath/MTUS_any_laundry_`a'_by_halfhour_per_year_day_freq_$version.txt", `filemethod' /// + h3("Year: `vlabel'") /// + cells(freq) /// + format(5) /// + svy + local count = `count' + 1 + } + + /* seasons - leave out for now (small N) + recode mtus_month (3 4 5 = 1 "Spring") (6 7 8 = 2 "Summer") (9 10 11 = 3 "Autumn") (12 1 2 = 4 "Winter"), gen(season) + * check + * tab mtus_month season + table s_halfhour ba_survey season [iw=propwt], by(any_laundry_`a') + + * by employment status - not used (small n esp if just for women) + di "* by half hour & employment status for women for: any_laundry_`a'" + table s_halfhour empstat ba_survey if sex == 2 [iw=propwt], by(any_laundry_`a') + + di "*repeat by day for 2005 for: any_laundry_`a'" + table s_halfhour empstat s_dow if ba_survey == 2005 & sex == 2 [iw=propwt], by(any_laundry_`a') + */ + } + + * set time variable so can select by time + xtset diarypid s_halfhour, delta(30 mins) format(%tcHH:MM) + + local acts "h" + foreach a of local acts { + * analysis by laundry type + preserve + gen laundry_timing_`a' = 5 if any_laundry_`a' == 1 // other + replace laundry_timing_`a' = 1 if any_laundry_`a' == 1 & s_dow == 0 & tin(08:00, 12:00) // sunday morning + replace laundry_timing_`a' = 2 if any_laundry_`a' == 1 & s_dow > 0 & s_dow < 6 & tin(09:00, 12:00) // weekday morning + replace laundry_timing_`a' = 3 if any_laundry_`a' == 1 & s_dow > 0 & s_dow < 6 & tin(17:00, 20:00) // weekday evening peak + replace laundry_timing_`a' = 4 if any_laundry_`a' == 1 & tin(00:00, 01:30) // night-time + replace laundry_timing_`a' = 4 if any_laundry_`a' == 1 & tin(22:30, 23:30) // night-time + + tab laundry_timing_`a', gen(laundry_timing_`a') + + * check for missing + table s_halfhour laundry_timing_`a' any_laundry_`a' + tab laundry_timing_`a' ba_survey, mi + + lab def laundry_timing 1 "Sunday morning 09:00-12:00" 2 "Weekday morning 09:00-12:00" 3 "Weekday evening peak 17:00-20:00" 4 "Night-time 22:30-01:30" 5 "Other" + lab val laundry_timing_`a' laundry_timing + tab laundry_timing_`a' ba_survey [iw=propwt], col + svy:tab laundry_timing_`a' ba_survey, col ci + *table laundry_timing_`a' ba_age_r ba_survey [iw=propwt], col + table laundry_timing_`a' empstat ba_survey [iw=propwt], col + *table laundry_timing_`a' ba_nchild ba_survey [iw=propwt], col + + di "* collapse to single person record" + * note that this does not mean classifying 1 person to 1 'type' - a person can display multiple laundry types + + collapse (sum) laundry_timing_* any_laundry_* (mean) propwt, by(pid ba_survey /// + ba_birth_cohort ba_age_r ba_nchild sex emp empstat nchild hhldsize) + + recode any_laundry_all any_laundry_h any_laundry_nh (1/max=1) + recode laundry_timing_`a'1 (1/max=1) + recode laundry_timing_`a'2 (1/max=1) + recode laundry_timing_`a'3 (1/max=1) + recode laundry_timing_`a'4 (1/max=1) + recode laundry_timing_`a'5 (1/max=1) + + di "* how many people are in multiple types? (nlaundry_types_`a' $version)" + egen nlaundry_types_`a' = rowtotal(laundry_timing_`a'*) + svy: tab nlaundry_types_`a' ba_survey, col + + * what % of respondents in each? + svy: mean laundry_timing_`a'*, over(ba_survey) + * % of launderers + svy: mean laundry_timing_`a'* if any_laundry_all == 1, over(ba_survey) + + * test predictors of exhibiting different laundry practices + foreach v of numlist 1/4 { + logit laundry_timing_`a'`v' sex ib4.empstat i.ba_age_r i.ba_nchild hhldsize if ba_survey == 1985 + est store laundry_timing_`a'`v'_1985 + logit laundry_timing_`a'`v' sex ib4.empstat i.ba_age_r i.ba_nchild hhldsize if ba_survey == 2005 + est store laundry_timing_`a'`v'_2005 + } + estout laundry_timing_`a'*_1985 using "$rpath/laundry_type_`a'_1985_$version-regressions.txt", cells("b ci_l ci_u se p _star") stats(N r2_p chi2 p ll) replace + estout laundry_timing_`a'*_2005 using "$rpath/laundry_type_`a'_2005_$version-regressions.txt", cells("b ci_l ci_u se p _star") stats(N r2_p chi2 p ll) replace + restore + } +} + + +* go back to the main survey aggregate file +use "$mtuspath/MTUS-adult-aggregate-UK-only-wf.dta", clear + +* create a bespoke survey which merges 1983 & 1987 +* has the advantage of providing all seasons for '1985' +recode survey (1974=1974 "1974") (1983/1987=1985 "1985") (1995 = 1995 "1995") (2000=2000 "2000") (2005=2005 "2005"), gen(ba_survey) + +* drop all bad cases +keep if badcase == 0 + +* set as survey data for descriptives +svyset [iw=propwt] + +* drop diary duplicates & do some basic stats + +duplicates drop pid, force + +* create working age variable +gen ba_working_age = 0 +replace ba_working_age = 1 if age > 18 // OK, it should be 16 but... +* women +replace ba_working_age = 0 if age > 60 & sex == 2 +* men +replace ba_working_age = 0 if age > 65 & sex == 1 +* check +table ba_age_r ba_working_age sex + +* Proportion of women in work +svy: tab ba_survey empstat if ba_working_age == 1 & sex == 2, row + +di "Done!" + +log close diff --git a/Theme-1/laundryPaper/old_stata/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v1.0-adult.do b/Theme-1/laundryPaper/old_stata/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v1.0-adult.do new file mode 100644 index 0000000000000000000000000000000000000000..35a2d091b48ce925cc5437436c4a60e3b28955cd --- /dev/null +++ b/Theme-1/laundryPaper/old_stata/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-v1.0-adult.do @@ -0,0 +1,564 @@ +******************************************* +* Script to use MTUS World 6 time-use data (www.timeuse.org/mtus UK subset) to examine: +* - distributions of laundry in 1975 & 2005 +* - changing laundry practices + +* data already in long format (but episodes) + +* also uses EFS 2005-6 to analyse uptake of washers/dryers + +* This work was funded by RCUK through the End User Energy Demand Centres Programme via the +* "DEMAND: Dynamics of Energy, Mobility and Demand" Centre (www.demand.ac.uk, gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K011723/1) + +/* + +Copyright (C) 2014 University of Southampton + +Author: Ben Anderson (b.anderson@soton.ac.uk, @dataknut, https://github.com/dataknut) + [Energy & Climate Change, Faculty of Engineering & Environment, University of Southampton] + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License +(http://choosealicense.com/licenses/gpl-2.0/), or (at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +#YMMV - http://en.wiktionary.org/wiki/YMMV + +*/ + +clear all + +* change these to run this script on different PC +local where "~/Documents/Work" +local droot "`where'/Data/Social Science Datatsets" +* LCFS/EFS +local efspath "`droot'/Expenditure and Food Survey/processed" + +* location of time-use diary data +local mtuspath "`droot'/MTUS/World 6/processed" +local dfile "MTUS-adult-episode-UK-only" + +local proot "`where'/Projects/RCUK-DEMAND/Theme 1" +local rpath "`proot'/results/MTUS" + +* version +local version = "v1.2-all-hhs" +local filter "_all" +* weights the final counts + +*local version "v1.1-singles" +*local filter "if hhtype == 1" +* single person hhs only + +*local version "v1.1-all-hhs-sanity-check" +*local filter "_all" +* counts if 1 or more acts (sanity check) + +*local version = "v1.1-all-hhs" +* local filter "_all" +* adds in secondary acts + +* local version = "v1.0-main" +* counts main acts only + +capture log close + +log using "`rpath'/DEMAND-BA-MTUS-W6-Laundry-Change-Over-Time-`version'-adult.smcl", replace + +local do_halfhour_episodes = 0 +local do_halfhour_samples = 1 +local do_sequences = 0 + +* make script run without waiting for user input +set more off + +********** +* LCFS data for tumble dryer uptake levels to 2005 +use "`efspath'/EFS-2001-2010-extract-BA.dta", clear +lookfor tumble weight +tab year a167 [iw=weighta], row + +* 2005 only +tab a167 c_nchild [iw=weighta] if year == 2005, col +tab a167 c_nearners [iw=weighta] if year == 2005, col +tab a167 c_empl [iw=weighta] if year == 2005, col + + +********************************** +* codes of interest +* 1974: Main/Sec21 Laundry, ironing, clothing repair <- 50 Other essential domestic work (i.e. NOT preparing meals or routine housework) +* so laundry in 1974 may be over-estimated +* BUT 1975 is partly a 7 day diary - so more likely to detect laundry? + +* 2005: Main/Sec21 Laundry, ironing, clothing repair <- Pact=7 (washing clothes) + +* start with processing the aggregate (survey) data +use "`mtuspath'/MTUS-adult-aggregate-UK-only-wf.dta", clear + +* drop all bad cases +keep if badcase == 0 + +* set as survey data for descriptives +svyset [iw=propwt] + +* keep only 1974 & 2005 for simplicity +* keep if survey == 1974 | survey == 2005 +* no, let's keep them all for birth cohort analysis! + +* this is minutes per day not episodes +* check 18 (Cooking) & 20 (Cleaning) & 22 (maintain home/vehicle) against laundry +* seems to under-report laundry in 1974, esp for women? +svy: mean main18 main20 main21 main22, over(survey sex) + +* keep whatever sample we define above +keep `filter' + +* number of diary days by hh type +* svy: tab hhtype survey, col count + +* number of diary days by number of days covered +* 1974 = 7 day dairy +svy: tab id survey, col count + +/* already done in input file + +* hh size recode & test +recode hhldsize (1=1) (2=2) (3=3) (4=4) (5/max=5), gen(ba_hhsize) +lab var ba_hhsize "Recoded household size" +lab def ba_hhsize 1 "1" 2 "2" 3 "3" 4 "4" 5 "5+" +lab var ba_hhsize ba_hhsize + +* svy: tab ba_hhsize survey, col count + +* main7 & main8 = paid work +gen ba_4hrspaidwork = 0 +* mark those who worked more than 4 hours that day +replace ba_4hrspaidwork = 1 if main7 > 240 + +* set up n child & n people variables +recode nchild (0=0) (1=1) (2=2) (3/max=3), gen(ba_nchild) +lab var ba_nchild "Recoded nchild" +lab def ba_nchild 0 "0" 1 "1" 2 "2" 3 "3+" +lab val ba_nchild ba_nchild +recode hhldsize (0=0) (1=1) (2=2) (3=3) (4=4) (5/max=5), gen(ba_npeople) +lab def ba_npeople 0 "0" 1 "1" 2 "2" 3 "3" 4 "4" 5 "5+" +lab val ba_npeople ba_npeople + +* age categories +egen ba_age_r = cut(age), at(16,24,34,44,54,64,74,84) +lab var ba_age_r "Recoded age -> decades" +tab ba_age_r + +* age cohorts +gen ba_birthyear = year - age +egen ba_birth_cohort = cut(ba_birthyear), at(1890,1900,1910,1920,1930,1940,1950,1960,1970,1980) +tab ba_birth_cohort survey +* NB - max age = 80 so older cohorts missing from 2005 + +* weekday variable +gen ba_weekday = 0 +replace ba_weekday = 1 if day > 1 & day < 7 + +*/ + + +* keep only the vars we want to keep memory required low +keep sex age main7 main21 hhtype empstat emp unemp student retired propwt survey day month year /// + hhldsize famstat nchild *pid ba* + +* number of diary-days +svy: tab survey, obs + +preserve + +if `do_halfhour_episodes' { + ************************* + * merge in the episode data + * egen diarypid = group(countrya survey swave msamp hldid persid day) + * egen pid = group(countrya survey swave msamp hldid persid) + merge 1:m diarypid using "`dpath'/MTUS-adult-episode-UK-only-wf.dta", /// + gen(m_aggvars) + + * won't match the dropped years & badcases + tab m_aggvars survey + + * keep the matched cases + keep if m_aggvars == 3 + + * number of episodes per day + svy: tab day survey, obs col + + * overall durations + gen duration = s_endtime - s_starttime + format duration %tcHH:MM + tab duration survey [iw=propwt] + + *************** + * Laundry + + * define laundry + gen laundry_p = 0 + lab var laundry_p "Main act = laundry (21)" + replace laundry_p = 1 if main == 21 + + gen laundry_s = 0 + lab var laundry_s "Secondary act = laundry (21)" + replace laundry_s = 1 if sec == 21 + + gen laundry_all = 0 + replace laundry_all = 1 if laundry_p == 1 | laundry_s == 1 + + * check % episodes which are laundry + * NB reporting frame shorter in 2005 (10 mins) so may be higher frequency (e.g. interruption in 10-20 mins coded) + * row % + tab survey laundry_p [iw=propwt] + tab survey laundry_s [iw=propwt] + * all + tab survey laundry_all [iw=propwt] + + * check duration of laundry + * before we do this mere together episodes that are contiguous (e.g. laundry (s) then laundry(p) -> 1 episode) + * same approach as for dinner + * calculate duration + gen laundry_duration = duration if laundry_all == 1 + format laundry_duration %tcHH:MM + * count back & forward maxcount episodes within the same diary day to check if they are also laundry + * indicates something changed - primary/secondary act or location or who with etc + * add on duration if previous and subsequent episodes are also laundry and location is unchanged + * NB: if you make maxcount > 1 then you could have episodes of eating separated by a long episode of something else + local maxcount = 1 + + * This is vital - we have to have the episodes in diary & time order! + sort diarypid start + + foreach n of numlist 1/`maxcount' { + local prev = `n' - 1 + di "* Now = `n', previous = `prev'" + di "* Before" + su laundry_duration + bysort survey diarypid: replace laundry_duration = laundry_duration + duration[_n-`n'] if laundry_all == 1 & /// + laundry_all[_n-`n'] == 1 & eloc == eloc[_n-`n'] + bysort survey diarypid: replace laundry_duration = laundry_duration + duration[_n+`n'] if laundry_all == 1 & /// + laundry_all[_n+`n'] == 1 & eloc == eloc[_n+`n'] + di "* After" + su laundry_duration + } + + + * Means are probably not going to tell us much given the differences in recording frames + * Use table instead as durations are so 'rounded' + * even so have to allow for differences in recording frames + table laundry_duration sex survey [iw=propwt] + + * age cohort differences in incidence of laundry + table ba_birth_cohort laundry_all survey [iw=propwt] + + + * leave this empty to skip the (time consuming) aggregations & table outputs + local vars "21" + local l5 "meals_work" + local l6 "meals_oth" + local l18 "food_prep" + local l21 "laundry" + local l59 "tv_video" + local l60 "computer_games" + local l61 "computer_internet" + + ************************* + * Aggregation to half hours + * logic: the time use diaries rarely have the same duration of recorded time slot, 1974 = 30 mins, 2005 = 10 mins for example + * To make comparison easier we need to use the lowest common multiple - in this case 30 minutes + * We have already set up a variable (s_halfhour) which is the stata episode start-time converted into a stata half hour + * i.e. if s_starttime = 21:24 s_halfhour = 21:00, if s_starttime = 21:44 s_halfhour = 21:30 etc + + * Note that where the diary has episodes shorter than 30 minutes we may get more than 1 episode of laundry + * reported per half hour + * Check + duplicates tag s_halfhour diarypid laundry_all, gen(laundry_dup_flag) + table laundry_dup_flag laundry_all survey + + * We'd expect them all to occur in 2005 but they don't suggesting the 1974 -> MTUS conversion process has creates + * some episodes shorter than 30 minutes + * In any case we do need to watch out for situations where we sum the number of episodes per halfhour as + * we may have more episodes in 2005 due to the smaller recording time frame. + + * Note that where the diary has episodes shorter than 30 minutes we may get more than 1 episode reported per half hour + * We will also miss longer episodes that started this half-hour and are continuing in the next half hour + + * This will record all episodes that started within the half hour but it won't catch episodes that started before and + * are long-lasting. So it is good for looking at the distribution of episodes that are short, like laundry (mostly) + * It does NOT work for longer-lasting episodes like sleep or paid work + di "* Tables for all days" + * All years, all days + table s_halfhour survey laundry_all [iw=propwt] + + * Separate days + table survey day [iw=propwt], by(laundry_all) + + * days by half hour + table s_halfhour survey day [iw=propwt], by(laundry_all) +} + +restore + +*preserve +************************* +* sampled data +if `do_halfhour_samples' { + * merge in the sampled data + merge 1:m diarypid using "`dpath'/MTUS-adult-episode-UK-only-wf-10min-samples-long-v1.0.dta", /// + gen(m_aggvars) + + * set up half-hour variable + gen ba_hourt = hh(s_starttime) + gen ba_minst = mm(s_starttime) + + gen ba_hh = 0 if ba_minst < 30 + replace ba_hh = 30 if ba_minst > 29 + gen ba_sec = 0 + * sets date to 1969! + gen s_halfhour = hms(ba_hourt, ba_hh, ba_sec) + lab var s_halfhour "Episode starts during the half hour following" + format s_halfhour %tcHH:MM + + * define laundry + gen laundry_p = 0 + lab var laundry_p "Main act = laundry (21)" + replace laundry_p = 1 if pact == 21 + + gen laundry_s = 0 + lab var laundry_s "Secondary act = laundry (21)" + replace laundry_s = 1 if sact == 21 + + gen laundry_all = 0 + replace laundry_all = 1 if laundry_p == 1 | laundry_s == 1 + + * this is the number of 10 minute samples by survey & day of the week + tab survey day [iw=propwt] + + * check % samples which are laundry + * NB reporting frame longer in 1974 (30 mins) so may be higher frequency (e.g. interruption in 10-20 mins coded) + di "* main" + tab survey laundry_p [iw=propwt] + di "* secondary" + tab survey laundry_s [iw=propwt] + di "* all" + tab survey laundry_all [iw=propwt] + + * keep 1974 & 2005 only + keep if survey == 1974 | survey == 2005 + + * collapse to add up the sampled laundry by half hour + * use the byvars we're interested in (or could re-merge with aggregated file) + + collapse (sum) laundry_* (mean) propwt, by(diarypid pid survey day month year s_halfhour /// + ba_birth_cohort ba_age_r sex emp empstat nchild) + * because the different surveys have different reporting periods we need to just count at least 1 laundry in the half hour + lab val emp EMP + lab val empstat EMPSTAT + local acts "p s all" + foreach a of local acts { + gen any_laundry_`a' = 0 + replace any_laundry_`a' = 1 if laundry_`a' > 0 + } + * the number of half hour data points by survey & day + tab survey day [iw=propwt] + + svyset [iw=propwt] + * the distribution of laundry by survey + di "* primary" + svy: tab survey any_laundry_p, row ci + + di "* secondary" + svy: tab survey any_laundry_p, row ci + + di "* all" + svy: tab survey any_laundry_all, row ci + + * Separate days + table survey day [iw=propwt], by(any_laundry_all) + + * days by gender + table survey day sex [iw=propwt], by(any_laundry_all) + + * laundry by employment status if female + table survey day empstat if sex == 2 & any_laundry_all == 1 [iw=propwt] + + di "* Tables for all days" + * All years, all days + table s_halfhour survey any_laundry_all [iw=propwt] + + * days by half hour + table s_halfhour survey day [iw=propwt], by(any_laundry_all) + + * seasons + recode month (3 4 5 = 1 "Spring") (6 7 8 = 2 "Summer") (9 10 11 = 3 "Autumn") (12 1 2 = 4 "Winter"), gen(season) + * check + * tab month season + table s_halfhour survey season [iw=propwt], by(any_laundry_all) + + * by half hour & employment status for women + table s_halfhour empstat survey if sex == 2 [iw=propwt], by(any_laundry_all) + + *repeat by day for 2005 + table s_halfhour empstat day if survey == 2005 & sex == 2 [iw=propwt], by(any_laundry_all) + + * analysis by laundry type + * sunday morning + + * set time variable so can select by time + xtset diarypid s_halfhour, delta(30 mins) + * only code for laundry within year + gen laundry_timing = 5 if any_laundry_all == 1 // other + replace laundry_timing = 1 if any_laundry_all == 1 & day == 1 & tin(10:00, 12:00) // sunday morning + replace laundry_timing = 2 if any_laundry_all == 1 & day > 1 & day < 6 & tin(11:00, 15:00) // weekday mid-day + replace laundry_timing = 3 if any_laundry_all == 1 & tin(16:30, 20:30) // evening peak + replace laundry_timing = 4 if any_laundry_all == 1 & tin(00:00, 01:30) // night-time + replace laundry_timing = 4 if any_laundry_all == 1 & tin(22:30, 23:30) // night-time + + tab laundry_timing, gen(laundry_timing_) + + * check for missing + table s_halfhour laundry_timing any_laundry_all, mi + + lab def laundry_timing 0 "No laundry" 1 "Sunday morning" 2 "Weekday mid-day" 3 "Evening peak" 4 "Night-time" 5 "Other" + lab val laundry_timing laundry_timing + tab laundry_timing survey [iw=propwt], col + table laundry_timing ba_age_r survey [iw=propwt] + table laundry_timing empstat survey [iw=propwt] + table laundry_timing nchild survey [iw=propwt] + + * collapse to single person record + * remember 1974/5 = 1 week diary + collapse (sum) laundry_timing_* (mean) propwt, by(pid survey /// + ba_birth_cohort ba_age_r sex emp empstat nchild) + recode laundry_timing_1 (1/max=1) + + stop +} +*restore + +************************* +* sequences +if `do_sequences' { + * back to the episodes + merge 1:m diarypid using "`dpath'/MTUS-adult-episode-UK-only-wf.dta", /// + gen(m_aggvars) + * this won't have matched the dropped years & badcases + * tab m_aggvars survey + + * keep the matched cases + keep if m_aggvars == 3 + + * define laundry + gen laundry_p = 0 + lab var laundry_p "Main act = laundry (21)" + replace laundry_p = 1 if main == 21 + + gen laundry_s = 0 + lab var laundry_s "Secondary act = laundry (21)" + replace laundry_s = 1 if sec == 21 + + gen laundry_all = 0 + replace laundry_all = 1 if laundry_p == 1 | laundry_s == 1 + + * we can't use the lag notation and xtset as there are various time periods represented in the data + * and we would need to set up some fake (or real!) dates to attach the start times to. + * we could do this but we don't really need to. + + * we want to use episodes not time slots (as we are ignoring duration here) + + * This is vital - we have to have the episodes in diary & time order! + sort diarypid start + + * we are NOT going to worry about sequential episodes which are both laundry_all as this will indicate + * that something changed - most likely a switch of laundry from primary to secondary activity (or vice versa) + * this may be of interest in itself + + local acts "all" + foreach a of local acts { + * make sure we do this within diaries otherwise we might get a 'before' or 'after' belonging to a previous day (for multi day diaries) + * or to someone else (for 1 day diaries or the first day)! + + qui: by diarypid: gen before_laundry_`a' = main[_n-1] if laundry_`a' == 1 + qui: by diarypid: gen after_laundry_`a' = main[_n+1] if laundry_`a' == 1 + + lab val before_laundry_`a' after_laundry_`a' MAIN + + qui: tabout before_laundry_`a' survey [iw=propwt] using "`rpath'/before-laundry-by-survey.txt", replace + qui: tabout after_laundry_`a' survey [iw=propwt] using "`rpath'/after-laundry-by-survey.txt", replace + } + tab laundry_all + * create a sequence variable (horrible kludge but hey, it works :-) + egen laundry_seq = concat(before_laundry_all laundry_all after_laundry_all) if laundry_all == 1 , punct("_") + + * get frequencies of sequencies (this will be a very big table) + * the few which have missing (.) before laundry indicate nothing recorded before hand which seems a bit odd? + + tab laundry_seq + + preserve + * contract doesn't like iw - only allows fw (which need to be integers) + * so these will be unweighted + contract laundry_seq survey, nomiss + qui: tab laundry_seq + + qui: return li + di "For laundry_seq after contract : N = " r(N) ", r = " r(r) + + * reshape it to get the frequencies per survey into columns + qui: reshape wide _freq, i(laundry_seq) j(survey) + qui: return li + + li in 1/5 + outsheet using "`rpath'/laundry-sequences-by-survey-wide.txt", replace + * totals + * the number of different sequences will probably vary by sample size - more potential variation + su _freq*, sep(0) + tabstat _freq*, s(n sum) + * top in 1974? + gsort - _freq1974 + li in 1/10, sep(0) + * top in 2005? + gsort - _freq2005 + li in 1/10, sep(0) + + + restore + + /* + * try using the sqset commands + + * tell it to look at sequences + sqset main diarypid s_starttime + + * top 20 sequences + sqtab survey if before_laundry ! = 1 | after_laundry ! = 1, ranks(1/20) + */ +} + +* we're back to the main survey aggregate file here. +* drop diary duplicates & do some basic stats + +duplicates drop pid, force + +* create working age variable +gen ba_working_age = 0 +replace ba_working_age = 1 if age > 18 // OK, it should be 16 but... +* women +replace ba_working_age = 0 if age > 60 & sex == 2 +* men +replace ba_working_age = 0 if age > 65 & sex == 1 +* check +table ba_age_r ba_working_age sex + +* Propoprtion of women in work +tab survey empstat [iw=propwt] if ba_working_age == 1 & sex == 2, row + + +log close